woO 2007127287 A2 |10 0 0000 0 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f ; 7|
International Bureau

(43) International Publication Date
8 November 2007 (08.11.2007)

52 IO O 0 OO O

(10) International Publication Number

WO 2007/127287 A2

(51) International Patent Classification:
GOGF 9/45 (2006.01)

(21) International Application Number:
PCT/US2007/010102

(22) International Filing Date: 24 April 2007 (24.04.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
06380096.5
11/598,318

26 April 2006 (26.04.2006)
13 November 2006 (13.11.2006)

EP
Us

(71) Applicant (for all designated States except US): MACRO-
VISION CORPORATION [US/US]; 2830 De La Cruz
Boulevard, Santa Clara, California 95050 (US).

(71) Applicants and

(72) Inventors: TORRUBIA, Andres, M. [ES/ES]; ¢/ Anclas
16, El Campello, E-03560 Alicante (ES). ROMAN,
Miguel, A. [ES/ES]; Avda. Fabraquer 34-O, El Campello,
E-03560 Alicante (ES). GADEA, Ivan [ES/ES]; Calle
Herba Lluisa, 15, Urbanizacion El Dorado Country Club,
buzon 29, Mutxamel, E-03110 Alicante (ES). SANCHEZ,
Pau [ES/ES]; ¢/ Jose Garcia Ferrandez, 18, 8D, Elche,
E-03205 Alicante (ES).

(74) Agents: CLISE, Timothy, B. et al.; Schwegman, Lund-
berg, Woessner & Kluth, P.O. Box 2938, Minneapolis,
Minnesota 55402 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L, IN,
IS, JIP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: BINDING EXECUTABLE CODE TO A SOFTWARE APPLICATION

(MPROVED CODE WRAPPING)~610

i

(57) Abstract: A computer-im-
plemented method and system for
binding digital rights management
executable code to a software
812 application are disclosed. The

[DENTIFY A HOST CODE BLOCK IN A HOST CODE
SECTION TO BE MOVED TO A STUB CODE SECTION

4 method and system include
identifying a host code block in
the host code section, copying
the host code block from the host

code section to a stub code block
in the stub code section, and

Bl4

COPY THE HOST CODE BLOCK FROM THE HOST CODE
SECTION TO A STUB CODE BLOCK IN THE STUB CODE SECTION

re-routing at least one reference
of the host code block to be a
reference of the stub code block.

616

RE-ROUTE AT LEAST ONE

7
REFERENCE OF THE HOST
CODE BLOCK TO A REFERENCE OF THE STUB CODE BLOCK

exir

C D)

WO 2007/127287 PCT/US2007/010102

BINDING EXECUTABLE CODE TO A SOFTWARE
APPLICATION

CLAIM OF PRIORITY

[0001]This PCT application claims the benefit of the filing date of U.S. Patent
Application Serial No. 11/598,318 filed November 13, 2006 entitled,
“COMPUTER-IMPLEMENTED METHOD AND SYSTEM FOR
BINDING DIGITAL RIGHTS MANAGEMENT EXECUTABLE CODE
TO A SOFTWARE APPLICATION,” which priority is hereby claimed under
35U.S.C. § 120 or 365(c), and to European Patent Application Serial No.
06380096.5 entitled “A COMPUTER-IMPLEMENTED METHOD AND
SYSTEM FOR BINDING DIGITAL RIGHTS MANAGEMENT
EXECUTABLE CODE TO A SOFTWARE APPLICATION,” filed April
26, 2006 which priority is hereby claimed under 35 U.S.C. § 119. The entire

content of each application listed above is incorporated herein by reference.

BACKGROUND

Technical Field
[0002] This disclosure relates to digital rights management methods and
systems. More particularly, the present disclosure relates to binding digital rights

management executable code to a software application.

Related Art

[0003] The advent of digital distribution has created new business models for
the delivery of software over the internet. One of the most widely used
techniques to provide protection against illegal distribution and piracy of
software is called wrapping.

[0004] Wrapping consists of adding a security and verification layer or a digital
rights management layer (wrapper code) on top of an unprotected executable
(host software or wrapped code henceforward) that typically verifies its
associated business rules. Business rules typically include verification that the

protected software has been purchased or, in the case of try and buy offerings,

1

WO 2007/127287 PCT/US2007/010102

verification that the software is still within the trial period. Other types of digital
rights management technologies can similarly be used. The most obvious benefit
of performing wrapping at the executable level (vs. implementing security at the
source-code level) is that the software developer does not need to worry about
security when designing or implementing his or her software as wrapping does
not require any source-code modifications. This results in a faster time to
market.

