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(57) Abstract
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ARCHITECTURE AND METHODS FOR A HARDWARE DESCRIPTION
LANGUAGE SOURCE LEVEL ANALYSIS AND DEBUGGING SYSTEM
Background of the Invention
Field of the Invention

This invention relates to the field of computer aided design for digital circuits, and
particularly to analyzing and debugging digital mrcmts constructed from HDL source text
using logic or behavioral synthesis.

Statement of the Related Art

A digital circuit designer needs to ensure that the digital circuit performs the correct
function subject to many design constraints. For example, the digital circuit should perform
the correct computation in the proper amount of time. The area that the digital circuit oc-
cupies on a semiconductor die should remain within certain bounds. The power that the
digital circuit consumes while operating should also remain within specified bounds. To be
economically manufacturable, the digital circuit should be testable. An economically use-
ful digital circuit should not take too long to design, manufacture, test or use.

The digital circuit design process typically involves translating the designer's some-
times incipient thoughts about the function and constraints into the tooling necessary to
produce a working digital circuit. For example, producing a full-custom semiconductor
chip requires producing masks that define the deposition of chemicals into a substrate as
well as producing test patterns that exercise the final product. As another example of tool-
ing, producing a field programmable gate array requires generating the bit pattern to be
downloaded into the chip to specify the configuration of the architecture. Computer Aided
Design (CAD) tools facilitate the iterative translation of the designer's developing thoughts
into the tooling required to produce a working digital circuit that satisfies the design con-
straints. The process of iteratively adjusting a design to meet its constraints is called debug-
ging. The process of identifying various properties of different parts of a digital circuit is

called analysis. In order to debug a digital circuit, the designer must first analyze the circuit
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to ascertain where problems occur.

The typical historical model of the digital design process using conventional CAD
tools for a semiconductor chip is as follows. The designer first conceives of a particular
function to implement, as well as constraints such as timing or area that the implementation
must meet. Next, historically, the designer mentally transforms the desired function into a
high level generic technology circuit consisting of components such as gates, adders, reg-
isters and RAMs.

The designer then chooses a technology provided by a semiconductor vendor from
which the circuit components will be chosen. The process of choosing circuit components
from a specific technology is called mapping; mapping creates a mapped circuit. To map a
circuit, the designer draws a schematic of a mapped circuit that implements the desired
function with a CAD schematic capture tool. The mapped circuit includes parts from a soft-
ware representation of a specific technology library which is supplied by a silicon vendor.
The schematic shows how more primitive functional elements, such as gates or transistors,
connect together to form more sophisticated functions such as arithmetic logic units. In ad-
dition, modern schematic capture tools allow the designer to divide the design hierarchical-
ly into interconnected pieces, and then allow the user to specify the details of each of the
pieces separately. For example, Design Architect by Mentor Graphics of Wilsonville, Or-
egon provides these schematic capture functions.

Conventional CAD tools, such as those indicated above, can then take the connec-
tions in the schematic and other information to evaluate the mapped circuit and to specify
the tooling necessary to construct the circuit. Such tools evaluate the mapped circuit in
many ways. For example, commercial CAD tools often have a simulator that predicts the
response of the mapped circuit to designer specified input patterns. QuickSim II by Mentor
Graphics of Wilsonville, Oregon is a commonly used simulator. Another common CAD
tool is a path delay analyzer that identifies the longest timing path in a mapped circuit de-
sign. DesignTime by Synopsys, Inc. of Mountain View, California is a tool that provides
path delay analysis.

There are conventional CAD tools that have the ability to generate the geometric lay-
out of the digital circuit with layout tools. Cell3 Ensemble by Cadence of San Jose, Cali-

fornia is an example of this type of tool. Layout tools are required to produce masks to make
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a semiconductor chip.

There are conventional CAD tools that have the ability to check that the digital circuit
meets the design rules, and to identify the location of any errors to the designer. Design
rules help ensure that the specified digital circuit will operate once manufactured.

There are conventional CAD tools that are used to determine how testable a mapped
circuit is, and to generate test patterns automatically. Showing the designer the parts of the
mapped circuit that are not testable allows the designer to make modifications that will in-
crease the probability of making a successful chip or circuit. Generating test patterns auto-
matically allows for more thorough testing of the digital circuit immediately after
manufacturing.

As described above, the concept of analyzing a mapped circuit design historically re-
fers to the process by which a digital circuit designer specified a particular implementation
with a schematic capture tool, and then used various circuit evaluation tools to verify that
the implementation did what the digital circuit designer wanted. For example, the designer
would use a simulator to determine if the mapped circuit produced appropriate outputs from
specified inputs. The designer could use the path delay analyzer to determine whether the
current design was fast enough to meet the timing constraints. The layout tools could in-
form the designer whether the design meets the area constraints.

When a particular design did not meet the designer's constraints, the designer then
modified the design. For example, if the mapped circuit was too slow, the designer identi-
fied the part of the mapped circuit that was too slow, and revised it to increase performance.
If the mapped circuit was too large, then the designer revised the mapped circuit to use few-
er or smaller components. If the mapped circuit did not behave as required, the designer
changed the components and the interconnections to produce the correct function. Because
the conventional CAD tools began the analysis with the mapped circuit, the timing or area
problems could be readily identified to the designer. Because the designer specified the
structure of the mapped circuit, the designer could thoughtfully make adjustments. Howev-
er, the CAD tools were limited in their ability to identify functional problems because the
designer had mentally performed the transformation from desired function to mapped cir-
cuit. In other words the CAD tools included structural information about the digital circuit,

but did not include data concerning the high level functionality of the digital circuit.
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Logic synthesis was developed to provide the designer with an automatic mechanism
to translate a hardware description language (HDL) description of a desired function to a
structural description of a digital circuit that performed the desired function. Logic synthe-
sis begins with the designer describing the desired function using VHDL, Verilog, or any
other logic synthesis source language, to specify the behavior. This allows the designer to
specify the digital circuit at a higher level, and allows the CAD tools to assist the designer
in defining the functionality of the digital circuit. A software translator then converts that
description into generic technology structures that directly correspond statement by state-
ment with the designer's description.

In logic synthesis, translation is followed by logic optimization. Optimization in-
volves two steps. First, it replaces the directly translated structure with a functionally equiv-
alent, yet improved structure. Second, the optimization process includes an optional step
called mapping the design. Mapping replaces the generic technology structures with struc-
tures from a specific technology library. Technology libraries are provided by silicon ven-
dors to specify the types of parts which the vendor can manufacture. Technology libraries
include specific information regarding the functionality and physical characteristics such
as area and delay of gates which can be built by the silicon vendor. Technology libraries
are designed to work with synthesis systems. A synthesis system can use a technology li-
brary to choose available gates from which the silicon vendor can fabricate the digital cir-
cuit.

Unfortunately, the transformations performed by the logic optimizer usually modify
the structure that was present in the pre-optimization circuit. This results in a mapped cir-
cuit that is not easily recognized by the designer. The fact that the designer generally can
not readily recognize the original function performed by the mapped circuit makes analyz-
ing optimized mapped circuits difficult. Conventional evaluation tools can determine the
timing or area problems in the mapped circuit, but the designer often can not relate those
problems easily to the HDL source specification. Theoretically, the designer could manu-
ally determine what part of the HDL specification caused the problem. With that insight,
the designer could make the desired changes at the HDL specification, and resynthesize the
entire digital circuit. If the designer's problem occurred in a part of the mapped circuit that

passed through the optimizer with few changes, manual backtracking might work. Howev-
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er, the optimization process generally makes many changes, making it either difficult or im-
possible to backtrack because many points in the original generic technology circuit do not
exist in the mapped circuit.

Furthermore, the level of circuit improvement produced by logic optimization is not
consistent. Due to the computational complexity of the optimization problem, optimizers
must rely upon approximate, rather than optimal algorithms. The effect of the optimizer is,
in some senses, random, because a slightly different initial circuit can significantly affect
the choices that the optimizer makes. Therefore, it is impossible to predict consistently the
percentage improvement that the optimizer will deliver. A small change in the HDL spec-
ification may result not only in a substantially different mapped circuit, but may also result
in a mapped circuit which is substantially larger or slower.

As one possible solution, the designer can directly modify the mapped circuit pro-
duced by the synthesis software. However, this does not allow the designer to resynthesize
the design from the HDL specification because the designer's logic changes is overwritten
by subsequent translation and optimization steps. This reduces the value gained by using
the synthesis approach to design.

One prior system which attempted to link HDL source text to generic technology and
mapped circuits was “Source to Gates” which is included as a feature of Design Analyzer
by Synopsys Inc., loéated in Mountain View, CA. Source to Gates allowed the designer to
trace between HDL source and schematics. Source to Gates did not prove useful because
its ability to trace post synthesis mapped structures to the HDL source was limited to opti-
mization invariant circuit structures that were present in the HDL source. Although Source
to Gates did allow the designer to trace between schematics of the generic technology cir-
cuit and the HDL source, this feature was not particularly useful because it required view-
ing of the generic technology circuit which was not directly meaningful to the designer and
no analysis link to the source was provided.

An additional limitation of Source to Gates is that it stores text location in terms of
row and column numbers. Thus, when tracing from a schematic to HDL text, Source to
Gates only hilights the first character of the appropriate parse node. There is no indication
of the range of the parse node. There are two modes in Source to Gates when tracing from

text to the schematic. Exact match mode forces the user to place the cursor on the first char-
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acter of a parse node in order to enable tracing to the schematic. Closest match mode
searches forwards and backwards in the text to find the closest traceable character. In this
mode, the user does not know exactly what will be traced.

Another method for minimizing the backtracking problem in the analysis of an opti-
mized mapped circuit is to partition the design into hierarchical components, and translate
and optimize the smaller pieces. Because the translation and optimization tools generally
do not traverse primary inputs and outputs, the HDL description can be correlated with a
particular resulting mapped sub-circuit, thus reducing the size of the backtracking problem.
However, repartitioning has the disadvantage that the designer may have to rewrite func-
tionally correct, but nonetheless problematic, HDL source code to isolate the troublesome
parts of the mapped circuit. In addition, this approach will greatly limit the optimizer's abil-
ity to reduce the area and increase the speed of the resulting circuits because the optimizer
will be constrained by the designer's partition.

In addition, it is possible for a designer to be mislead by the results obtained by anal-
ysis by partitioning. The designer's bug in the circuit might be that it is too slow or too big.
Partitioning the HDL source to locate the cause will likely result in a different circuit than
the unpartitioned source. Therefore, the problem that the designer is chasing may be affect-
ed by the analysis process itself.

Conventionally, using a synthesizer to transform an HDL source specification into a
mapped circuit can also cause substantia: computational problems if one needs to incorpo-
rate minor changes into a design late in the design process. For example, a designer could
have the design fairly close to completion when the designer discovers the need to make a
small functional change, such as inverting a particular signal. Intuitively, one would expect
that such a small change would require only a small change in the digital circuit all the way
to the layout level. However, it is quite possible that, with conventional translation and op-
timization tools, a small change could require substantial changes in the mapped circuit and
the circuit layout. With current tools, a designer can often limit this kind of problem by par-
titioning the design into smaller pieces and thus limiting the effect to the directly implicated
pieces. However, as described previously, inappropriate or unduly narrow partitioning can
limit the ability of the optimization tools to construct a mapped circuit which meets the de-

sign constraints.
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A Conventional Design and Debugging Process Overview

Figure 1 shows an overview of the conventional process for designing, analyzing,
and debugging digital circuits specified with a Hardware Description Language (HDL).
The process begins with the designer writing HDL source code 100. A typical language
used for specifying digital circuits is VHDL which is described in the IEEE Standard
VHDL Language Reference Manual available from the Institute of Electrical and Electron-
ic Engineers in Piscataway, New Jersey, which is hereby incorporated by reference. VHDL
stands for Very high speed integrated circuit Hardware Description Language. Another lan-
guage used for specifying digital circuits is Verilog that is described in Hardware Modeling
with Verilog HDL by Eliezer Sternheim, Rajvir Singh, and Yatin Trivedi, published by Au-
tomata Publishing Company, Palo Alto, California, 1990, which is hereby incorporated by
reference. Verilog is also described in the Verilog Hardware Description Language Refer-
ence Manual (LRM), version 1.0, November 1991, which is published by Open Verilog In-
ternational, and is hereby incorporated by reference. The examples used in this document
are in VHDL, but the principles readily apply to other circuit specification languages.

After writing a HDL description of a desired function, the designer then simulates the
function 101 embedded in the description with a HDL simulator. An example of a function-
al simulator is VHDL System Simulator that is available from Synopsys, Inc. of Mountain
View, California. The functional simulator allows the designer to determine whether the
circuit produces correct values in response to inputs without regard to timing, area or power
constraints. A functional simulator can perform function-only simulation relatively quick-
ly, thus enabling the designer to determine that the circuit will produce the desired output.

If there is a problem with the function, the designer can fix function problems 102 by
examining the simulation output and going back to writing HDL code 100. Functional sim-
ulation executes the source specification directly without generating generic technology or
mapped circuits. Therefore, problems identified during functional simulation can readily be
linked to their cause in the HDL source.

If the designer believes that the digital circuit described by the HDL source provides
the correct function, the designer specifies constraints for the synthesis process 103, e.g.
maximum clocking periods, total circuit area, and maximum power. This part of the pro-

cess is described in Design Compiler Family Reference Manual, Version 3.1a, which is
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available from Synopsys, Inc. of Mountain View, CA and is hereby incorporated by refer-
ence. Examples of Computer Aided Design software that use constraint specification are
Synergy by Cadence, and Autologic by Mentor Graphics, and Design Compiler by Synop-
Sys.

After developing constraints, the designer then proceeds to synthesize 104 a mapped
circuit from the HDL description produced in the writing HDL 100 step. This step involves
translating the HDL source description into an initial generic technology circuit that corre-
sponds directly with the statements in the source HDL. An example of software that per-
forms this function is described in the VHDL Compiler Reference Manual, Version 3.1a,
which is available from Synopsys, and is hereby incorporated by reference. After transla-
tion, the initial generic technology circuit is then optimized into a mapped circuit that meets
the performance constraints established in step 103. Prior to optimization, it is a straight-
forward task to identify which element of the initial generic technology circuit corresponds
to what part of the HDL source code. Conventionally, because of the extensive manipula-
tions performed during the optimization process, such identification after optimization be-
comes almost impossible except at registers and module interface boundaries.

Figure 2 shows the intermediate data structures involved in the synthesis process 104.
The synthesis process begins with HDL source 900. The translator creates a data structure
called a parse tree 901 that represents the organizational structure of the HDL. The transla-
tor then turns the parse tree into an initial generic technology circuit 902. Russ B. Segal's
Master's Thesis, “BDSYN: Logic Design Translator” at the University of California at Ber-
keley, Memo#UCB/ERL M87/33, describes such a translator, and is hereby incorporated
by reference. United States Patent Application 07/632, 439, filed on December 21, 1990,
entitled “Method and Apparatus for Synthesizing HDL Descriptions with Conditional As-
signments” by Gregory et al, and commonly assigned to Synopsys, Inc. also describes such
a translator, and is hereby incorporated by reference. An example of a tool that does this is
version 3.1a of the HDL compiler available from Synopsys, Inc.

An optimizer is used to produce the mapped circuit 903 from the initial generic tech-
nology circuit 902. The optimization process is explained in “Logic Synthesis Through Lo-
cal Transfonﬁations” by J. Darringer, W. Joyner, L. Berman, and L. Trevillyan in the IBM
Journal of Research and Development, volume 25, number 4, July 1981, pages 272- 280,
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which is hereby incorporated by reference. It is also explained in “LSS: A System for Pro-
duction Logic Synthesis” by J. Darringer, D. Brand, J. Gerbi, W. Joyner, and L. Trevillyan
in the IBM Journal of Research and Development, volume 28, number 5, September 1984,
pages 537-545, which is hereby incorporated by reference. It is also explained in “MIS: A
Multiple-Level Logic Optimization System” by R. Brayton, R. Rudell, A. Sangiovanni-
Vincentelli, and A. Wang in the IEEE Transactions on Computer Aided Design, Volume
6, number 6, November 1987, pages 1062-1081, which is hereby incorporated by reference.
It is also explained in the Ph.D. dissertation “Logic Synthesis for VLSI Design” by R.
Rudell at the University of California at Berkeley in 1989, which is hereby incorporated by
reference. The optimization process is also described in the Design Compiler Family Ref-
erence Manual, version 3.1a which is available from Synopsys, and is hereby incorporated
by reference. An example of software that performs this function is the Design Compiler
available from Synopsys, Inc. Other examples of software that performs optimization in-
clude Synergy from Cadence, Inc., and AutoLogic by Mentor Graphics.

One approach to optimization is to group one or more logic elements together, and

' replace those elements with a functionally equivalent collection of elements that has better

characteristics than the collection of elements replaced. This results in an intermediate cir-

cuit that is functionally equivalent to the original. This intermediate circuit can then have

-some or all of its elements grouped for another replacement. The process can be performed

on either generic technology or mapped logic circuits. The process is repeated until the op-
timizer meets the constraints imposed in step 103 of Figure 1, or is unable to make any fur-
ther improvement.

The components of the initial generic technology circuit fall into two groups: those
components that must be preserved through the optimization process, and those that can be
replaced with functional equivalents. For example, a logic optimizer may replace a block
of boolean logic with another block so long as function is maintained. Generally, replace-
able components can also be eliminated. Examples of components that are generally pre-
served through the optimization process are primary inputs, primary outputs and registers.

After developing a mapped circuit, the designer can then analyze the mapped circuit
105 using conventional analysis tools, as shown in Figure 1. For example, the designer

could estimate the area that the mapped circuit consumes or what the longest delay path is
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in the mapped circuit. This analysis can identify problems to the designer. The analysis re-
port 904 is often a text document, as shown in Figure 1.

After identifying timing, area, testing or power problems with the analysis tools, the
designer then adjusts the mapped circuit to fix these problems 108. Ideally, the designer
goes back to the HDL where the function is specified and make adjustments there. Howev-
er, because it is currently hard to identify the specific places in the source HDL that led to
the problem, modifying the appropriate part of the HDL is currently not an effective debug-
ging technique. The designer can usually identify which hierarchical module contains some
of the problem. The designer can then manually rewrite that module to create more primary
inputs and outputs to examine. This is very time consuming and is generally done as a last
resort. A method for automatically adding additional primary inputs and outputs is needed
to make this approach practical. Alternatively, the designer could adjust the constraints 103
and synthesize the mapped circuit 104 again to see if the problem is alleviated.

After analyzing the mapped circuit 105, the designer then releases the design for fab-
rication 106.

System Performance

In addition to the analysis problems presented by the transformations made by the
logic synthesis process, there are also difficulties associated with efficiently and economi-
cally constructing CAD systems that compute and display analysis results. Conceptually,
after specifying a design, analyzing a digital circuit involves having the designer repeatedly
(1) determine a particular characteristic or property that the designer wants to know about,
such as area, timing or power, (2) identify a kind of analysis that will provide information
about that characteristic, (3) instruct the CAD system to perform that analysis, (4) display
the results of that analysis, and (5) gain insight into the desired characteristic from the dis-
play. The designer is interested in completing these steps as quickly as possible. Digital cir-
cuit CAD tools have historically facilitated this goal by making the instruction and display
steps computationally efficient. To improve response times, digital circuit CAD tools have
often tightly coupled the software that performed the analysis to the software that per-
formed the display function. This was often done by having the display software depend
heavily on the data structure used to process or store the results of the analysis.

For example, timing analysis often reveals the portions of the mapped circuit that are
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too slow. Reviewing this analysis historically has involved examining the schematic and
tracing the critical path. However, as described previously, the schematic may have little to
do with the designer's HDL source specification of the digital circuit. Thus, the convention-
al analysis method does not relate the mapped circuit problem to its HDL source. There-
fore, it is not easy for the designer to know what HDL to change to meet the design
constraints.
Background Conclusion

Using HDL synthesis can simplify the task of digital circuit design by allowing the
designer to specify the required function in an HDL textual description without specifying
the details of the mapped circuit implementation. After creating a mapped circuit using syn-
thesis, the designer can use conventional mapped circuit analysis tools to determine char-
acteristics of the mapped circuit. Conventional analysis will describe such things as the area
consumed by different parts of the mapped circuit, or what the longest delay path is through
the circuit. Using these analysis results, the designer can then identify which portions of the
mapped circuit are problematic. However, because the optimization portion of synthesis of-
ten transforms the design substantially, it is difficult, if not impossible, except in certain
special cases, to relate specific portions of the mapped circuit to the HDL source that gen-
erated those portions. This inability to trace the mapped circuit analysis results easily to the
HDL source represents a substantial barrier for analyzing circuits efficiently. Thus, there
has been a need for a system which allows the designer to analyze a digital circuit design
in terms of the source HDL.

