Citric Acid + Y(NO₃)₆H₂O + Al(NO₃)₃H₂O + H₂O

Reflux 110 °C / 24h

Viscous Resin

Drying

Grinding

Pyrolyzing

Calcinating

Figure 1

Agents: GIOVANNINI, Francesca et al.; 32 Avenue de l'Opéra, F-75002 Paris (FR).

Published: with international search report (Art. 21(3))
Title: Luminophore composition for UV-visible light conversion and light converter obtained therefrom

Technical field

The present disclosure relates to a luminophore composition, particularly but not exclusively suitable for UV-visible light conversion, for example for converting UV light into white visible light, for example into warm white light. The luminophore composition of the present disclosure may be for example used to convert the UV light emitted by light-emitting diodes (LEDs). The present disclosure also relates to a process for the preparation of said composition, and to the use of said composition to prepare solid-state light converters. Furthermore, the present disclosure relates to a solid-state lighting device comprising such a converter.

In present description and in the following claims, the expression “warm white light” is intended to indicate a light having a predetermined color temperature, for example comprised between 4000K and 5000K, corresponding to a natural white light and arising from a broad luminescence band lying in the entire visible region, i.e. from about 400 nm to about 700 nm.

Background art

As known, light emitters such as for example LEDs are semiconductor light sources with a narrow band emission that can be manufactured to emit in the ultraviolet (UV), visible or infrared regions of the spectrum.

LEDs are used as indicator lamps in many devices, and are increasingly used for lighting. Among LEDs, white LEDs represent a promising, high-efficiency technology for illumination.

To generate white light for general illumination applications, the narrow spectral band of a LED’s emission must be converted into white light, or two or more discrete emissions must be mixed.

The conversion of the light emitted by LEDs into white light is performed by phosphor-based LEDs, which are obtained by coating a LED, generally a blue or UV LED, with a
phosphor material of different colors selected depending on the color of the original LED, to convert the monochromatic light from the blue or UV LED to an apparent white light, which however does not exhibit a broad band in the visible region.

Mixing different discrete emissions is performed by multi-colored white LEDs, which are obtained by combining individual LEDs emitting different primary colors, generally red, green, and blue.

LEDs are also known which generate white light using a combination of phosphor conversion and color-mixing.

However, on the one side, it is difficult to maintain consistent-quality white light due to natural variations in LED wavelength or in the phosphor material used in phosphor based LEDs.

In addition, prior art white LEDs developed so far exhibit a sharp blue emission leading generally to cool lighting, which in the art is referred to as “blue-light hazard” since it is uncomfortable and hazardous to eyes. Blue light, in fact, due to glare and dazzle effects, may cause eyestrain, retinal injury and fatigue and may disrupt sleep patterns.

Furthermore, the typically available highly emissive phosphors include expensive and environmentally toxic metals, such as silver, cadmium, germanium or rare-earth elements.

In this regard, there have been attempts to provide more stable and efficient and less toxic photoluminescent materials, as described in Hayakawa et al., “White light emission from radical carbonylterminated in aluminosilicate (Al₂O₃-SiO₂) porous glasses with high luminescence quantum efficiencies”, Applied Physics Letters, Vol. 82, No. 18, May 5, 2003. However, the sol-gel derived glasses of aluminosilicate compositions described therein are excited at an excitation length which is too far from the visible region.

On the other side, the mechanism involved in the electro-optical devices used to control the blending and diffusion of the different colors in multi-colored white LEDs renders this type of white LEDs of limited use.
Summary of the disclosure

An object of the present disclosure is to provide a luminophore composition, particularly but not exclusively suitable for conversion of UV light emitted by UV light emitters into white visible light, which is capable of emitting a broad-spectrum white light spread out on all the visible region, i.e. from about 400 nm to about 700 nm, without blending different colors and without requiring use of several phosphors and/or toxic materials.

A further object of the present disclosure is to provide warm white lighting avoiding the above-mentioned blue-light hazard.

A further object of the present disclosure is to provide a composition for use in solid-state lighting devices, which are both efficient and environmentally friendly.

The above-mentioned objects, as well as further advantages, are achieved by a luminophore composition comprising amorphous aluminoborate powders, the composition being obtainable by a process comprising:

- preparing an aluminoborate resin by a wet chemical route based on precursors solutions substantially free from monovalent and divalent cations;
- drying the resin to obtain a solid;
- grinding the solid to obtain a powder;
- pyrolyzing the powder at a pyrolysis temperature lower than the crystallization temperature of the composition; and
- calcinating the powder so pyrolyzed at a calcination temperature lower than the crystallization temperature of the composition.

