International Application Published Under the Patent Cooperation Treaty (PCT)

Title: DETERRING INFORMATION COPYING INCLUDING DETERRENCE OF CURRENCY COUNTERFEITING

Abstract: A method for deterring information copying, includes: combining a watermark serial number incorporate in a given medium with a content serial number to create a combined serial number, the watermark serial number uniquely identifies the given medium, and the content serial number uniquely identifies a content stored on the given medium; creating a digital signature by encoding the combined serial number using a private key of a public/private key pair; imprinting the content serial number and the digital signature on the given medium; decoding the digital signature imprinted on the given medium using a public key of the public/private key pair to obtain the combined serial number; comparing the decoded combined serial number with the watermark serial number and the content serial number of the given medium; and in response to determining that both match the combined serial number, determining that the content is authentic.

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
DETERRING INFORMATION COPYING INCLUDING DETERRENCE OF CURRENCY COUNTERFEITING

BACKGROUND

Currency notes are printed with carefully designed measures to deter counterfeiting. Special paper is used with watermarks and inscribed security threads that have printed information. The information printed for the currency is carefully chosen, often also having miniature printings not easily visible to the naked eye to make reproduction more difficult. Despite these efforts, governments still battle with a significant percentage of counterfeited currency notes.

Currently, governments attempt to deter counterfeiting by limiting the availability of the technologies required to counterfeit the currencies. However, sophisticated organizations have the money and power to purchase the latest counterfeiting technology, including the ability to buy the same paper and the same printer used by the governments to produce the currency notes. As a result, the counterfeit currency matches the authentic currency, such that even banks cannot distinguish them.

The prevention of unauthorized copying of copyrighted information, such as software, movies, music, and other such media content, faces similar challenges, with sophisticated organizations being able to purchase the technology to illegally copy such copyrighted information with precision.

SUMMARY

According to one embodiment of the present invention, a method for deterring information copying, comprises: combining a watermark serial number comprised in a given medium of a plurality of media with a content serial number to create a combined serial number, wherein the watermark serial number uniquely identifies the given medium, wherein the content serial number uniquely identifies a content stored on the given medium; creating a digital signature
by encoding the combined serial number using a private key of a public/private key pair; and
imprinting the content serial number and the digital signature on the given medium.

In one aspect of the present invention, the method further comprises: decoding the digital
signature imprinted on the given medium using a public key of the public/private key pair to
obtain the combined serial number; comparing the decoded combined serial number with the
watermark serial number comprised in the given medium and the content serial number
imprinted on the given medium; and in response to determining that the watermark serial
number comprised in the given medium and the content serial number imprinted on the given
medium match the combined serial number, determining that the content is authentic.

In another aspect of the present invention, the method further comprises: in response to
determining that the watermark serial number comprised in the given medium, or the content
serial number imprinted on the given medium, fails to match the decoded combined serial
number, determining that the content is counterfeit.

In another aspect of the present invention, the given medium comprises a given piece of
financial instrument paper of a plurality of financial instrument papers, and the content
comprises printed matter printed on the given piece of financial instrument paper, wherein the
method comprises: combining a watermark serial number comprised in the given piece of
financial instrument paper with a printed matter serial number to create the combined serial
number, wherein the watermark serial number comprised in the given piece of financial
instrument paper uniquely identifies the given piece of financial instrument paper, wherein
the printed matter serial number uniquely identifies the printed matter; creating the digital
signature by encoding the combined serial number using the private key of the public/private
key pair; and printing the printed matter serial number and the digital signature on the given
piece of financial instrument paper to create a financial instrument.

In another aspect of the present invention, wherein the printing the printed matter serial
number and the digital signature on the given piece of financial instrument paper, comprises:
converting the digital signature to a bar code; and printing the printed matter serial number
and the bar code on the given piece of financial instrument paper to create the financial instrument.

In another aspect of the present invention, the method further comprises: decoding the digital signature printed on the given piece of financial instrument paper using a public key of the public/private key pair to obtain the combined serial number; comparing the decoded combined serial number with the watermark serial number comprised in the given piece of financial instrument paper and the printed matter serial number printed on the given piece of financial instrument paper; in response to determining that the watermark serial number comprised in the given piece of financial instrument paper and the printed matter serial number printed on the given piece of financial instrument paper match the combined serial number, determining that the financial instrument is authentic.

