

(43) International Publication Date

10 April 2014 (10.04.2014)

(51) International Patent Classification:

F16H 45/02 (2006.01) *F16D 47/06* (2006.01)

(21) International Application Number:

PCT/EP2013/070068

(22) International Filing Date:

26 September 2013 (26.09.2013)

(25) Filing Language:

English

(26) Publication Language:

English

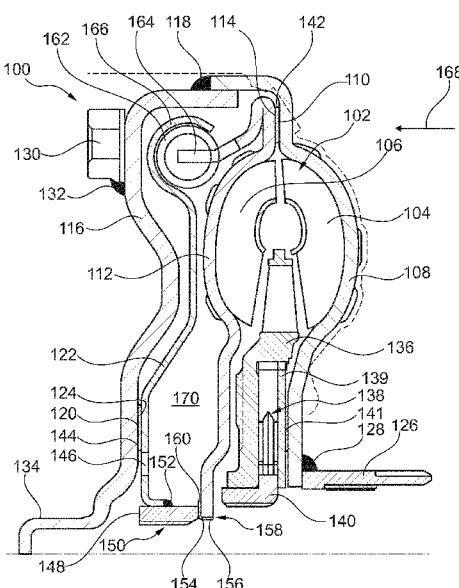
(30) Priority Data:

61/709,622 4 October 2012 (04.10.2012) US

(71) Applicant: SCHAEFFLER TECHNOLOGIES AG & CO. KG [DE/DE]; Industriestraße 1-3, 91074 Herzogenaurach (DE).

(72) Inventors: LINDEMANN, Patrick; 4400 Woodlake Trail, Wooster, Ohio, 44691 (US). STEINBERGER, Markus; 752 Stepeny Ct., Macedonia, Ohio, 44056 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,


BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: TURBINE PISTON THRUST PATH

(57) Abstract: A torque converter includes a torus with an impeller and a turbine having respective shells, a cover shell, and a first damper plate. The impeller shell has a radial wall disposed radially outside of the torus and the turbine shell has a radial wall arranged for frictionally engaging the impeller shell radial wall. The cover shell has a radial wall and the first damper plate has a radial wall for transmitting a turbine shell thrust force to the cover shell radial wall. In an example embodiment, the torque converter includes a friction material ring fixedly attached to the turbine shell radial wall or the impeller shell radial wall. In some example embodiments, the torque converter includes a friction material ring fixedly attached to the cover shell radial wall or the first damper plate radial wall.

Fig. 2

TURBINE PISTON THRUST PATH

FIELD

[0001] The invention relates generally to a torque converter, and more specifically to a torque converter with a turbine piston thrust path.

BACKGROUND

[0002] Torque converter turbines incorporating lockup clutches are known. One example is shown in commonly-assigned United States Patent No. 7,445,099.

BRIEF SUMMARY

[0003] Example aspects broadly comprise a torque converter including a torus with an impeller and a turbine having respective shells, a cover shell, and a first damper plate. The impeller shell has a radial wall disposed radially outside of the torus and the turbine shell has a radial wall arranged for frictionally engaging the impeller shell radial wall. The cover shell has a radial wall and the first damper plate has a radial wall for transmitting a turbine shell thrust force to the cover shell radial wall. In an example embodiment, the torque converter includes a friction material ring fixedly attached to the turbine shell radial wall or the impeller shell radial wall. In some example embodiments, the torque converter includes a friction material ring fixedly attached to the cover shell radial wall or the first damper plate radial wall. In an example embodiment, the friction material ring is fixedly attached to the first damper plate radial wall and the first damper plate includes an orifice disposed radially inside of the friction material ring.

[0004] In some example embodiments, the first damper plate includes a spline portion arranged for connecting to a transmission input shaft. In some example embodiments, the first damper plate includes a damper hub, the damper hub includes the spline portion, and the damper hub is arranged to receive a thrust force from the turbine shell. In an example embodiment, the torque converter has a bushing with a circumferential portion disposed within a circumferential bore of the turbine shell and a radial portion disposed between the turbine shell and the damper hub. In some example embodiments, the torque converter has a first damper spring. The turbine shell includes an integrally formed drive tab extending from the radial wall and engaged with the first damper spring. In some example embodiments, the torque converter has a second damper plate. The second damper plate is fixed to the first damper plate, the first and second damper

plates include respective integrally-formed spring retainer portions, and the first damper spring is disposed within the first and second damper plate spring retainer portions.

[0005] In some example embodiments, the torque converter has a third damper plate and a second damper spring. The third damper plate includes a spline portion arranged for connecting to a transmission input shaft, a spring window, and an orifice disposed radially inside of the spring window. The second damper spring is disposed within respective spring windows of the first, second, and third damper plates. The third damper plate is disposed between the first and second damper plates, and the third damper plate is arranged for transmitting a thrust force from the turbine shell to the first damper plate. In an example embodiment, the torque converter has a bushing with a circumferential portion disposed within a circumferential bore of the turbine shell and a radial portion disposed between the turbine shell and the third damper plate.

[0006] Other example aspects broadly comprise a torque converter including a torus including an impeller and a turbine with respective shells, a clutch plate, a cover shell, and a first damper plate. The impeller shell has a radial wall disposed radially outside of the torus. The clutch plate is fixed to the turbine shell and includes a radial wall arranged for frictionally engaging the impeller shell radial wall. The cover shell has a radial wall and the first damper plate has a radial wall for transmitting a turbine shell thrust force to the cover shell radial wall. In an example embodiment, the torque converter has a friction material ring fixedly attached to the clutch plate radial wall or the impeller shell radial wall. In an example embodiment, the torque converter has a friction material ring fixedly attached to the cover shell radial wall or the first damper plate radial wall.