Summary of the Invention

An aspect of the present invention provides a method for displaying the results of
synthesized circuit analysis visually near the HDL source specification that generated the
circuit. Circuit analysis provides information about the characteristics of each portion of the
synthesized circuit. An aspect of the present invention relates the analysis results of each
portion of the synthesized circuit to the particular part of the HDL specification that gener-
ated that circuit portion. This permits the designer to modify the part of the HDL specifica-
tion that is responsible for problems identified by circuit analysis.

The syhthesis process works by translating HDL source code into an initial circuit.

Each point in the initial circuit corresponds directly with a particular construct in the HDL
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source. A final, more efficient circuit is constructed from the initial circuit by logic optimi-
zation. Connecting the results of the analysis to the source requires identifying points in the
final circuit that be traced directly to the initial circuit. Circuit analysis results correspond-
ing to these invariant points in the circuit can therefore be directly related to the appropriate
part of the HDL source, and thus can be displayed near that part.

Another aspect of the present invention provides a method for introducing additional
points in the design that remain traceable through the optimization process without requir-
ing reorganization or modification of the HDL source. The present invention provides these
additional points, for example, by artificially injecting primary inputs or outputs into the
initial circuit, and noting where in the HDL source these points came from.

In another aspect of the present invention provides a method for linking information
gleaned from evaluating and analyzing a synthesized circuit to the source code that pro-
duced the circuit. The present invention establishes the link by providing a designer with
the ability to mark the synthesis source code in the places that the designer wants to be able
to debug. In a current embodiment, the designer marks the source code with a particular
text phrase, such as “probe”, along with some additional optional information. During
translation, the translator generates a circuit the provides the same function as it did without
the “probe” statement, but adds additional information or components to the initial circuit
that indicate that certain components should not be replaced during optimization. Because
those components will not be replaced during optimization, the circuit analysis results cor-
responding to any unreplaced components that are in the final circuit will be directly and
traceably related to those components in the initial circuit. Because those components are
traceably related to the source HDL, the results are traceably related to the source HDL,
and therefore be displayed near the appropriate portion of the HDL. Allowing for the inter-
jection of unreplaced components by the designer facilitates debugging without rewriting
the designer's original hierarchical design or manually backtracking through the optimiza-
tion process.

In another aspect of the invention, the designer can assign a priority level to each
probe to help manage the debugging process. These priority levels could then be used to
activate or deactivate selected probes as a group. An activated probe would establish a link

through the synthesis process to facilitate debugging. An inactive probe would have no ef-
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fect on the synthesis process, and would not establish a debugging link. Establishing many
links would provide the designer with a large degree of debugging information, but could
limit the ability of the synthesis process to provide a good circuit. Establishing too few links
may not provide enough guidance to the designer to resolve circuit problems. By selective-
ly activating groups of probes at different times during the debugging process, the designer
can analyze different portions of the design without the probes themselves unduly interfer-
ing in the process.

By providing a facility for displaying the results of circuit analysis near the HDL that
created the circuit, the present invention allows a designer to make more effective use of
logic synthesis and reduce the complexity of the circuit debugging process.

An aspect of the present invention provides a method and system for processing re-
quests from designers about the characteristics associated with the HDL synthesis source
specifying a circuit, and displaying the results of circuit analysis with a consistent set of
display tools that are not intimately tied to the data structure used for the circuit analysis.
Designing a chip involves constructing different representations for a circuit. Some of these
representations, such as a synthesis description language are relatively compact and contain
primarily functional information. Other representations, such as a gate level net list, contain
correspondingly more information, such as the specific types of components to be used.
Still other representations, such as a layout description, contain even more information,
such as the specific location of the components on the chip. The different representations
can be partitioned into domains with each domain containing circuit representations with a
common structure. Then the tool builder can develop domain dependent display tools for
examining the state of the design in that domain. In addition, the tool builder can also de-
velop tools that evaluate or analyze the state of the circuit in a particular domain. Display
tools showing the circuit structure in one domain can obtain information related to analysis
obtained in another domain by the forward and backward linkages.

The designer can inquire about the characteristics related to a specific part of the de-
sign by first examining part of the design in one domain with a display tool. This domain
is the inquiry domain. After identifying a relevant portion of the design in the inquiry do-
main, the designer selects a constituent piece of the design to evaluate, and makes an inqui-

ry about that piece. This information constitutes a query. The display tool forwards the
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identification of the object in the inquiry domain and an identifier indicating the requested
analysis or evaluation to a data manager. The data manager then determines the domain that
would contain the relevant analysis results. If those results do not yet exist, the data man-
ager invokes the appropriate analysis tool to compute those results, which then may be
cached in the data manager. Using the linkage established with the HDL-debugging meth-
od, the data manager locates the related object in the analysis domain. From the related ob-
ject, the appropriate information is passed back to the display tool where the designer can
see it displayed appropriately.

One aspect of the present invention provides display tools that are not dependent on
the structure of the domain in which the analysis is actually performed. Another aspect of
the invention provides analysis tools that are not dependent on the structure of the display
domain. Another aspect of the invention is to allow the different display and analysis tools
to remain independent from one another. The display tools can maintain their independence
by relaying all of their queries through a central data manager. The central data manager
performs both domain mapping and analysis tool selection for each query issued by a dis-
play tool. Thus, neither the display tools nor the analysis tools need to be aware of the
source or destination of any query.

One aspect of the present invention provides a selection manager which communi-
cat&s a circuit selection made in one display tool to all of the display tools in the system.
The selection manager allows the designer to select a circuit object via a display object in
a display tool, and then to view an alternate display of the circuit object in an alternate dis-
play tool. For example, a circuit object can be selected using a histogram display, and then
that circuit object can be viewed using a text display.

One aspect of the present invention simplifies digital circuit analysis before optimi-
zation. The direct relationship between the translated circuit and the HDL text is leveraged
to allow the designer to improve the translated circuit by improving the HDL. An aspect of
the present invention allows the designer to obtain characterizations of attributes such as
area and timing of parts of the translated circuit and then to relate automatically selected
translated circuit parts to the source HDL from which they were created.

The HDL Analysis System has several advantages over prior art systems such as

Source to Gates. First, the HDL text browser uses the text to parse node links described ear-
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lier to draw a box around the entire selected parse node. Such boxes are drawn both when
the cursor is moved across the display of the HDL text, as well as when a portion of the text
is selected. The boxes around the HDL text are much easier to see, and indicate the entire
range of the source for the selected circuit object. Secondly, the HDL Analysis System cre-
ates many more links than simply between HDL source and schematics. As described pre-
viously, many display and analysis tools can be linked to the HDL source. Additional
display and analysis tools allow inany different kinds of digital circuit analysis to be per-
formed, rather than simply viewing the schematic.

One aspect of the present invention allows a designer to relate circuit analysis results
visually and quickly back to the text that produced the portion of the circuit that was re-
sponsible for those results. This is achieved by the maintaining the parse tree generated dur-
ing the translation portion of synthesis, and establishing a bidirectional relationship
between a parse node and the circuit elements synthesized from that parse node. In partic-
ular, the present invention provides for storing the parse tree node number with each creat-
ed circuit element, and storing a list of created circuit elements with each parse node.

One aspect of the present invention allows the designer to display a numerical phys-
ical characteristic of a circuit element near a reference to the portion of the source HDL text
responsible for that circuit element. This is achieved by maintaining references between the
parse nodes derived from the text and the circuit elements synthesized from the parse
nodes. Among the kinds of physical characteristics the designer would want to know about
are the area used by the circuit, the time delay from an input or a clock edge to a particular
pin on a cell, the number of gates forming part of the design, the number of logic levels
from an input to a particular net, or the power dissipated by one or more cells. Among the
kinds of display techniques supported are a stacked bar graph, a histogram, text, a path dis-
play, a logic inspector, a selection inspector, and a virtual schematic. Among the kind of
text display techniques supported, are hilighting, different fonts, different colors, and dif-
ferent sizes.

A Brief Description of the Drawings
Figure 1: A flow diagram showing an earlier synthesis-analysis process.
Figure 2: shows intermediate data structures and domains involved in the synthesis

process.
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Figure 3: shows the general design and debugging process in accordance with the
present invention.

Figure 4: shows the relationship between HDL text and the mapped logic which
makes up a mapped circuit.

Figure 5: shows how mapped and GTech circuit structures are related to HDL
tokens.

Figure 6: shows how HDL text is related to mapped and GTech circuit structures.

Figure 7: shows how probe statements are translated.

Figure 8: shows how a primary input/primary output pair is created.

Figure 9: illustrates a parse tree associated with some text.

Figure 10: illustrates a text representation of the parse tree” using “{” to mark the
beginning of a node and “}” to mark the end of a node.

Figure 11: An example of VHDL source with no probes.

Figure 12: A parse tree corresponding to the source fragment in Figure 11.

Figure 13: shows the HDL source of Figure 11 as a text array.

Figure 14: shows the text array of Figure 13with embedded brace “{” characters
surrounding each portion of the text that forms a parse node.

Figure 15: shows the annotated text array of Figure 14 with each left brace “{”
numbered.

Figure 16: The VHDL source in Figure 11 with a statement probe inserted.

Figure 17: shows the text of Figure 16 as a linear array of characters with parse
node braces inserted.

Figure 18: shows the HDL source of Figure 11 with an improper probe directive.

Figure 19: shows the brace representation of Figure 18.

Figure 20: shows some HDL source with a pair of embedded block probe direc-
tives.

Figure 21: shows the brace representation for the HDL source of Figure 20.

Figure 22: Translation of the source in Figure 16 according to the present inven-
tion.

- Figure 23: An alternative method of implementing probes in accordance with the

present invention.



WO 95/27948 ' PCT/US95/04660

10

15

20

25

30

-17-

Figure 24: A second alternative method of implementing probes in accordance
with the present invention.

Figure 25: A third alternative method of implementing probes in accordance with
the present invention.

Figure 26: shows a GTech circuit with an optimization invariant circuit structure
implemented as a primary output.

Figure 27: shows the mapped circuit resulting from the GTech circuit of Figure 26.

Figure 28: A GTech circuit arising from the conventional translation of the source
fragment in Figure 11

Figure 29: An optimized mapped circuit created from the GTech circuit of
Figure 25.

Figure 30: An optimized mapped circuit derived from the GTech circuit of
Figure 22.

Figure 31: An example of a display relating information found from analysis of the
optimized mapped circuit of Figure 30 to the source HDL.

Figure 32: shows some VHDL source without probe directives using two process
blocks.

Figure 33: Conventional translation of the source in Figure 32 into a GTech cir-
cuilt.

Figure 34: An optimized mapped circuit derived from the GTech circuit of
Figure 33.

Figure 35: An example of a display relating data found from analysis of the opti-
mized mapped circuit of Figure 30 to the source VHDL showing that information can only
be related to the highest level in the description.

Figure 36: The VHDL source from Figure 32 with a block probe directive
installed.

Figure 37: A GTech circuit generated by translating the VHDL source of
Figure 36.

Figure 38: The mapped circuit obtained by optimizing the GTech circuit of
Figure 37.

Figure 39: An example of a display relating data found from analysis of the opti-
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mized mapped circuit of Figure 38 to the source VHDL showing information related to the
block probes.

Figure 40: shows the components of the HDL Analysis Tool.

Figure 41: shows how the selection manager processes the selection.

Figure 42: shows how the Data Manager processes a query.

Figure 43: shows a stacked bar graph display of mapped circuit information.

Figure 44: shows a stacked bar graph display of mapped circuit information show-
ing the relative contribution of one of the sub-blocks in Figure 43.

Figure 45: shows a stacked bar graph display of mapped circuit information show-
ing the relative contribution of one of the sub-blocks in Figure 44.

Figure 46: shows a histogram display of mapped circuit timing information.

Figure 47: shows a text display of HDL source code and GTech circuit information
related to that source code.

Figure 48: shows a virtual schematic display showing the inputs and outputs asso-
ciated with a particular part of VHDL source code.

Figure 49: shows another virtual schematic display tracing the output of the dis-
play in Figure 48.

Figure 50: shows another virtual schematic display tracing the output of the dis-
play in Figure 49.

Figure 51: shows the Path Browser window.

Figure 52: shows the logic inspector displaying a graphical representation of logic
created by the logic inspector.

Figure 53: Display of the transitive fan in trace of a particular signal in the source
HDL in accordance with the present invention.

Figure 54: Display of the primary inputs reached from transitive fan-in trace of a
particular signal in the source HDL in accordance with the present invention.

Figure 55: shows the stacked bar graph displaying component counts for the
AMD2910A.

Figure 56: shows the stacked bar graph displaying component counts for the
STACK_BLK module of the AMD2910A.

Figure 57: shows the HDL text browser with the source code for the STACK_BLK
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hilighted.

Figure 58: shows an example of the relationship between the text description, the
parse tree, the circuit and the display of a circuit analysis result in accordance with the
present invention.

Figure 59: shows the details of the circuit used in Figure 58.

Figure 60: shows an example of the inter-domain selection relationship.

Figure 61: shows the communication flow as the designer analyzes a specific

design.

Detailed Description of the Invention

The present invention comprises a novel method for analyzing a digital circuit using
the HDL source description from which the digital circuit was created. The following de-
scription is presented to enable any person skilled in the art to make and use the invention,
and is provided in the context of a particular application and its requirements. Various mod-
ifications to the preferred embodiment will be readily apparent to those skilled in the art,
and the generic principles defined herein may be applied to other embodiments and appli-
cations without departing from the spirit and scope of the invention. Thus, the present in-
vention is not intended to be limited to the embodiment shown, but is to be accorded the
widest scope consistent with the principles and features disclosed herein.

In one embodiment, the present implementation is a software system which is imple-
mented using conventional techniques such as message passing, object oriented design, and
opaque data structures. These concepts are described in many books on programming. Two
such publications are Fundamentals of Programming Languages by Ellis Harowitz, 2nd
Edition, published by Computer Science Press in 1984, ISBN 0-88175-004-2 and Program-
ming in C++ by Stephen Dewhurst and Kathy Stark, published Prentice Hall in 1989, ISBN
0-13-723156-3.

1.0 Digital Circuit Synthesis

HDL Synthesis creates a mapped circuit netlist description from an HDL description
of the digital circuit’s functionality. The present invention extends an HDL Synthesis tool.
The following sections describe the structures created while synthesizing the mapped cir-

cuit, and how the mapped circuit is created.
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1.1 Domain Definitions

A digital circuit is a physical piece of hardware.The outputs of a digital circuit are a
function of its inputs. Thus, a property of a digital circuit is its functionality. Another prop-
erty of a digital circuit is the area required to build it. Another property of a digital circuit
is the amount of time required after a signal has been applied to its inputs for its outputs to
contain a valid value. Properties such as area and delay are called constraints. A digital cir-
cuit designer specifies constraints during synthesis.

The design of a digital circuit can be represented or specified in different ways within
the memory of a computer system. Each type of digital circuit representation is called a do-
main. Different domains contain different amounts of information regarding the physical
structure of a circuit. Domains which contain more information regarding the structure of
the circuit require more of the computer’s memory and require more of the computer’s time
to construct and manipulate. In some cases, a representation of a digital circuit is treated as
if the representation were the actual digital circuit. Some representations contain enough
information to build a version of the digital circuit. This section describes the different rep-
resentations of digital circuits which are used in CAD systems as a digital circuit is being
designed.

Domains are used to store different representations of a digital circuit design in a
CAD system. In going through the digital circuit design process, the designer, through the
CAD system, manipulates and transforms digital data in one domain into other digital data
in a new domain. Many digital circuit analysis tools are designed to work with a specific
domain. For example, the timing verifier works in the mapped logic domain. Because more
detailed domains are larger and slower to manipulate, it is desirable to manipulate the cir-
cuit in less detailed domains where possible. The following paragraphs describe what a do-
main is and the different domains used in the HDL Digital Circuit Analysis Tool.

A domain is a software representation of digital circuit design data that includes com-
mon structural characteristics. Each domain represents a particular level of abstraction of
the digital circuit design information. Some common domains include an HDL source do-
main, a generic technology domain, which is also known as a GTech domain, a gate do-
main, a layout domain. In addition, other domains may be possible. The digital circuit

design data in one domain can be the result of a transformation of digital circuit design data
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from another domain using digital circuit design tools, such as a logic synthesizer, and li-
braries of components. The intermediate data structures shown in Figure 2 are all members
of various domains.

The source domain contains the HDL source files that the designer creates in step 100
of Figure 1 or step 150 of Figure 3. Circuit representations in this domain may also be
called HDL source. The HDL source 900 is also shown in Figure 2. The source domain also
contains the parse tree 901 and symbol table generated during the translation step of logic
synthesis. Although the HDL text and the parse tree are different representations of the cir-
cuit, they are in the same domain because they contain the same information about the
structure of the digital circuit. However, it is necessary to establish efficient links between
the HDL text and the parse tree. A method for accomplishing this will be described later.
In the source domain, the digital circuit design representation contains information about
the desired function of the digital circuit without reference to digital circuit topology. Al-
though it is possible to explicitly instantiate technology dependent components in the
source domain, the source domain generally does not reference a specific technology pro-
vided by a silicon vendor.

The generic technology, or GTech, domain contains the initial generic technology
circuit 902 that arises from the translation step of the synthesis process, as shown in step
104 of Figure 1 or step 154 of Figure 3. Circuit representations in this domain may also be
called the GTech circuit. VHDL compiler by Synopsys, Inc. of Mountain View, California
is a tool that creates GTech circuits. Data stored in the generic technology domain contains
information about the topology of the digital circuit, but does not have information about
the specific technology to be used. Thus, GTech circuits do not have exact timing or area
data. However, one can characterize the timing and area of a GTech circuit by ascertaining
the logic levels and component counts of the GTech circuit respectively. The logic levels
of a path in a GTech circuit is the number of 2 input GTech gates used to construct the logic
comprising the path. The component count of a GTech circuit is the number of 2 input
GTech gates used to construct the GTech circuit.

The gate, or mapped logic, domain contains the mapped circuit 903 that arises after
the mapping step of the synthesis process. Circuit representations in this domain may also

be called mapped circuits. Design Compiler by Synopsys, Inc. of Mountain View, Califor-
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nia is a tool that creates mapped circuits. Like the generic technology domain, the data in
the gate domain contains information about how components are connected together. How-
ever, in the gate domain, a particular technology from a specific silicon vendor is specified,
thus providing information about the physical characteristics of the components used to im-
plement the desired function. It is in this domain that preliminary timing, area, power, test-
ability, and other calculations of step 105 of Figure 1 and Figure 3 can be made.

The layout domain contains information about the geometric placement of the com-
ponents on the chip substrate and the connections between the components. Circuit repre-
sentations in this domain may also be called the laid out circuit. Cell3 Ensemble by
Cadence of San Jose, California is a creates laid out circuits. The digital circuit design in-
formation in the layout domain is obtained from the digital circuit design information in the
gate domain by using placement and routing tools.

It is also possible to have additional domains, as shown by other domains. However,
the majority of analysis for HDL specified digital circuits occurs in the domains described
above.

1.1.1 Objects within a Domain

The digital circuit design information within a domain is a collection of interconnect-
ed objects, with the objects and the connections possessing certain characteristics. For ex-
ample, in the source domain the objects may include the text of the HDL source code or the
nodes of the parse tree constructed from the source code or the entries in the symbol table.
In the gate domain, the objects may include software representations of the individual gates
or other library parts or the connections between them.

Subsequent sections describe how intra-domain relationships are established and
maintained. Objects in different domains can be related to each other using links discussed
in subsequent sections. For instance, objects in the source domain can be related to objects
in the generic technology domain by tracking the parse node which creates each translated
gate. The system leverages the intradomain links to allow the designer to perform analysis
in one domain and view it in another.

1.2 Digital Circuit Definitions
This section defines some terms used to describe digital circuits. The same terms are

also used for software data structures which represent digital circuit components in the var-
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ious domains.

A digital circuit is an interconnected collection of parts. Parts may also be called
cells. The digital circuit receives signals from external sources at points called primary in-
puts. The digital circuit produces signals for external destinations at points called primary
outputs. Each part receives input signals and computes output signals. Each part has one or
more pins for receiving input signals and producing output signals. In general, pins have a
direction. Most pins are either input pins which are called loads, or output pins, which are
called drivers. However, some pins may be bidirectional pins which are both inputs and
outputs. Bidirectional pins must be handled specially by algorithms which manipulate dig-
ital circuit designs. Usually one of two strategies is used for bidirectional pins; either they
are treated as both an input pin and an output pin, or they are disallowed by the algorithm
in question. In this case, the algorithm cannot manipulate that part of the circuit.

One or more pins from one or more parts are connected together with a net. Each net
establishes an electrical connection among the connected pins, and allows the parts to in-
teract with each other. Pins are also connected to primary inputs and primary outputs with
nets. For the sake of simplicity, parts may be said to be “connected” to nets, but it is actually
pins on the parts which are connected to the nets.

Pins, cells, nets and ports may all be referred to as circuit elements. One or more cir-
cuit elements form a circuit element set.