In another aspect of the present invention, wherein the given medium comprises a given digital content storage of a plurality of digital content storages, wherein the content comprises digital content stored on the given digital content storage, wherein the method comprises: combining a watermark serial number comprised in the given digital content storage with a digital content serial number to create the combined serial number, wherein the watermark serial number uniquely identifies the given digital content storage, wherein the digital content serial number uniquely identifies the digital content; creating the digital signature by encoding the combined serial number using the private key of the public/private key pair; and imprinting the digital content serial number and the digital signature on the given digital content storage.

In another aspect of the present invention, the method further comprises: decoding the digital signature imprinting on the given digital content storage using a public key of the public/private key pair to obtain the combined serial number; comparing the decoded combined serial number with the watermark serial number comprised in the given digital content storage and the digital content serial number imprinted on the given digital content storage; in response to determining that the watermark serial number comprised in the given digital content storage and the digital content serial number imprinted on the given digital content storage match the combined serial number, determining that the financial instrument is authentic.
content storage match the combined serial number, determining that the digital content stored on the given digital content storage is an authentic copy.

System and computer program products corresponding to the above-summarized methods are also described and claimed herein.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

FIG. 1 illustrates an embodiment of a system for deterring information copying according to the present invention.

FIG. 2 is a flowchart illustrating an embodiment for encoding authentication information in a method for deterring information copying according to the present invention.

FIG. 3 illustrates an example currency note comprising the encoded authentication information according to the embodiment of the method for deterring information copying of the present invention.

FIG. 4 is a flowchart illustrating an embodiment for decoding authentication information in a method for deterring information copying according to the present invention.

FIG. 5 is a flowchart illustrating an embodiment for encoding authentication information in a method for deterring digital content copying according to the present invention.

FIG. 6 is a flowchart illustrating an embodiment for decoding authentication information in a method for deterring digital content according to the present invention.

DETAILED DESCRIPTION

Aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident
software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a "circuit," "module" or "system." Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.

Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.

A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.

Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java® (Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both), Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).

Aspects of the present invention are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in a computer readable medium that can direct a computer other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be
performed on the computer, other programmable apparatus or other devices to produce a
computer implemented process such that the instructions which execute on the computer or
other programmable apparatus provide processes for implementing the functions/acts
specified in the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and
operation of possible implementations of systems, methods and computer program products
according to various embodiments of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing the specified local
function(s). It should also be noted that, in some alternative implementations, the functions
noted in the block may occur out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems that perform the specified functions
or acts, or combinations of special purpose hardware and computer instructions.

The terminology used herein is for the purpose of describing particular embodiments only
and is not intended to be limiting of the invention. As used herein, the singular forms "a",
"an" and "the" are intended to include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the terms "comprises" and/or
"comprising," when used in this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps, operations, elements, components,
and/or groups thereof.

The corresponding structures, materials, acts, and equivalents of all means or step plus
function elements in the claims below are intended to include any structure, material, or act
for performing the function in combination with other claimed elements as specifically
claimed. The description of the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.

FIG. 1 illustrates an embodiment of a system for deterring information copying according to the present invention. In this embodiment, the system deters the counterfeiting of printed financial instruments. The system comprises financial instrument paper manufacturers 101, a printing device 102, an encoding device 103, and an authentication device 110. The financial instrument paper manufacturers 101 supply a plurality of financial instrument papers 107. Each financial instrument paper is used to produce one financial instrument. In this embodiment, each financial instrument paper is manufactured to comprise a unique serial number incorporated within the paper as a watermark. The printing device 102 prints the financial instruments 108 using the financial instrument papers according to the various embodiments of the present invention. The encoding device 103 is operationally coupled to a processor 104 and a computer readable medium 105. The computer readable medium 105 stores computer readable program code 106 and a private key 109 of a public/private key pair for implementing an encoding method of the present invention. The authentication device 110 is operationally coupled to a processor 111 and a computer readable medium 112. The computer readable medium 112 stores computer readable program code 113 and a public key 114 of the public/private key pair for implementing a decoding method of the present invention.