[0005] The wrapper code (stub henceforward) verifies that a set of conditions
are met when the protected executable first starts and then allows it to run
normally if everything is as expected. For example, in a try-before-you-buy
scenario, the wrapping code might first check the current date. If the current date
is greater than the trial period’s end, the software will display an expiration
screen. Conversely, if the software is allowed to run, the wrapped code will be
unencrypted and executed. At the moment when the host software is
unencrypted, the software is vulnerable.

[0006] One of the most common attacks against wrapped software is to
regenerate the original executable from the wrapped (or protected) executable.
Because the 6riginal, non-secured executable contains no protection logic, it is
relatively easy to dump the host software from memory and then distribute the
unprotected host code throughout the Internet and Peer-to-Peer networks. This
attack technique is possible because in conventional wrapping, the original
wrapped executable can be easily separated from the wrapper code.

[0007] Thus, a computer-implemented method and system for binding digital

rights management executable code to a software application are needed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Embodiments illustrated by way of example and not limitation in the
figures of the accompanying drawings, in which: |

[0009] Figure 1 depicts the usual flow for wrapped software.

[0010] Figures 2A and 2B illustrate an embodiment of the improved wrapping

process.

[0011] Figures 3A and 3B illustrate an embodiment of the improved wrapping

process where the host code block is retained.

WO 2007/127287 PCT/US2007/010102

[0012] Figures 4A and 4B illustrate an embodiment of the improved wrapping
process where a security block is provided.

[0013] Figures SA and SB illustrate an embodiment of the improved wrapping
process where the stub code is transformed.

[0014] Figures 6-9 are flow diagrams illustrating the processing steps in various
embodiments. _ A
[0015] Figures 10a and 10b are block diagrams of a computing system on which

an embodiment may operate and in which embodiments may reside.

DETAILED DESCRIPTION

[0016] A computer-implemented method and system for binding digital rights
management executable code to a software application are disclosed. In the
following description, numerous specific details are set forth. However, it is
understood that embodiments may be practiced without these specific details. In
other instances, well-known processes, structures and techniques have not been
shown in detail in order not to obscure the clarity of this description.

[0017] Various embodiments include a mechanism to bind .digital rights
management executable code to an application (host software) without requiring
code changes to the application. Some of the application blocks are copied to
the code section where the digital rights management code resides, making
removal of the digital rights management code more difficult to automate. As
used herein, a code section (e.g. a host code section or a stub code section)
simply refers to a contiguous block of code and does not mean to imply the use
of particular data or code structures provided or defined by a particular software
or operating system developer.

[0018] Various embodiments strive to improve the binding between the host
executable and the stub code while maintaining the benefit of not requiring
modifications of the host at the source-code level.

[0019] Figure 1 depicts the usual flow for wrapped software. Block 110
represents a software component, including an encrypted executable code
portion 112 and a wrapping code portion 114. Executable code 112 can be host
application software typically developed by a third party software developer
and/or distributor. Wrapping code 114 comprises security or validation software,

or software for enforcing digital rights management policies in relation to

3

WO 2007/127287 PCT/US2007/010102

executable code 112. Software component 110 is typically made available for
purchase or license by end-users through various distribution means such as
network downloads or software available on computer readable media. Once an
end-user obtains software component 110, the user can activate the software
using conventional means. Upon activation, execution of a software component
110 begins at a location within wrapping code 114 as shown by arrow 140 in
Figure 1. Wrapping code 114 can execute various business rules and/or digital
rights management rules, such as try-before-you-buy policies. For example,
based upon a particular set of rules and associated conditions, wrapping code
114 may determine that a particular user may be allowed to access and use
executable code 112 as purchased software or trial software. In this case, path
150 is taken as shown in figure 1 to a different portion of wrapping code 124.
The different portion of wrapping code 124 decrypts executable code 112 to
produce unencrypted executable code 122. Wrapping code 124 then jumps to
the unencrypted executable code 122 as shown by path 152 and the user is then
able to use host zipplication software 122. Conversely, if wrapping code 114
determines that the user is not allowed to access executable code 112, path 154 is
taken to another portion of wrapping code 134, where wrapping code 134 halts
execution and shows the user an informational message indicating that access to
executable code 112 is not allowed. In this manner, conventional wrappers can
be used to protect a related executable code component.

[0020] Various embodiments improve conventional wrapping by more tightly
binding the wrapping code (stub) to the wrapped executable code (host code) to
be protected. In one embodiment, the improved wrapping process consists of
identifying blocks within the host code that can be moved across the boundary
between the executable code and the wrapper. This process involves picking a
block of code from the stub whose size is equal or less than the host block,
copying the host block to the memory section of the stub, adjusting inbound and
outbound memory references to and from the host block to other blocks or
locations within the host, copying the stub block to the memory section of the
host, and adjusting inbound and outbound memory references to and from the
host block to other blocks or locations within the stub.