A digital circuit can be specified hierarchically. Some or all of the parts in the digital
circuit may themselves be digital circuits composed of more interconnected parts. When a
high level part is specified as a digital circuit of other, lower level parts, the pins of the high
level part become the primary inputs and primary outputs for the digital circuit comprising
the lower level parts. If a high level part is composed of lower level parts, it is called a level
of hierarchy.

In the GTech domain, a hierarchical digital circuit specification must terminate with
primitive parts. Primitive parts are not specified as a GTech circuit, but with a fixed defi-
nition provided by the GTech specification or model maker. The definition for a primitive
part specifies the logical function performed by the part. Typically, these parts are function-
ally simple, such as nand gates, or gates, inverters, or flip-flops. Some primitive parts per-

form a more sophisticated function, such as addition. In some cases, the primitive part
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performs a very sophisticated function, such as a microprocessor. The GTech specification
or logic model supplier describes the functionality and characteristics of the primitive parts.
This may include, but is not limited to, the logic performed by the primitive part.

As with GTech circuits, mapped circuit specifications must also terminate with prim-
itive parts. In this case, the primitive parts are supplied by a semi-conductor vendor and are
stored in a technology library. Each part in a semi-conductor vendor technology library
contains a description of its function, as well as physical characteristics such as area, timing
and power usage. Primitive parts in both the GTech and mapped domains are also known
as cells.

1.3 Synthesis Process Overview

Digital Circuit Synthesis consists of translating an HDL description into a netlist with
equivalent functionality and then optimizing that netlist to create an improved mapped cir-
cuit with the same functionality. The following sections describe this process in more de-
tail.

1.3.1 Translation Process Overview

The conventional translation portion of the synthesis process first converts the HDL
text into a parse tree. This is done using conventional parsing techniques such as those de-
scribed in Compilers, Principles, Techniques and Tools by Alfred V. Aho, Ravi Sethi and
Jeffery D. Ullman. A parse tree represents the functional relationships established by the
HDL text. Various nodes on the parse tree correspond to functions. The translator then con-
structs an initial GTech circuit using the parse tree as the guide to selecting the appropriate
primitive parts and establishing nets among the pins of those parts. The initial GTech circuit
will also be hierarchically specified as required by the parse tree. Importantly, every char-
acter in the HDL text is related to a node in the parse tree, and every parse node is directly
related to a net or a part or a primary input or a primary output in the initial GTech circuit.
For example, each variable declared in the HDL will correspond to a net in the GTech cir-
cuit. Also, registers specified in the HDL will correspond to flip-flops or other memory el-
ements in the GTech circuit.

1.3.2 Generic Optimization Process

The conventional translation process produces initial GTech circuits that, if mapped

directly to a technology library and built, would be slow and large. To remedy this, the
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translation process is followed by an optimization process to create a mapped circuit with
superior characteristics than the initial GTech circuit, but that performs the same function
as the initial GTech circuit. Using a GTech circuit consisting solely of primitive parts as an
example, the conventional optimization process proceeds generally as described below.

Optimizing a GTech circuit includes improving the structure of the initial GTech cir-
cuit as well as mapping the logic in the initial GTech circuit into gates available in the spec-
ified technology library. Circuit improvement algorithms may function in either the GTech
or the mapped logic domains. Therefore, mapping may occur at different points in the op-
timization process. Conventional logic optimization tools generally perform some logic
improvement both before and after the GTech circuit is mapped. The following paragraphs
describe a general approach to improving the logic in either a GTech or a mapped circuit.
For readability, the following description of the optimization process describes optimizing
GTech circuits. However, the same optimization techniques are applied to mapped circuits
as well.

First, the optimization process identifies one or more parts in the GTech circuit. This
may include identifying all of the parts of the GTech circuit. Those interconnected parts
collectively form an identified GTech sub-circuit. The identified GTech sub-circuit has in-
puts and outputs. An identified GTech sub-circuit output is a net that connects an output
pin of a part in the identified GTech sub-circuit to an input pin of a part not in the identified
GTech sub-circuit or to a primary output. An identified GTech sub-circuit input is a net that
connects a primary input or an output pin of a part not in the identified GTech sub-circuit
to an input pin of a part in the identified GTech sub-circuit. The identified GTech sub-cir-
cuit therefore computes one or more outputs from one or more inputs.

Second, the optimization process devises a new GTech sub-circuit that performs the
same function as the identified GTech sub-circuit. The new GTech sub-circuit has the same
inputs and the same outputs as the identified GTech sub-circuit. Generally, the new GTech
sub-circuit should be better than the identified GTech sub-circuit in some measurable man-
ner. For example, if the designer is seeking to construct a digital circuit with the smallest
area possible, then the new GTech sub-circuit provided by the optimization process should
use fewer gates than the identified GTech sub-circuit. If the designer seeks speed, the new
GTech sub-circuit should have a faster timing estimate than the identified GTech sub-cir-
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cuit. In some optimization processes, such as simulated annealing, the identified GTech
sub-circuit is sometimes replaced with a new GTech sub-circuit that has worse character-
istics than the identified GTech sub-circuit.

Depending on the particular optimization process used, the measurable criterion used
may be a surrogate for the actually desired measurement. For example, a designer may
want to minimize area of an entire digital circuit being placed on a chip. The optimization
process may estimate the actual new GTech sub-circuit area by counting the number of
gates, or adding up an area estimate for each GTech part where the area estimate comes
from the GTech part library. Obtaining a more accurate measurement generally requires
further analysis of the mapped circuit.

Third, the optimization process replaces the identified GTech sub-circuit with the im-
proved GTech sub-circuit. Replacement means deleting the parts associated with the iden-
tified GTech sub-circuit. The new GTech sub-circuit's inputs are connected to the same nets
that were connected to the identified GTech sub-circuit's inputs. The new GTech sub-cir-
cuit's outputs are connected to the same nets as the identified GTech sub-circuit's outputs.
This results in an intermediate GTech circuit.

The optimization process then repeats these three steps on the intermediate GTech
circuit until an appropriate termination condition arises. For example, the process could ter-
minate when no further improvement was made, or the total number of iterations reached
a specified number. If necessary, the GTech circuit is mapped, and the optimization process
may be repeated on the mapped circuit.

1.4 Optimization Invariant Digital Circuit Structures

Several kinds of circuit structures have a 1 to 1 correspondence between the GTech
and mapped domains. Such parts are referred to as optimization invariant. Relating an anal-
ysis result for a particular net or part in a mapped circuit back to source text is straight-for-
ward when that part of the circuit is not changed in the optimization process. The details of
how this correspondence is established will be described in a subsequent section. Converse-
ly, it is difficult, if not impossible, to relate a mapped circuit structure back to the HDL if
that mapped circuit structure has no corresponding part in the unoptimized GTech circuit.
This section describes several different digital circuit features that typical optimization pro-

cesses leave unchanged during optimization.
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First, optimizers generally do not eliminate registers and defined memory elements
such as latches and flip-flops. The translation process typically creates a part in the initial
GTech circuit for each bit of a register defined by the HDL text. These initial parts have a
one-to-one correspondence with final library parts which are chosen by the optimization
process. Therefore, partial analysis results associated with the register (such as its area) or
nets connected to the register relate directly to those in the initial GTech circuit. Further-
more, the final register can be related back to the HDL which caused it to be created.

Second, optimizers generally do not eliminate primary inputs and primary outputs.
Therefore, post optimization primary inputs and outputs can be related back to pre-optimi-
zation parts.

Third, optimizers generally do not optimize across levels of hierarchy. If a GTech cir-
cuit contains a part that is implemented as another GTech circuit, then the optimization pro-
cess will optimize the GTech circuit within that lower level part separately from the rest of
the GTech circuit at the higher level. Hierarchy is also respected in mapped circuits.

Fourth, the optimizer can be instructed not to “touch” a given cell or net. Thus, such
cells and nets will exist in both the pre- and post-optimization circuit. However, such direc-
tives limit the ability of the optimizer to improve the GTech or mapped circuit. In one em-
bodiment, this instruction is called “dont_touch.” In one embodiment, dont_touch is a
conﬁmand which refers to a particular cell or net in the GTech or mapped circuit. In another
embodiment, dont_touch is an attribute in the HDL language which refers to a part which
is instantiated in the source HDL. Cells or nets which are labeled dont_touch are not
changed in any way by the optimizer.

2.0 Relating Digital Circuit Structures to HDL Source

The goal of synthesis is to create a mapped circuit netlist description from a high level
description of the digital circuit. The mapped circuit must meet a set of design constraints.
Typically, an HDL is used to specify the high level description. It is desirable to analyze
the final result in terms of the original source description.

Analysis of the digital circuit can be done in many ways. Generally, analysis involves
taking a digital circuit and computing a numerical characteristic of that digital circuit or of
parts in the GTech or mapped circuit or of nets connecting parts in the GTech or mapped

circuit. The intermediate results of that analysis are often associated with parts or nets or
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both in the GTech or mapped circuit. For example, one way to estimate the area of a
mapped circuit is to add up the areas of each of the parts in the mapped circuit. The area of
each primitive part can be found in the library of primitive parts provided by the semicon-
ductor vendor. The area of a hierarchical part is obtained by applying this area summing
technique recursively.

As another example, the propagation delay through a mapped circuit is determined
by first computing the longest delay from the primary inputs to each pin in the mapped cir-
cuit. This associates delay information with each pin in the mapped circuit. For a hierarchi-
cal part, the information could be consolidated to be the delay from each input of the part
to each output of the same part.

Results such as area or propagation delay refer to the optimized mapped circuit. If a
problem is discovered in analyzing such results, it is useful to ascertain which portion of
the HDL description caused the problematic mapped circuit structure to be synthesized.

It is also useful to analyze the translated GTech circuit. Because generally it is not
reliable to depend upon the optimizer for major improvements in circuit performance, it is
useful to improve the translated GTech circuit before optimization. As there exists a direct
correspondence between the structure of the source HDL and that of the translated GTech
circuit, improving the translated GTech circuit is accomplished by modifying the source
HDL. Furthermore, it is also possible to characterize the area and delay of the translated
GTech circuit. Thus, it is useful to relate the structure and properties of the translated
GTech circuit back to the source HDL. Therefore, the relationship between the translated
GTech circuit and the source HDL can be used to create an HDL source level digital circuit
analysis tool. GTech analysis will be discussed in further detail in a later section.

The following sections describe how the relationships between the source HDL, the
parse tree, the translated GTech circuit, and the optimized mapped circuit are created and
used. These relationships form the basis for HDL source level digital circuit analysis and
debugging. Once these relationships are established, digital circuit analysis tools can be
linked to the source HDL to assist the designer in analyzing and modifying the HDL.

2.1 Overview of HDL Source to Mapped Circuit Link

This section provides an overview of how the relationship between the source HDL

text and the mapped circuit is established. Each of the links will be described in more detail
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in subsequent sections.

Figure 4 shows the relationship between HDL text and the mapped circuit. The HDL
text 3610 is the source representation of the digital circuit. The parse tree 3620 is created
by parsing 3654 the HDL text in accordance with conventional computer parsing methods.
In addition, each node in the parse tree is assigned a unique numerical id called the parse
tree node number which is used to identify the node. Both the HDL text and the parse tree
belong to the source domain. The generic logic, or GTech domain 3630, representation of
the digital circuit is created by translating 3664 the parse tree. The mapped domain 3640
representation of the digital circuit is created by optimizing 3674 the generic logic. Note
that each of the software representations of the digital circuit design in HDL Text 3610,
parse tree 3620, GTech domain 3630, and mapped domain 3640 are functionally equiva-
lent. The transformations of parsing HDL text 3654, translating 3664, and optimizing 3674
change the way in which the digital circuit is represented, but not its underlying function-
ality.

Once each of these representations of the digital circuit has been created in the vari-
ous domains, it is possible to relate components in one representation to components in ei-
ther the previous or next representation of the digital circuit. It is possible to derive the
relationship between components in any two domains by tracing the components through
any intermediate representations.

Link 3652 indicates that the HDL text 3610 can be related to the parse tree 3620 by
traversing the parse tree to find the node which represents the relevant text.

Link 3656 indicates that the parse tree 3620 can be related to the HDL text 3610. One
technique for relating particular pieces of text with corresponding parts of a parse tree is
described in a co-pending application by Gregory entitled “Method and Apparatus for Con-
text Sensitive Displays”, filed on June 3, 1994 as US application number 08/253,453,
which is hereby incorporated by reference. Another embodiment for this stores the file off-
set of the start and end of each parse node. Another embodiment stores the line and column
number from the source HDL in the parse node.

Link 3662 indicates that the parse tree 3620 can be related to the GTech domain 3630
by storing a list of cell ids created from each parse node with the representation of that parse

node.
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Link 3666 indicates that the GTech domain 3630 can be related to the parse tree 3620
by storing the parse tree node number with each cell that is created in translation.

Link 3672 indicates that the GTech domain 3630 can be related to the mapped do-
main 3640 by relating optimization invariant digital circuit structures. Optimization invari-
ant structures in the GTech domain 3630 have a one to one correspondence with structures
in the mapped domain 3640. Therefore, link 3672 can be implemented by searching for a
structure of the same type with the same name in the optimized mapped circuit. An alter-
nate embodiment of tracking optimization invariant structures comprises assigning a
unique reference number to each translated GTech circuit structure and then retaining this
unique reference number in the corresponding optimized mapped circuit structure.

Link 3676 indicates that the mapped domain 3640 can be related to the GTech do-
main 3630 by relating optimization invariant digital circuit structures. This link is imple-
mented using the same method as link 3672.

2.2 Method for Relating Mapped Circuit to Source HDL

As described above, structures in the synthesized digital circuit can be related back
to the HDL text. Thus, mapped or GTech circuit analysis results can be shown near the re-
lated source HDL. Relating an analysis result back to the source HDL is a several step pro-
cess. First, the partial analysis result is associated with a part or a net in the final mapped
circuit. That part or net is related to a part or net in the initial GTech circuit. In circumstanc-
es described below, this relationship is easily established because that net or part did not
change during the optimization process. In other circumstances, this relationship is very
difficult or impossible to establish. Note however that it is always possible to establish the
relationship between the GTech circuit and the source HDL.

Figure 5 shows how a mapped circuit structure can be related to the source HDL. In
step 3510, a mapped circuit structure is selected for tracing. In step 3515, the method
checks to see if the mapped structure was derived from, and can therefore be traced to, an
optimization invariant GTech circuit structure. If that mapped circuit structure is not trace-
able, then the process terminates. In one embodiment, a message might be issued to the user
that the mapped circuit structure is not traceable. If the structure is traceable, step 3520 re-
lates the mapped circuit structure to the pre-optimization GTech circuit structure which cre-

ated it. As described previously, this is possible because the mapped circuit structure
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directly corresponds to a pre-optimization GTech structure with link 3676 of Figure 4. Step
3530 relates the pre-optimization structure to the parse node from which it was translated.
This is possible because the pre-optimization structure contains a record of the parse node
from which it was created. This relationship is shown link 3666 of Figure 4. Finally, step
3540 relates the parse node back to the source HDL token(s) using link 3656 shown in
Figure 4. The details of the method for establishing the parse tree to text link are described
in a later section.

Figure 5 shows the method for tracing from mapped circuit structure back to HDL
source text. It is also possible to begin the method shown in Figure 5 at step 3520 when one
is tracing from GTech circuit structures rather than from mapped circuit structures.

Furthermore, as shown in Figure 4, it is possible to trace from HDL text to a GTech
or to a mapped circuit structure. The method is the reverse of that shown in Figure 5, and
uses link 3652, link 3662, and link 3672 from Figure 4. A method for tracing from HDL
text to either a GTech or a rﬁappcd circuit structure is shown in Figure 6.

In step 5620, the selected HDL text is related to the appropriate parse node. This is
possible by using link 3652 of Figure 4. Step 5630 relates the parse node to the appropriate
GTech part(s). As described previously, this is possible because the parse node is annotated
during translation with a record of the GTech part(s) it creates. This annotation is indicated
by link 3662 of Figure 4. In step 5640, the program checks to see whether it is possible to
trace from each GTech part to a mapped part. This tracing, as shown by link 3672 of
Figure 4, is possible if the GTech part remains invariant during optimization. If the GTech
part remains optimization invariant, then the procedure returns a mapped part for each
GTech part. Otherwise it terminates at step 5650.

3.0 Probe Directives

As described previously, it is possible to relate mapped circuit structures back to the
HDL if there is a 1 to 1 correspondence to GTech for them. Although several kinds of
GTech circuit structures are preserved by typical optimizers, these parts might not exist in
sufficient numbers to derive a sufficient correspondence between the source HDL and the
optimized mapped circuit in some cases. Furthermore, the distribution of where these parts
are located in the mapped circuit might not correspond to the parts of the mapped circuit

requiring analysis. Therefore, it might be necessary for the designer to specify additional
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parts of the HDL which can be traced to the final mapped circuit. An aspect of the present
invention uses “probe” directives in the source HDL to specify the creation of additional
optimization invariant parts in the GTech circuit.

Probe directives instruct the translator software to construct an initial GTech circuit
with certain points in the GTech circuit marked so that those points are preserved during
the subsequent optimization process. In addition, the usual optimization invariant struc-
tures will also be preserved during optimization. The following sections describe how an
HDL description of a digital circuit with probes is synthesized and the resulting mapped
circuit is analyzed. An example showing how probes guide the construction of the mapped
circuit and allow analysis information to be related to the HDL source text is then provided.
3.1 Probe Directive Usage

It is important that the designer can easily control when and where probe directives
cause optimization invariant structures to be inserted into the mapped circuit. The follow-
ing sections describe different types of probe directives as well as a method for enabling
and disabling probe directives without modifying the HDL source text.

3.1.1 Types of Probe Directives

In a presently preferred embodiment, a probe directive is a single text string that isa
comment in the HDL language. The probe directive begins with characters that indicate the
beginning of a comment. In VHDL, this is a “--". In Verilog, this is “//". The next word is
a keyword that indicates to the translator that this comment is a translator directive, and not
a mere comment. In one embodiment, this keyword is “Synopsys”. After the keyword,
comes a probe declaration to indicate what type of probe it is. In one embodiment, a state-
ment probe is indicated with the phrase “probe_statement”. After the probe declaration
comes an optional search string that is used to identify the type of nets in the GTech circuit
to insert optimization invariant GTech circuit structures. An example of an optional search
string is “all_mux_controls” indicating that the control lines to any multiplexors should be
probed. The search string information will be described later. After the search string comes
optional probe strength information. Probe strength is an aspect of the present invention
which provides a convenient method of activating or deactivating groups of probes. In one
embodiment, probe strength is indicated using a numerical value from 1 to 5. This feature

will be described further in a later section.



WO 95/27948 E PCT/US95/04660

10

15

20

25

30

-33.-

Thus, a sample probe directive in the VHDL language is:

-- Synopsys probe_statement all_mux_controls 4

A basic type of probe directive is a statement probe. Statement probes use the syntax
described above, but do not include any search string. In one embodiment, a statement
probe selects the first parse node following it.

Another type of probe directive is the block probe. A block probe is defined by two
text strings. The first text string is the block starting string. Like the statement probe, it be-
gins with a comment starting symbol and a keyword. In one embodiment, the keyword is
followed by the phrase “begin_block_probe”. This phrase is followed by an optional search
string. This phrase is followed by an optional string with probe strength information. The
second text string is the block ending string. In one embodiment, the keyword is followed
by the phrase “end_block_probe”. A sample pair of block probe directives in the VHDL
language is:

-- Synopsys begin_block_probe

<VHDL statements>

-- Synopsys end_block_probe

In one embodiment, the begin block probe/end block probe phrase pair cause all of
the statements between the begin and end phrases to be probed. Details of how block probes
are implemented will be explained later.

Multi-probes are implemented by using statement probes and block probes with
search strings. Search strings are text descriptions that are used to choose the nodes or nets
to probe. In one embodiment, the search string is used to select particular types of nets as-
sociated with the GTech circuit parts. For example, multiplexors are commonly used to im-
plement conditional expressions. The multiplexor control lines are linked to GTech circuit
structures associated with the condition, and the data lines are linked to GTech circuit struc-
tures associated with the alternatives. A search string such as “all_mux_controls” could
probe the nets that are connected to multiplexor control lines. This would allow the design-
er to gain insight about the conditions. Following is an example of a multi probe which se-
lects all mux controls in the VHDL language:

-- Synopsys probe_statement all_mux_controls
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3.1.2 Selecting Probes

The mapped circuit produced when probes are used most likely will be different from
the mapped circuit that occurs when probes are not used. Because probes interfere with the
ability of the optimizer to produce higher quality mapped circuits, the designer generally
will only use them when the designer needs to gather particular information. During the de-
bugging process, a designer may insert many probe directives into the HDL source at var-
ious times to discover the characteristics of different parts of the mapped circuit. As the
design process progresses, the designer should require fewer probes. One of the tasks that
the designer faces is then managing the probes as the debugging needs change. One way to
do this is for the designer to add and remove the text of each probe directive as required.
This burdens the designer with a tedious text editing chore.