FIG. 2 is a flowchart illustrating an embodiment for encoding authentication information in a method for deterring information copying according to the present invention. For each financial instrument 108 to be printed, a given piece of financial instrument paper 107 is used. The given financial instrument paper 107 comprises a unique watermark serial number incorporated within the paper, which uniquely identifies the given financial instrument paper 107. The financial instrument 108 is also assigned a printed matter serial number that is to be printed onto the given piece of financial instrument paper 107, which uniquely identifies the financial instrument 108. The encoding device 103 combines the watermark serial number of
the given piece of financial instrument paper 107 and the printed matter serial number to create a combined serial number (201). The encoding device 103 creates a digital signature by encoding the combined serial number using the private key 109 of the public/private key pair (202). The printed matter serial number and the digital signature are printed on the given piece of financial instrument paper 107 by the printing device 102 (203).

For example, the financial instrument 108 may comprise a current note. FIG. 3 illustrates an example currency note comprising the encoded authentication information according to the embodiment of the method for deterring information copying of the present invention. The example currency note paper comprises a watermark serial number 303 of ‘97468’ incorporated within the paper. The watermark serial number 303 uniquely identifies this particular piece of currency note paper. A printed matter serial number 302 of ‘14NH 7568998’ is assigned to the currency note 301. Referring to both FIGS. 2 and 3, the encoding device 103 combines the watermark serial number 303 and the printed matter serial number 302 to create a combined serial number (201). The encoding device 103 creates a digital signature 304 by encoding the combined serial number using the private key 109 (202). Here, the encoding device 103 further converts the digital signature 304 into a one-dimensional bar code. The digital signature 304 may also be converted to other forms, such as two-dimensional bar codes. The printed matter serial number 302 and the digital signature 304 are printed onto the particular piece of currency note paper by the printing device 102 (203).

FIG. 4 is a flowchart illustrating an embodiment for decoding authentication information in a method for deterring information copying according to the present invention. To determine the authenticity of a financial instrument, the digital signature printed on the financial instrument 108 is read by the authentication device 110. The authentication device 110 decodes the digital signature using the public key 114 of the public/private key pair to obtain the unique combined serial number of the currency note 108 (401). As is known in the art, only a digital signature encoded with the matching private key 109 can be correctly decoded using the public key 114. As explained above, the combined serial number was created by combining the watermark serial number and the printed matter serial number of the currency note 108. The authentication device 110 compares the decoded combined serial number with
the watermark serial number comprised in the piece of financial instrument paper and the printed matter serial number printed on the financial instrument 108 (402). In response to determining that both match (403) the decoded combined serial number, the financial instrument is determined to be authentic (404). In response to determining that either the watermark serial number or the printed matter serial number fails to match the decoded combined serial number, the financial instrument is determined to be counterfeit (405).

For example, with reference to the example currency note illustrated in FIG. 3, the authentication device 110 reads the digital signature 304 printed on the currency note 301 and decodes the digital signature 304 using the public key 114 to obtain the combined serial number (401). The authentication device 110 compares the decoded combined serial number with the watermark serial number 303 comprised in the piece of currency note paper and the printed matter serial number 302 printed on the currency note 301 (402). In response to determining that both the watermark serial number 303 and the printed matter serial number 302 match the decoded combined serial number, the currency note 301 is determined to the authentic (404). In response to determining that either the watermark serial number 303 or the printed matter serial number 302 fails to match the decoded combined serial number, the currency note 301 is determined to be counterfeit (405).

With the present invention, the currency note 301 has three unique identifiers: the watermark serial number 303, which uniquely identifies the particular piece of currency note paper; the printed matter serial number 302, which uniquely identifies the currency note 301; and the digital signature 304, which uniquely associates the watermark serial number 303 and the printed matter serial number 302 through use of the private key 109. Requiring each piece of currency note paper to comprise a unique watermark serial number increases the difficulty in reproducing the paper for counterfeiting purposes, as this requires the cooperation of the currency note paper manufacturers. Further, this requirement prevents the reproduction of a known printed matter serial number as this is insufficient to create an association with the unique watermark serial number for each currency note. Even if both a unique watermarked serial number and a unique printed matter serial number are produced, the digital signature for confirming their unique association cannot be created without access to the private key 109. Use of the private key 109 also deters introduction of new printed matter serial numbers
in counterfeit currency. With an improperly introduced printed matter serial number, the
digital signature for confirming its unique association with the unique watermark serial
number cannot be created without access to the private key 109. Thus, using the combination
of the three unique identifiers on each currency note deters the counterfeiting of paper
currencies.