[0021] The identification of host blocks can be done using conventional code

disassemblers as well known to those of ordinary skill in the art. There are

4

WO 2007/127287 PCT/US2007/010102

commercial programs such as IDA Pro (www.datarescue.com) that provide tools
for the disassembling of executable code for multiple processors. These
conventional code disassembly techniques can be automated using various
methods.

[0022] Figure 2A illustrates an example of one host executable 250 in which a
host block 252 has been identified at offset 0x40A4C7. Block 252 of the host
code contains one outbound reference 254 (a call to location 0x40A4D0) and
two inbound references 256 and 258 (from locations 0x4080A0 and 0x40D012,
respectively). Figure 2B shows the final executable 260 produced as a result of
various embodiments. In executable 260, host block 252 has been moved to the
stub code section 261 at location 262 and the inbound and outbound references
have been corrected accordingly. In particular, outbound reference 254 has been
re-routed as outbound reference 264. Inbound reference 256 has been re-routed
as inbound reference 266. Inbound reference 258 has been re-routed as inbound
reference 268. The host code blo::k at location 265 (same location as block 252)
has been overwritten with random instructions.

[0023] Referring to Figure 6, a flow diagram illustrates the processing steps
performed in one embodiment. At processing block 612, a host code block in
the host code section is identified. At processing block 614, a copy of the host
code block is written to a stub code block in the stub code section. At processing
block 616, at least one reference of the host code block is re-routed to be a
reference of the stub code block. In various embodiments, outbound and
inbound references are corrected in the manner described above.

[0024] In some circumstances not all of the inbound references to host blocks
can be reliably determined. The following embodiment deals with this
circumstance. In another embodiment, the improved wrapping process consists
of identifying blocks within the host code that can be moved across the boundary
between the executable code and the wrapper. This process involves copying the
host block to the memory section of the stub and adjusting inbound and
outbound memory references to and from the host block to other blocks or
locations within the host.

[0025] Figure 3A illustrates an example of one host executable 350 in which a
host block 352 has been identified at offset 0x40A4C7. Block 352 the host code

contains one outbound reference 354 (a call to location 0x40A4D0) and two

5

WO 2007/127287 PCT/US2007/010102

inbound references 356 and 358 (at locations 0x4080A0 and 0x40D012,
respectively). In addition, there is an unknown reference 359 to location
0x40A4C7 depicted with a dashed line. Fi guré 3B shows the final executable
360 produced as a result of various embodiments. In executable 360, a copy of
host block 352 has been moved to the stub code section 361 at location 362 and
the inbound and outbound references have been corrected accordingly. In
particular, outbound reference 354 has been re-routed as outbound reference
364. Inbound reference 356 has been re-routed as inbound reference 366.
Inbound reference 358 has been re-routed as inbound reference 368.
Additionally, the original copy of the host block 352 has been left in the original
location 365 within the host code, so the unknown reference 369 to location
0x40A4C7 continues to render consistent results as the reference 359 in the
original copy of the host block 352 that remains at location 0x40A4C7.

[0026] Referring to Figure 7, a flow diagram illustrates the processing steps
performed in one embodiment. At processing block 712, a host code block in
the host code section is identified. At processing block 714, a copy of the host
code block is written to a stub code block in the stub code section. At processing
block 716, at least one reference of the host code block is re-routed to be a
reference of the stub code block. In various embodiments, outbound and
inbound references are corrected in the manner described above. At processing
block 718, at least one reference of the host code block is retained to remain a
reference of the host code block.

[0027] To further improve the binding between the host code and the stub code,
another embodiment consists of identifying blocks within the host code that can
be moved across the boundary between the executable code and the wrapper.
This process involves, copying an identified host block to the memory section of
the stub, adjusting outbound memory references from the host block to other
blocks or locations within the host, and pointing the inbound blocks to a stub
routine that performs security checks, such as CRC verifications, debugger
detections, optical disc signature verifications (e.g. U.S. Patent Nos. 6,535,469,
6,748,079; 6,560,176; 6,928,040; 6,425,098; 6,952,479; 6,029,259; and
6,104,679), checking the authenticity of a BIOS in a console system, checking
the presence of a mod-chip in a console system, and other tamper-proofing

verifications known to those of ordinary skill in the art.