[0007] In some example embodiments, the torque converter has a first damper spring. The clutch plate includes a circumferential wall radially aligned with the first damper spring. In some example embodiments, the clutch plate radial and circumferential walls form at least a portion of an integrally-formed spring retainer portion and the first damper spring is disposed within the first damper plate spring retainer portion. In some example embodiments, the torque converter includes second and third damper plates. The second damper plate is fixed to the clutch plate and includes a first drive tab at least partially axially aligned with the clutch plate radial wall and engaged with the first damper spring. The third damper plate is fixed to the first

damper plate and includes a second drive tab at least partially axially aligned with the clutch plate radial wall and engaged with the first damper spring.

[0008] In some example embodiments, the torque converter has a second damper spring disposed within respective spring windows of the first and third damper plates, and a fourth damper plate disposed between the first and third damper plates and arranged for transmitting a thrust force from the turbine shell to the first damper plate. In an example embodiment, the fourth damper plate includes a spring window, the second damper spring is disposed within the fourth damper plate spring window, and the fourth damper plate includes an orifice disposed radially inside of the spring window. In an example embodiment, the torque converter has a bushing with a circumferential portion disposed within a circumferential bore of the turbine shell and a radial portion disposed between the turbine shell and the fourth damper plate.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The nature and mode of operation of the present invention will now be more fully described in the following detailed description taken with the accompanying drawing figures, in which:

Figure 1A is a perspective view of a cylindrical coordinate system demonstrating spatial terminology used in the present application;

Figure 1B is a perspective view of an object in the cylindrical coordinate system of Figure 1A demonstrating spatial terminology used in the present application;

20 Figure 2 is a cross section view of a torque converter with a turbine piston thrust path according to an example aspect;

Figure 3 is a cross section view of a torque converter with a turbine piston thrust path according to an example aspect;

25 Figure 4 is a cross section view of a torque converter with a turbine piston thrust path according to an example aspect.

DETAILED DESCRIPTION

[0010] At the outset, it should be appreciated that like drawing numbers appearing in different drawing views identify identical, or functionally similar, structural elements. Furthermore, it is understood that this invention is not limited only to the particular

embodiments, methodology, materials and modifications described herein, and as such may, of course, vary. It is also understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to limit the scope of the present invention, which is limited only by the appended claims.

5 [0011] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices or materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the following example methods, devices, and materials are now described.

10 [0012] Figure 1A is a perspective view of cylindrical coordinate system 80 demonstrating spatial terminology used in the present application. The present invention is at least partially described within the context of a cylindrical coordinate system. System 80 has a longitudinal axis 81, used as the reference for the directional and spatial terms that follow. The adjectives “axial,” “radial,” and “circumferential” are with respect to an orientation parallel to axis 81, radius 82 (which is orthogonal to axis 81), and circumference 83, respectively. The adjectives “axial,” “radial” and “circumferential” also are regarding orientation parallel to respective planes. To clarify the disposition of the various planes, objects 84, 85, and 86 are used. Surface 87 of object 84 forms an axial plane. That is, axis 81 forms a line along the surface. Surface 88 of object 85 forms a radial plane. That is, radius 82 forms a line along the surface. Surface 89 of object 86 forms a circumferential plane. That is, circumference 83 forms a line along the surface. As a further example, axial movement or disposition is parallel to axis 81, radial movement or disposition is parallel to radius 82, and circumferential movement or disposition is parallel to circumference 83. Rotation is with respect to axis 81.

15

20

[0013] The adverbs “axially,” “radially,” and “circumferentially” are with respect to an orientation parallel to axis 81, radius 82, or circumference 83, respectively. The adverbs “axially,” “radially,” and “circumferentially” also are regarding orientation parallel to respective planes.

[0014] Figure 1B is a perspective view of object 90 in cylindrical coordinate system 80 of Figure 1A demonstrating spatial terminology used in the present application. Cylindrical

object **90** is representative of a cylindrical object in a cylindrical coordinate system and is not intended to limit the present invention in any manner. Object **90** includes axial surface **91**, radial surface **92**, and circumferential surface **93**. Surface **91** is part of an axial plane, surface **92** is part of a radial plane, and surface **93** is part of a circumferential plane.

5 [0015] The following description is made with reference to Figure 2. Figure 2 is a cross section view of torque converter **100** with a turbine piston thrust path according to an example aspect. Torque converter **100** includes torus **102** with impeller **104** and turbine **106**. Impeller shell **108** includes radial wall **110** disposed radially outside of torus **102**, and turbine shell **112** includes radial wall **114** arranged for frictionally engaging impeller shell radial wall **110** as described below. Cover shell **116**, fixed to impeller shell **108** at weld **118**, includes radial wall **120**. Damper plate **122** includes radial wall **124** for transmitting a turbine shell thrust force to cover shell radial wall **120** as described below.

10 [0016] Impeller shell **108** includes hub **126** fixed to shell **108** by weld **128**. Hub **126** is for interfacing with a transmission (not shown). Cover shell **116** includes lug **130** fixed to shell **116** by weld **132** and integrally formed pilot area **134**. Lug **130** and pilot **134** are for interfacing with an engine (not shown). Lug **130** may be fixed to a flexplate attached to an engine crankshaft, for example. Pilot **134** may center converter **100** relative to the crankshaft, for example. Stator **136** includes wedge one way clutch assembly **138** with inner race **140** for interfacing with a transmission stator shaft (not shown) and side plate **139** with friction material ring **141**, fixedly attached to side plate **139** by adhesive bonding, for example, for transmitting a turbine and/or stator thrust load to the impeller.