Although the embodiments of the present invention is described above in the context of
currency notes, the present invention may also be used to deter the copying of other types of
printed financial instruments. Other printed financial instruments may include, but are not
limited to, bank checks (cheques), bank deposit certificates, bond certificates, bank loans,
commercial papers, agreements, stamp papers, band drafts, shares certificates, demand drafts,
treasury bonds, high value instruments, bills of exchange, future and option contracts, debt
instruments, equity instruments, bearer bonds, bonds issued by governments, certificates of
deposit, and lottery bonds. The three unique identifiers may be used with these financial
instruments, as well as with other printed matter that requires uniqueness. For example,
referring to FIGS. 2 and 4, in the bank check example, a piece of bank check paper is
manufactured with a watermark serial number that uniquely identifies that piece of bank
check paper. A check serial number is assigned to the bank check to uniquely identify the
bank check. An example of a unique check serial number may include a combination of the
account number, bank identifier, and check number. The encoding device 103 combines the
watermark serial number of the piece of bank check paper and the check serial number to
create the combined serial number (201). The encoding device 103 creates a digital signature
by encoding the combined serial number using the private key 109 of the public/private key
pair (202). The digital signature creates a unique association between the watermark serial
number of the piece of bank check paper and the bank check serial number. The bank check
serial number and the digital signature are printed on the piece of bank check paper (203).

To determine the authenticity of the bank check, the decoding device 110 reads the digital
signature printed on the bank check and decodes the digital signature using the public key
114 of the public/private key pair to obtain the combined serial number (401). The decoding
device 110 compares the decoded combined serial number with the watermark serial number
comprised in the piece of bank check paper and the check serial number printed on the bank
check (402). In response to determining that both match (403), the bank check is determined to be authentic (404). In response to determining that either the watermark serial number or the check serial number fails to match, the bank check is determined to be counterfeit (405).

The present invention may also be applied to media other than paper to deter the copying of information. For example, the present invention may be used with a digital content storage for storing digital content protected by copyright, such as software, movies, music, or images. The digital content storage may include the same forms as the computer readable medium defined above. FIG. 5 is a flowchart illustrating an embodiment for encoding authentication information in a method for deterring digital content copying according to the present invention. A given digital content storage of a plurality of digital content storages comprises a watermark serial number incorporated within the given digital content storage, which uniquely identifies the given digital content storage. The digital content stored in the given digital content storage is also assigned a digital content serial number to uniquely identify the digital content. The encoding device 103 combines the watermark serial number of the given digital content storage and unique digital content serial number to create a combined serial number (501). The encoding device 103 creates a digital signature by encoding the combined serial number using the private key 109 of the public/private key pair (502). The digital content serial number and the digital signature are imprinted onto the given digital content storage by an appropriate imprinting device (503).

FIG. 6 is a flowchart illustrating an embodiment for decoding authentication information in a method for deterring digital content according to the present invention. To determine the authenticity of digital content stored on a digital content storage, the digital signature imprinted on the given digital content storage is read by the authentication device 110. The authentication device 110 decodes the digital signature using the public key 114 of the public/private key pair to obtain the combined serial number (601). As explained above, the combined serial number was created by combining the watermark serial number and the digital content serial number of the given digital content storage. The authentication device 110 compares the decoded combined serial number with the watermark serial number comprised in the given digital content storage and the digital content serial number imprinted on the given digital content storage (602). In response to determining that both match the
decoded combined serial number (603), the digital content stored on the given digital content storage is determined to be an authentic copy (604). In response to determining that either the watermark serial number or the imprinted digital content number fails to match (603), the digital content stored on the given digital content storage is determined to be a counterfeit copy (605).