6

WO 2007/127287 PCT/US2007/010102

[0028] Figure 4A illustrates an example of one host cxecut;able 450 in which a
host block 452 has been identified at offset 0x40A4C7. Block 452 of the host
code contains one outbound reference 454 (a call to location 0x40A4D0) and
two inbound references 456 and 458 (at locations 0x4080A0 and 0x40D012,
respectively). Figure 4B shows the final executable 460 produced as a result of
various embodiments. In executable 460, host block 452 has been moved to the
stub code section 461 at location 462 and outbound references have been
corrected accordingly. In particular, outbound reference 454 has been re-routed
as outbound reference 464. The inbound references 456 and 458 to host block
452 have been re-routed to a stub routine 463 contained within the stub code
section 461 and located at offset 0x490010 as shown in Figure 4B as location
463. The host code block at location 465 (same location as block 452) has been
overwritten with random instructions. As described above, stub routine 463 can
be any of a variety of security, authorization, verification, digital rights
management, access control, and/or tamper-proofing routines that can be
executed prior to or after enabling access to the host code. Inbound reference
456 has been re-routed to stub routine 463 as inbound reference 466. Inbound
reference 458 has been re-routed to stub routine 463 as inbound reference 468.
When stub routine 463 has completed execution, processing control is
transferred back from stub routine 463 to the copy of host block 462 at location
0x481A25 on path 469. At this point, the stub code section 461 has completed a
desired level of security and/or access checking by virtue of the execution of
stub routine 463.

[0029] Referring to Figure 8, a flow diagram illustrates the processing steps
performed in one embodiment. At processing block 812,' a host code block in
the host code section is identified. At processing block 814, a copy of the host
code block is written to a stub code block in the stub code section. At processing
block 816, a stub routine is provided in the stub code section. As described
above, the stub routine can be any of the security, authorization, verification,
digital rights management, access control, and/or tamper-proofing routines
described above. At processing block 818, at least one reference of the host code
block is re-routed to be a reference of the stub routine. At processing block 820,

at least one reference of the stub routine is re-routed to be a reference of the stub

WO 2007/127287 PCT/US2007/010102

code block. In various embodiments, outbound and inbound references are
corrected in the manner described above.

[0030] One potential attack that an attacker could use to determine if a given
function in the stub code section is actually a function copied from the host code
would be to find all memory references from the host to the stub section and
determine if the corresponding memory in the stub section can be found in the
host code. If this copy of the host code is found in the stub code, the attacker
could replace the pointer to the stub code with the location of the corresponding
pointer in the host code. This would effectively sever the wrapper code from the
host code. To hamper this attack, another embodiment transforms the host
function that is copied from the host code to the stub code by transforming the
code to a functionally equivalent but not readily discernable form. One
embodiment of code transformation is obfuscating the host function code at the
assembly language level. For example, U.S. Patent No. 6,591,415 describes how
to obfuscate functions at the assembly code level. It will be apparent to those of
ordinary skill in the art that other forms of code transformation could similarly
be used.

[0031] Figure 5SA illustrates an example of one host executable 550 in which a
host block 552 has been identified at offset 0x40A4C7. Block 552 of the host
code contains one outbound reference 554 (a call to location 0x40A4D0) and
two inbound references 556 and 558 (at locations 0x4080A0 and 0x40D012,
respectively). Figure 5B shows the final executable 560 produced as a result of
various embodiments. In executable 560, host block 552 has been moved to the
stub code section 561 at location 562 and outbound references have been
corrected accordingly. In particular, outbound reference 554 has been re-routed
as outbound reference 564. The inbound references 556 and 558 to host block
552 have been re-routed to a stub routine 563 contained within the stub code
section 561 and located at offset 0x490010 as shown in Figure 5B as location
563. The host code block at location 565 (same location as block 552) has been
overwritten with random instructions. As described above, stub routine 563 can
be any of a variety of security, authorization, verification, digital rights
management, access control, and/or tamper-proofing routines that can be
executed prior to or after enabling access to the host code. Inbound reference

556 has been re-routed to stub routine 563 as inbound reference 566. Inbound

WO 2007/127287 PCT/US2007/010102

reference 558 has been re-routed to stub routine 563 as inbound reference 568.
When stub routine 563 has completed execution, processing control is
transferred back from stub routine 563 to the copy of host block 562 at location
0x481A25 on path 569. At this point, the stub code section 561 has completed a
desired level of security and/or access checking by virtue of the execution of
stub routine 563. As an additional defense against potential hackers, the copy of
host block 552 has been code transformed (e.g. obfuscated) using conventional
techniques and the transformed code has been moved to the stub code section
561 at location 562. The outbound references have been corrected accordingly.
As described above, the inbound réferences have been re-directed to the stub
routine 563 contained within the stub code section 561. The transformed host
block 562 is difficult for potential attackers to find and detach or disable from
the host code.