15 [0017] Friction material ring **142** is fixedly attached to the turbine shell radial wall by adhesive bonding, for example. Although ring **142** is shown fixed to radial wall **114**, other embodiments (not shown) may include ring **142** fixed to radial wall **110**. Friction material ring **144** is fixedly attached to radial wall **124** by adhesive bonding, for example. Although ring **144** is shown fixed to radial wall **124**, other embodiments (not shown) may include ring **144** fixed to radial wall **120**. Plate **122** includes orifice **146** disposed radially inside of the friction material ring. Plate **122** includes damper hub **148** with spline portion **150** arranged for connecting to a transmission input shaft (not shown). Although hub **148** is shown fixed to plate **122** by weld

152, other embodiments of plate **122** (not shown) may include an integrally formed hub with spline portion. Hub **148** receives the thrust force from turbine shell **112** as described below.

[0018] Converter **100** includes bushing **154** with circumferential portion **156** disposed within circumferential bore **158** of turbine shell **112**, and radial portion **160** disposed between the 5 turbine shell and damper hub **148**. Portion **156** is for sealing shell **112** to a transmission input shaft (not shown).

[0019] Converter **100** includes damper spring **162**. Turbine shell **112** includes integrally formed drive tab **164**. Tab **164** extends from radial wall **114** and is engaged with damper spring **162**. Damper plate **122** includes integrally-formed spring retainer portion **166**. Spring **162** is disposed within spring retainer portion **166**. Plate **122** also includes a spring driving portion (not 10 shown in the section cut of Figure 2) so that torque from shell **112** is transmitted from tab **164** through spring **162** to the spring driving portion of plate **122**. Spring **162** advantageously provides damping to converter **100** so that torsional vibrations from the engine are at least partially isolated from the transmission.

15 **[0020]** During operation of converter **100**, turbine **106** may thrust in direction **168** towards cover shell **116**. Thrust force from the turbine is transmitted from shell **112**, through bushing **154** to hub **148**, plate **122**, and ring **144** to wall **120** of shell **116**. This thrust path advantageously limits axial displacement of shell **112** to control “lift-off”, or an axial gap, between ring **142** and impeller shell **108**, improving engagement characteristics of the friction 20 interface, or clutch, between radial walls **114** and **110**. Ring **144** advantageously prevents metal-on-metal (or steel-on-steel) contact between plate **122** and shell **116**.

[0021] Pressure in chamber **170**, disposed between cover **116** and turbine shell **112** may be increased above a pressure in torus **102** to engage the clutch and bypass the torus fluid circuit. That is, torque from cover **116** transmitted to torus **108** is directly transmitted to turbine shell **112** 25 without operation of the fluid circuit. Depending on the operating condition of converter **100** prior to an attempted engagement of the clutch, imprecise control of lift-off may prevent clutch engagement due to hydrodynamic forces within the converter.

[0022] The following description is made with reference to Figure 3. Figure 3 is a cross section view of torque converter **200** with a turbine piston thrust path according to an example

aspect. Torque converter 200 includes torus 202 with impeller 204 and turbine 206. Impeller shell 208 includes radial wall 210 disposed radially outside of torus 202, and turbine shell 212 includes radial wall 214 arranged for frictionally engaging impeller shell radial wall 210 in a manner similar to walls 110 and 114 described above. Cover shell 216, fixed to impeller shell 5 208 at weld 218, includes radial wall 220. Damper plate 222 includes radial wall 224 for transmitting a turbine shell thrust force to cover shell radial wall 220 similar to walls 124 and 120 described above.

[0023] Impeller shell 208 includes hub 226 fixed to shell 208 by weld 228. Hub 226 is for interfacing with a transmission (not shown). Cover shell 216 includes stud 230 fixed to shell 10 216 by a projection weld, for example, and integrally formed pilot area 234. Stud 230 and pilot 234 are for interfacing with an engine (not shown). Stud 230 may be fixed to a flexplate attached to an engine crankshaft, for example. Pilot 234 may center converter 200 relative to the crankshaft, for example. Stator 236 includes one way clutch assembly 238 with inner race 240 for interfacing with a transmission stator shaft (not shown). Stator 236 includes radial wall 239 15 with friction material ring 241, fixedly attached to wall 239 by adhesive bonding, for example, for transmitting a turbine and/or stator thrust load to the impeller.

[0024] Friction material ring 242 is fixedly attached to the turbine shell radial wall by adhesive bonding, for example. Although ring 242 is shown fixed to radial wall 214, other embodiments (not shown) may include ring 242 fixed to radial wall 210. Friction material ring 20 244 is fixedly attached to radial wall 224 by adhesive bonding, for example. Although ring 244 is shown fixed to radial wall 224, other embodiments (not shown) may include ring 244 fixed to radial wall 220.

[0025] Converter 200 includes damper spring 262. Turbine shell 212 includes integrally formed drive tab 264. Tab 264 extends from radial wall 214 and is engaged with damper spring 262. Converter 200 includes damper plate 272 including integrally formed spring retainer portion 274. Plate 272 is fixed to plate 222 by sheet metal rivet 276. Although plates 222 and 272 are shown fixed together by riveting, other methods such as welding may be used to fix the plates together. Spring 262 is disposed within the spring retainer portion 266. Plate 272 also includes a spring driving portion (not shown in the section cut of Figure 3) so that torque from

shell **212** is transmitted from tab **264** through spring **262** to the spring driving portion to plate **222**.