For example, assume that the computer readable medium comprises a given compact disc (CD). The CD is manufactured to comprise a watermark serial number incorporated within the CD that uniquely identifies this particular CD. A digital content serial number is assigned to the digital content stored on the given CD. The encoding device 103 combines the watermark serial number comprised in the given CD and the digital content serial number to create a combined serial number (501). The encoding device 103 creates a digital signature by encoding the combined serial number using a private key 109 of the public/private key pair (502). The digital signature and the digital content serial number are imprinted onto the given CD (503).

To determine the authenticity of the given CD, the authentication device 110 reads the digital signature imprinted on the given CD and decodes the digital signature using the public key 114 of the public/private key pair to obtain the combined serial number (601). The authentication device 110 compares the decoded combined serial number with the watermark serial number incorporated within the given CD and the digital content serial number imprinted on the given CD (602). In response to determining that both match (603), the digital content stored on the given CD is determined to be an authentic copy (604). In response to determining that either the watermark serial number incorporated within the given CD or the digital content serial number imprinted on the given CD fails to match, the digital content stored on the given CD is determined to be a counterfeit copy (605).

The descriptions of the various embodiments of the present invention has been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in
the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
CLAIMS

1. A method for deterring information copying, comprising:
 combining a watermark serial number comprised in a given medium of a plurality of media with a content serial number to create a combined serial number, wherein the watermark serial number uniquely identifies the given medium, wherein the content serial number uniquely identifies a content stored on the given medium;
 creating a digital signature by encoding the combined serial number using a private key of a public/private key pair; and
 imprinting the content serial number and the digital signature on the given medium.

2. The method of claim 1, further comprising:
 decoding the digital signature imprinted on the given medium using a public key of the public/private key pair to obtain the combined serial number;
 comparing the decoded combined serial number with the watermark serial number comprised in the given medium and the content serial number imprinted on the given medium; and
 in response to determining that the watermark serial number comprised in the given medium and the content serial number imprinted on the given medium match the combined serial number, determining that the content is authentic.

3. The method of claim 1, further comprising:
 decoding the digital signature imprinted on the given medium using a public key of the public/private key pair to obtain the combined serial number;
 comparing the decoded combined serial number with the watermark serial number comprised in the given medium and the content serial number imprinted on the given medium; and
 in response to determining that the watermark serial number comprised in the given medium, or the content serial number imprinted on the given medium, fails to match the decoded combined serial number, determining that the content is counterfeit.
4. The method of any preceding claim, wherein the given medium comprises a given piece of financial instrument paper of a plurality of financial instrument papers, wherein the content comprises printed matter printed on the given piece of financial instrument paper, wherein the method comprises:

combining a watermark serial number comprised in the given piece of financial instrument paper with a printed matter serial number to create the combined serial number, wherein the watermark serial number comprised in the given piece of financial instrument paper uniquely identifies the given piece of financial instrument paper, wherein the printed matter serial number uniquely identifies the printed matter;

creating the digital signature by encoding the combined serial number using the private key of the public/private key pair; and

printing the printed matter serial number and the digital signature on the given piece of financial instrument paper to create a financial instrument.

5. The method of claim 4, wherein the printing the printed matter serial number and the digital signature on the given piece of financial instrument paper, comprises:

converting the digital signature to a bar code; and

printing the printed matter serial number and the bar code on the given piece of financial instrument paper to create the financial instrument.

6. The method of claim 4, further comprising:

decoding the digital signature printed on the given piece of financial instrument paper using a public key of the public/private key pair to obtain the combined serial number;

comparing the decoded combined serial number with the watermark serial number comprised in the given piece of financial instrument paper and the printed matter serial number printed on the given piece of financial instrument paper;

in response to determining that the watermark serial number comprised in the given piece of financial instrument paper and the printed matter serial number printed on the given piece of financial instrument paper match the combined serial number, determining that the financial instrument is authentic.
The method of claim 1, wherein the given medium comprises a given digital content storage of a plurality of digital content storages, wherein the content comprises digital content stored on the given digital content storage, wherein the method comprises:

combining a watermark serial number comprised in the given digital content storage with a digital content serial number to create the combined serial number, wherein the watermark serial number uniquely identifies the given digital content storage and the digital content serial number uniquely identifies the digital content;

creating the digital signature by encoding the combined serial number using the private key of the public/private key pair; and

imprinting the digital content serial number and the digital signature on the given digital content storage.