[0032] Referring to Figure 9, a flow diagram illustrates the processing steps
performed in one embodiment. At processing block 912, a‘host code block in
the host code section is identified. At processing block 914, a copy of the host
code block is written to a stub code block in the stub code section. At processing
block 916, a stub routine is provided in the stub code section. As described
above, the stub routine can be any of the security, authorization, verification,
digital rights management, access control, and/or tamper-proofing routines
described above. At processing block 918, at least one reference of the host code
block is re-routed to be a reference of the stub routine. At processing block 920,
at least one reference of the stub routine is re-routed to be a reference of the stub
code block. In various embodiments, outbound and inbound references are
corrected in the manner described above. At processing block 922, the stub code
block is transformed (e.g. obfuscated).

[0033] Performing security checks, such as those executed by stub routine 563,
can take a few milliseconds to be executed. In another embodiment, host
functions are divided into two categories: 1) functions that are not performance
sensitive and thus may contain security checks, and 2) functions that are
performance sensitive and thus should not contain security checks. There are
multiple methods of categorizing the host functions.

[0034] In one embodiment, performance-sensitive functions can be identified by
having a pre-defined list of known performance-sensitive functions that a

WO 2007/127287 PCT/US2007/010102

disassembler can readily identify. Run-time functions such as fclose, malloc,
etc. that are statically linked to the host executable (and thus form the host
executable) can be detected by commercial tools such as IDA Pro FLIRT.
[0035] In another embodiment, performance-sensitive functions can be
identified by profiling the host executable and collecting information about
function execution.

[0036] In another embodiment, performance-sensitive functions can be
determined interactively prompting the user at wrapping time.

[0037] In many circumstances, it is advisable to decouple the security checks
from their response in case the checks fail. Decoupling the security checks from
their response makes it more difficult for attackers to disable the security checks
or the responses

[0038] In another embodiment, the improved wrapping process consists of
identifying blocks within the host code that can be moved across the boundary
between the executable code and the wrapper. This process involves copying the
host block to the memory section of the stub, adjusting outbound memory
references from the host block to other blocks or locations within the host, and
pointing the inbound blocks to a stub routine that performs security responses
based on previously executed security checks. Such security responses may
include showing messages to the end-user, shutting down the application,
modifying registers or function return values, or any action that modifies the
expected application behavior.

[0039] The embodiments described above can be used in conjunction with a
digital signature that verifies the integrity of the executable as described in U.S.
Patent No.6,802,006. It is also possible and advisable to combine elements from
the various described embodiments to create more effective protection of the
host executable.

[0040] Figures 10a and 10b show an example of a cdmputer system 200
illustrating an exemplary client or server computer system in which the features
of an example embodiment may be implemented. Computer system 200 is
comprised of a bus or other communications means 214 and 216 for
communicating information, and a processing means such as processor 220
coupled with bus 214 for processing information. Computer system 200 further

comprises a random access memory (RAM) or other dynamic storage device 222

10

WO 2007/127287 PCT/US2007/010102

(commonly referred to as main memory), coupled to bus 214 for storing’
information and instructions to be executed by processor 220. Main memory
222 also may be used for storing temporary variables or other intermediate
information during execution of instructions by processor 220. Computer
system 200 also comprises a read only memory (ROM) and /or other static
storage device 224 coupled to bus 214 for storing static information and
instructions for processor 220.

[0041] An optional data storage device 228 such as a magnetic disk or optical
disk and its corresponding drive may also be coupled to computer system 200
for storing information and instructions. Computer system 200 can also be
coupled via bus 216 to a display device 204, such as a cathode ray tube (CRT) or
a liquid crystal display (LCD), for displaying information to a computer user.
For example, image, textual, video, or graphical depictions of information may
be presented to the user on display device 204. Typically, an alphanumeric input
device 208, including alphanumeric and other keys is coupled to bus 216 for
communicating information and/or command selections to processor 220.
Another type of user input device is cursor control device 206, such as a
conventional mouse, trackball, or other type of cursor direction keys for
communicating direction information and command selection to processor 220
and for controlling cursor movement on display 204.

[0042] A communication device 226 may also be coupled to bus 216 for
accessing remote computers or servers, such as a web server, or other servers via
the Internet, for example. The communication device 226 may include a
modem, a network interface card, or other well-known interface devices, such as
those used for interfacing with Ethernet, Token-ring, wireless, or other types of
networks. In any event, in this manner, the computer system 200 may be
coupled to a number of servers via a conventional network infrastructure.