An aspect of the present invention use a probe strength field in the probe directive in
the HDL source text. Before initiating the synthesis process, the designer specifies a pro-
cessing strength. All probe directives with a probe strength greater than the processing
strength are treated as active probes and therefore should be processed. All other probe di-
rectives are ignored. This means that a designer can set the probe strength to a small value
in the detailed portions of the design, and then set the probe strength to a larger value at
higher level portions of the design. By specifying a large processing strength, the designer
would get a mapped circuit with fewer probes, and provide the optimizer with greater flex-
ibility, but corresponding less informaticn directly related to the source text. Specifying a
smaller processing strength would increase the number of probes, but would also impact
the mapped circuit.

One method of implementing this probe strength field is to modify the translation
process shown in Figure 7. In particular, in step 4120, the parse nodes corresponding to
probe directives are marked. At this point, the probe directive's strength can be extracted
from the text and compared with the specified processing strength. A probe directive lack-
ing the requisite strength is simply ignored. '

Another method would involve attaching the probe strength to the nets that get
marked, and allowing the optimization process to select probe nets with probe strength less
than or equal to the processing strength.

In another embodiment, the probe directive could include a specification field that
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contained text. The designer could specify a text search condition. Such a condition could
include a regular expression used for defining text searches. The synthesis process would
then process probe directives that satisfy the condition, and ignore probe directives that do
not satisfy the condition.

3.2 Synthesizing with Probe Directives

Figure 3 shows the general design and debugging process in accordance with the
present invention. The designer writes HDL with probe directives 150. The probe direc-
tives identify the places in the resulting mapped circuit that the designer might wish to ex-
amine. The designer might not initially know where probes will be required until later in
the design process. The probes have no impact on functionality so functional simulation
101 and functional repair 102 proceed as before. The designer also constrains synthesis 103
as before.

Synthesizing with probes 154 differs from conventional synthesis 104 in the transla-
tion step. When an improved translator encounters a probe directive, that translator creates
an optimization invariant structure at that point in the GTech circuit. The optimizer then
produces a new mapped circuit with additional optimization invariant structures. In one
embodiment, the probed portions of the HDL source are treated as both primary inputs and
primary outputs during translation and optimization. Alternate embodiments of implement-
ing probe directives are described later.

The mapped circuit analysis step 105 proceeds as before. After analysis, the tool then
uses information developed during translation to relate the results of the analysis to the
HDL source as indicated by step 120.

With the information gleaned from the probes, the designer can now identify prob-
lems and evaluate solutions that directly change the HDL, as shown in step 121.

After completely analyzing and debugging the design, the mapped circuit is fabricat-
ed in step 106.

3.3 Method for Implementing Probe Directives

Figure 7 shows a method of implementing probe directives. The process begins in
step 4110 by constructing a parse tree from the HDL source text using conventional parsing
techniques. The data structure representation of the parse tree should efficiently link the
characters in the text to the parse node containing those characters, and additionally, it
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should efficiently allow identifying the characters associated with a parse node. One tech-
nique for relating particular pieces of text with corresponding parts of a parse tree is de-
scribed in a co-pending application by Gregory entitled “Method and Apparatus for
Context Sensitive Displays”, filed on June 3, 1994 as US application number 08/253,453,
which is hereby incorporated by reference.

In step 4120, the parse nodes corresponding to various probe directives are marked.
The details of this process are explained in a later section. There are three types of probe
directives: statement probes, block probes, and multi probes. Multi probes can be trans-
formed into zero or more statement or block probes and then treated as such. This transfor-
mation will be described in a later section; this section assumes that multi probes have been
previously transformed.

A statement probe is a single text string. The parse node that “follows” the single text
string is the parse node to mark. A block probe consists of two text strings: a begin block
statement and an end block statement. In general terms, the parse nodes “between” the be-
gin block and end block statements are the parse nodes to mark.

In step 4130, the unprobed GTech circuit is constructed from the marked parse tree
constructed in step 4120 using conventional techniques, such as those described in the ref-
erences incorporated earlier. The GTech circuit translation process also constructs a list of
parts and nets associated with each parse node.

In step 4140, step 4150, and step 4160, optimization invariant GTech circuit struc-
tures are added for each marked parse node. One approach to adding an optimization in-
variant GTech circuit structure is to create a primary input and a primary output. The
following paragraphs will elaborate on how this is done. Additional methods for creating
optimization invariant circuit structures will be described in a later section. Note that the
digital circuit functionality is preserved by connecting that primary input and primary out-
put at the next higher hierarchical level. Therefore, in step 4135, an additional level of hi-
erarchy is added if the digital circuit does not have a higher level of hierarchy and there are
marked parse nodes.

In step 4140, all of the parts that were created from marked parse nodes are marked.
Thus, some pairts are marked.

In step 4150, nets associated with the marked parts are marked. These marked nets
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will be broken by new primary input/primary output pairs in order to form optimization in-
variant GTech circuit structures. The nets to mark are identified as follows. First, note that
the marked parts form a GTech sub-circuit. The GTech sub-circuit has input nets and output
nets. A particular net is a GTech sub-circuit input net if the particular net is connected both
to an input pin of a part in the GTech sub-circuit and to an output pin of a part not in the
GTech sub-circuit or to a primary input. A particular net is a GTech sub-circuit output if
the particular net is connected both to an output pin of a part in the GTech sub-circuit and
to an input pin of a part not in the GTech sub-circuit or to a primary output.

By probing the input nets and/or the output nets of the GTech sub-circuit, the behav-
jor of the GTech sub-circuit can be observed. Thus, there are several choices for marking
the nets associated with the marked parts to allow the insertion of optimization invariant
GTech circuit structures. One choice involves marking only the input nets to the GTech
sub-circuit. Another choice involves marking only the output nets to the GTech sub-circuit.
A third choice involves marking both the GTech sub-circuit's input nets and output nets. A

fourth choice involves selecting nets that meet a search criterion defined in the search string

portion of the probe directive.

One of the preceding options is chosen for marking the nets. Then, each of the
marked parts is examined. The order in which the marked parts are examined is unimpor-
tant. Any nets which are connected to the part and which meet the marking criterion are
marked. There is no significance to marking a net more than once..

In step 4160, an optimization invariant GTech circuit structure replaces each net
marked in step 4150. There are several choices for creating such a structure for a marked
net. As mentioned previously, one choice involves creating a new primary input and a new
primary output for each marked net. Another choice involves creating only a primary out-
put. Another choice involves attaching the net toa register. Another choice involves attach-
ing a property or a characteristic to the net that instructs the optimizer not to modify the net.
Another choice involves creating a new optimization part which is marked so that the op-
timizer will not modify it during optimization. This part has one input pin and one output
pin. The net is then split into two parts. One part remains connected to all of the input pins
on the original net and is also connected to the output pin of the new part. The other part

remains connected to all of the output pins on the original net and is also connected to the
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input pin of the new part.

An advantage to creating the optimization invariant structure by adding a new prima-
ry input/primary output pair is that optimizers treat primary inputs and outputs as invariant.
Figure 8 shows how a new primary input/primary output pair is created for each marked
net.

In step 3810, a new primary input and a new primary output are created.

In step 3820, an input net is created and attached to the new primary input. An output
net is also created and attached to the new primary output.

In step 3830, because the GTech circuit being processed is part of a hierarchical de-
sign with a higher level, the new primary input and the new primary output are connected
together with a new net at the higher level in the design.

In step 3840, the input and output nets are connected to the existing GTech circuit.
The output net is connected to every primary input connected to the marked net. The output
net is also connected to any output (or driver) pins that are connected to the marked net.
Note that if net marking was chosen to mark only output nets from the marked GTech sub-
circuit, then the output net will be connected to the pins connected to the marked net that
belong to parts that are not in the marked GTech sub-circuit. The input net is connected to
every primary output connected to the marked net. The input net is also connected to any
input (or load) pins that are connected to the marked net. Note that if net marking was cho-
sen to mark only output nets from the marked GTech sub-circuit, then the input net will be
connected to the pins connected to the marked net that belong to parts that are in the marked
GTech sub-circuit.

In step 3840, the method shown may treat bidirectional pins as either input or output
pins. However, all bidirectional pins should be treated in the same way.

3.3.1 Example

The method described above can be used to create the GTech circuit shown in

Figure 22. First, consider the VHDL source shown in Figure 16. The source text isrepeated

here for convenience:

1000if (C and B) then

1001-- Synopsys probe_statement
- 1002Z <=not (A or B);

1003else

1004Z <=not B ;



WO 95/27948 ' PCT/US95/04660

10

15

20

25

30

-39-
1005end if ;

Comment 401 in Figure 16 is a probe directive which causes statement 402 to be
probed. The parse tree for the VHDL source is constructed in step 4110 of Figure 7, and is
shown in Figure 12. In step 4120 the probe parse nodes are marked. In this case, node 1004
of Figure 12 is marked. In step 4130, the parse tree is translated using conventional meth-
ods. The resulting GTech circuit is shown in Figure 28. In step 4135, a level of hierarchy
is added if necessary. For the purpose of this example, itis assumed that a level of hierarchy
exists above the circuit fragment shown. In step 4140, the parts and nets from the marked
parse node are marked. In this case, net 280 is marked, because it was created from state-
ment 402. In step 4150, nets associated with marked parts are marked. Since there is only
a marked net, no additional nets are marked. In step 4160, an optimization invariant circuit
structure is added for each marked net.

In this example, a primary input and primary output pair will be added as shown in
Figure 8. The resulting GTech circuit is shown in Figure 22. First, a new primary input 203
and primary output 221 are created in step 3810. Next, input net 223 and output net 222 are
created in step 3820, and connected to primary input 203 and primary output 221 respec-
tively. In step 3830, primary input 203 and primary output 221 are connected at a higher
level of hierarchy. In step 3840, the input net 223 and output net 222 are connected to the
rest of the GTech circuit. Input net 223 is connected to all of the driver pins that were con-
nected to net 280. In this case, input net 223 is connected to driver pin 224 on nor gate 233.
Output net 222 is connected to all of the load pins that were connected to net 280. In this
case, output net 222 is connected to load pin 225 on multiplexor 231.

4.0 Implementation Particulars

This section contains specific details of how the links between the domains are estab-
lished and maintained.

4.1 Creating the Text to Parse Node Link

HDL source is first parsed to create a parse tree. The nodes in the parse tree must be
linked back to the original HDL source in order to enable tracing from the HDL source to
the mapped circuit. This section describes how the parse tree to HDL source relationship is
established and used.

Parsing involves creating a parse tree from an array of text in accordance with the
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rules of a language. Co-pending application by Gregory entitled “Method and Apparatus
for Context Sensitive Displays”, filed on June 3, 1994 as US application number 08/
253,453, provides an overview of the parsing process and provides an efficient data struc-
ture for relating text and parse nodes. This section explains how to use the relationship be-
tween text and parse nodes. In particular, a method to relate a probe directive to the
appropriate parse node is discussed.

4.1.1 Notation Demarcating Text into Parse Nodes

Figure 9 illustrates a parse tree associated with some text. This example comes from
co-pending U.S. application 08/253,453. The parse tree consists of nodes 39100, 39101,
39102, 39103, 39104, 39105, and 39106. The characters 3901 through 39013 represent ge-
neric characters. Using conventional parsing methods, characters are grouped into parse
nodes. When parsing is complete, characters are associated with the parse node they define.
In this example, characters 3901, 3902, 3903, 3904, 3905 and 3906 are associated with
node 39102. Characters 3907 and 3908 are associated with node 39103. Characters 3909,
3910 and 3911 are associated with node 39105 and characters 3912 and 3913 are associated
with node 39106.

Figure 10 illustrates a text representation of the parse tree using “{” to mark the be-
ginning of a node and “}” to mark the end of a node. This representation is called a parse
array. For example, left brace 3930 and right brace 3940 together contain all of the text and
nodes associated with node 39100. Left brace 3931 and right brace 3941 demarcate the text
and nodes associated with node 39101. Left brace 3932 and right brace 3942 demarcate the
text associated with node 39102. Left brace 3933 and right brace 3943 demarcate the text
associated with node 39103. Left brace 3934 and right brace 3944 demarcate the text asso-
ciated and nodes with node 39104. Left brace 3935 and right brace 3945 demarcate the text
associated with node 39105. Left brace 3936 and right brace 3946 demarcate the text asso-
ciated with node 39106.

Note that pairs of left and right braces are nested within each other. For example,
brace 3933 and brace 3943 are nested within brace 3931 and brace 3941. They are also nest-
ed within brace 3930 and brace 3940. Thus, characters may be surrounded by multiple pairs
of braces. For example, character 3907 is surrounded by all three of the pairs of braces men-

tioned above. However, brace 3933 and brace 3943 make up the innermost pair of braces
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which surround character 3907. The concepts of leftmost and rightmost are also useful. An
array is considered to be a contiguous list of characters, the first of which is the leftmost
character of the array. Each successive character is considered to be to the right of its pre-
decessor. The last character in the array is the rightmost character of the array. Thus, a char-
acter is considered to be “leftmost” if it is the character furthest to the left which fills a
condition. Respectively, a character is considered to be “rightmost” if it is the character fur-
thest to the right which fills a condition. For example, brace 3943 is the leftmost right brace
to the right of character 3907.

4.1.2 Text-To-Parse Node Mapping and Parse-Node-to-Text Mapping

Mapping text to and from the containing parse node is explained in co-pending U.S.
application by Gregory filed on June 3, 1994 as US application number 08/253,453. The
previous section showed a notation that related the parse nodes to braces implicitly embed-
ded in the text. A given character in the text is mapped to the parse node that corresponds
to the innermost braces that contain that character.

Figure 11 shows an example of HDL source. Figure 12 shows the parse tree which is
generated from this source. Figure 13 shows the same HDL source as a text array.
Figure 14 shows the text array of Figure 13 with embedded brace *“{}” characters surround-
ing each portion of the text that forms a parse node. Figure 15 shows the annotated text ar-
ray with each left brace “{” numbered. The line breaks in the figures depicting arrays exist
only to allow the drawings of the arrays to fit on the page. A computer program treats arrays
as contiguous lists of characters. The characters ‘“\n” and *\t” indicate newline and tab char-
acters respectively.

Note that Figure 15 shows an alternate representation of the characters as “X” as ex-
plained in co-pending U.S. application by Gregory filed on June 3, 1994 as US application
number 08/253,453. For the purposes of clarity, the figures in this application will show the
actual characters, although the technique explained in co-pending U.S. application, by Gre-
gory filed on June 3, 1994 as US application number 08/253,453 may be used to improve
the performance and memory requirements of the system.

As an example, character 4132, the “0” in *“or”, will be traced to its corresponding
parse node. First, the parse node containing character 4132 is determined. This is the parse

node that begins with brace 4307, since it is the parse node corresponding to the innermost
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braces containing character 4132. Next, the parse node number is determined. This is done
by counting the number of left braces which precede brace 4307. Since there are 7 left brac-
es prior to brace 4307, it represents node number 7. Note that this number is the same num-
ber that is calculated by performing a preorder traversal of the original parse tree and
numbering each node as it is traversed.

Locating the text which corresponds to a given parse node uses the same data struc-
tures. First, the number of the parse node is ascertained. In one embodiment, the number of
the parse node of interest is stored with the parse node. In one embodiment, the number of
the parse node of interest is calculated from the parse tree by performing a preorder travers-
al and numbering each node as it is traversed. In one embodiment, the number of the parse
node is calculated from the parse array as described above. In one embodiment, the number
of the parse node is available because it has been previously stored. Once the number of the
parse node is determined, the associated text is found by counting left braces in the parse
array until the correct number is reached. Any text between the correct left brace and its
balancing right brace is related to the parse node.

For example, the or expression can be found by counting to the seventh brace, brace
4307 (starting from 0), in the annotated text array.

4.2 Parsing Probe Directives

| In one embodiment, probe directives are comments within the HDL language. During
conventional lexical analysis and parsing, comments are discarded by the lexical analyzer
or the parser. Therefore, probe directives must be parsed specially in order to determine
which parse nodes are affected by each probe directive. This section describes how probe
directives modify the parse tree. The modified parse tree is used to determine where addi-
tional optimization invariant structures must be created during translation.
4.2.1 Processing Statement Probes

In one embodiment, the parse node associated with a statement probe corresponds to
the HDL statement following the statement probe. One way to implement this is to deter-
mine the parse node associated with the text immediately following a statement probe using
the text-to-node mapping previously described, and mark that node. This is possible be-
cause the parse array contains all of the characters in the source text. The parse array em-

beds the parse node boundaries into the text. The probe directives can be identified by
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scanning the parse array after it has been built. They are then used to mark the appropriate
parse nodes.

Figure 12, Figure 16, Figure 17, and Figure 11 illustrate processing probe directives
with an example. Figure 12 shows an HDL code fragment. Figure 16 shows the same HDL
code fragment containing a statement probe 401. Figure 17 shows the text of Figure 16 as
a linear array of characters with parse node braces inserted. Figure 11 shows the parse tree.
After parsing is complete, a conventional text searching technique such as used in the
“grep” command in UNIX can identify character 4450 as the first character of the statement
probe. The text-to-node mapping will identify the parse node beginning at brace 4304 as
the first parse node following the statement probe. This parse node is the node whose open-
ing left brace is the first left brace to the right of the probe directive beginning at character
4450.

Note that text of the probe directive can not contain a parse node nor can it be divided
by a parse node because the probe directive is within a comment in the underlying HDL
language.

Figure 18 and Figure 19 illustrate a situation that, in one embodiment, should be
treated as an error. If the text of a statement probe does not immediately precede an HDL
statement, then there is no next statement to select. The HDL text in Figure 18 illustrates
this situation. Statement probe directive 4520 should be treated as an error. Figure 19
shows a brace representation of the situation. This error occurs whenever a right brace “}”
is located after the probe directive text and before the next left brace “{“. Brace 4660 is such
a brace. One method of dealing with this situation is to stop processing probe directives.
Another method of handling this situation is to ignore the probe. In one embodiment, a mes-
sage can be sent to the designer by the HDL analysis system describing the problem and
the action taken.

An alternate embodiment would use statement probes to select the HDL statement
preceding the text of the probe. This would require that the parse node immediately preced-
ing the probe directive be marked. This parse node can be found by finding the first right
brace “}” to the left of the text of the probe directive. The corresponding left brace “{” for
this right brace is then identified and the parse node number is ascertained from this left

brace as described previously. One disadvantage to using probe directives which select the



WO 95/27948 E PCT/US95/04660

10

15

20

25

30

-44 -

preceding text is that the probe directive must follow all lines of a complex statement.
4.2.2 Processing Block Probes

Block probe directives are defined by a starting text string and an ending text string.
The starting and ending text strings are processed in a very similar manner to statement
probes. The parse nodes to mark for block probes are found as follows. Identify the parse
node immediately following the starting text string of the probe directive with the text-to-
node mapping described earlier, and call this parse node the starting parse node. Identify
the parse node preceding the ending text string with the text-to-node mapping described
earlier, and call this parse node the ending parse node.

In addition, identify the parse node which contains the starting probe directive and
the parse node which contains the ending probe directive. As described earlier, the contain-
ing node is the parse node whose defining braces are the innermost pair of braces which
fully enclose the probe directive. If the starting probe directive and the ending probe direc-
tive are not contained by the same node, then a logical error has occurred.

Consider the HDL source text shown in Figure 20. The parse nodes for this source
text using the brace notation are shown in Figure 21. As before, the parse node boundaries
are denoted with the brace characters “{” and “}”. Probe directive 4750 is the starting block
probe directive. Probe directive 4760 is the ending block probe directive.

Applying the text-to-parse-node mapping function described earlier to starting block
probe directive 4750 produces starting parse node begun by brace 4804. This is because
brace 4804 is the leftmost right brace to the right of starting block probe directive 4750.
Similarly, applying the text-to-parse-node mapping function to the ending block probe di-
rective 4760 yields ending parse node begun by brace 4810. This is because brace 4840 is
the rightmost right brace to the left of ending block probe directive 4760, and brace 4810
the left brace corresponding to brace 840.

The innermost containing parse node for both starting block probe directive 4750 and
ending block probe directive 4760 is the parse node defined by starting brace 4800. A parse
node is the innermost containing parse node for a probe directive if its left brace is before

~ the probe directive, and its right brace is the leftmost right brace which comes after the

probe directive but has its matching left brace before the probe directive.
Note that brace 4845 is the leftmost right brace to the right of starting block probe
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directive 4750 which has its matching left brace before starting block probe directive 4750.
Brace 4845 is also the leftmost right brace to the right of ending block probe directive 4760
which has its matching left brace before ending block probe directive 4760. Thus, this is a
legal pair of block probe directives.