The method of claim 7, further comprising:

decoding the digital signature imprinting on the given digital content storage using a public key of the public/private key pair to obtain the combined serial number;

comparing the decoded combined serial number with the watermark serial number comprised in the given digital content storage and the digital content serial number imprinted on the given digital content storage;

in response to determining that the watermark serial number comprised in the given digital content storage and the digital content serial number imprinted on the given digital content storage match the combined serial number, determining that the digital content stored on the given digital content storage is an authentic copy.

A computer program product for deterring information copying, the computer program product comprising:

a computer readable storage medium having computer readable program code embodied therewith, the computer readable program code configured to:

combine a watermark serial number comprised in a given medium of a plurality of media with a content serial number to create a combined serial number, wherein the watermark serial number uniquely identifies the given medium, wherein the content serial number uniquely identifies a content stored on the given medium;
create a digital signature by encoding the combined serial number using a private key of a public/private key pair; and
imprint the content serial number and the digital signature on the given medium.

10. The computer program product of claim 9, wherein the computer readable program code is further configured to:
decode the digital signature imprinted on the given medium using a public key of the public/private key pair to obtain the combined serial number;
compare the decoded combined serial number with the watermark serial number comprised in the given medium and the content serial number imprinted on the given medium; and
in response to determining that the watermark serial number comprised in the given medium and the content serial number imprinted on the given medium match the combined serial number, determine that the content is authentic.

11. The computer program product of claim 9, wherein the computer readable program code is further configured to:
decode the digital signature imprinted on the given medium using a public key of the public/private key pair to obtain the combined serial number;
compare the decoded combined serial number with the watermark serial number comprised in the given medium and the content serial number imprinted on the given medium; and
in response to determining that the watermark serial number comprised in the given medium or the content serial number imprinted on the given medium fails to match the decoded combined serial number, determine that the content is counterfeit.

12. The computer program code of any one of claims 9 to 11, wherein the given medium comprises a given piece of financial instrument paper of a plurality of financial instrument papers, wherein the content comprises printed matter printed on the given piece of financial instrument paper, wherein the computer readable program code is configured to:
combine a watermark serial number comprised in the given piece of financial instrument paper with a printed matter serial number to create the combined serial number,
wherein the watermark serial number comprised in the given piece of financial instrument paper uniquely identifies the given piece of financial instrument paper, wherein the printed matter serial number uniquely identifies the printed matter;
create the digital signature by encoding the combined serial number using the private key of the public/private key pair; and
print the printed matter serial number and the digital signature on the given piece of financial instrument paper to create a financial instrument.

13. The computer program product of claim 12, wherein the computer readable program code configured to print the printed matter serial number and the digital signature on the given piece of financial instrument paper is further configured to:
convert the digital signature to a bar code; and
print the printed matter serial number and the bar code on the given piece of financial instrument paper.

14. The computer program product of claim 12, wherein the computer readable program code is further configured to:
decode the digital signature printed on the given piece of financial instrument paper using a public key of the public/private key pair to obtain the combined serial number;
compare the decoded combined serial number with the watermark serial number comprised in the given piece of financial instrument paper and the printed matter serial number printed on the given piece of financial instrument paper; and
in response to determining that the watermark serial number comprised in the given piece of financial instrument paper and the printed matter serial number printed on the given piece of financial instrument paper match the combined serial number, determine that the financial instrument is authentic.

15. The computer program product of claim 9, wherein the given medium comprises a given digital content storage of a plurality of digital content storages, wherein the content comprises digital content stored on the given digital content storage, wherein the computer readable program code is configured to:
combine a watermark serial number comprised in the given digital content storage with a digital content serial number to create the combined serial number, wherein the watermark serial number uniquely identifies the given digital content storage, wherein the digital content serial number uniquely identifies the digital content;

create the digital signature by encoding the combined serial number using the private key of the public/private key pair; and

imprint the digital content serial number and the digital signature on the given digital content storage.

16. The computer program product of claim 15, wherein the computer readable program code is further configured to:

decode the digital signature imprinting on the given digital content storage using a public key of the public/private key pair to obtain the combined serial number;

compare the decoded combined serial number with the watermark serial number comprised in the given digital content storage and the digital content serial number imprinted on the given digital content storage; and

in response to determining that the watermark serial number comprised in the given digital content storage and the digital content serial number imprinted on the given digital content storage match the combined serial number, determine that the digital content stored on the given digital content storage is an authentic copy.