[0043] The system of an example embodiment includes software, information
processing hardware, and various processing steps, as described above. The
features and process steps of example embodiments may be embodied in
machine or computer executable instructions. The instructions can be used to
cause a general purpose or special purpose processor, which is programmed with
the instructions to perform the steps of an example embodiment. Alternatively,

the features or steps may be performed by specific hardware components that

11

WO 2007/127287 PCT/US2007/010102

contain hard-wired logic for performing the steps, or by any combination of
programmed computer components and custom hardware components. While
embodiments are described with reference to the Internet, the method and
apparatus described herein is equally applicable to other network infrastructures
or other data communications systems.

[0044] It should be noted that the methods described herein do not have to be
executed in the order described, or in any particular order. Moreover, various
activities described with respect to the methods identified herein can be executed
in repetitive, simultaneous, recursive, serial, or parallel fashion. Information,
including parameters, commands, operands, and other data, can be sent and
received in the form of one or more carrier waves through communication
device 226.

[0045] Upon reading and comprehending the content of this disclosure, one of
ordinary skill in the art will understand the manner in which a software program
can be launched from a computer-readable medium in a computer-based system
to execute the functions defined in the software program described above. One
of ordinary skill in the art will further understand the various programming
languages that may be employed to create one or more software programs
designed to implement and perform the methods disclosed herein. The programs
may be structured in an object-orientated format using an object-oriented
language such as Java, Smalltalk, or C++. Altematively, the programs can be
structured in a procedure-orientated format using a procedural language, such as
assembly or C. The software components may communicate using any of a
number of mechanisms well known to those of ordinary skill in the art, such as
application program interfaces or inter-process communication techniques,
including remote procedure calls. The teachings of various embodiments are not
limited to any particular programming language or environment, including
HTML and XML.

[0046] Thus, other embodiments may be realized. For example, Figures 10a
and 10b illustrate block diagrams of an article of manufacture according to
various embodiments, such as a computer 200, a memory system 222, 224, and
228, a magnetic or optical disk 212, some other storage device 228, and/or any
type of electronic device or system. The article 200 may include a computer 202

(having one or more processors) coupled to a computer-readable medium 212,

12

WO 2007/127287 PCT/US2007/010102

and/or a storage device 228 (e.g., fixed and/or removable storage media,
including tangible memory having electrical, optical, or electromagnetic
conductors) or a carrier wave through communication device 226, having
associated information (e.g., computer program instructions and/or data), which
when executed by the computer 202, causes the computer 202 to perform the
methods described herein.

[0047] Various embodiments are described. In particular, the use of
embodiments with various types and formats of user interface presentations may
be described. It will be apparent to those of ordinary skill in the art that
alternative embodiments of the implementations described herein can be
employed and still fall within the scope of the claims set forth below. In the
detail herein, various embodiments are described as implemented in computer-
implemented processing logic denoted sometimes herein as the “Software”. As
described above, however, the claimed invention is not limited to a purely
sofw&"are implementation.

[0048] Thus, a computer-implemented method and system for binding digital
rights management executable code to a software application are disclosed.
While the present invention has been described in terms of several example
einbodiments, those of ordinary skill in the art will recognize that the present
invention is not limited to the embodiments described, but can be practiced with
modification and alteration within the spirit and scope of the appended claims.

The description herein is thus to be regarded as illustrative instead of limiting.

13

WO 2007/127287 PCT/US2007/010102

CLAIMS

What is claimed is:

1. A method comprising:

identifying a host code block in the host code section;

copying the host code block from the host code section to a stub code
block in the stub code section; and

re-routing at least one reference of the host code block to be a reference
of the stub code block.

2. The method as claimed in claim 1 wherein the at least one reference is

an outbound reference.

3. The method as claimed in claim 1 wherein the at least one reference is

an inbound reference.

4. The method as claimed in claim 1 wherein the host code block in the

host code section is rendered inoperable.

5. The method as claimed in claim 1 wherein at least one block of stub

code is placed within the host code section.

6. The method as claimed in claim 1 wherein the host code block in the

host code section is identified by disassembling the host code.

7. The method as claimed in claim 1 wherein the host code block in the
host code section is identified by comparing host code blocks against
a predefined list of functions.

8. The method as claimed in claim 1 wherein the host code block in the
host code section is identified interactively during the wrapping

process.

14

WO 2007/127287 PCT/US2007/010102

9. The method as claimed in claim 1 further including retaining at least
one reference of the host code block to remain a reference of the host
code block.

10. The method as claimed in claim 9 wherein the host code block in the

host code section remains operable.

11. A method comprising:

identifying a host code block in the host code section;

copying the host code block from the host code section to a stub code
block in the stub code section;

providing a stub routine in the stub code section;

re-routing at least one reference of the host code block to be a reference
of the stub routine ; and '

re-routing at least one reference of the stub routine to be a reference of
the stub code block.

12. The method as claimed in claim 11 wherein the at least one reference

is an outbound reference.