Once it is determined which are the starting and ending parse nodes, those parse
nodes and all parse nodes which fall between the starting and ending parse nodes are
marked. During translation, the marked parse nodes are processed as described previously.
For example, in one embodiment, the outputs of the logic block defined by the block probe
will be preserved by optimization invariant structures.

One troublesome situation that might arise is that the text-to-parse-node mapping
identifies different containing parse nodes when applied to the starting block probe direc-
tive and the ending block probe directive. This situation arises if the begin and end block
probe directives are not placed within different syntactic blocks. Another troublesome sit-
uation occurs if the starting block probe directive is not placed immediately before a parse
node or the ending block probe directive is not placed immediately after a parse node. In
one embodiment, processing Stops once an erroneous situation is detected. In another em-
bodiment, the offending probe directives are ignored. In one embodiment, a message can
be sent to the designer describing the problem and the action taken.

4.2.3 Processing Multi-Probes

A Multi-probe is a statement probe or a block probe with a search string which further
specifies which logic is to be probed. In one embodiment, a multi-probe uses the phrase
“multi-probe” following the keyword. The parse nodes associated with a multi-probe direc-
tive are identified using the methods described earlier if either a statement probe or a block
probe is used. These parse nodes will be referred to as the initial parse node selection.

In one embodiment, the search string is used to mark some, or possibly all, parse
nodes in the initial parse node selection. The marked parse nodes are then processed as be-
fore. There are different types of parse nodes, such as assignment, operator, or variable. The
parse node types are defined by the particular HDL language. One use for the search string
is to select parse nodes of a particular type. For example, the search string “all assignments”
would result in marking the assignment parse nodes in the initial parse node selection. An-

other search string is “all statement sequences”. This indicates that the parse nodes that cor-
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respond to the first and last statements in each statement sequence of the original selection
are probed. Statement sequences are defined in the VHDL Language Reference Manual.

In another embodiment, the search string is used to specify which nets connected to
the marked parts are marked. Recall that marked nets will be broken with optimization in-
variant structures. For example, the search string “all_mux_controls” indicates that the nets
controlling muxes should be marked in the initial selection. This will cause all of the
mapped mux controls to be linked to the HDL source after optimization.

Probe directives can be used to selectively group blocks of logic so that the effects of
such logic blocks can be observed. Thus, another search string is “all case statements”. This
marks all parse nodes corresponding to case statements. A further search string is “all sub-
routine calls” which marks the parse nodes corresponding to subroutine calls. By using
probe directives, which can be disabled using the priority feature, the designer can easily
create temporary levels of hierarchy which can be used to analyze the mapped circuit struc-
tures created by specific portions of the HDL and then disabled once analysis is complete.
Case statements and subroutine calls are two examples of common structures that the de-
signer might wish to examine.

4.3 Alternate Implementations of Optimization Invariant Structures

Following are additional methods for creating optimization invariant GTech circuit
structures for probe directives. Any of these methods can be used in step 4160 of Figure 7.
Figure 22 shows an example of extracting both a primary input as well as a primary output.
4.3.1 Attaching Properties to Nets

Another method of creating an initial GTech circuit with optimization invariant
GTech circuit structures corresponding to the probe directives involves modifying the iden-
tification step in the optimization process. During the translation process, a net or a part cor-
responding to a probe directive is “marked.” The identification step in the optimization
process is changed to allow only “unmarked” nets or parts to be modified during optimiza-
tion. The marking is implemented by attaching additional information to the net list pre-
pared during the translation process. Alternatively, a marked net can be divided into an
input net and an output net as before, and a new part added that connects the nets. This part
is given a property that it may not be deleted during optimization. Figure 23 and Figure 24

show two example of a GTech circuit with optimization invariant structures. Net 391 is a
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marked net which cannot be modified during optimization. Part 270 is a marked part which
cannot be modified during optimization. The disadvantage to marking a net as not modifi-
able is that if the net cannot change, then the total number of input and output pins on the |
net must remain the same. This means that none of the parts which are attached to the net
can be deleted or combined during optimization.

4.3.2 Extracting Only a Primary Output

Another method of creating an initial GTech circuit with optimization invariant
GTech circuit structures corresponding te the probe directives involves creating only a pri-
mary output at a higher level in the hierarchy. A sample GTech circuit with a primary out-
put extracted is shown in Figure 25. The method shown in Figure 8 created both a primary
input and a primary output. If only a primary output but no primary input is extracted, the
marked net does not need to be divided into an input net and an output net. However, this
technique might lead to unpredictable results during optimization.

Consider the GTech sub-circuit shown in Figure 26. Part 4201 computes function f,
and produces an output on net 4220. Part 4202 computes function g. Net 4220 is marked
and probed by attaching only a primary output. In some circumstances, the optimizer may
effectively proceed by producing a mapped sub-circuit as shown in Figure 27. For example,
such a mapped sub-circuit might be produced if the optimizer is attempting to minimize the
critical path. Here, part 4200 is a replica of part 4201, and computes f, which drives net
4220 as before. Part 4201 and part 4202 have been combined by the optimizer to produce
part 4203, which computes h, a combination of f and g. While this mapped sub-circuit will
produce the correct output, the timing information associated with the created primary out-
put might not be useful because it is not associated with a signal path in the functioning part
of the mapped sub-circuit. However, adding only a primary output is sitnpler than adding
both a primary input as well as a primary output, might enable the optimizer to perform bet-
ter than if a primary input/primary output pair were added, and might allow the designer
sufficient traceability back to the original probe directive in the source HDL.

4.4 Examples
4.4.1 Mapped Circuit Analysis with Probe Directives

Figure 11, Figure 12, Figure 25, Figure29, Figure 16, Figure 22, Figure 30,

Figure 31, Figure 32, Figure 33, Figure 34, Figure 35, Figure 36, Figure 37, and Figure 38
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illustrate by example how probe directives work and how the mapped circuit analysis in-
formation is displayed to a user. The examples use VHDL as the source language. The prin-
ciples illustrated do not depend on the particular language. For example, the system works
with Verilog as well.

Figure 11 shows a text editor window 300 containing an example of a VHDL code
fragment 400 that does not contain any probe directives. The code fragment shown in

Figure 11 is repeated below:

1000if (C and B) then
1001Z <= not(A or B);
1002¢else
1003Z <= not(B);
1004end if;
Figure 12 shows a graphical representation of the parse tree constructed while trans-

lating the source code in Figure 11. The “if” statement in VHDL has three parts: a condi-
tion, a VHDL statement to pfoccss when the condition is true; and a VHDL statement to
process when the condition is false. The condition is dealt with in the tree descending from
node 1001. The true condition is handled by the tree descending from node 1004. The false
condition is handled by the tree descending from node 1010. The assignments represented
by nodes 1004 and 1010 are used to link the signal values represented by node 1005 and
node 1011 to their functions represented in the trees descending from nodes 1006 and 1012
respectively.

Without a probe directive, the VHDL fragment translates into the GTech circuit of
Figure 25 using conventional synthesis translation techniques described earlier. Inputs A,
B, and C are schematically represented by the connectors 200, 201, and 202. The “if” state-
ment translates into multiplexor 231. The condition “(C and B)” would translate into and
gate 232. The “true” condition translates into nor gate 233 while the “false” condition trans-
lates into inverter 230.

Figure 29 shows a mapped circuit optimized from the GTech circuit of Figure 25. In
particular, the logic function that this code fragment really performs is not(B). At this point,
without probes in the conventional synthesis design process, the designer can not obtain
much information about the internal timing information descending from the fragment. For
example, if the designer needed to know when the value of not(A or B) was computed to

help analyze some other aspect of the design, then the designer would not be able to deduce



WO 95/27948 ' PCT/US95/04660

10

15

20

25

30

-49 -

that information from the resulting analysis of the circuit in Figure 28.
Figure 16 shows a probe directive 401 inserted into the source description. The code
fragment is repeated below:

1005if (C and B) then
1006--Synopsys probe_statement
1007Z <= not(A or B);
1008else
1009Z <= not(B);
1010end if;
In VHDL, “--” begins a comment. The word “Synopsys” immediately after the “--”

indicates that this is not an ordinary comment, but rather a directive to the translator or other
part of the computer aided design tool environment. The word “probe_statement” indicates
that the subsequent VHDL statement should be processed by the translator so that it will be
possible to relate subsequently obtained analysis information to this point in the HDL rep-
resentation of the digital circuit.

Figure 22 shows a GTech circuit produced by a translator from the code fragment
shown in Figure 16 with the probe directive. The parse tree produced with the probe direc-
tive is the same as before, namely the tree of Figure 12. However, the probe directive will
cause the signal represented by node 1005 to behave as both a primary output and a primary
input.

In one embodiment, the translator adds temporary input 203 and new temporary out-
put 221 while creating the GTech circuit of Figure 22 from the parse tree. In addition to
creating this GTech circuit, the translator connects the new temporary input to the new out-
put at a higher level in the net list produced from translating the whole specification. This
effectively makes this internal node visible at a higher level in the design hierarchy.

Figure 30 shows the mapped circuit of Figure 22 after optimization. The optimizer is
not permitted to optimize GTech circuits past the boundaries established by the probe di-
rective. This means that nor gate 233 of Figure 22 would be transformed into nor gate 253
of the optimized mapped circuit. The optimization process begins with a GTech circuit that
does not have timing or area information associated with the GTech components. After the
optimization process, the mapped components do have area and timing information asso-

ciated with them. Therefore, nor gate 233 in Figure 22 is not “the same” as nor gate 253 in
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Figure 30.

Because the logic optimization process left temporary input 203 and temporary out-
put 221 alone, and those points correspond to a particular point in the HDL source, any an-
alytic result related to temporary input 203 or temporary output 221 can be identified with
the probe directive 401 in the HDL. Figure 31 shows the relation of timing information to
the HDL source text through a special text window 301. For example, suppose a critical
path analysis tool determined that it took 1.0 nanoseconds to produce temporary output 221
of Figure 30 after a clock edge arrived at a flip-flop somewhere else in the mapped circuit.
By using the fact that temporary output 221 came from this line of the source, the timing
result 500 can be displayed next to the appropriate line of the output.

4.4.2 Example of Block Probe Directive

Figure 32, Figure 33, Figure 34, Figure 35, Figure 36, Figure 37, Figure 38, and
Figure 39 show another way to use probes to evaluate the performance of blocks of HDL
code. Figure 32 shows a text window with an HDL entity described. This text has no probe
directives inserted, and the code is repeated below. |

101 1entity interrupt_controller is

1012 port(new_request : in bit_vector(3 downto 1);
1013 current_level: in bit_vector(1 downto 0);
1014 should_service: out bit);

1015end;

1016

1017architecture synthesizable of interrupt_controller is
1018signal new_level: bit_vector(1 downto 0);
1019begin

1020 decode: process(new_request)

1021 begin

1022 if(new_request(3) ='1") then

1023 new_level <= "117;

1024 elsif(new_request(2) = '1") then

1025 new_level <="10";

1026 elsif(new_request(1) = '1") then

1027 new_level <="01";

1028 else

1029 new_level <="00";

1030 endif;

1031 end process;

1032

1033 compare: process(current_level, new_level)
1034 begin

1035

1036 if(new_level(1) > current_level(1)) then
1037  should_service <=1
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1038 elsif(new_level(1) < current_level(1)) then
1039  should_service <="0";
1040 elsif(new_level(0) > current_level(0)) then
1041  should_service <="1"
1042 else
1043  should_service <='0";
1044 end if;
1045
1046 end process;
1047end;
The function of this VHDL source code model is to compute whether a new interrupt

of a particular priority should be serviced given priority over the interrupt being serviced.
A request for a processor interrupt arrives on inputs new_request[3], new_request[2], or
new_request[1]. The input current_level[1:0] indicates the priority level of the interrupt
currently being serviced. If the request for an interrupt comes in on a higher level input than
the current level of the interrupt being serviced, then the should_service output is set. Oth-
erwise, it is set low.

This source code computes the interrupt service request in two steps. First, it deter-
mines the level of the highest pending interrupt request in the process labeled decode. Sec-
ond, it compares that level with the current interrupt level.

Figure 33 shows the GTech circuit resulting from translating the VHDL source.
Figure 34 shows the mapped circuit that results from optimizing the GTech circuit in
Figure 33.

Figure 35 shows a special text window that summarizes some of the performance in-
formation about the mapped circuit. The analysis tool can provide information about the
design as viewed from the inputs. For example, one analysis tool would provide an estimate
of the area of the design by counting gates. Another analysis tool would compute the long-
est delay through the entire design. The designer could compare this information with the
designer's requirements to determine if this mapped circuit is too big or too slow. The op-
timization process blurred the distinction between the decode function and the compare
function. It is not feasible for a designer to determine the area or the delay associated with
each function.

To determine where the problems lie, the designer would insert “block probes” tex-
tually near the definition of the decoding and comparing processes, as shown in the text

window of Figure 36. This would probe all signals entering or leaving the sequence of HDL
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code delineated by the begin block and end block statements. When translated, the probed
HDL becomes the GTech circuit of Figure 37. The translator would create temporary in-
puts 2010 and 2011, and temporary outputs 2000 and 2001, much as it did with the state-
ment probe.

The optimizer transforms the GTech circuit of Figure 37 into the mapped circuit of
Figure 38. This allows the analysis tools to compute timing and area characteristics of both
parts of the mapped circuit. A special purpose display tool can then display, for example,
timing and area analysis, as shown in Figure 39. In this example, the decoding mapped cir-
cuit is approximately the same size and delay as the comparator mapped circuit.

5.0 Linking HDL Source to Circuit Analysis Tools

The previous sections describe how the HDL source can be related to the GTech or
mapped circuit. Once the HDL source to GTech or mapped circuit relationship has been
established, GTech or mapped circuit analysis tools can use this link to enable the designer
to analyze the GTech or mapped circuit while viewing the source HDL. This section de-
scribes how an HDL source level analysis system is built using a variety of GTech and
mapped circuit analysis tools which are linked back to the HDL source.

Many types of GTech and mapped circuit analysis software tools can leverage HDL
source level analysis. Therefore, the system is designed to support any number of GTech
and mapped circuit analysis tools. The system includes a central data manager. This data
manager receives analysis queries from user level analysis tools, determines which analysis
tool can respond to the query, and communicates the response to the appropriate user level
display tool(s). Note also that the system uses the GTech or mapped circuit to text link to
display the portion of the HDL text corresponding to the part of the GTech or mapped cir-
cuit which is relevant to the current query. During source level analysis, the HDL source
text, a representation of the parse tree, the GTech circuit, and the mapped circuit are all si-
multaneously resident in the computer’s memory.

One embodiment of an HDL source level digital circuit analysis system is described
in the HDL Advisor User Guide, Version 3.3a, which is available from Synopsys, Inc. of
Mountain View, CA and is hereby incorporated by reference.

The HDL Advisor has a central data manager. The central data manager supports two
types of tools; display tools and analysis tools. Each display tool can display data in a cer-



WO 95/27948 ' PCT/US95/04660

10

15

20

25

30

-53-

tain format. For example, the HDL Advisor includes a stacked bar graph display tool, a his-
togram display tool, and a text display tool, among others. Each analysis tool can answer
queries about a certain property of a digital circuit. For example, the HDL Advisor includes
a timing verifier which can perform timing analysis on a mapped circuit. The central data
manager coordinates communication between the display tools and the analysis tools.

The HDL Advisor remembers the current selection. The user makes a selection by
using an input device such as a keyboard or mouse to indicate one or more display objects
on the screen. Display objects are displayed in display tools and may have many different
graphical representations. For example, a bar in a histogram, a fragment of text, or a draw-
ing of a GTech gate are all display objects. Display objects are drawn by display tools to
represent circuit objects. Each display tool maintains the correlation between each display
object that it draws and the underlying circuit object. Circuit objects include any represen-
tation of a digital circuit structure in any domain. For example, a process statement, a
GTech gate, and a mapped pin are all circuit objects which can be selected via a corre-
sponding display object.

Display objects represent circuit objects in a specific domain. Thus, display objects
can be used to select a circuit object in multiple domains. For example, ports can be selected
in the source domain by selecting the line of HDL text which defines the port, in the GTech
domain by selecting the symbol for the GTech port, or in the mapped domain by choosing
the symbol for the mapped port. Chosen display objects are called the visual selection. The
underlying circuit objects they represent are called the circuit selection. The HDL Advisor
includes a selection manager which communicates the circuit selection to multiple display
tools in multiple domains. The selection manager will be described further in a later sec-
tion.

5.1 System Architecture Overview

This section provides an overview of the circuit analysis system architecture using
two examples.

5.1.1 Relating Analysis Results to Source

Figure 58 shows the relationship between the text description of a digital system, the
parse tree derived from that text description, the circuit synthesized from the parse tree, and

a visual display of a circuit analysis result. The text description 6003 comprises a sequence
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of characters 6003. The parse tree 6004 comprises parse nodes 6010, 6011, 6012, 6013, and
6014, and is constructed by parsing the text description 6003. The parse tree is stored. A
relationship between the text and the parse nodes is maintained as indicated by relationship
6018.

The digital circuit 5900 shown in Figure 59 is synthesized from the parse tree 6004.
The digital circuit 5900 consists of circuit elements. Digital circuit 5900 includes input
ports 6030, 6031, 6032, 6033, 6034, and 6035, and output ports 6036 and 6037. The digital
circuit also includes cells 6040, 6041, 6042, 6043, 6044, and 6045. The cells include input
pins 6050, 6051, 6052, 6053, 6054, 6055, 6056, 6057, 6058, 6059, 6060, 6061, and 6062.
The cells include output pins 6070, 6071, 6072, 6073, 6074, and 6075. The digital circuit
also includes nets 6080, 6081, 6082, 6083, 6084, 6085, 6086, 6087, 6088, 6089, 6090, and
6091.

An aspect of the present invention maintains the relationship 6019 between the parse
nodes and the circuit elements. In this example, parse node 6011 is related to grouping
6020. Parse node 6013 is related to grouping 6021. Parse node 6014 is related to grouping
6022. Parse node 6012 is related to grouping 6023, and parse node 6010 is related to digital
circuit 5900.

Analysis tools can be used to associate numerical circuit analysis results with the cir-
cuit elements. For example, if the circuit is in the G-Tech domain, then each net could have
the number of logic levels from input port to that net. If each cell in this example was one
gate, then net 6090 is 1 logic level from an input, while net 6091 is 3 logic levels from an
input port. The gate count is another example of G-Tech analysis. Suppose each cell has
one gate. Groupings 6020, 6021, and 6022 each have two gates. Grouping 6023 has 4 gates.
Similar results can be obtained in the mapped circuit domain. The analysis tool could gen-
erate the results for all of the relevant circuit elements upon inquiry or the results could be
stored with the circuit element or cached in the system.

Analysis results are displayed in a window 6095 on a computer screen 5420. The size
or display characteristics of a display object 6097 can be set by the numerical circuit anal-
ysis results. The designer can choose a display object in window 6095 that is linked to a
parse node. For example, the text description could be in VHDL. The window 6095 could

have a list of VHDL processes near or coincident with visual display object 6097. Using a
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mouse or keyboard, the designer selects a visual object corresponding to part of the text or
a parse node. The designer also selects a type of analysis desired. The system then identifies
the corresponding circuit group from the selected parse node using relationship 6019. For
example, suppose the designer selects parse node 6012 and wants to know the gate count.
The gate count will be obtained for corresponding circuit grouping 6023.

The system then aggregates the results attached to the circuit elements to produce a
aggregated result associated with the circuit grouping. For a gate count, the aggregation
comprises adding up the gates in the circuit grouping. For circuit group 6023, this is 4. For
delay, the aggregation function would be the maximum value on a net or pin within the cir-
cuit grouping.

The aggregated result could then be used to set the display characteristics of a display
object. For instance, the height of a rectangle corresponding to parse node 6012 in a stacked
bar graph could be set to the number of gates in circuit grouping 6023 divided by the num-
ber of gates in the whole design. This would permit a designer to determine what fraction
of the gates in a design were attributable to a parse node, and hence to the source HDL text.
Visually relating the design characteristics to the source text responsible for those charac-
teristics quickly and efficiently represents dramatically improves designer productivity.
5.1.2 Inter-Domain Selection Overview

Figure 60 illustrates the structure of an inter-domain selection. In this example text
6103 is parsed to obtained the parse tree comprising nodes 6110, 6111, 6112, 6113, 6114,
and 6115. The digital circuit is synthesized in accordance with the parse tree. The digital
circuit in this example has ports 6130, 6131, 6132, 6133, and 6134. It has cells 6140, 6141,
6142, and 6143. It has input pins 6150, 6151, 6152, 6153, 6154, 6155, 6156, 6157 and
6158. It has output pins 6170, 6171, 6172, 6173, 6174 and 6175. It has nets 6180, 6181,
6182, 6183, 6184, 6185, 6186, and 6187. In particular, text string 6102 corresponds with
parse node 6112 which corresponds with a circuit element using relationship 6196. In this
case, the corresponding circuit element is cell 6140.