17. A system, comprising:

a given medium of a plurality of media, the given medium comprising a watermark serial number comprised in the given medium, the watermark serial number uniquely identifies the given medium;

an encoding device comprising:

a processor; and

a computer readable storage medium having computer readable program code embodied therewith, wherein when the computer readable program code is executed by the processor, the encoding device:
combines a watermark serial number comprised in the given medium with a content serial number to create a combined serial number, wherein the content serial number uniquely identifies a content stored on the given medium; and

creates a digital signature by encoding the combined serial number using a private key of a public/private key pair; and

an imprinting device, wherein the imprinting device imprints the content serial number and the digital signature on the given medium.

18. The system of claim 17, where the encoding device further:

decodes the digital signature imprinted on the given medium using a public key of the public/private key pair to obtain the combined serial number;

compares the decoded combined serial number with the watermark serial number comprised in the given medium and the content serial number imprinted on the given medium; and

in response to determining that the watermark serial number comprised in the given medium and the content serial number imprinted on the given medium match the combined serial number, determines that the content is authentic.

19. The system of claim 17, wherein the given medium comprises a given piece of financial instrument paper of a plurality of financial instrument paper, wherein the content comprises printed matter printed on the given piece of financial instrument paper, wherein the encoding device further:

combines a watermark serial number comprised in the given piece of financial instrument paper with a printed matter serial number to create the combined serial number, wherein the watermark serial number comprised in the given piece of financial instrument paper uniquely identifies the given piece of financial instrument paper, wherein the printed matter serial number uniquely identifies the printed matter; and

creates the digital signature by encoding the combined serial number using the private key of the public/private key pair;

wherein the imprinting device further prints the printed matter serial number and the digital signature on the given piece of financial instrument paper to create a financial instrument.
20. The system of claim 19, wherein the encoding device further converts the digital signature to a bar code, wherein the imprinting device further prints the printed matter serial number and the bar code on the given piece of financial instrument paper.

21. The system of claim 19, further comprising a decoding device comprising:
 a second processor; and
 a second computer readable storage medium having second computer readable program code embodied therewith, wherein when the second computer readable program code is executed by the second processor, the decoding device:
 decodes the digital signature printed on the given piece of financial instrument paper using a public key of the public/private key pair to obtain the combined serial number;
 compares the decoded combined serial number with the watermark serial number comprised in the given piece of financial instrument paper and the printed matter serial number printed on the given piece of financial instrument paper; and
 in response to determining that the watermark serial number comprised in the given piece of financial instrument paper and the printed matter serial number printed on the given piece of financial instrument paper match the combined serial number, determines that the financial instrument is authentic.

22. The system of claim 17, wherein the given medium comprises a given digital content storage of a plurality of digital content storage, wherein the content comprises digital content stored on the given digital content storage, wherein the encoding device further:
 combines a watermark serial number comprised in the given digital content storage with a digital content serial number to create the combined serial number, wherein the watermark serial number uniquely identifies the given digital content storage, wherein the digital content serial number uniquely identifies the digital content; and
 creates the digital signature by encoding the combined serial number using the private key of the public/private key pair;
 wherein the imprinting device further imprints the digital content serial number and the digital signature on the given digital content storage.
23. The system of claim 22, further comprising a decoding device comprising:
 a second processor; and
 a second computer readable storage medium having second computer readable
 program code embodied therewith, wherein when the second computer readable program
 code is executed by the second processor, the decoding device:
 decodes the digital signature imprinted on the given digital content storage
 using a public key of the public/private key pair to obtain the combined serial number;
 compares the decoded combined serial number with the watermark serial
 number comprised in the given digital content storage and the digital content serial number
 imprinted on the given digital content storage; and
 in response to determining that the watermark serial number comprised in the
 given digital content storage and the digital content serial number imprinted on the given
 digital content storage match the combined serial number, determines that the digital content
 stored on the given digital content storage is an authentic copy.