[0026] Plates **222** and **272** include respective spring windows **278** and **280**. Spring **282** is at least partially disposed within window **278** and **280**. That is, the spring is at least partially retained within the windows. Converter **200** includes damper plate **284** disposed between plates **222** and **272**. Plate **284** is arranged for transmitting a thrust force from the turbine shell to damper plate **222** as described below. Plate **284** includes spring window **286**. Spring **282** is at least partially disposed within window **286**. Springs **262** and **282** advantageously provide damping so that torsional vibrations from the engine are at least partially isolated from the transmission.

[0027] Plate **284** includes orifice **288** disposed radially inside of the spring window and spline portion **290** arranged for connecting to a transmission input shaft. Converter **100** includes bushing **254** with circumferential portion **256** disposed within circumferential bore **258** of turbine shell **212**, and radial portion **260** disposed between the turbine shell and damper plate **284**. Portion **256** is for sealing shell **112** to a transmission input shaft (not shown).

[0028] During operation of converter **200**, turbine **206** may thrust in direction **268** towards cover shell **216**. Thrust force from the turbine is transmitted from shell **212**, through bushing **254** to plate **284**, plate **222**, and ring **244** to wall **220** of shell **216**. This thrust path advantageously limits axial displacement of shell **212** to control “liftoff” as described above.

[0029] Pressure in chamber **270**, disposed between cover **216** and turbine shell **212** may be increased above a pressure in torus **202** to engage the clutch and bypass the torus fluid circuit. That is, torque from cover **216** transmitted to torus **208** is directly transmitted to turbine shell **212** without operation of the fluid circuit. Depending on the operating condition of converter **200** prior to an attempted engagement of the clutch, imprecise control of liftoff may prevent clutch engagement due to hydrodynamic forces within the converter.

[0030] Torque converter **300** includes torus **302** with impeller **304** and turbine **306**. Impeller shell **308** includes radial wall **310** disposed radially outside of the torus. Clutch plate **312** is fixed to turbine shell **314** at weld **316**, for example, and includes radial wall **318** arranged for frictionally engaging the impeller shell radial wall. Cover shell **320** includes radial wall **322**

and damper plate 324 includes radial wall 326 for transmitting a turbine shell thrust force to the cover shell radial wall. Friction material ring 328 is fixedly attached by bonding, for example, to clutch plate radial wall 318. In other embodiments (not shown), ring 328 may be fixed to impeller shell radial wall 310. Friction material ring 330 is fixedly attached to damper plate 5 radial wall 326. In other embodiments (not shown), ring 330 is fixed to cover shell radial wall 322.

[0031] Converter 300 includes damper spring 332 and clutch plate 312 includes circumferential wall 334 radially aligned with the first damper spring. In an example embodiment, walls 318 and 334 form at least a portion of integrally-formed spring retainer portion 336 and damper spring 332 is disposed within retainer portion 336. Converter 300 10 includes damper plates 338 and 340. Plate 338 is fixed to clutch plate 312 at rivet 339, for example, and includes drive tab 342 at least partially axially aligned with clutch plate radial wall 318. Tab 342 is engaged with damper spring 332. Plate 340 is fixed to plate 324 by sheet metal rivet 343, for example, and includes drive tab 344 at least partially axially aligned with the clutch 15 plate radial wall and engaged with damper spring 332.

[0032] Converter 300 includes damper spring 346 at least partially disposed within respective spring windows 348 and 350 of damper plates 324 and 340. Damper plate 352, disposed between plates 324 and 340, is arranged for transmitting a thrust force from the turbine shell to damper plate 324 in a manner similar to plate 284 described above. Plate 352 includes 20 spring window 354, orifice 356 disposed radially inside of window 354, and spline portion 358 arranged for connecting to a transmission input shaft. Spring 346 is at least partially disposed within window 354. In an example embodiment, converter 300 includes pendulum damper 360 fixed to damper plate 324 as is commonly known in the art.

[0033] Bushing 362 has circumferential portion 364 disposed within circumferential bore 25 366 of the turbine shell and radial portion 368 disposed between the turbine shell and damper plate 352. During operation of converter 300, turbine 306 may thrust in direction 370 towards cover shell 320. Thrust force from the turbine is transmitted from shell 314, through bushing 362 to plate 352, plate 324, and ring 330 to wall 322 of shell 320. This thrust path

advantageously limits axial displacement of shell **314** and clutch plate **312** to control “liftoff” as described above.

[0034] Pressure in chamber **372**, disposed between cover **320** and clutch plate **312** may be increased above a pressure in torus **202** to engage the clutch and bypass the torus fluid circuit.

5 That is, torque from cover **320** transmitted to impeller **308** is directly transmitted to turbine shell **314** through plate **312** without operation of the fluid circuit. Depending on the operating condition of converter **300** prior to an attempted engagement of the clutch, imprecise control of liftoff may prevent clutch engagement due to hydrodynamic forces within the converter.

10 **[0035]** Of course, changes and modifications to the above examples of the invention should be readily apparent to those having ordinary skill in the art, without departing from the spirit or scope of the invention as claimed. Although the invention is described by reference to specific preferred and/or example embodiments, it is clear that variations can be made without departing from the scope or spirit of the invention as claimed.