In the present description and in the following claims, the terms “amorphous powders” are intended to comprise both amorphous powders in general and glassy powders having a glassy transition temperature.

In one embodiment, the composition is obtained by carrying out a process comprising the above-mentioned steps.
Advantageously, the composition is capable to convert UV light into visible white light at all wavelengths of the visible region, thus permitting to provide lighting which is comfortable for eyes and has no undesired photo-biological effects on human health.

Advantageously, luminescence quantum yields from 0.4 to 0.7 at a wavelength of about 385 nm may be obtained. For example, luminescence quantum yields may range from 0.7 to 0.9, for example from 0.8 to 0.9, at a wavelength of about 365 nm.

Depending on the composition of the aluminoborate, the luminescence emission band of the composition may range from 350 nm to 800 nm. In one embodiment, the luminescence emission band of the composition may range from 350 nm to 750 nm, for example from 370 nm to 800 nm, for example from 390 nm to 750 nm, and for example from 400 nm to 700 nm.

Without being bound to a particular theory, the Applicants deem that the combination of process steps by which the composition is obtainable results in defects in the structure of amorphous aluminoborates powders. The structural defects may for example comprise non-bridging oxygen atoms or related oxygen defects, as described in A. Coldor et al. in Nanotechnology 15 (3), L1-L4 (2004), and/or interstitial carbon associated defects.

These structural defects lead to a high variety of luminescence emitters acting as colored centers giving rise to a broad emission in the whole visible region.

The wet chemical route, as known to the man skilled in the art, is a chemistry synthesis based on the preparation of homogeneous solutions by dissolving all precursors in solution and, according to one embodiment, in aqueous solution. The dissolution is favored by complexing the metal ions. Then, by reaction of polymerization, a homogenous resin or gel is obtained.

Advantageously, the use of a wet chemical route results in a high atomic homogeneity of constituent components in the liquid precursor, which facilitates the synthesis of high purity powders with nanometer or micron-sized particles.

The wet chemical route can be for example a polymeric precursor method (modified Pechini) or sol-gel chemistry, as well as their combination, but also precipitation,
emulsion and spray-based syntheses are possible. In one embodiment, the wet chemical route is a polymeric precursor method.

Independently of the type of wet chemical route, the solutions containing the precursors are substantially free from monovalent and divalent cations.

In the present description and in the following claims, a solution substantially free from monovalent and divalent cations is intended to indicate a solution comprising less than 5000 ppm of monovalent and divalent cations, such as for example Na⁺, K⁺, Ca²⁺, Mg²⁺. The solution may contain less than 2000 ppm of monovalent and divalent cations, for example less than 1000 ppm of monovalent and divalent cations, for example less than 500 ppm of monovalent and divalent cations. The solution may contain less than 300 ppm, for example less than 100 ppm, for example less than 50 ppm, for example less than 10 ppm, for example less than 5 ppm of monovalent and divalent cations.

According to one embodiment, the precursors solutions are free from monovalent and divalent cations.

Without being bound to a particular theory, it is deemed that monovalent and divalent cations cause the formation of structural defects such as oxygen vacancies or other defects constituting fluorescence quenching sources.

In one embodiment, the above-mentioned aluminoborate has the following composition:

\[x \cdot M_2O_3 + y \cdot Al_2O_3 + z \cdot B_2O_3 \]

wherein

\[0 \leq x \leq 0.25, \]
\[0.1 \leq y \leq 0.7, \]
\[0.3 \leq z \leq 0.9, \text{ and} \]
\[x + y + z = 1. \]
M may be selected from the group comprising Y, Bi, Sc or any lanthanide, or from mixtures thereof.

In one embodiment, the composition comprises two trivalent metals M.

In one embodiment, the trivalent metal is selected from the group comprising Y$^{3+}$, Bi$^{3+}$, Sc$^{3+}$, La$^{3+}$, Gd$^{3+}$, or from mixtures thereof.

In one embodiment, M is Y$^{3+}$.

According to one embodiment, 0≤x≤0.20. In one embodiment, 0≤x≤0.150.

According to one embodiment, x≥0.1.

According to one embodiment, 0.1≤y≤0.4. In one embodiment, 0.3≤y≤0.4.

According to one embodiment, 0.1≤z≤0.7. In one embodiment, 0.4≤z≤0.6.

According to one embodiment, B$_2$O$_3$ can be partially replaced by SiO$_2$ or P$_2$O$_5$ or by any other glass former.