13. The method as claimed in claim 11 wherein the at least one reference

is an inbound reference.

14. The method as claimed m claim 11 wherein the stub routine is a

digital rights management routine.

15. The method as claimed in claim 11 wherein the stub routine is an

optical disc verification routine.

16. The method as claimed in claim 11 wherein the stub routine is an

authentication verification routine.

17. The method as claimed in claim 11 wherein the stub routine is a

tamper-proofing verification routine.

15

WO 2007/127287 PCT/US2007/010102

18. The method as claimed in claim 11 further including transforming the

stub code block.

19. An article of manufacture embodied as a machine-accessible medium

including data that, when accessed by a machine, causes the machine to

perform operations comprising;

identifying a host code block in the host code section;

copying the host code block from the host code section to a stub code
block in the stub code section; and

re-routing at least one reference of the host code block to be a reference
of the stub code block.

20. The article of manufacture as claimed in claim 19 wherein the at least

one reference is an outbound reference.

21. The article of manufacture as claimed in claim 19 wherein the at least

one reference is an inbound reference.

16

WO 2007/127287

10
™

EXECUTION STARTS

PCT/US2007/010102
1/10
120
e ™~ B
EXECUTABLE CODE | [RAL ALLOWED EXECUTABLE COE | ¥Rt PinG. CODE
ENCRPTED) | OR SOFTWARE (ONENCRPTED) | DECRYPTS EXECUTABLE
PURCHASED 1, AND JUNPS TO IT
—————————— -4 -——-——————J
WRAPPING CODE . WRAPPING CODE
150
o 130 ~ vt
WRAPPED EXECUTABLE FILE R
WRAPPING CODE
154 EXECUTABLE CODE | HALTS EXECUTION AND
(ENCRYPTED) | SHOWS INFORMATIONAL
___________ MESSAGE
TRIAL NOT ALLOWED,
EXECUTABLE 15 NOT | WRAPPING CODE
ALLOWED TO RUN
4

FIG. 1

WO 2007/127287

2/10

230

)

HOST CODE

" (X4080A0 CALL OXAOA4CT s
252 B

7

40AMCT:
PUSH 1
CALL 0X40A4D0
POP ECX
REIN

~ 204

298

0X40A400

0X40D012 CALL 0X40A4C7

STUB CODE NOT EMBEDDED YET

FIG. 2A

PCT/US2007/010102

280
)
HOST CODE
" 0X4080A0 CALL OX481AZ5
o
20MCT-
MOV OWORD PTR [ECX], 1
REN
286 -
OX40A4DO
268
- Fod
0X400012 CALL OX481A25
STUB CODE 264 -
B+ W
0X481A25:)
PUSH 1
CALL OXAOMDO |
POP ECX
RETN

FIG. 2B

WO 2007/127287

N0

3/10

HOST CODE

0X4080A0 CALL OX40A4C7 359

<1
”n REFERENCE T0 0X40A4C7
R

~ 338

[
40MC7: }
PUSH 1
CALL OX40A4D0
POP ECX .
RETN

~ 394

0X40A4D0

358

"~ 0X400012 CALL OX40A4CT

e e S ——

STUB CODE NOT EMBEDDED YET

HG. 34

PCT/US2007/010102

I

%0
o~
HOST CODE
" OXA0B0AD CALL OX4B1AZS 359
C————— <9
7277 REFERENCE TO OX40A4C7 |
”352 |
0X40MCT: ;
PUSH 1
CALL OX40A400
POP ECX
REN
%66
OX40MD0 —-
W
OX400012 CALL OX481A25
STUB CODE Wh
— W
0X481A25: 1
PUSH 1
CALL O0X40A4D0 :
POP ECX
REIN

FIG. 3B

WO 2007/127287

PCT/US2007/010102

4/10
50 ™
= =
HOST CODE HOST CODE
" 0Y4080A0 CALL OXAOMCT - " 0X4080A0 CALL OX490010
AR B AR
40MCT- WACT
PUSH 1 MOV DWORD PTR [ECK], 1
CAL OX40MDO RETN
PP ECX
RETN
454 466]
OX40A4D0 458 OX40A400
A8
- - ~
0Y400012 CALL OX40MCT 0X40D012 CALL OX490010
STUB CODE NOT EMBEDDED YET STUB CODE A4]
1 AR
OX4B1AZ5:
PUSH 1
CALL oxaomp0 | |
POP ECX
RETN
& [|
0X490010:
{ SECURTY CHECKS}
NP 0X481A25