CLAIMS

What We Claim Is:

1. A torque converter comprising:
 - 5 a torus including an impeller and a turbine;
 - an impeller shell including a radial wall disposed radially outside of the torus;
 - a turbine shell including a radial wall arranged for frictionally engaging the impeller shell radial wall;
 - a cover shell including a radial wall; and,
- 10 a first damper plate including a radial wall for transmitting a turbine shell thrust force to the cover shell radial wall.
2. The torque converter of claim 1 further comprising a friction material ring fixedly attached to the turbine shell radial wall or the impeller shell radial wall.
- 15 3. The torque converter of claim 1 further comprising a friction material ring fixedly attached to the cover shell radial wall or the first damper plate radial wall.
4. The torque converter of claim 3 wherein the friction material ring is fixedly attached to the first damper plate radial wall and the first damper plate includes an orifice disposed radially inside of the friction material ring.
- 20 5. The torque converter of claim 1 wherein the first damper plate includes a spline portion arranged for connecting to a transmission input shaft.
- 25 6. The torque converter of claim 5 wherein the first damper plate includes a damper hub, the damper hub includes the spline portion, and the damper hub is arranged to receive a thrust force from the turbine shell.

7. The torque converter of claim 6 further comprising a bushing with a circumferential portion disposed within a circumferential bore of the turbine shell and a radial portion disposed between the turbine shell and the damper hub.

5 8. The torque converter of claim 1 further comprising a first damper spring, wherein the turbine shell includes an integrally formed drive tab extending from the radial wall and engaged with the first damper spring.

9. The torque converter of claim 8, further comprising a second damper plate, wherein:
10 the second damper plate is fixed to the first damper plate;
the first and second damper plates include respective integrally-formed spring retainer portions; and,
the first damper spring is disposed within the first and second damper plate spring retainer portions.

15 10. The torque converter of claim 9 further comprising:
a third damper plate including:
a spline portion arranged for connecting to a transmission input shaft;
a spring window; and,
an orifice disposed radially inside of the spring window; and,
20 a second damper spring disposed within respective spring windows of the first, second, and third damper plates; wherein:
the third damper plate is disposed between the first and second damper plates;
and,
25 the third damper plate is arranged for transmitting a thrust force from the turbine shell to the first damper plate.

11. The torque converter of claim 10 further comprising a bushing with a circumferential portion disposed within a circumferential bore of the turbine shell and a radial portion disposed between the turbine shell and the third damper plate.

5 12. A torque converter comprising:
a torus including an impeller and a turbine;
an impeller shell including a radial wall disposed radially outside of the torus;
a turbine shell;
a clutch plate, fixed to the turbine shell, and including a radial wall arranged for
10 frictionally engaging the impeller shell radial wall;
a cover shell including a radial wall; and,
a first damper plate including a radial wall for transmitting a turbine shell thrust force to
the cover shell radial wall.

15 13. The torque converter of claim 12 further comprising a friction material ring fixedly attached to the clutch plate radial wall or the impeller shell radial wall.

14. The torque converter of claim 12 further comprising a friction material ring fixedly attached to the cover shell radial wall or the first damper plate radial wall.

20 15. The torque converter of claim 12 further comprising a first damper spring, wherein the clutch plate includes a circumferential wall radially aligned with the first damper spring.

25 16. The torque converter of claim 15, wherein the clutch plate radial and circumferential walls form at least a portion of an integrally-formed spring retainer portion and the first damper spring is disposed within the first damper plate spring retainer portion.

17. The torque converter of claim 16 further comprising:

a second damper plate fixed to the clutch plate and including a first drive tab at least partially axially aligned with the clutch plate radial wall and engaged with the first damper spring; and,

5 a third damper plate, fixed to the first damper plate and including a second drive tab at least partially axially aligned with the clutch plate radial wall and engaged with the first damper spring.

18. The torque converter of claim 17 further comprising:

10 a second damper spring disposed within respective spring windows of the first and third damper plates; and,

a fourth damper plate disposed between the first and third damper plates and arranged for transmitting a thrust force from the turbine shell to the first damper plate.

19. The torque converter of claim 18 wherein the fourth damper plate includes a spring

15 window, the second damper spring is disposed within the fourth damper plate spring window, and the fourth damper plate includes an orifice disposed radially inside of the spring window.

20. The torque converter of claim 18 further comprising a bushing with a circumferential

portion disposed within a circumferential bore of the turbine shell and a radial portion disposed between the turbine shell and the fourth damper plate.