According to one embodiment, the molar ratios of each of SiO$_2$ / B$_2$O$_3$ and P$_2$O$_5$ / B$_2$O$_3$ can be comprised from 0 to 4, for example from 0 to 3, for example from 0 to 2, or example from 0 to 1, for example from 0 to 0.5, and for example from 0 to 0.3.

According to a further embodiment, the molar ratios of each of SiO$_2$ / B$_2$O$_3$ and P$_2$O$_5$ / B$_2$O$_3$ can be comprised from 0.1 to 1, for example from 0.1 to 0.5, for example from 0.1 to 0.3.

According to one embodiment, the aluminoborate composition comprises YAl$_3$(BO$_3$)$_4$ or a composition which is around the stoichiometric composition of YAl$_3$(BO$_3$)$_4$.

In the present description and in the following claims, a composition around the stoichiometric composition indicates a composition in which each element may independently deviate from the respective stoichiometric value up to 10% mol, and for example up to 5% mol.

For lighting applications, the above-mentioned powders may have a mean particle diameter ranging for example from 0.01 μm to 20 μm, for example from 0.01 μm to 7
μm, for example from 0.02 μm to 7 μm, for example from 0.05 μm to 3 μm, and for example from 0.7 μm to 2 μm.

However, for lighting applications comprising a nanostructured semiconducting structure, the powders may have for example a nanometric size, for example a mean particle diameter from 20 nm to 200 nm, for example from 20 nm to 80 nm, and for example from 30 nm to 50 nm.

In this way, the powders can be incorporated in nanostructured chips as emitting semiconductors of LEDs.

The size of the powders can be suitably controlled by selecting a predetermined initial size of the dried resin. Furthermore, by envisaging shaping treatments of the resin such as spray drying, spray pyrolysis or supercritical fluid drying, diameters in the range of about 20-40 nm can be achieved.

All values of mean particle diameter refer to a mean particle diameter measured according to standard electron microscopy or light scattering measurements.

The above-mentioned amorphous powders may have a glassy nature. In this case, the glass transition temperature T_g may be of at least from 450°C (for example in the case of alumino-borophosphate powders), up to about 1000°C (for example in the case of alumino-borsilicate powders).

The T_g is determined by standard differential scanning calorimetry or differential thermal analysis.

According to a second aspect thereof, the present disclosure relates to a process for the preparation of a composition as described above, the process comprising:

- preparing an aluminoborate resin by means of a wet chemical route based on precursors solutions substantially free from monovalent and divalent cations;

- drying the resin to obtain a solid;

- grinding the solid to obtain a powder;
- pyrolyzing the powder at a pyrolysis temperature lower than the crystallization temperature of the composition; and

- calcinating the powder so pyrolyzed at a calcination temperature lower than the crystallization temperature of the composition.

In one embodiment, the precursors comprise at least one trivalent metal, such as for example Y³⁺, Bi³⁺, Sc³⁺, La³⁺, Gd³⁺, and Al and B corresponding salts (for example nitrates) and are provided in respective predetermined amounts corresponding to desired final composition.

When the polymeric precursor method is used to prepare the resin, a polyesterification reaction may be carried out. The polyesterification reaction may be carried out in solvents, and for example in aqueous solutions. The solutions are substantially free from monovalent and divalent cations.

In case the polymeric precursor route is used, polyesterification reactions between an alcohol and a carboxylic acid may be carried out. The polyesterification reactions lead to a resin in which the metal ions are trapped and dispersed at the molecular level in an organic network.

In one embodiment, the alcohol is a polyalcohol, such as for example sorbitol and ethylene glycol.

In one embodiment, the carboxylic acid is selected from the group comprising: acetic acid, citric acid, propionic acid and malic acid.

In one embodiment, the polyesterification reactions are carried out under reflux and solution stirring, for example at a temperature comprised between 80°C and 150°C, for example between 100°C and 130°C, for example at about 110°C. In one embodiment, the polyesterification reactions are performed for at least 12 h, for example for about 24 h.

In one embodiment, the excess of solvent is removed from the resin before drying the resin, for example by solvent evaporation. In one embodiment, the viscosity of the resin is increased before drying of the resin. In one embodiment, the viscosity of the resin is
increased in a gradual manner, for example by solvent evaporation. If aqueous solutions are used, evaporation refers to evaporation of water. In this case, the evaporation may be performed at a temperature between 50°C and 95°C, for example between 80°C and 90°C, for example at about 90°C.

In one embodiment, the drying of the resin is performed at a temperature from 200°C to 350°C, for example from 230°C to 300°C, for example from 240°C to 260°C, for example at about 250°C.