WO 2007/127287 PCT/US2007/010102
5/10
550 560
<~ P
HOST CODE HOST CODE
0X40B0A0 CALL OX40A4C7 cq 0X4080A0 CALL 0X490010
552 B 552
o pd
40MCT:) 40MCT :
PUSH 1 1 MOV DWORD PIR [ECX], 1
CALL OX40A4D0 RETN
POP ECX
RETN 1
- 994 566
0X40A400 559 0X40A4D0 —=
568
. OX40D012 CALL OX40A4C7 0X40D012 CALL 0X490010
STUB CODE NOT EMBEDDED YET STUB CODE 564 —
5 o 562
0X481A25:
PUSH 1
NOP
JMP LOCO
L0C1:
POP EAX
RETN
LOCO:
CALL OX4ADA4DO ¢
MP LOCY
55)3 560 |
0X490010:
§ SECURIY CHECKS} ¢
JMP 0X481A25

FIG. 5A

FIG. 5B

WO 2007/127287 PCT/US2007/010102

6/10

(MPROVED CODE WRAPPING)~ 610

, 612

IDENTIFY A HOST CODE BLOCK IN A HOST CODE
SECTION TO BE MOVED TO A STUB CODE SECTION

Bl4

COPY THE HOST CODE BLOCK FROM THE HOST CODE
SECTION TO A STUB CODE BLOCK IN THE STUB CODE SECTION

616

7
RE-ROUTE AT LEAST ONE REFERENCE OF THE HOST
CODE BLOCK TO A REFERENCE OF THE STUB CODE BLOCK

C EXIT D)
FIG. 6

WO 2007/127287

7/1

PCT/US2007/010102

0

((MPROVED CODE WRAPPING)~T10

\

e

IDENTIFY A HOST CODE

BLOCK IN A HOST CODE

SECTION TO BE MOVED TO A STUB CODE SECTION

4
,J

COPY THE HOST CODE BLOCK FROM THE HOST CODE
SECTION TO A STUB CODE BLOCK IN THE STUB CODE SECTION

]

U\
~

RE-ROUTE AT LEAST ONE

REFERENCE OF THE HOST

CODE BLOCK TO A REFERENCE OF THE STUB CODE BLOCK

1

, 8

RETAIN AT LEAST ONE REFERENCE OF THE HOST CODE

BLOCK TO REMAIN A REFERENCE OF THE HOST CODE BLOCK

!

C EXT)

HG. 7

WO 2007/127287

8/1

PCT/US2007/010102

0

(IMPROVED CODE WRAPPING)~B10

, B2
yod

IDENTIFY A HOST CODE

BLOCK IN A HOST CODE

SECTION TO BE MOVED TO A STUB CODE SECTION

B4
~

COPY THE HOST CODE BLOCK FROM THE HOST CODE
SECTION TO A STUB CODE BLOCK IN THE STUB CODE SECTION

, s

PROVIDE A STUB ROUTINE |

N THE STUB CODE SECTION

it

RE-ROUTE AT LEAST ONE

REFERENCE OF THE HOST

CODE BLOCK TO A REFERENCE OF THE STUB ROUTINE

820 -

RE-ROUTE AT LEAST ONE
ROUTINE T0 A REFERENCE

REFERENCE OF THE STuB
OF THE STUB CODE BLOCK

C EXIT)

FIG. 8

WO 2007/127287

PCT/US2007/010102

9/10

(MPROVED CODE WRAPPING)~ 910

, 03

IDENTIFY A HOST CODE

BLOCK IN A HOST CODE

SECTION 7O BE MOVED TO A STUB CODE SECTION

N4

)
COPY THE HOST CODE BLOCK FROM THE HOST CODE
SECTION TO A STUB CODE BLOCK IN THE STUB CODE SECTION

016
~

PROVIDE A STUB ROUTINE IN THE STUB CODE SECTION

- e

RE-ROUTE AT LEAST ONE
CODE BLOCK TO A REFERE

REFERENCE OF THE HOST
NCE OF THE STUB ROUTINE

, 920

RE-ROUTE AT LEAST ONE
ROUTINE TO A REFERENCE

~
REFERENCE OF THE STUB
OF THE STUB CODE BLOCK

, 22

TRANSFORMING THE

STUB CODE BLOCK

o

FIG. 9

WO 2007/127287

200
™

212

210

PCT/US2007/010102

10/10
M
202
9
| sem——
Vi —
7z \\3
|
220 i) 24
& U= <
MAN READ ONLY
PROCESSOR MEMORY MEMORY
] |
| | 2 8
B B TL
COMMUNICATIONS STORAGE BUS [onn
DEVICE DEVICE BRIDGE
\ 7.
A6 U
= =
1
T 28 204 p
< yed 1=
DISPLAY CURSOR
KEYBOARD DEVICE CONTROL DEVICE

FIG. 10B

206

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings

