bevel gearing 19, a vertical transmission shaft 20 connecting the gearing 19 to a second bevel gearing 21 and a drive shaft 22 for the propeller 23. An oil-circulation pump and other auxiliaries, not shown, may also be provided in the gear case 17.

To steer the boat, the gear case 17 is moved horizontally about a vertical axis. To this end, the output shaft 15 of the motor and the shaft 18 in the gear case 17 must be articulated to each other, such as by means of a universal joint 24 provided between said shafts in the space between the neck portion 8 and the gear case 17. This space is closed by means of a bellows 25 of rubber or similar material, one end of the bellows being slid onto the neck portion 8 and the other end onto a corresponding projecting portion of the gear case 17.

The base plate 3 has a bracket 26 which supports the gear case 17 by means of lugs 27 on the gear case and a vertical pivot 28 in alignment with the center of the universal joint 24, these parts forming a hinge for the gear case.

In certain cases, it may be desirable to provide an additional support for the motor 6 below the fly-wheel case 7. As shown in the drawing, a lug 29 secured to the motor casing is connected with a rubber cushion member 30, which is loosely inserted into a cup-shaped abutment 31. The abutment is secured to a boss 32 projecting from the base plate 3 through the stern 1. Alternatively, the cushion member may be secured to the boss and the abutment to the lug 29.

The supporting device described above is simple in construction and reliable in operation and also contributes towards dampening vibrations of the motor and propeller so as to prevent transmission of such vibrations to the boat. It should also be noted that the construction described facilitates quick exchange of the motor, if necessary.

What I claim is:

1. In combination with an inboard motor boat having a stern board with an opening therein, a motor within said boat, and a gear case and propeller unit outside said boat on the opposite side of said stern board from said motor; the invention which comprises means for supporting said motor and said gear case and propeller unit solely from said stern board comprising a base plate secured to the outside surface of said stern board and having an opening coinciding with the opening in said stern board, said motor being operatively connected to said gear case and propeller unit through said stern board and base plate openings and having a casing with a neck portion extending into the opening in said base plate, said motor casing neck portion having a circumferential groove in the outer periphery thereof and said base plate having a circular flange adjacent said opening projecting radially inwardly into said groove, elastically deformable supporting members inserted between each of the side faces of said circular flange and the adjacent side walls of the groove in said motor casing neck portion, said base plate having a boss portion extending inwardly through another opening in the stern board, and an additional support for said motor comprising engageable cushion and abutment members one of which is carried by said boss and the other by said motor casing adjacent said stern board.

2. In a power driven boat having a stern transom; power drive means, and means for supporting said power drive means, said supporting means comprising a rigid supporting member rigidly secured to said boat and having an opening therein coinciding with an opening in said transom, a rigid sleeve member secured to said power drive means and extending into the opening in said supporting member, one of said members having an inner peripheral face and the other of said members having an
outer peripheral face confronting said inner peripheral face, one of said faces having a peripheral groove therein and the other of said faces having a peripheral flange extending cooperatively toward said groove, and elastically deformable supporting elements inserted and compressed between each of the sides of said peripheral flange and the adjacent side walls of the groove to firmly support said power drive means in the opening in said rigid supporting member.

3. Apparatus as defined in claim 2 wherein one side wall of said groove in one of the faces comprises an annular element longitudinally movable relative to the other side wall of said groove, and further including means for displacing said annular element longitudinally toward said other side wall to rigidly clamp said elastically deformable members and said flange between said groove side walls.

4. Apparatus as defined in claim 2 wherein said supporting member is secured to said transom and has a neck portion extending into said transom opening, and further wherein said sleeve member extends into said neck portion.

5. Apparatus as defined in claim 2 wherein the side faces of said flange slope towards each other in the direction of said groove, and the side walls of said groove are substantially parallel with the corresponding side faces of said flange.

6. Apparatus as defined in claim 4 wherein said supporting elements are annular.