24. A method for deterring currency counterfeiting, comprising:
 combining a watermark serial number comprised in a given piece of financial
 instrument paper of a plurality of financial instrument papers with a printed matter serial
 number to create a combined serial number, wherein the watermark serial number comprised
 in the given piece of financial instrument paper uniquely identifies the given piece of
 financial instrument paper, wherein the printed matter serial number uniquely identifies the
 printed matter printed on the given piece of financial instrument paper;
 creating a digital signature by encoding the combined serial number using the private
 key of the public/private key pair; and
 printing the printed matter serial number and the digital signature on the given piece
 of financial instrument paper to create a currency note.

25. A method for determining copying of digital content, comprising:
 combining a watermark serial number comprised in a given digital content storage of
 a plurality of digital content storages with a digital content serial number to create the
 combined serial number, wherein the watermark serial number uniquely identifies the given
digital content storage, wherein the digital content serial number uniquely identifies a digital content stored on the given digital content storage;

creating a digital signature by encoding the combined serial number using a private key of the public/private key pair; and

imprinting the digital content serial number and the digital signature on the given digital content storage.
Combine watermark serial number comprised in given piece of financial instrument paper with printed matter serial number to create combined serial number

Create digital signature by encoding combined serial number using private key of public/private key pair

Print printed matter serial number and digital signature on given piece of financial instrument paper

RETURN

FIG. 2
FIG. 3
Decode digital signature printed on given financial instrument paper using public key of public/private key pair to obtain combined serial number.

Compare decoded combined serial number of financial instrument with watermark serial number comprised in piece of financial instrument paper and printed matter serial number printed on given piece of financial instrument paper.

Match?

Yes

Financial instrument is authentic

RETURN

No

Financial instrument is counterfeit

FIG. 4
Combine watermark serial number comprised in given digital content storage and content serial number to create combined serial number

Create digital signature by encoding combined serial number using private key of public/private key pair

Imprint content serial number and digital signature on given digital content storage

RETURN

FIG. 5
Decode digital signature imprinted on given digital content storage using public key of public/private key pair to obtain combined serial number

Compare decoded combined serial number with watermark serial number comprised in given digital content storage and content serial number imprinted on given digital content storage

Match?

Yes

Digital content is authentic copy

No

Digital content is counterfeit copy

RETURN
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

H04L 9/32(2006.01)

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: H04L, H04Q, H04W

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

ICNPAT, WPI, EPDOC, CNKI: watermark, signature, public, private, counterfeit, forge, currency, note, financial, bank

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 1455912 A (MARKANY INC.) 12 Nov. 2003(12.11.2003) page 6 line 14- page 9 line 30 in the description</td>
<td>1-25</td>
</tr>
<tr>
<td>A</td>
<td>CN 102164037 A (FEITIAN TECHNOLOGIES CO., LTD.) 24 Aug. 2011(24.08.2011) the whole document</td>
<td>1-25</td>
</tr>
<tr>
<td>A</td>
<td>JP 20053 18068 A (KDDI CORP.) 10 Nov. 2005(10.11.2005) the whole document</td>
<td>1-25</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - A*: document defining the general state of the art which is not considered to be of particular relevance
 - E*: earlier application or patent but published on or after the international filing date
 - L*: document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - D*: document referring to an oral disclosure, use, exhibition or other means
 - P*: document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 Jan. 2013(14.01.2013)

Date of mailing of the international search report

28 Feb. 2013 (28.02.2013)

Authorized officer

BAI, Xuchui

Telephone No. (86-10) 62413340

Name and mailing address of the ISA/CN

The State Intellectual Property Office, the P.R.China

6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China 100088

Facsimile No. 86-10-62019451

Form PCT/ISA/210 (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 02056264 A1</td>
<td>18. 07. 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003159046 A1</td>
<td>21. 08. 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 100400582 B</td>
<td>08. 10. 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2002225479 A1</td>
<td>24. 07. 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004518321 A</td>
<td>17. 06. 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1194325 C</td>
<td>23. 03. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7457957 B2</td>
<td>25. 11. 2008</td>
</tr>
<tr>
<td>CN 102164037 A</td>
<td>24. 08. 2011</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4446400 B2</td>
<td>07. 04. 2010</td>
</tr>
<tr>
<td>US 6801999 B1</td>
<td>05. 10. 2004</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>