Inter-domain selection involves choosing a display object linked to a circuit object in
one domain, and changing the display characteristics of another display object that is linked
to a circuit object in another domain where the two circuit objects are related by the parse

node-circuit relationship. In this example, display object 6104 is in window 6100. It is
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linked to cell 6104. This type of linking would be found with the path browser tool. Using
the inter-domain selection techniques described later, the designer could select display ob-
ject 6104, and change the display characteristics of text string 6102 displayed in window
6101 using relationship 6196. This type of linking simplifies the designer’s job of finding
the source code corresponding to problematic paths in a digital circuit.
5.2 System Architecture Details

Figure 40 shows the components of the HDL Advisor. The Designer 520 uses con-
ventional input tools such as a keyboard 5410 or a mouse 5411 to interact with display tools
which appear on a computer screen 5420. There can be any number of display tools in the
HDL Advisor. For the sake of clarity, a stacked bar graph display 5430 and an HDL display
5440 are shown specifically. The stacked bar graph display 5430 and the HDL display 5440
will be described in further detail in a later section. This section describes how these display
tools interact with the other components of the system. Additional display tools behave in
a similar manner.

The histogram display 5430 and the HDL display 5440 each send queries to and re-

~ ceive responses from the central data manager 125. The data manager 125 uses analysis

tools to assist in processing queries. Any number of analysis tools may be registered with
the data manager 125. For the sake of clarity, two sample analysis tools are shown, a logic
levels analysis tool 5470, and a timing verifier 5480. A method for processing queries is
shown in Figure 42.

Display tools also communicate with the selection manager 5460 regarding which
circuit object or circuit objects the user selects. This process is shown in Figure 41. The
data manager 125 includes a domain mapper 5450. The domain mapper takes as input a cir-
cuit object in a source domain, the initial domain, and a target domain and finds the corre-
sponding circuit object in the target domain. This process is shown in Figure 4 and
Figure 5.

5.2.1 Architecture of the Data Manager

The HDL Advisor enables diverse display and analysis tools to communicate with
one another. A data manager central to the system. It performs several functions. Most im-
portantly, the data manager allows display tools to pose a query in a particular domain and

receive an answer in the same domain even though the answer is computed in a different
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domain. Thus, the role of the data manager is to function as both a domain mapper and as
a message coordinator between the display and analysis tools. In addition, the data manager
can break complex queries into series of simpler queries. It ascertains which analysis tool
can answer a given query. To enhance performance, the data manager contains a cache of
recently posed queries and the answers. This section describes how the data manager is
built, and how display and analysis tools are connected to it.

The data manager uses global ids to identify objects. In one embodiment, a global id
is a number. A global id can be passed with a domain to the data manager. The data man-
ager will attempt to return an object in the passed domain which corresponds to the global
id. In one embodiment, the data manager uses the global id as an index into a table to look
up a circuit object in a domain. The data manager uses the domain mapping capability de-
scribed earlier to map the circuit object to the desired domain.

Figure 42 shows how the data manager processes a query 4910. A query contains an
indicator as to what type of query this is (e.g. area, power), a list of circuit objects being
queried, a flag indicating if the result of the query is to be cached, and a function for aggre-
gating the results of processing this query for each circuit object. Aggregating is the process
of combining multiple results into a single result. An aggregate function is a function which
is used to combine the results of subqueries. Subqueries are discussed with step 4940. The
aggregate function is determined by the query and can be stored in a table with the query.
For instance, a area queries are aggregated by summing the area results produced by sub-
queries. Longest delay queries are aggregated by finding the maximum result returned from
the set of queries.

In one embodiment, the type of query is provided to the display tool by the data man-
ager when the display tool is registered. Registration of display tools will be discussed fur-
ther in a later section. The query is created by a display tool interface in response to an
action from the designer 520. The query arrives as a message from a display tool, and will
be answered by one of the registered analysis tools. Note that the query may arrive in one
domain, be processed in another, and the response sent in the original domain. The domain
in which the query is issued is referred to as the initial domain. The domain in which the
query can be broccssed is referred to as the target domain. Neither the display nor the anal-

ysis tool need know about the domain transformation.
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Step 4920 determines the initial and target domains for the query. The initial domain
is the domain in which the objects passed in the query are represented. The target domain
is determined by the type of the query. The target domain for each query is stored in a table
which is indexed by the type of the query. For instance, a timing query can be answered
using information contained in the gate domain. A logic level query, which can be used to
analyze paths in a translated circuit, can be answered using information contained in the
GTech domain. Step 4920 also sets the aggregate function for the query.

Step 4930 maps the circuit objects in the query from the initial to the target domain.
This mapping is done by mapping through consecutive domains as described previously
and shown in Figure 4 and Figure 5.

Step 4940 subdivides the query in the target domain. This is necessary if the circuit
objects in the query are composed of multiple circuit objects. Note that the circuit objects
in the query are subdivided varies with the type of the query. For example, suppose the que-
ry is finding the area of an HDL “process” circuit object. Since a process is made up of
many logic components, the query must find the area of each of these components and add
them together. This subdivision is implemented by keeping a table of routines that is in-
dexed by the type of query. Each routine in the table takes a circuit object in the target do-
main for this type of query and returns a list of circuit objects in the same domain which
have been subdivided if necessary.

Loop 4950 loops over each subdivided query. Arrow 4955 is the return branch of the
loop.

Step 4960 checks to see if the result of the given subdivided query on the given circuit
object is in a cache of query results.

If the result is in the cache, branch 4963 causes step 4970 to be processed and the re-
sult is retrieved from the results cache.

If the result is not in the cache, branch 4966 causes step 4975 to be processed and an
analysis tool is selected for this subdivided query. The query is sent to the analysis tool and
a result is returned.

Step 4990 caches the query and its result if the cache flag was set in the original que-
ry. Note that the only purpose of caching results is to improve performance. In another em-

bodiment, results may be cached, and the cache checked, at different points in the process.
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For instance, results might be cached after the results are aggregated in step 4980.

Step 4980 aggregates the results of all of the subdivided queries. Aggregating the re-
sults of the subqueries combines them to produce a single result which will be returned for
the original query. The results are aggregated using the aggregate function in the query.

Step 4985 maps the aggregated result from the target domain to the initial domain.
This mapping is done by mapping through consecutive domains as described previously
and shown in Figure 5.

Result 4995 is a message which is sent from the data manager to the display tool
which originally requested the result.

5.2.2 Architecture of the Selection Manager

The selection manager uses intra-domain mapping to track circuit selection in multi-
ple domains. When an display object is selected by the user, a message is sent to the selec-
tion manager indicating the corresponding selected circuit object. The selection manager
then broadcasts information regarding the current circuit selection to all of the display
tools. Each display tool uses the circuit selection information to select the correct display
object within its display. The selection manager can communicate the circuit selection in
any domain by using the intra-domain mapping capability. By communicating information
about the circuit selection, the selection manager allows the user to easily find an circuit
object of interest using one type of display tool, and then further examine that circuit object
using another display tool.

Figure 41 shows how the selection manager handles the circuit selection. First, the
designer 520 uses an input device 5510 such as a keyboard or mouse to make a visual se-
lection within a display tool 5520. Next, the display tool 5520 notifies the selection man-
ager 5460 of the circuit selection. The selection manager 5460 broadcasts the circuit
selection to each of the available display tools 5560. Note that the display tool 5520 which
initiated the circuit selection is also included in the broadcast message. The selection is
broadcast using a list of one or more global ids. Each display tool may optionally ask the
data manager 125 to map the global ids to circuit objects in a particular domain. In
Figure 41, display tool 5560 sends a query to data manager 125 requesting the GTech value
of the broadcast global ids. The data manager then returns the requested GTech objects to
display tool 5560.
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The ability to track the circuit selection between multiple display tools is used
throughout the HDL Advisor. The uses of circuit selection tracking can be grouped into
three main categories: identifying a circuit selection in a non-text display tool and viewing
a visual selection of that circuit selection in the HDL source, identifying an HDL source
construct and viewing a visual selection of that circuit selection in a non-text display tool,
and the “follow selected” in HDL source feature.

Consider the display tools of Figure 40. Suppose that the designer 520 selects a visual
representation of a particular GTech primary output which is shown within the stacked bar
graph display 5430. A method for making a visual selection within the stacked bar graph
display will be described further in a later section. The stacked bar graph display then com-
municates the corresponding circuit selection in the GTech domain to the selection manag-
er 5460. The selection manager then uses the domain manager 5450 to map the circuit
selection to supported domains. The relationships and process of mapping between do-
mains was shown in Figure 4, Figure 5, and Figure 6. Thus, the selection manager deter-
mines the source domain parse node which represents the selected primary output. The
selection manager then broadcasts the id of the parse node and the HDL display 5440 re-
ceives the parse node id of the circuit selection. Selecting a display object, and thus the cor-
responding circuit object, in the HDL display 5440 and viewing it in the GTech display is
accomplished in the same manner.

A feature of all display tools in the HDL Advisor is called “follow selected.” The fol-
low selected feature causes a display such as the HDL text display 5440 to track the GTech
or mapped circuit structure being analyzed by the designer 520 in another display such as
the stacked bar graph display 5430. For example, this feature enables the HDL text display
5440 to always show the current HDL source. Thus, the designer can examine a GTech or
mapped circuit structure, and simultaneously view the HDL source from which the GTech
or mapped circuit structure was created. This feature assists HDL source level digital cir-
cuit analysis by automatically linking conventional analysis to the HDL source. Each time
the selection manager broadcasts the selection, the HDL text display requests the appropri-
ate circuit object in the source domain and visually selects the corresponding display ob-
ject. The HDL text display 5440 will scroll the text display to make the selected text appear
in the HDL text display window.
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A special case of for the selection manager and for the display tools is if no specific
circuit object is selected. In this case, the selection manager and display tools assume that
the designer desires information about the entire design being analyzed by the HDL Advi-
sor. Thus, the first selection which the selection manager broadcasts when a design is load-
ed into the computer memory used by the HDL Advisor is the entire design.

5.2.3 Architecture of Display Tools

Within a computer system, the information specifying the design is represented in bi-
nary form. For the human designer 520 to develop and analyze the design, information
about that design must be presented in a form that can be understood by the human, such
as by a visual display on a monitor. In addition, the designer 520 must also have a way to
manipulate the design information, such as by keyboard and mouse. Display tools such as
5430 and 5440 provide a mechanism for that interaction.

However, digital circuit design information is complicated, and efficiently allowing
the designer 520 to control and analyze the design requires that the display tools allow the
designer to take advantage of the structure of the design data.

One way to take advantage of the structure is to design particular display tools to
communicate with a particular domain in the data manager. However, many display tools
interact with multiple domains. For example, a stacked bar graph, which will be described
in a later section, can communicate information regarding both area, which concerns the
gate domain, and gate count, which concerns the GTech domain. Regardless of whether a
display tool is tuned to display information from a particular domain, each display tool uses
the data manager to gather the information which it displays.

Regardless of which domains are handled, each display tool interacts with the data
manager by communicating messages back and forth. These messages involve specifying
a circuit object in a domain and some related query to perform on that circuit object. A dis-
play tool is able to display a display object which represents a circuit object and store a list
available of queries that can be answered for that circuit object, although the display tool
does not answer those queries. The data manager, in contrast, is able to provide the display
tool with circuit objects and process queries associated with objects. In one embodiment,
at start-up time the data manager also provides each display tool with a list of queries which

can be answered. This allows new analysis tools to be added to the system more easily. In-
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formation about available analysis is stored centrally in the data manager, rather than du-
plicated in each display tool.

Display tools communicate with the data manager through display tool interfaces.
The purpose of a display tool interface is to provide a layer of data abstraction to the display
tool. This allows the display tool to be as generic as possible. For example, a stacked bar
graph, which will be discussed in a later section, can analyze different digital circuit prop-
erties, including, for example, area and power usage. A display tool interface frames que-
ries concerning the specific type of data which the tool is displaying. Thus, the tool only
needs to be able to frame general queries and the display tool interface will translate each
query into one which the data manager can understand.

The display tool is unaware of how its queries are answered. The fact that many anal-
ysis tools are available to compute answers, perhaps in a different domain from the domain
in which the query was issued, is hidden from the display tool interface. This enables dis-
play tools to support display in a different domain from that which the data originates. This
ability is important because much circuit information is available in the GTech or mapped
logic domains but display objects are often desired in the source domain.

At system start-up, each display tool registers itself with the data manager when the
system is initialized. At this time, the data manager informs the display tool of all of the
queries to which it can respond.

Display tool interfaces send messages to the data manager requesting information
about digital circuit structures in a given domain, and receive responses. The data manager
responds to a query in the same domain, regardless of which domain an analysis tool used
to compute the answer. For example, suppose that a source text display tool wants to know
the arrival time for a particular parse node. The source text display tool sends a message to
the data manager with the parse node and the request for an arrival time. If the information
is available, the data manager responds with the same parse node and the actual arrival
time.

As described earlier, display tools also communicate with a selection manager to in-
form the selection manager when a circuit object is selected when the user interacts with

that display tool.
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5.2.4 Architecture of Analysis Tools

Analysis tools are used to process information contained within a domain. In general
terms, there are two kinds of analysis that one might want to perform in a given domain.
Conventional kind of analysis tools take one or more circuit objects in a domain, and com-
putes characteristics associated with those circuit objects. For example, in the gate domain,
a timing analyzer is used to compute the delay times and slacks to various parts of the
mapped circuit. The timing analyzer determines the time that the data signal on an output
pin will become valid after a clock edge. In the GTech domain, a logic levels analysis tool
computes the longest path of chained 2 input gates through the GTech circuit. In the gate
domain, an area analysis tool computes the area required to build the mapped circuit. In the
GTech domain, a component count analysis tool computes the number of 2-input gates that
would be used if the GTech circuit were implemented with 2 input gates only.

Another kind of analysis involves summarizing the characteristics associated with a
particular group of circuit objects. For example, estimating the total area in a mapped cir-
cuit at the gate level involves summing the area associated with each component and con-
nection.

For an analysis tool to summarize characteristics of circuit objects, the analysis tool
requires information about the structure of the circuit objects and the connections between
them. Therefore, analysis tools are associated with a particular domain. For example, a tim-
ing verifier 5480 deals with the mapped domain, while a logic levels analysis tool 5470
deals with the GTech domain.

In general terms, analysis tools communicate with the data manager 125 by messag-
es. The data manager provides the analysis tool with one or more circuit objects, and the
analysis tool returns one or more characteristics of those circuit objects or a summary of
the characteristics of those circuit objects, or both.

Analysis tools perform three kinds of interactions with the data manager. First, each
analysis tool registers itself with the data manager when the system is initialized. Registra-
tion consists of informing the data manager what kinds of queries and in which domain a
tool can answer. For example the timing verifier can answer timing queries in the gate do-
main. Later, the analysis tool can receive and answer queries.

The data manager is responsible for ascertaining which analysis tool can respond to
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a given query. In addition, the data manager is responsible for posing queries in the correct
domain for the analysis tool. The data manager uses the relationships between domains to
translate queries to the correct domain for the analysis tool. For example, consider a query
concerning the arrival time of a signal on an output port specified in the HDL source. In
one embodiment, a timing verifier is registered with the data manager. The data manager
will ascertain that the timing verifier can provide arrival times, and will determine which
port in the gate domain corresponds to the port specified in the HDL source. The data man-
ager will then send a message to the timing verifier asking for the arrival time on that port.
The timing verifier determines the arrival time, and then sends a return message indicating
the arrival time of the port in the gate domain. The analysis tool is not aware of the source
of the query, or of the fact that domain mapping may occur. It simply answers the query in
the domain which it understands.

5.2.5 Analysis in the GTech Domain

An aspect of the present invention allows for meaningful digital circuit analysis in the
GTech domain. Because the GTech circuit is a direct translation of the HDL source, the
quality of the HDL source is directly related to the quality of the GTech circuit. By deter-
mining which parts of the GTech circuit are problematic, and improving the source respon-
sible for those parts of the GTech circuit, the start point for optimization will be improved.
As it is difficult to predict the effect that optimization will have on a translated GTech cir-
cuit, it is important to create the best possible GTech circuit before optimization. When the
original GTech circuit is of good quality, there are fewer choices that the optimizer must
make. This causes the final result to be more reliable, and probably of better quality because
the optimizer has a much smaller range of changes to make.

Some query types specifically refer to the GTech domain. For example, a query type
such as “GTech_GateCount” requests the gate count that a GTech part would require if
mapped to simple logic gates. This gate count can be used to analyze the initial area re-
quired before optimization. Another possible query type is “GTech_LogicLevels” which
requests the number of levels of logic that a longest path in a GTech circuit would require
if mapped to simple logic gates.

GTech éna]ysis uses the intra-domain mapping capability to select structures in the

gate domain, relate those structures to the GTech domain, and then perform analysis in the
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GTech domain where complete HDL source to GTech circuit mapping is available. An ex-
ample of this sort of analysis is start/end mode in the Path Browser window, which will be
discussed further in a later section.

5.3 Example Digital Circuit Analysis with Reference to HDL Source

This section explains how a designer uses the HDL Advisor to relate characteristics
of the design found in one domain 10 aspects of the design found in another domain. For
this example, the design includes representations in the source, GTech, and gate domains.

The designer 520 selects a display object to evaluate by selecting some text, such as
the decode: process statement in the text of Figure 36. HDL text selection uses the text to
parse node relationship described earlier. Methods for text selection will be described fur-
ther in a later section. The text to parse node mapping is used to determine the parse node
which represents the selected text, and the parse tree node number is sent to the selection
manager.

The designer 520 of Figure 40 then obtains a display tool such as the stacked bar
graph display 5430. Next, he obtains a visual representation of an aspect of the design, for
example, in the source domain using the HDL text display 5440. The display tool 5440 dis-
piays the text of an HDL source file. The example described in this section is shown in
Figure 32, Figure 33, Figure 34, Figure 35, Figure 36, Figure 37, Figure 38, and Figure 39.

" The designer 520 also selects a type of analysis to be performed from the available
choices. One approach is that the designer 520 selects it from a menu or a push button. An-
other approach would be to have the designer 520 select it before selecting the text. In this
example, assume that the designer 520 asks for the area of the gates which make up of the
decode proéess.

The parse tree node number and the query type comprise a query that is sent to the
data manager 125. Suppose that the desired analysis concerns the area of the gates that
make up the selected parse node. Because of start up registration, the data manager 125 can
identify that the required information is in the gate domain. The data manager 125 com-
putes the area corresponding to the identified parse node. The data manager does this by
using the inter-domain mapping shown in Figure 5 to identify the gates in the gate domain
that correspond to that parse node. In this example, the designer 520 wants to know what

the area of one of the processes is, and the designer 520 used probe points to segregate the
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design to permit the intra domain mapping to the gate level.

Thus, the initial query sent to the data manager concerns the area of a VHDL process
statement in the source domain. First, the data manager ascertains that an area query must
be answered in the mapped domain. Therefore, the data manager uses the intra-domain
mapping capability to find the gates related to the process statement. Next, the data man-
ager determines that the query must be divided into a subquery for each gate. In this situa-
tion, the data manager determines that the total area for the process can be computed by
summing the area value for each gate.

After the data manager 125 identifies the relevant gates, it then computes the total
area consumed by these gates. In the gate domain, each gate has several characteristics as-
sociated with it. One of these characteristics is area. The data manager chooses an area anal-
ysis tool 5480 which can answer queries regarding gate area. In one embodiment area
analysis tool 5480 determines the area of a gate by looking up the area value for the gate in
a technology library. The technology library is provided by the semiconductor vendor who
manufactures the physical gate.

For each subquery, area analysis tool 5480 then produces a numerical value for the
area that is sent back to data manager 125. Each area value is the area of one of the gates
corresponding to the process. The data manager then aggregates the area values returned
by each subquery by adding them together.

The final area result is then sent to HDL text display tool 5440 which can display the
result directly or use it to modify the display characteristics in the display tools.

5.4 Sample Display Tools

The flexibility of the architecture shown in Figure 40 permits multiple display tools.
The display tools relate digital circuit analysis information about parts of the GTech or
mapped circuit to the source text that generates those parts. This section describes a number
of display tools but by no means all display tools. An example is used to clarify the use of
the display tools.

By linking display tools to the data manager, display tools are able to display results
in one domain that are computed in another domain. Furthermore, the designer is able to
use a tool such as the stacked bar graph described below to investigate a design attribute

such as gate count. The designer can then view the source HDL from which the part of in-
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terest was synthesized. For example the designer can use the stacked bar graph to find a
portion of the mapped circuit which has a high gate count. This mapped circuit portion can
then be associated with the source HDL.

Figure 43, Figure 44, Figure 45, Figure 46, Figure 47, Figure 48, Figure 49, and
Figure 50 show display techniques for displaying digital circuit analysis data. Figure 43,
Figure 44, Figure 45, Figure 46, Figure 47, Figure 48, Figure 49, and Figure 50 show the
display tools displaying an AMD2910A design. The source and resulting mapped circuit is
described in Introduction to HDL-Based Design Using VHDL, by Steve Carlson, published
in 1991, which is hereby incorporated by reference. This book is available from Synopsys,
Inc., 700 East Middlefield Road, Mountain View, CA 94043-4033. The display tools are
further described in the HDL Advisor User Guide, Version 4.0a Beta Draft, which is avail-
able from Synopsys, Inc. of Mountain View, CA and is hereby incorporated by reference.

The HDL source for the AMD2910A design is partitioned into multiple files. A sep-
arate parse tree is created for each of the files according to conventional parsing techniques.
Each parse tree is linked to the HDL source and to the GTech circuit created from it accord-
ing to the methods described above. The HDL source for the AMD2910A design infers lev-
els of design hierarchy. The levels of hierarchy are linked to one another according to
conventional techniques such as those used in Design Compiler produced by Synopsys
Inc., in Mountain View, CA.

5.4.1 Stacked Bar Graph Display

Figure 43 shows a stacked bar graph displaying information about the relative con-
tributions of parts of the HDL source. Often, a design written in an HDL is described hier-
archically, with higher level modules containing lower level modules. At a particular level
in the hierarchy, the designer might want to know the characteristics of the modules visible
at that level. The stacked bar graph of Figure 43 shows relative areas associated with dif-
ferent parts of the design. At the highest level of the AMD 2910A, there are five functional
sub-blocks: CNTL_BLK, MUX_OUT_BLK, REG_BLK, UPC_BLK, and STACK_BLK.
The names of these blocks are shown in the display object list area 2610 of window 2600.
The total measured area is displayed at the bottom of the window. The total area of the
mapped circuit is shown as 1964.0 gates. In this example, the characteristic is area. How-

ever, other characteristics such as power and time can be similarly displayed.
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Each of the sub-blocks has a measured characteristic which is shown by text state-
ments 2680 through 2684. For example, CNTL_BLK uses 74.00 gates, which is 3.8% of
the total as shown by statement 2680. MUX_OUT_BLK occupies 148.00 gates, which is
7.5% of the total as shown by statement 2681. REG_BLK occupies 225.00 gates, which is
11.5% of the total as shown by statement 2682. UPC_BLK occupies 237.00 gates, which
is 12.1% of the total as shown by statement 2683. STACK_BLK occupies 1280.00 gates,
which is 65.2% of the total as shown by statement 2684. A stacked bar graph is constructed
by drawing a graphical box corresponding to each functional sub-block with the size of the
box proportional to the percentage of the sub-block's characteristic to the total characteris-
tic. This is shown with boxes 2630 through 2634.

The stacked bar graph display of Figure 43 can be constructed without reference to
the physical nature of the particular characteristic. Therefore, power, timing, or another
characteristic can be displayed by the same software. The data manager need only transfer
the names of circuit objects, the numerical value associated with those circuit objects to the
display tool, and a global id which the display tool can use to initiate further queries and
update the selection manager.

Furthermore, each box, such as box 2630 through box 2634, forming part of the
stacked bar graph is a selectable button. The user can “push” the button using conventional
pointing and clicking techniques and gain information about the sub-block associated with
the box. Figure 44 shows the result of the user selecting the sub-block MUX_OUT_BLK
box by selecting box 2631. Here, the sub-block MUX_OUT_BLK itself contains two sub-
blocks, OUT_BLK and MUX_BLK. The total measured characteristic 2620 changes to
148.00 to reflect the size of MUX_OUT_BLK. The sub-block OUT_BLK has 49.00 gates
representing 33.1% of the area of MUX_OUT_BLK, as indicated by statement 2780. This
information is also shown graphically by box 2730. The sub-block MUX_BLK has 99.00
gates representing 66.9% of the area of MUX_OUT_BLK, as indicated by statement 2781.
This information is also shown graphically by box 2731. In addition, the window also
shows the current location in the hierarchy with a path statement 2705. In addition, state-
ments such as statement 2780 could also act as buttons to change levels.

Figure 45 shows the information displayed if the designer selects MUX_BLK to see
how the 99.00 gates are allocated.
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Note also that when the user “pushes” one of the selectable buttons or selects one of
the components of the bar graph such as those shown in Figure 45, the selection manager
is updated with the current circuit selection. Thus, the profiler allows the designer to quick-
ly select a portion of the design which meets certain characteristics, as well as to view over-
all statistics for the design.

5.4.2 Histogram Display

The histogram display of Figure 46 provides a designer with information about the
extent of problems in the design. For example, one aspect of the performance of a mapped
circuit is the longest delay along any path from the output of one flip-flop to the input of
another. Once a designer specifies the clock waveforms, a timing verifier can determine ar-
rival and required times throughout the mapped circuit. At any point in the mapped circuit,
the arrival time can be determined relative to a clock edge by measuring the longest path
from all registers affected by the clock to the point within the mapped circuit. Similarly,
required times may be computed relative to a clock edge by measuring the longest path
from the point in the mapped circuit to a register affected by the clock. Once the relation-
ships between all clocks and all clock waveforms are specified, the timing verifier can de-
termine the worst slack for each point within the mapped circuit by subtracting arrival from
required times for each possible combination of relevant clock edges. The smallest, or most
negative result can be considered the worst slack for that point in the mapped circuit. The
Design Compiler Reference Manual V3.1a from Synopsys describes timing analysis, and
is hereby incorporated by reference. If any node has a negative slack time, then the timing
constraint has not been met. If only a few nodes are have negative slacks, or the negative
slacks are close to zero, then the designer might have a small problem that can be fixed by
tuning a portion of the design. However, if many nodes have negative slacks or the slack
times are large, then the designer faces a substantial design problem. The histogram tool of
Figure 46 can provide guidance on the extent of a problem facing a designer.

The histogram display uses conventional histogram creation techniques. The histo-
gram tool displays the distribution of a numerical characteristic of the GTech or mapped
circuit and allows a user to see a list of display objects representing circuit objects having
that characteristic. The example in Figure 46 shows timing analysis for the AMD 2910A.
The histogram display tool forms a query asking the data manager about the desired at-
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tribute, in this case the slack time, of circuit objects in the design. The data manager uses a
timing analyzer to compute the slack times at several points in the circuit. The mapped cir-
cuit nodes with similar slack times are grouped into categories, counted, and a histogram is
created.

Histogram-list window 2900 contains two sub-windows: the histogram window 2920
and the list window 2910. The histogram window 2920 contains bars 2930 through 2937
with one bar per range of values. The height of the bars indicates the number of nets that
fall into that range. If the user selects one of the bars, the list window 2910 shows the list
of names that identify the nets that are in that range. Individual items in the list display can
be selected, as indicated by selected item 2915.

These mechanisms allow the designer to narrow the circuit selection to a circuit ob-
ject with a particular property. The selection manager is updated as the designer explores
the design. For example, the circuit object with the least amount of slack time can be found
by creating a slack histogram and viewing the display objects which make up the worst
range of values. The designer can then use other display tools to gain more information
about the selected circuit object.

5.4.3 HDL Browser Display

Figure 47 shows HDL Browser which is also called the HDL text display window.
The HDL Browser provides textual display of HDL source code that annotates that source
code with additional information. In one embodiment, text display window 3000 contains
three smaller windows. Text window 3010 contains the source text. Select window 3040
shows GTech or mapped circuit information related to text that has been selected. Cursor
window 3030 shows GTech or mapped circuit information related to text that is under the
cursor. Column report 3060 shows GTech or mapped circuit information associated with
lines of the text. In an alternate embodiment, the select window and cursor window are in-
dependent windows and not contained within the HDL browser.

In one embodiment, selecting text can be done with the usual window based text se-
lection mechanisms. For example, the designer could move a cursor to the relevant portion
of the screen and push a button. Alternately, the designer could drag the cursor across an
extended portion of text to be selected. _

An alternate embodiment allows the designer to select all of the text corresponding
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to a parse node with a single visual selection. The designer indicates the initial point for the
visual selection as usual by moving the cursor and clicking a button. However, the text win-
dow 3010 constructs a text box 3020 around the entire parse node represented by the text
at which the cursor is pointing. In addition, whenever the user moves the cursor across
some text, the text window draws a box around all of the text represented by the first parse
node which fully contains the text. Furthermore, the text display window shows the visual
selection by drawing a box around all of the text representing the selected parse node. One
fast method of determining the limits of text box 3020 uses the parse tree representation
described in co-pending U.S. application by Gregory entitled “Method and Apparatus for
Context Sensitive Displays” filed on June 3, 1994 as US application number 08/253,453.

Here, cursor window 3030 shows a gate count of the GTech circuit parts associated
with the display object under the cursor. The phrase “gtech Area = 6” indicates that the im-
plementation of the comparison function performed by condition “PSH_PTR >
STK_LOW” indicated by cursor text box 3020 requires 6 area units in the generic technol-
ogy domain in the data manager. Cursor window 3030 could display other characteristics
associated with the text pointed to by the cursor.

Select window 3040 shows information associated with selected text. Here, the size
and font of the selected text 1050 is changed. One fast method of determining the limits of
selected text 1050 would be to use the parse tree representation described in co-pending
U.S. application by Gregory entitled “Method and Apparatus for Context Sensitive Dis-
plays”, filed on June 3, 1994 as US application number 08/253,453. In this example, the
select window 3040 shows detailed information about the HDL construct
MEM[PSH_PTR] 3050. Statement 3080 shows the type of HDL construct that the selected
circuit object is—-in this case, the construct is an array index. Statement 3083 shows the es-
timated area of the construct in the G-Tech domain 1510, here 530 area units. Statement
3084 shows the length of the longest path in levels of logic from a register to the gates that
implement the construct, here 18 gates. Statement 3081 shows the parse tree node number.
A detailed list 3082 shows the netlist components in the G-Tech domain implementing the
construct 3050. For each component in this list, the following information is displayed: the
component's netlist instance name 3087, the type of netlist component 3088 (reference

name), its contribution to the total area estimate 3089, and the class of netlist component
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3090 e.g. cell, pin, net, or port. Other information could be displayed at the designer's op-
tion.

Column report 3060 shows information associated with each line. Here, the column
report is showing the area associated with the HDL constructs on each line.

5.4.4 Virtual Schematic Display

Part of the digital circuit analysis process involves tracing the drivers and driven or,
inputs and outputs of specific GTech or mapped circuit parts. The virtual schematic display
shown in Figure 48 provides the designer with the ability to find the HDL source that pro-
vides inputs to and takes outputs from another point in the HDL source. The virtual sche-
matic display has a virtual schematic window 3100 which has three window regions: an
input region 3110, a current region 3120, and an output region 3130. The designer uses the
cursor to indicate selected text 3150 in the current region. This selected text 3150 corre-
sponds to a GTech circuit object 3151 (not shown) in the data manager. GTech circuit ob-
ject 3151 has inputs and outputs. The data manager then links the input region 3110 to those
portions of the HDL source text that show where the inputs of GTech circuit object 3151
originated. Here, the input “DATA” comes from an input to the module MULTIPLEXOR
as indicated by input argument 3145. The data manager also links the output region 3130
to those portions of the HDL source text that show where the outputs of GTech circuit ob-
ject 3151 go to. Here, as indicated by output argument 3155, output “Z” goes to the output
of module MULTIPLEXOR.

By clicking in the output region, the designer can trace the transitive fanout.
Figure 49 shows the changes that occur in the regions. The text of the output region now
moves to the current region 3120. The text of the output region changes to show synthesis
source text corresponding to circuit objects driven by output argument 3155. Here, output
argument 3155 drives another output at the next level module boundary, as shown by out-
put argument 3156. Input region 3110 changes to show all of the places in the source text
that set or define the selected output argument 3155. Here, there are five text sources for
output argument 3155 as shown in windows 3271, 3272, 3273, 3274, and 3275. The orig-
inally selected statement 3150 is shown again in window 3272.

An additional input comes from the MULTIPLEXOR input argument SEL as shown

in window 3271. Z is also takes on values at different points in a case statement as shown
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in windows 3272, 3273, 3274, and 3275.

Figure 50 shows the results of pursuing the output argument 3156. Here, the high lev-
el module definition appears in the current region 3120 while the input region 3110 dis-
plays the module interface shown in the current region of Figure 49.

Inputs can be pursued in the same manner as outputs. Note that by selecting circuit
objects via display objects in the virtual schematic the designer is updating the selection
manager so the HDL Browser window is also updated as the GTech fan-in and fan-out is
analyzed.

The collection of all of the points in a circuit leading to a particular point is referred
to as the transitive fan-in of that point. The collection of all of the points in a circuit that
depend on the value of a particular point is the transitive fan-out. The preceding example
showed how to trace transitive fan-in and transitive fan-out using the virtual schematic.

During analysis, the designer might need to consider the impact that a change in one
part of the design would have other parts of the design. If the designer is considering chang-
ing the source HDL, the designer would find it useful to identify how the proposed change
will influence the resulting GTech circuit. Suppose that the designer wishes to change a
particular function in the source HDL. The designer will find it useful to determine all of
the inputs to that function or all of the outputs to that function to see how the change will
affect the remainder of the GTech circuit. While tracing all of the inputs (or outputs) of a
particular part of the source HDL is a difficult task using only the HDL source, using the
direct correspondence between the HDL and the initial GTech circuit formed during trans-
lation makes it possible to highlight the inputs (or outputs) in the source HDL.

5.4.5 Logic Inspector

The logic inspector window displays the transitive fan-in logic to selected endpoints
in the design. This logic is calculated from the GTech representation of the design. The log-
ic inspector window displays the inputs that are used to compute a value within the design,
the initial boolean structure implied by the HDL source, and the probable effect of boolean
minimization after optimization.

Boolean minimization can be invoked from the logic inspector window to show the
potential reduction of the original logic structure, which is based on logic level or compo-
nent count reduction goals before logic optimization. Note that a portion of the GTech cir-
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cuit is isolated for boolean minimization when the transitive fanin of an endpoint is
selected.

To view boolean logic corresponding to the current circuit selection, the designer
chooses the “New Logic” option in the logic inspector by choosing a menu item or pushing
a button. The logic inspector causes logic corresponding to the current circuit selection to
be created as follows. First, the logic inspector determines the current circuit selection in
the GTech domain by querying the selection manager. The selection manager sends the
logic inspector a GTech circuit object. The logic inspector may limit the logic created by
asking the designer to specify the bit position in the circuit selection from which to create
the logic.

First, the logic inspector queries the data manager to compute all of the circuit objects
which make up the transitive fan-in for the selected circuit object. The logic inspector then
asks the data manager to send the group GTech parts to a logic optimizer. In one embodi-
ment, the logic optimizer optimizes the logic represented by the GTech parts and returns a
string which represents the logic equations produced after the logic has been optimized.
Note that the optimizer attempts to improve the GTech logic using standard optimization
techniques such as those described above, but does not map it. In one embodiment, the de-
signer can specify the optimization effort used when optimizing the logic. The logic inspec-
tor then displays the string returned as a schematic.

Figure 52 shows the logic inspector displaying a graphical representation of logic
created by the logic inspector. This logic was optimized using a medium level of effort. The
optimization effort level determines the complexity of the optimization strategies which are
invoked.

The schematics displayed by the logic inspector represent GTech boolean logic, rath-
er than mapped circuit structures. A property of GTech boolean logic is that simple gates
such as AND, OR, NAND, and NOR gates do not differentiate between their inputs. Thus,
there is no need to route signals between such gates. Therefore, the logic inspector symbol
generator is very fast because it simply draws a gate for each operator in the boolean equa-
tion. The gates are connected directly to one another, creating complex gates which repre-
sent the boolean equation.

The logic inspector symbol generator creates complex symbols from boolean equa-
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tions using a two step process. First, the symbol generator traces from each input to the out-
puts it drives in order to compute the size of the gates driving each symbol. Next, the
symbol generator starts at the output of the equation and works backwards. Each boolean
expression is displayed as a simple logic gate. As the symbol generator works backwards
it places new gates directly behind the previous level. The gates are placed far enough apart
so that there is room to place the driving gates before them. When the terminals of the equa-
tion are reached, they are simply connected to the pins of the last layer of logic. Note that
the same terminal may be added to more than one pin, without needing to route the signal
represented by the terminal from a single port.

5.4.6 Path Browser

Figure 51 shows the path browser window displaying a path in a GTech representa-
tion of the AMD 2910A.

The path browser window enables the designer to explore graphically the connec-
tions in the design. This window displays a single path in the design, including all of the
fan-in and fan-out logic of the elements along the path. The paths may be displayed in either
the GTech or the gate domain. Connectivity implications of the HDL source can be under-
stood by using the intra-domain mapping capability to relate any point on a GTech path to
the source HDL. The path browser window shows the fanout of drivers on the displayed
path. And example of this is GTech part 5240. Showing fanouts allows the designer to view
the effect of loading on the path. The path browser window also shows the fanin onto the
path. An example of this is GTech gate 5230. Levels of hierarchy are displayed as boxes
5220 around logic on the path. Levels of hierarchy are important because they might influ-
ence the optimizer’s ability to improve the GTech or mapped circuit.

The path browser window is interactive. By clicking on a display object in the path
browser window, the user can expand that display object to show all of the inputs to and
outputs from the circuit object represented by that display object. GTech part 5210 has been
expanded in this manner. Clicking on a logic element also updates the circuit selection
stored in the selection manager. An alternate path can be displayed by choosing a new pin
or port and using that pin or port as the startpoint for another GTech or mapped path.

A mechanism for GTech analysis, “start/end mode” further leverages the intra-do-
main mapping capability. Start/End mode allows the designer to choose a path in the
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mapped logic domain. The start and end points of the path are mapped to the GTech domain
using the intra-domain mapping. The GTech timing verifier then computes the longest path
in the GTech circuit between the start and end points. Using the mapping between the
GTech and the source domains, the path is displayed in the HDL text. This process allows
the designer to perform timing analysis in the original HDL and to improve the timing char-
acteristics of the design at the source level.

Note that the HDL Advisor does not create traditional multi-sheet schematics. The
path browser window displays a graphical representation of a path through the digital cir-
cuit arising from an HDL. The path might be composed of either GTech or mapped logic
components.

5.5 Analysis Tools

As described earlier, the architecture of the HDL Advisor allows any number of dig-
ital circuit analysis tools to be registered to answer queries. For example, a non-exhaustive
list of analysis tools includes:

A timing verifier

¢ An area analysis tool

¢ A power analysis tool

A path tracing tool

¢ A layout analysis tool

» A GTech logic levels analysis tool

» A GTech component count analysis tool
5.6 Detailed Example

This section describes an example using the three part architecture described in pre-
ceding sections. This example uses an AMD2910A design. The source and resulting
mapped circuit is described in Introduction to HDL-Based Design Using VHDL, by Steve
Carlson, published in 1991, which is hereby incorporated by reference. This book is avail-
able from Synopsys, Inc., 700 East Middlefield Road, Mountain View, CA 94043-4033.
The AMD2910A design has been loaded into the HDL Advisor as described in the HDL
Advisor User Guide, Version 4.0a Beta Draft, which is available from Synopsys, Inc. of

Mountain. View, CA and is hereby incorporated by reference.
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5.6.1 The Designer’s View

In this example, the designer wishes to evaluate the component count of a GTech de-
sign before synthesis and then identify the portions of the HDL code that consume a large
number of components.

First, the designer uses the stacked bar graph display tool to display a stacked bar
graph of the component counts of the entire GTech circuit. Figure 55 shows the stacked bar
graph displaying component counts for the AMD2910A. To obtain this display, the design-
er first opens the stacked bar graph display window using a conventional method such as
choosing a menu item. The designer then clicks on the Component Count icon 5710 in the
stacked bar graph display. The data that appears in this display shows the distribution of the
segments within the “CORE” design of the AMD2910A. Notice that the display is parti-
tioned in terms of the HDL source. Each section of the stacked bar graph represents a circuit
object in the source domain. Analysis is done in the GTech domain, but the results are
grouped by objects in the source domain.

In the stacked bar graph display, the designer sees that the majority of the compo-
nents are used in the “STACK_BLK” component. This is indicated by the display object,
in this case a large bar, representing the components in the STACK_BLK 5720. The de-
signer now wishes to obtain further information regarding the distribution of the compo-
nents within the STACK_BLK. The designer selects display object representing the
STACK_BLK 5720 by clicking on it. The designer looks deeper into the STACK_BLK by
clicking the PUSH IN icon 5730. An alternate method of simultaneously selecting the dis-
play object and looking deeper is to double click on the display object.

When the designer looks deeper into the STACK_BLK the stacked bar graph display
changes to show the component counts of modules within the STACK_BLK. Figure 56
shows the stacked bar graph displaying component counts for the stack module of the
AMD2910A.

In addition, when the designer selects the display object representing the
STACK_BLK 5720, the HDL text browser displays the HDL source which instantiated the
STACK_BLK. Figure 57 shows the HDL text browser with the source code for the
STACK_BLK 5910 hilighted By hilighting the source code for the STACK_BLK, the
HDL text browser is indicating both that the STACK_BLK circuit object is selected, and
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also providing a convenient mechanism for the user to see the selected display object.