In one embodiment, drying is performed under air atmosphere. However, drying can be also performed under an inert atmosphere, for example under nitrogen or argon.

In one embodiment, drying is performed for a time comprised between 10 minutes and 60 minutes, for example between 20 minutes and 40 minutes, and for example for about 30 minutes.

In one embodiment, drying is performed at a predetermined heating rate, which may be for example comprised between 10°C/h and 60°C/h, for example between 20°C/h and 40°C/h, for example at about 30°C/h.

Subsequently, the resin so dried becomes a solid that is subjected to grinding to obtain an amorphous powder. The grinding can be done with any standard manual or automatic crusher, such as for example an agate crusher, a ball milling, a planetary automatic crusher.

In one embodiment, after grinding the amorphous powders have a mean particle diameter ranging from 0.2 μm to 20 μm, for example from 0.2 μm to 10 μm, for example from 0.5 μm to 7 μm, and for example from 1 μm to 5 μm.

The amorphous powder is then pyrolyzed.

In the present description and in the following claims, the term “pyrolysis” is used to indicate the decomposition of a material or compound due to heat in the absence of oxygen or any other reagents.

Thanks to pyrolysis, a controlled partial oxidation of the powders is made. In one embodiment, the controlled partial oxidation involves oxygen only deriving from the
starting materials, such as for example the oxygen coming from hydroxides, alcohols, carboxylic groups and boric groups.

The amorphous powder is pyrolyzed at a pyrolysis temperature, which is lower than the crystallization temperature of the composition.

In one embodiment, pyrolysis is performed at a predetermined temperature, which is chosen depending on the chemical composition. In one embodiment, the predetermined pyrolysis temperature is from to 450°C to 1000°C, for example from 600°C to 800°C, and for example from 600°C to 750°C, and for example from 690°C to 730°C, for example at about 700°C, but in any case at a temperature lower than the crystallization temperature of the composition.

In one embodiment, pyrolysis is performed under inert atmosphere, such as for example under nitrogen or argon atmosphere.

In one embodiment, pyrolysis is performed for a predetermined time, for example for at least 6 h, for example from 20 h to 30 h, for example from 22 h to 26 h, and for example of about 24 h.

According to one embodiment, pyrolysis is performed at a predetermined heating rate. In one embodiment, the heating rate is comprised from 10°C/h to 60°C/h, for example from 20°C/h to 40°C/h, for example at about 30°C/h.

Subsequently, the amorphous powder so pyrolyzed is calcinated at a temperature lower than the crystallization temperature of the composition.

In the present description and in the following claims, the term “calcination” is used to indicate the decomposition or reaction of oxidation of a material due to heat in the presence of oxygen.

According to one embodiment, the calcination can be performed by gradually increasing the temperature until a final calcination temperature, for example by increasing the temperature at a predetermined heating rate.

In one embodiment, the calcination is performed at a heating rate ranging from 10°C/h to 60°C/h, for example between 20°C/h and 40°C/h, for example at about 30°C/h.
Depending on the powder composition, the calcination may be performed at a final predetermined calcination temperature, for example ranging from 450°C to 850°C, for example from 500°C to 800°C, for example from 600°C to 770°C, for example from 650°C to 750°C, for example from 720°C to 740°C, and for example at about 740°C, but in any case at a temperature which is lower than the crystallization temperature of the composition.

The calcination can also be performed by holding a predetermined intermediate temperature lower than the final calcination temperature for a predetermined time, for example for several hours, for example for 6-36 h, and for example for 24 h. In one embodiment, the intermediate temperature ranges from 300°C to 550°C.

The heating during the calcination can be made by holding a predetermined intermediate temperature for a predetermined time or, for example, by holding a predetermined intermediate temperature each time a predetermined temperature increase is attained, such as for example at every increase of 50°C-100°C.

In one embodiment, the calcination is performed under oxygen atmosphere. However, other calcination atmospheres are possible, such for example air.

In one embodiment, the calcination under oxygen atmosphere is performed for a time comprised from 12 h to 36 h, for example from 22 h to 26 h, for example for about 24 h.

In one embodiment, the calcination under air atmosphere is performed for a time, which is about twice the time of a corresponding calcination performed under oxygen.

According to a further aspect thereof, the present disclosure relates to the use of a composition comprising amorphous powders of aluminoborate as defined above to prepare a solid-state light converter, for example an UV-visible light converter.

In one embodiment, the visible light is a white light having a predetermined color temperature, for example from 4000 K to 5000 K.

However, according to other embodiments, by suitably varying the above-mentioned composition, with the composition of the present disclosure it is also possible to obtain a color temperature up to 10000 K.
According to a further aspect thereof, the present disclosure relates to a solid-state lighting device comprising an emitter, for example an UV emitter, and a converter as defined above.

In one embodiment, the light emitted is a white light having a predetermined color temperature, for example of 4000 K to 5000K, *i.e.* a warm natural white lighting which is comfortable to eyes and save lighting.

In one embodiment, the emitter is an emitting diode (LED), for example an UV LED.

However, other emitters can be also used, such as for example emitters using UV emitting gases, for example rare gases such as Kr, Xe and Ne, which can be used either in lamps or in excimer laser.

Accordingly, depending on the composition of the amorphous powders, embodiments of lighting devices of the present disclosure may have a predetermined luminescence emission band, for example ranging from 350 nm to 750 nm, for example from 370 nm to 730 nm, for example from 390 nm to 700 nm, and for example from 400 nm to 700 nm.

Advantageously, in these ranges of luminescence emission band the heat load coming from near IR wavelengths on the LEDs device is avoided, which in turn increases the life-time of the lighting device.

List of drawing figures

Figure 1 is a schematic flow diagram showing an embodiment of a process for the preparation of a luminophore composition for UV-visible light conversion.

Figure 2 shows the photoluminescence spectrum of a composition according to one embodiment of the present disclosure compared to the photoluminescence spectrum of a composition obtained without performing any pyrolysis.

Figure 3 shows the photoluminescence spectrum of a composition according to one embodiment of the present disclosure compared to the photoluminescence spectrum of a composition containing a divalent cation.
Figure 4 shows the photoluminescence spectrum of a composition according to one embodiment of the present disclosure compared to the photoluminescence spectrum of a composition obtained starting from precursors solutions not substantially free from monovalent and divalent cations.

Figures 5-7, 10, and 11 show the photoluminescence spectra of compositions according to respective embodiments of the present disclosure.

Figure 8 shows the photoluminescence spectra of compositions according to embodiments of the present disclosure compared to photoluminescence spectra of compositions obtained at calcination temperatures higher than the crystallization temperature.

Figure 9 shows the RX diffractogram of compositions according to one embodiment of the present disclosure compared to the RX diffractogram of a composition obtained at a calcination temperature higher than the crystallization temperature.

Detailed description of embodiments of the present disclosure

Example 1

In the following, an example of luminophore composition comprising yttrium aluminoborate powders and an example of process for the preparation of such composition are described with reference to the schematic flow diagram of Fig. 1.

According to the embodiment of Figure 1, the composition comprises amorphous powders around the stoichiometric composition of YAl₃B₄O₁₂ (YAB). If not otherwise indicated, the term YAB refers to the composition YAl₃B₄O₁₂ or around the stoichiometric composition thereof throughout the description and figures. Accordingly, an example of preparation of a ternary system 0.125 Y₂O₃ + 0.375 Al₂O₃ + 0.5 B₂O₃ is provided. To prepare 4 grams (0.01 mol) of a YAl₃B₄O₁₂ powder, two starting solutions were prepared, a first and second solution.

First solution

46.11 g (0.24 mol) of citric acid (C₆H₈O₇, 99.5%, commercially available from Sigma Aldrich) were dissolved in 75 ml of pure water at 80°C. After the complete dissolution of citric acid, 3.80 g (0.01 mol) of yttrium nitrate hexahydrated (Y(NO₃)₃·6H₂O,
99.99%, commercially available from Strem Chemicals) and 11.25 g (0.03 mol) of aluminum nitrate nonahydrated (Al(NO₃)₃·9H₂O, 99.5%, commercially available from Fischer scientific) were added and kept under stirring for 30 minutes at 80°C.

Second solution

30.74 g (0.169 mol) of D-sorbitol (C₆H₁₂O₆, 99.5%, commercially available from Sigma Aldrich) were dissolved in 75 ml of pure water at 80°C. The water contained less than 5 ppm of monovalent and divalent cations and had a conductivity of about 1.1 μS/cm.

Then, 2.47 g (0.04 mol) boric acid (H₃BO₃, 99.8%, commercially available from Fischer scientific) were added and kept under stirring for 30 minutes.

Subsequently, the first and the second solutions were mixed and placed under reflux and stirring at 110°C for 24 hours, to perform the polyesterification reactions between the metallic citrates and boron complexes, leading to the formation of a polymeric resin. The water excess was removed by evaporation at 90°C for several hours, until the initial volume reduced to half and a yellowish viscous resin was obtained.

The resin so obtained was dried at about 250°C under air atmosphere at a heating rate of 30°C/h, for 30 minutes. Soft brown solids were obtained, which were easily crushed by means of an agate mortar to produce a fine and homogeneous brown amorphous powder.

The brown amorphous powder was then subjected to pyrolysis at 700°C for 24 hours, under nitrogen atmosphere, at a heating rate of 30°C/h. This pyrolysis allowed a controlled partial oxidation of the precursors, resulting on a black amorphous powder.

Subsequently, the black amorphous powder was calcinated at 740°C under oxygen atmosphere during 24 hours, at a heating rate of 30°C/h to obtain a final white amorphous powder having particle diameters ranging between 0.5 μm and 6 μm.

The white amorphous powder was deposited on common UV emitting diodes for UV-visible light conversion.
A broad luminescence band in the range from 380 nm to 750 nm was obtained. The white light was a warm white light having a color temperature of 4000-5000K. The luminescence quantum yield at 385 nm was of about 0.7.

Although the above-mentioned embodiments have been described in detail, it is understood that other embodiments can be envisaged.

Thus, for example, any wet chemical technique known to the man skilled in the art can be used to synthesize the precursors, and different aluminoborate compositions can be envisaged to obtain the luminophore composition of the present disclosure.

In any case, according to the present disclosure, white visible light can be obtained by converting UV light without the need of blending different phosphors emitting different colors and without requiring use of toxic materials.

The process for the preparation of such composition is easy, efficient and environmentally friendly.

Analytical properties

Figure 2 shows the photoluminescence spectrum (triangles) of YAl₃B₄O₁₂ obtained as described in Example 1. The powder was pyrolyzed at a pyrolysis temperature of 700°C, the crystallization temperature of the composition being of 760°C (as shown by the diffraction peaks in the RX diffractograms of Figure 9). In Figure 2, a photoluminescence spectrum (rounds) of the same composition YAl₃B₄O₁₂ obtained without pyrolyzing the powder is also shown. Both compositions shown in Figure 2 were obtained by calcinating the powder at a temperature of 740°C.

Figures 3 and 4 show the photoluminescence spectrum (triangles) of YAl₃B₄O₁₂ obtained as described in Example 1, the only difference being the purity of water. In particular, the photoluminescence spectrum shown with rounds in Figure 3 refers to water containing 5000 ppm of Calcium (corresponding to a substitution of 0.5 % mol of Y atoms by Ca atoms), while the photoluminescence spectrum shown with rounds in Figure 4 refers to a case where reverse osmosis water having a conductivity $\rho \approx 89 \mu$S/cm was used. As described above, the water used in Example 1 contained less than 5 ppm of monovalent and divalent cations and had a conductivity of about 1.1 μS/cm.
In all tests shown in Figures 3 and 4, high purity grade reagents, \textit{i.e.} > 99.99\% - 99.9999\%, were used.

Figure 5 shows photoluminescence properties of compositions according to respective embodiments of the present disclosure, all determined as described in Example 1, for a composition of formula \(x \ Y_2O_3 + y \ Al_2O_3 + z \ B_2O_3 \), at different molar fractions of \(x \), \(y \) and \(z \), namely:

- **triangles**: \(x = 0.1, y = 0.3, z = 0.6; \)
- **rounds**: \(x = 0.12, y = 0.39, z = 0.49; \)
- **squares**: \(x = 0.13, y = 0.37, z = 0.50. \)

Figure 6 shows photoluminescence properties of compositions according to respective embodiments of the present disclosure, all determined as described in Example 1, for a composition of formula \(x \ Y_2O_3 + y \ Al_2O_3 + z \ B_2O_3 \), at different molar fractions of \(x \), \(y \) and \(z \), namely:

- **diamonds**: \(x = 0, y = 0.8, z = 0.2; \)
- **black triangles**: \(x = 0, y = 0.5, z = 0.5; \)
- **white triangles**: \(x = 0, y = 0.2, z = 0.8. \)

Figure 7 shows the photoluminescence spectrum of YAB of Example 1 compared with a photoluminescence spectrum of YAB where \(B_2O_3 \) has been partially substituted by \(SiO_2 \). In particular, the spectrum designated by triangles corresponds to the unsubstituted \(YAl_3B_4O_{12} \) composition of Example 1, while the spectrum designated by rounds corresponds to a composition \(YAl_{2.85}Si_{0.15}(BO_3)_4 \) obtained according to the method described in Example 1 except for the aluminum, which has been substituted by 5% mol of silicon.

Figure 8 shows the photoluminescence spectra of a composition \(YAl_3B_4O_{12} \) obtained as described in Example 1, the only difference being the calcination temperature: the pyrolyzed powder was calcinated at different calcination temperatures. In Figure 8, photoluminescence spectra of the same composition \(YAl_3B_4O_{12} \) obtained at
calcination temperatures lower than the crystallization temperature of the composition are shown, in accordance with respective embodiments of the present disclosure.

Photoluminescence spectra of the same composition (YAl$_3$B$_4$O$_{12}$) obtained at calcination temperatures equal to or higher than the crystallization temperature of the composition are also shown in Figure 8 by way of comparison.

Figures 10 shows photoluminescence spectra of different compositions according to respective embodiments of the present disclosure, namely of YAB, Y$_{0.95}$La$_{0.05}$Al$_3$(BO$_3$)$_4$ and Y$_{0.95}$Gd$_{0.05}$Al$_3$(BO$_3$)$_4$. In the spectrum designated by rounds, the yttrium has been partially substituted by 5% mol of lanthanum, while in the spectrum designated by triangles, the yttrium has been partially substituted by 5% mol of gadolinium. All three compositions were prepared as described in Example 1.

Figures 11 shows the photoluminescence spectrum of YAB (triangles) compared to the photoluminescence spectrum of GdAl$_3$(BO$_3$)$_4$. In the spectrum designated by rounds, the yttrium has been substituted by 100% mol of gadolinium. Both compositions were prepared as described in Example 1.

Quantum yields were measured for YAB powders obtained as described in Example 1, but at different calcination temperatures. The yields were measured in reflexion normal to the luminescent aluminoborate powder with an integrating sphere and using an UV-blue excitation from diodes (385 nm). The results are shown in the following Table 1.
Table 1: Quantum yields of YAB samples calcinated at different temperatures

<table>
<thead>
<tr>
<th>Calcination temperature (°C)</th>
<th>Quantum yield (%) (excitation 385 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>650</td>
<td>42</td>
</tr>
<tr>
<td>700</td>
<td>38</td>
</tr>
<tr>
<td>720</td>
<td>49</td>
</tr>
<tr>
<td>740</td>
<td>68</td>
</tr>
<tr>
<td>760</td>
<td>39</td>
</tr>
<tr>
<td>780</td>
<td>21</td>
</tr>
<tr>
<td>810</td>
<td>0</td>
</tr>
</tbody>
</table>

Analytical methods

X-ray powder diffraction patterns were recorded on a D8 Bruker Advance Diffractometer (Cu Kα1 radiation, λ = 1.54056 Å) in θ / 2θ configuration equipped with a Ge (111) monochromator to follow the amorphous or crystalline quality of aluminoborate powders.

The Photoluminescence (PL) spectra and quantum yields of powdered samples were measured using the reflection method, as described by Wrighton et. al. (J. Physical Chemistry, vol. 78 (22) pp. 2229, 1974). This method consist in (1) determining the diffuse reflectance of non-absorbing standard, in the present application Spectralon, at the excitation wavelength, (2) determining the diffuse reflectance of the sample at the same excitation wavelength and (3) measuring the emission of the sample under the same conditions. The powdered sample were set inside a sample holder with a quartz window and coupled to an integrating sphere covered with Spectralon, AvaSphere-50. The luminescence signal was delivered to a spectrometer (AVASpec-1024TEC) by an optical fiber. The integrating sphere and the spectrometer were calibrated with the use of a halogen tungsten lamp (10 W tungsten halogen Avalight-HAL). The excitation source was a high power UV-LED (ThorLabs model M385L2) emitting at continuously
Claims

1. A luminophore composition comprising amorphous aluminoborate powders, the composition being obtainable by:

 - preparing an aluminoborate resin by a wet chemical route based on precursors solutions substantially free from monovalent and divalent cations;
 - drying the resin to obtain a solid;
 - grinding the solid to obtain a powder;
 - pyrolyzing the powder at a pyrolysis temperature lower than the crystallization temperature of the composition; and
 - calcining the powder so pyrolyzed at a calcination temperature lower than the crystallization temperature of the composition.

2. The composition according to claim 1, wherein the composition has a luminescence band in a range from 350 nm to 750 nm.

3. The composition according to claim 1 or 2, wherein the aluminoborate has the following composition:

 \[x \text{M}_2\text{O}_3 + y\text{Al}_2\text{O}_3 + z\text{B}_2\text{O}_3 \]

 wherein

 M is at least one trivalent metal,

 \[0 \leq x \leq 0.25, \]

 \[0.1 \leq y \leq 0.7, \]

 \[0.3 \leq z \leq 0.9, \text{ and} \]

 \[x + y + z = 1, \]

 \text{B}_2\text{O}_3 \text{ being optionally partially substituted by a substituent selected from the group comprising: SiO}_2\text{, P}_2\text{O}_5.\]
4. The composition according to any of claims 1-3, wherein the aluminoborate composition is around the stoichiometric composition of YAl₃(BO₃)₄.