1/4

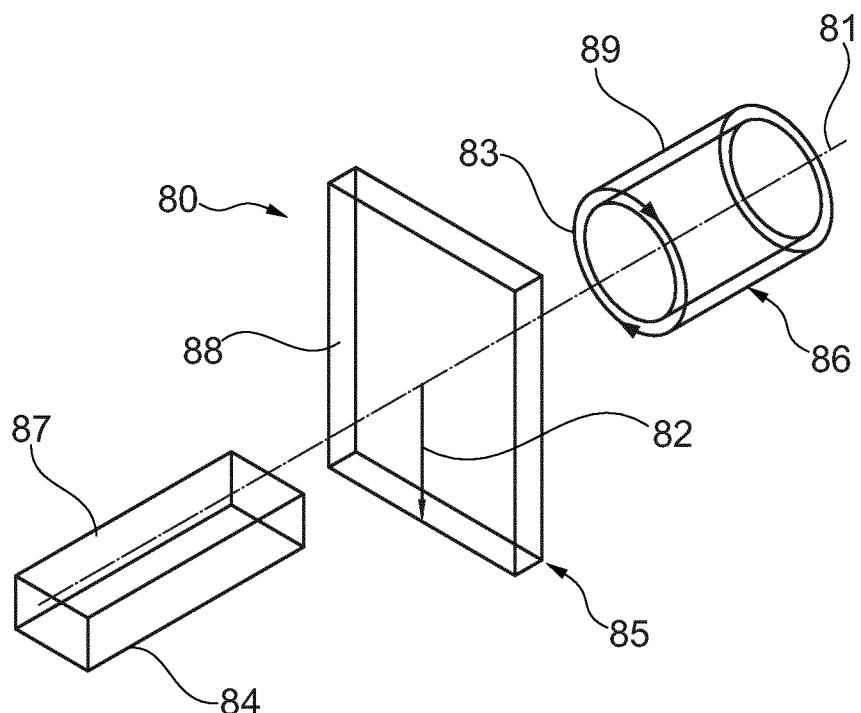


Fig. 1A

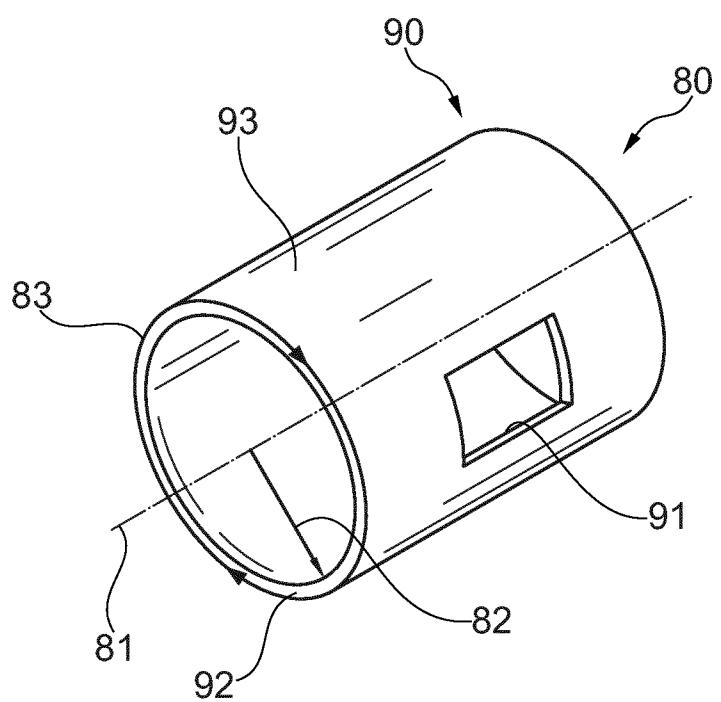


Fig. 1B

2/4

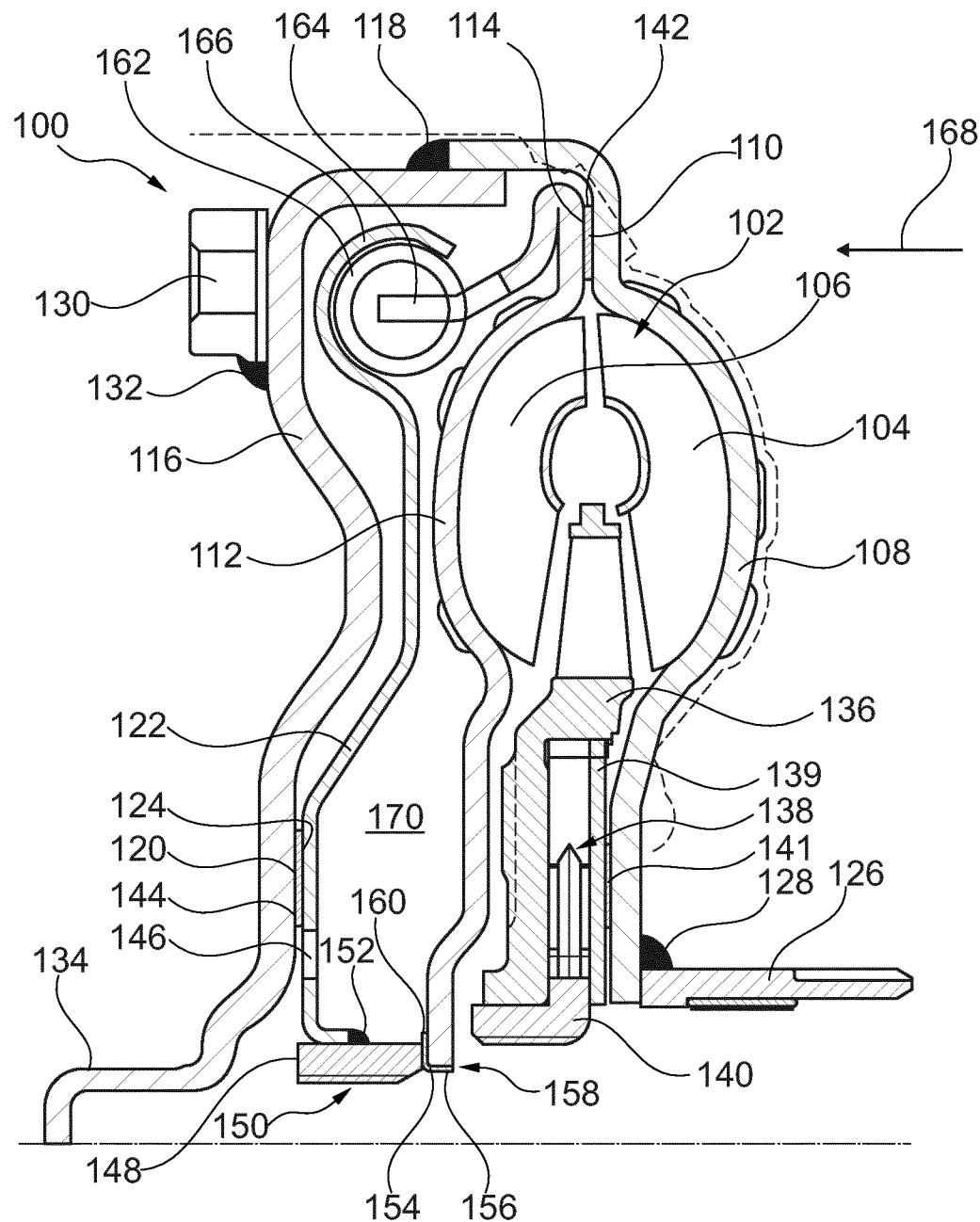


Fig. 2

3/4

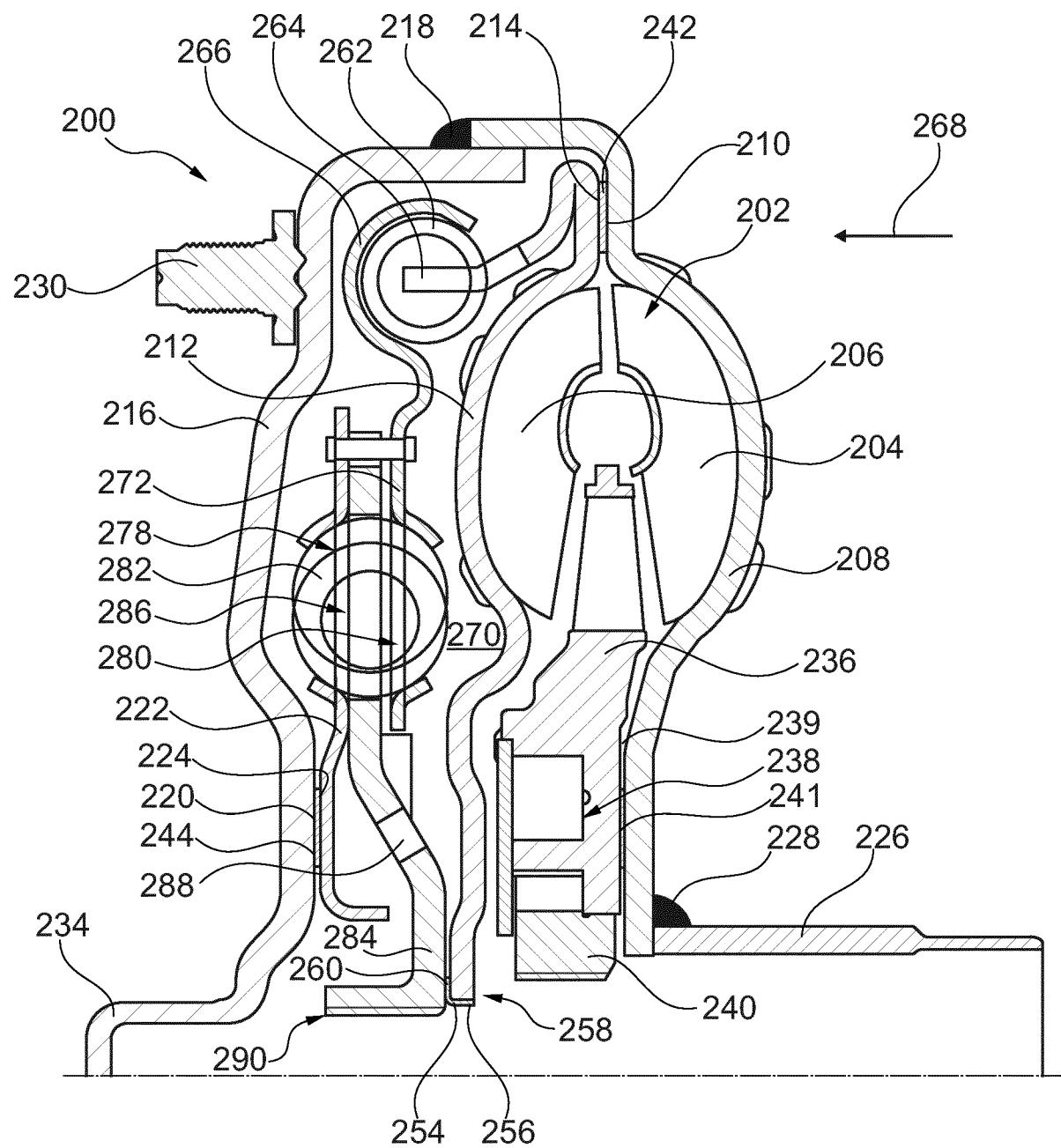


Fig. 3

4/4

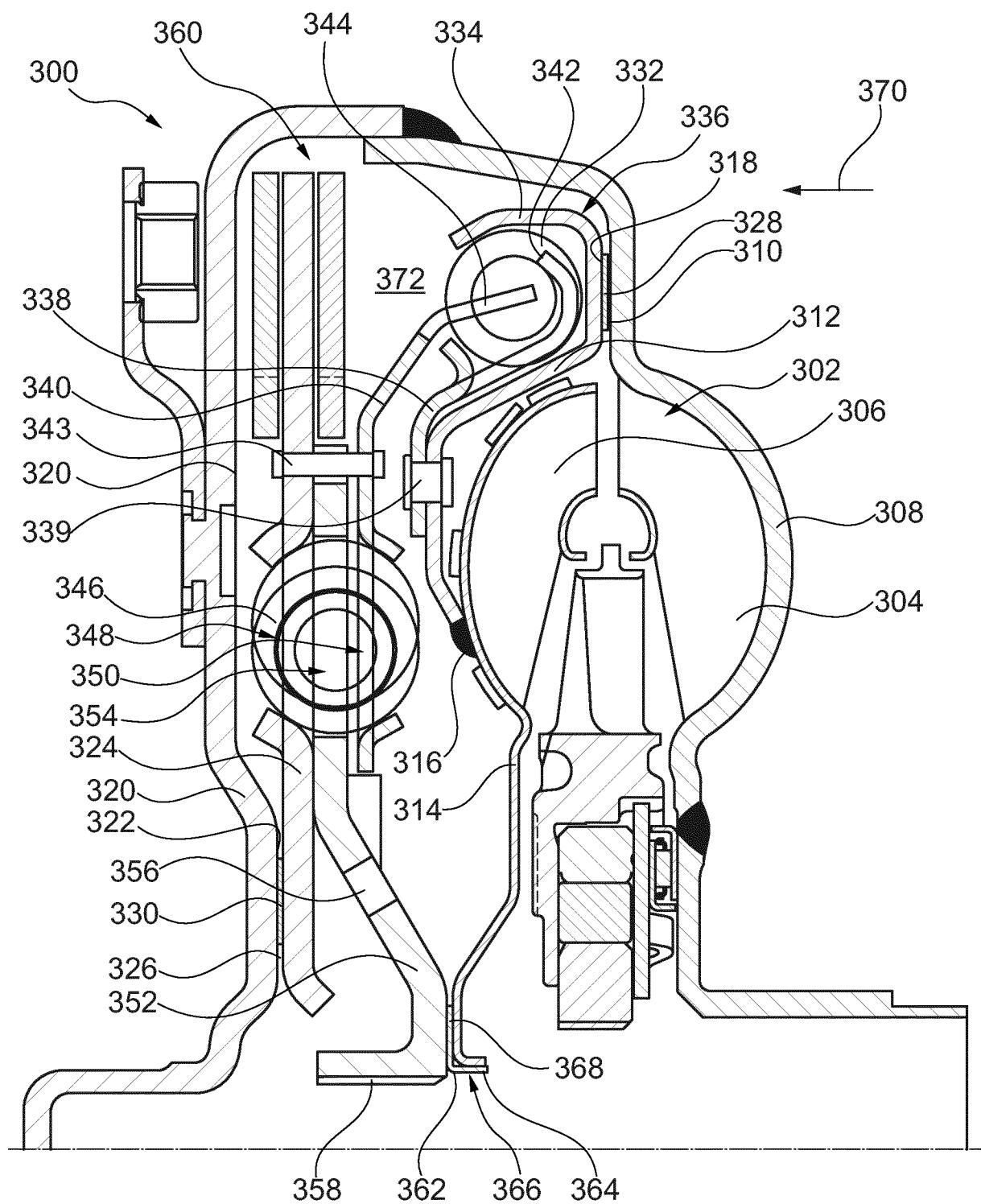


Fig. 4

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2013/070068

A. CLASSIFICATION OF SUBJECT MATTER
INV. F16H45/02
ADD. F16D47/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F16H F16D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2011 069464 A (JATCO LTD) 7 April 2011 (2011-04-07) the whole document -----	1,2,5,6, 8,9,12, 13,17
A	JP 2004 332801 A (TOYOTA MOTOR CORP) 25 November 2004 (2004-11-25) the whole document -----	1,2,12
A	DE 197 54 650 A1 (MANNESMANN SACHS AG [DE]) 17 June 1999 (1999-06-17) the whole document -----	1,12
A	EP 1 211 438 A2 (FORD WERKE AG [DE]; THYSSEN KRUPP AUTOMOTIVE AG [DE] FORD WERKE AG [DE]) 5 June 2002 (2002-06-05) the whole document ----- -/-	1,12

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
18 December 2013	03/01/2014
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3046	Authorized officer Masset, Candie

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2013/070068

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, P	WO 2013/130398 A1 (SCHAEFFLER TECHNOLOGIES AG [DE]; LINDEMANN PATRICK [US]; STEINBERGER M) 6 September 2013 (2013-09-06) the whole document -----	1-20

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/EP2013/070068
--

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
JP 2011069464	A 07-04-2011	CN 102032331 A			27-04-2011
		JP 2011069464 A			07-04-2011
		KR 20110034551 A			05-04-2011
JP 2004332801	A 25-11-2004	NONE			
DE 19754650	A1 17-06-1999	DE 19754650 A1			17-06-1999
		US 6056093 A			02-05-2000
EP 1211438	A2 05-06-2002	AU 1054502 A			11-06-2002
		EP 1211438 A2			05-06-2002
		US 2002073701 A1			20-06-2002
		WO 0244589 A1			06-06-2002
WO 2013130398	A1 06-09-2013	DE 102013202661 A1			05-09-2013
		US 2013230385 A1			05-09-2013
		WO 2013130398 A1			06-09-2013