At this point, the designer selects the largest single element bar in the STACK_BLK
display 5910. This bar represents a variable array index in the GTech circuit. The HDL
Browser highlights the HDL source code for the variable array index, and the designer may
consider if the construct could be rewritten to reduce the component count. For example,
the array size may be reduced, or the data may be extracted with a shift operation which
consumes less components. Alternatively, the designer can select other large bars in the
STACK_BLK so he can consider rewriting their related source HDL.

This tool architecture helps the circuit designer by graphically displaying important
design characteristics, such as component count, and providing the designer with a simple
mechanism to display the portion of the HDL source that is responsible for the particular

characteristics.

5.6.2 Implementation

This section describes how the HDL Advisor software creates the displays viewed by
the designer in the previous example. Figure 61 shows the communication flow as the de-
signer analyzes the design.

First, the designer 520 uses the stacked bar graph display tool 5430 which is also
shown in shown in Figure 55 to display a stacked bar graph of the component counts of the
entire GTech circuit. The stacked bar graph display tool 5430 appears in a conventional
window on the screen of a computer.

When the designer pushes the component count icon 5710 in the stacked bar graph
display 5430, the stacked bar graph display tool 5430 issues a query to the data manager
125 to find the component counts of all of the circuit objects which make the entire design.
In one embodiment, there is a special global id called the <design_id> which represents the
entire design.

In one embodiment, finding component counts for the entire design is a two step pro-
cess. First, the stacked bar graph display tool5430 issues a query 6403 to the data manager
125 asking for a list of the components which make up the design in the source domain. In
one embodiment, the query 6403 has the following fields: (“composition”,

[<design_id>], False, Null). “composition” is the type of query and indicates
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that the query is requesting the circuit objects which make up the objects in the object list,
which is [<design_id>]. False indicates that the results should not be cached. Null is the
aggregation function because none is needed for a composition query.
The data manager 125 then computes the answer to the query 6403. In one embodi-
5 ment, the data manager 125 determines that a composition query 6403 can be answered by
a composition analysis tool 6400 which operates in the GTech domain. The data manager
125 uses the domain mapper to map the <design_id> from the source domain to a circuit
object in the GTech domain. Note that analysis tools do not use global id’s, but rather cir-
cuit objects in a domain. The data manager 125 then sends the composition analysis tool
10 6400 a query 6406 to find the composition of the design. In one embodiment, the query
6406 has the following fields: (“composition”, <design>, False,
Null) .“composition” is the type of query and indicates that the query is requesting the
circuit objects which make up the design, which is indicated by <design>. False indicates
that the results should not be cached. Null is the aggregation function because none is need-
15 ed for a composition query. The composition analysis tool 6400 then traverses the GTech
circuit, finds the composition of the design, and returns the data manager 125 a message
6409 with the result. In one embodiment, the message 6409 is: message (
“composition result”, [<CNTL_BLK>, <MUX_OUT_ BLK>, <UPC_BLK>,
<REG_BLK>, <STACK_BLK>]). The data manager 125 then determines global ids for
20 each of these objects. In one embodiment, the data manager 125 uses the objects as indices
into a table to look up the global ids. In another embodiment, the global ids are stored on
the objects. The data manager 125 then sends the stacked bar graph 5430 a response 6412
to the query. In one embodiment, the return message is message(
“composition result”, [<CNTL_BLK_ID>, <MUX_OUT_BLK_1ID>,
25 <UPC_BLK ID>, <REG_BLK ID>, <STACK BLK ID>]).
Next, the stacked bar graph display tool 5430 issues a query 6415 to the data manager
125 asking for the component count of each of the circuit objects in the composition list. In
one embodiment, the query 6415 has the following fields: (“component_count”,
[<CNTL_BLK_ID>, <MUX_OUT_BLK ID>, <UPC_BLK ID>, <REG_BLK_ID>,
30 <STACK BLK ID>], False, Sum). “component_count” is the type of query and
indicates that the query is requesting the circuit objects which make up the objects in the
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object list, [<CNTL BLK_ID>, <MUX_OUT_BLK_ID>, <UPC_BLK_ID>,
<REG_BLK_ID>, <STACK BLK ID>]. False indicates that the results should not be
cached. Sum is the aggregation function because a component count result is aggregated by
summing the results of subqueries. In one embodiment, sum is chosen as the aggregation
function by looking up the component_count query type in a table.

The data manager 125 then computes the answer to the query 6415. In one embodi-
ment, the data manager 125 determines that a component_count query can be answered by
a component count analysis tool 5470 which operates in the GTech domain. The data man-
ager 125 uses the domain mapper to map the objects in the object list from the source do-
main to a circuit object in the GTech domain. The data manager 125 then creates a subquery
for each of the objects in the object list. In one embodiment, the first subquery 6418 has the
following fields: (“component count”, <CNTL_BLK>, False,
Sum) . “component_count” is the type of query and indicates that the query is requesting
the circuit objects which make up the CNTL_BLK, which is indicated by €NTL,_BLK>.
False indicates that the results should not be cached. Sum is the aggregation function be-
cause component count results are aggregated by summing the component counts together.
The component count analysis tool 5470 then traverses the GTech circuit, finds the com-
ponent count of each element in the CNTL_BLK, sums all of the component counts togeth-
er, and returns the data manager 125 a message 6421 with the result. In one embodiment,
the message 6421 is:message ( “component count_ result”, 119.0).The data
manager 125 issues a series of subqueries 6424 for each of the objects in the object list and
the component count analysis tool 5470 sends response messages 6427. The data manager
125 then sends the stacked bar graph a response to the original query. In one embodiment,
the return message 6430 is message( “composition result”, [119.0,
124.0, 194.0, 294.0, 1978.0]) . The stacked bar graph display uses these num-
ber to create the stacked bar graph shown in Figure 55.

The designer then selects the display object representing the STACK_BLK to obtain
more information about this part of the design.

When the designer selects the display object representing the STACK_BLK 5720,
the stacked bar graph sends the selection manager 5460 a message 6433 indicating the new

selection. In one embodiment, the message 6433 ismessage ( “selection set”,
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<STACK BLK_ID>). The selection manager 5460 in turn broadcasts the selection to all
of the display tools using a meésage. In one embodiment, the message 6436 isnessage (
wselection”, <STACK BLK_ID>).One of the recipients of this message 6436 is the
HDL text browser 5440.
5 The HDL text browser 5440 sends a message 6439 to the data manager 125 to get the
selection as a source domain circuit object. In one embodiment, the message 6439 is: mes-
sage ( “GetGlobalId”, [<STACK_BLK ID>], Source). The data manager 125
returns a message 6440 to the HDL text browser 5440 which includes the global id which
represents the STACK_BLK in the source domain. The HDL text browser 5440 then sends
10 amessage 6441 to the data manager 125 requesting the parse tree node number correspond-
ing to the global id. In one embodiment, the message 6441 is: messagd“GlobalId-
ToLocallD”, [<STACK BLK ID>]). The data manager 125 returns a message 6442
which includes the parse tree node number corresponding to the <STACK_BLK_ID> to
the HDL text browser 5440. The HDL text browser 5440then hilights the text which corre-
15 sponds to the parse tree node represented by the parse tree node number. In one embodi-
ment, the text is hilighted by drawing a darker background for it as shown in Figure 57.
The designer now obtains further information regarding the distribution of the ele-
ments within the STACK_BLK and the stacked bar graph display changes to show the
component counts of modules within the STACK_BLK. The stacked bar graph display de-
20 termines the composition and the component_count of the STACK_BLK module.
In one embodiment, the stacked bar graph 5430 sends the data manager 125 a query
6445 (“composition”, [<STACK BLK ID>], False, Null). The data man-
ager 125 then determines the answer to the query 6445. In one embodiment, the data man-
ager 125 determines that a composition query can be answered by a composition analysis
25 tool 6400 which operates in the GTech domain. The data manager 125 uses the domain
mapper to map the <STACK_BLK_ID> from the source domain to a circuit object in the
GTech domain. The data manager 125 then sends the composition analysis tool 6400 a que-
ry 6448 to find the composition of the STACK_BLK. In one embodiment, the query 6448
has the following fields: (“composition”, <STACK_BLK>, False,
30 Null) .“composition” is the type of query and indicates that the query 6448 is requesting
the circuit objects which make up theSTACK_BLK, which is indicated by <STACK_BLK>.
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False indicates that the results should not be cached. Null is the aggregation function be-
cause none is needed for a composition query. The composition analysis tool 6400 then
traverses the GTech circuit, finds the composition of theSTACK_BLK, and returns the data
manager 125 a message6451 with the result. In one embodiment, the message 6451 is:
message ( “composition result”, [<Bool Mem>, <Bool>, <Sel MEM>,
<Bool STK DATA>, ...]).Afterconverting from objects to global id’s, the data man-
ager 125 sends the stacked bar graph 5430 a response to the query. In one embodiment, the
return  message 6454 is message( “composition_ result”,
[[<Bool Mem ID>, <Bool ID>, <Sel MEM ID>, <Bool STK_DATA_ID>,
...11) .In this example, [<Bool Mem ID>, <Bool ID>, <Sel MEM ID>,
<Bool STK DATA ID>, ...] is a partial list of the elements in the STACK_BLK.
The other global ids are omitted for clarity.

Next, the stacked bar graph display tool 5430 issues a query 6457 to the data manager
125 asking for the component count of each of the circuit objects in the composition list. In
one embodiment, the query 6457 has the following fields: (“component_count”,

[<Bool Mem ID>, <Bool_ID>, <Sel MEM ID>, <Bool STK_DATA ID>,
...}, False, Source, Sum).

The data manager 125 answers the component count query 6457 for this new object
list using the component count analysis tool 5470 in the same fashion as described above.
The stacked bar graph display 5430 uses the returned results to create the stacked bar graph
shown in Figure 56. At this point, the designer 520 selects the largest single element bar
5810 in the STACK_BLK display. The selection manager 5460 communicates the new se-
lection to the HDL text display 5440 in the same fashion as described above. The HDL text
display 5440 then highlights the HDL source code for the variable array index.
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We CLAIM:

1) A computer-aided circuit analysis tool, comprising:
a text description of a digital system in a circuit design language;
a parse tree derived from said text description in accordance with said circuit
design language, said parse tree comprising a parse node stored;
a digital circuit synthesized from said parse tree with said digital circuit
comprising a circuit element synthesized from said parse node, with said
circuit element and with said circuit element refering to said parse node; and
said parse node refering to said circuit element.

2) The computer-aided circuit analysis tool of Claim 1, wherein said circuit design

language is Verilog.
3) The computer-aided circuit analysis tool of Claim 1, wherein said circuit design
language is VHDL.

4) The computer-aided circuit analysis tool of Claim 1, Claim 2 or Claim 3, comprising:
a numerical physical characteristic of said circuit element;
a computer window comprising a visual object linked to said parse node and
having a visual display characteristic determined by said numerical physical

' characteristic.

5) The computer-aided circuit analysis tool of Claim 4, comprising:
said circuit element comprising one or more circuit parts, with each circuit
cell possessing an area; and
said numerical physical characteristic comprising the sum of the areas of said
circuit cells.

6) The computer-aided circuit analysis tool of Claim 4, comprising:
said circuit element comprising a circuit part pin and a primary input;
said numerical physical characteristic comprising the time delay from said
primary input to said circuit part pin.

7) The computer-aided circuit analysis tool of Claim 4, comprising:
said visual object comprising a rectangle with a height with said visual display
characteristic being said height.

8) The computer-aided circuit analysis tool of Claim 4, comprising:
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said visual object comprising a text character with said visual display
characteristic comprising the displayed font of said text character.

9) The computer-aided circuit analysis tool of Claim 4, comprising:
said visual object comprising a text character with said visual display
characteristic comprising the displayed color of said text character.

10) The computer-aided circuit analysis tool of Claim 1, Claim 2, or Claim 3, comprising:
a first display window including a first display object linked to said parse
node; and
a second display window including a second display object linked to said
circuit element.

11) The computer-aided circuit analysis tool of Claim 10, comprising:
said first display object comprises a sequence of one or more characters from
said text description;
said sequence of characters comprising a subseqeunce of characters with said
subsequence of characters related to said parse node in accordance with said
circuit description language.

12) The computer-aided circuit analysis tool of Claim 11, wherein:
said subsequence of characters is displayed with a visual characteristic distinct
from the visual characteristic of said sequence of characters not included in
said subsequence.

13) The computer-aided circuit analysis tool of Claim 10, comprising:
said first display object comprises a sequence of one or more characters from
said text description related to said parse node in accordance with said circuit

description language.
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if ( C and B) then. 4750
-- Synopsys block_probe_begfr‘l/ |
Z <=not (AorB);
Y<=BandD; 4760
-- Synopsys block_probe__end//

else
Z <=not B ;
Y<=BorD;

end if ;
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entity interrupt_controller is : 401
port(new_request : in bit_vector(3 downto 1);
current_level: in bit_vector(1 downto 0); -

should_service: out bit);
end;

architecture synthesizable of interrupt_controller is - 300
signal new_level: bit_vector(1 downto 0);
begin

decode: process(new_request)
begin
if(new_request(3) = '1') then
new_level <= "11";
elsif(new_request(2) = '1') then
new_level <= "10%
elsif(new_request(1) = '1') then
new_level <= "01";
else
new_level <= "00";
end if;
end process;

compare: process(current_level, new_level)
begin

if(new_level(1) > current_level(1)) then
should_service <= '1"

elsif(new_level(1) < current_level(1)) then
should_service <= ‘0"

elsif(new_level(0) > current_ievel(0)) then
should_service <= '1"

else
should_service <= '0";

end if;

end process;
end;

Figure 32
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entity interrupt_controlier is
port(new_request : in bit_vector(3 downto 1);
current_level: in bit_vector(1 downto 0);

should_service: out bit);
end;

architecture synthesizable of interrupt_controlier is
signal new_levetl: bit_vector(1 downto 0);
begin

decode: process(new_request)
begin
if(new_request(3) = '1') then
new_level <= "11",
elsif(new_request(2) = '1') then
new_level <= "10";
elsif(new_request(1) = '1') then

new_level <= "01";
else
new_level <= "00";
end if;
end process;

compare: process(current_level, new_level)
begin

if(new_level(1) > current_level(1)) then
should_service <="'1";

elsif(new_level(1) < current_level(1)) then
should_service <= '0",

elsif(new_level(0) > current_level(0)) then
should_service <=1

else
should_service <= '0";

end if;

end process;
end;

Figure 35



WO 95/27948 ' PCT/US95/04660

36/61

entity interrupt_controller is
port(new_request : in bit_vector(3 downto 1);
current_level: in bit_vector(1 downto 0);

should_service: out bit);
end;

architecture synthesizable of interrupt_controller is
signal new_ievel: bit_vector(1 downto 0);
begin

--Synopsys block_probe_begin
decode: process(new_request)
begin
if(new_request(3) = '1') then
new_level <="11";
elsif(new_request(2) = '1') then
new_level <= "10";
elsif(new_request(1) = '1') then
new_level <= "01";
else
new_level <= "00";
end if;
end process;
-- Synopsys block_probe_end

compare: process(current_level, new_level)
begin

if(new_level(1) > current_level(1)) then
should_service <= '1";

elsif(new_level(1) < current_level(1)) then
should_service <= '0';

elsif(new_level(0) > current_level(0)) then
should_service <= "1

else
should_service <= "0,

end if;

end process;
end;

Figure 36
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entity interrupt_controller is
port(new_request : in bit_vector(3 downto 1);
current_level: in bit_vector(1 downto 0);

should_service: out bit);
end;

architecture synthesizable of interrupt_controller is

signal new_tevel: bit_vector(1 downto 0);

begin 4750
-

-- Synopsys block_probe_begin
decode: process(new_request)
begin '
if(new_request(3) = '1') then
new_level <="11";
elsif(new_request(2) = '1') then
new_level <="10";
elsif(new_request(1) = '1') then
new_level <= "01*;
else
new_level <= "00";

end process;
-- Synopsys block_probe_end

end if;
4720

compare: process(current_level, new_level)
begin

if(new_level(1) > current_{evel(1)) then
should_service <='1";

elsif(new_level(1) < current_level(1)) then
should_service <= '0,

elsif(new_level(0) > current_level(0)) then
should_service <= '1";

else
shouid_service <= '0";

end if;

end process;
end;

Figure 39
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INST[1] -
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entity interrupt_controller is

po(New_request : in bit_vector(3 downto 1);
current_level: in bit_vector(1 downto 0);

should_service: out bit);
end:

architecture synthesizable of interrupt_controlier is

signal new_level: bit_vector(1 downto 0);

begin

decode: process(new_request)
begin
if(new_request(3) = '1') then
new_level <= "11";
elsif(new_request(2) = '1') then
new_level <= "10";
elsif(new_request(1) = '1') then
new_level <= "01";
else
new_level <= "00";
end if;
end process;

compare: process(current_level. new_level)
begin

if(new_level(1) > current_level(1)) then
should_service <= '1";

elsif(new_level(1) < current_ievel(1)) then
should_service <= '0";

elsif(new_level(0) > current_level(0)) then
should_service <= 1

else
should_service <= '0";

end if;

end process;
end:

Figure 53
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entity interrupt_controller is '
pot(new_request : in bit_vector(3 downto 1);
current_level: in bit_vector(1 downto 0);

should_service: out bit);
end;

300

architecture synthesizable of interrupt_controller is

signal new_level: bit_vector(1 downto 0);
begin

decode: process(new_request)
begin
if(new_request(3) = '1') then
new_level <="11";
elsif(new_request(2) = '1') then
new_level <= "10";
elsif(new_request(1) = ‘1') then
new_level <="01";
else
new_level <= "00";
end if;
end process;

compare: process(current_tevel, new_level)
begin

if(new_level(1) > current_ievel(1)).then
should_service <= 1",

elsif(new_level(1) < current_level(1)) then
shouid_service <= '0';

elsif(new_level(0) > current_level(0)) then
should_service <= '1

else
should_service <='0";

end if;

end process;
end;

Figure 54
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. © Inst(CNTL_BLK) 118.00 4.4%~ ,

: Inst(MUX_OUT_BLK) 124.00 4.57,/«

5710

Inst(UPC_BLK) 184.00 7.2%

inst(REG_BLK) 234.00 1 0.9%/

Inst(STACK_BLK) 1978.00 73.0%

Total: 2708.00
Component Count

K
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Inst(STACK_BLK)

Other 1099.00 55.6%x_
- 2100 1.1%

- 2100 1.1%

Cmp 28.00 1.4%

Cmp 28.00 1.4%

Cmp 28.00 1.4%
Bool(STK_DATA) 107.00 5.4%
Sel(MEM) 108.00 55%

Bool 215.00 10.9%
Bool(MEM) 323.00 16.3%

Total: 1978.00

Figure 56
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File Browse Data Vlew Wmdow Help

Component Count Com§ Cnt

CLOCK : In std_logic; 0
D_IN : In ADDRESS; 0
OPS : In UPC_OPS; 0
UPC_DATZ : OUT ADDRESS ), 0

end component;

component REGCNT 0
Port ( CLOCK : In std_logic; 0
LOAD : In std_logic; 0

D_IN : In ADDRESS; 0

OPS : In REG_OPS; 0

REG_DATA : Out ADDRESS; 0

ZERO : Out  std_logic ); 0

end component;

begin
MUX_OUT_BLK : MUX_OUT 124
Port Msp ( ENABLE=>OE, DATA_OUT=>Y , DATA=>D, REG_D. 0
'5010 SEL=>MUX_CNTL, STK_DATA=>STACK_ DATA, UPC 0
; MUX_OUT=>MUX_DATA ; 0
STACK_BLK : STACK 1978
: Port Map ( CLOCK=>CLOCK, D_IN=>PC, OPS=>STACK_CNTL, 0 |
i STK_DATA=>STACK_DATA, FULL=>FULL ), 0 |
i CNTL_BLK : CONTROL 119 =
t Port Msp { ZERO=>ZERO, COND_CODE=>CC, COND_CODE_EN2 0 |=
INST=>I, REG_CNTL=>REG_CNTL, MAP BAR=>PE 0
MUX_CNTL=>MUX_CNTL. PL_BAR=>PL, STK_CNTIL 0
UPC_CNTL=>UPC_CNTL, VECT BAR=>VECT . 0
UPC_BLK : UPC 194
? Port Map { CIN=>CIN, CLOCK=>CLOCK, D_IN=>MUX_DATA, 0
i OPS=>UPC_CNTL, UPC_DATA=>PC }; 0
REG_BLK : REGCNT 294
Port Map | CLOCK=>CLOCK, D_IN=>D, LOAD=>RLD. OPS=>R 0

REG_DATA=>REG_DATA, ZERO=>ZERO ;;

i end SCHEMATIC;

Figure 57
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