5. The composition according to any of claims 1-4, wherein the powders have a mean particle diameter ranging from 0.01 μm to 20 μm.

6. The composition according to any of claims 1-5, wherein the powders are glassy powders having a glassy transition temperature T_g from 450°C to 1000°C.

7. The composition according to any of claims 1-6, wherein the metal is selected from the group consisting of Y³⁺, Bi³⁺, Sc³⁺, La³⁺, Gd³⁺ or a mixture thereof.

8. A process for the preparation of a composition according to any one of claims 1-7, comprising:

- preparing an aluminoborate resin by means of a wet chemical route based on precursors solutions substantially free from monovalent and divalent cations;
- drying the resin to obtain a solid;
- grinding the solid to obtain a powder;
- pyrolyzing the powder at a pyrolysis temperature lower than the crystallization temperature of the composition; and
- calcining the powder so pyrolyzed at a calcination temperature lower than the crystallization temperature of the composition.

9. The process according to claim 8, wherein each of drying, pyrolyzing and calcinating is performed at a heating rate comprised from 10°C/h to 60°C/h.

10. The process according to claim 8 or 9, wherein drying is performed under air or inert atmosphere.

11. The process according to any of claims 8-10, wherein pyrolyzing is performed under inert atmosphere.

12. The process according to any of claims 8-11, wherein pyrolyzing is performed at a temperature from 450°C to 1000°C.
13. The process according to any of claims 8-12, wherein calcinating is performed under oxygen atmosphere.

14. The process according to any of claims 8-13, wherein calcinating is performed at a temperature from 450°C to 850°C.

15. The process according to any of claims 8-14, wherein each of the precursors’ solutions comprises less than 5000 ppm of monovalent and divalent cations.

16. Use of a composition according to any of claims 1-7 to prepare a solid-state UV-visible light converter.

17. A solid-state UV-visible light converter comprising a composition according to any of claims 1-7.

18. The converter according to claim 17, wherein the visible light is a white light having a color temperature from 4000 K to 5000 K.

19. A solid-state lighting device comprising an UV emitter and a converter according to claim 17 or 18.

20. The lighting device according to claim 19, wherein the emitter is an UV-emitting diode (LED).
Citric Acid + Y(NO$_3$)$_3$·6H$_2$O + Al(NO$_3$)$_3$·9H$_2$O + H$_2$O

D-sorbitol + Boric Acid + H$_2$O

Reflux 110 °C/ 24h

Viscous Resin

Drying

Grinding

Pyrolyzing

Calcining

Figure 1
Figure 2

Figure 3
Figure 6

Figure 7
Figure 8

Figure 9
Figure 10

Figure 11
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. C03B19/10 C03C4/12 C09K11/77
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
C03B C03C C09K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>MAIA L J Q ET AL: "Synthesis optimization, structural evolution and optical properties of Y0.9Er0.1A13(BO3)4 nanopowders obtained by soft chemistry methods", SOLID STATE SCIENCES, ELSEVIER, PARIS, FR, vol. 10, no. 12, 1 December 2008 (2008-12-01), pages 1835-1845, XP025815709, ISSN: 1293-2558, DOI: DOI:10.1016/J.SOLIDSTATESCIENCES.2008.03.031 [retrieved on 2008-04-18] last of page 1836 - first of page 1837; "3.1 Thermal analysis results", right column of page 1837; top of page 1839 ----- /--</td>
<td>1-16</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents :
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"S" document member of the same patent family

Date of the actual completion of the international search 26 March 2012
Date of mailing of the international search report 02/04/2012

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax (+31-70) 340-3016
Authorized officer Creux, Sophie

Form PCT/ISA210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 199 409 A1 (PHILIPS NV [NL]) 29 October 1986 (1986-10-29) column 1, line 45 - column 2, line 29; table 1 column 3, line 52 - column 4, line 14</td>
<td>1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>JP 61242925 A</td>
<td>29-10-1986</td>
<td></td>
</tr>
<tr>
<td>NL 8501107 A</td>
<td>17-11-1986</td>
<td></td>
</tr>
<tr>
<td>US 4751148 A</td>
<td>14-06-1988</td>
<td></td>
</tr>
</tbody>
</table>