(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10) 申请公布号 CN 105634417 A
(43) 申请公布日 2016.06.01

(21) 申请号 201610058769.8
(22) 申请日 2016.01.28

(71) 申请人 锐迪科微电子（上海）有限公司
地址 201203 上海市浦东新区张江高科技园区
区波路 690 号四号楼 6F

(72) 发明人 王成浩 刘照 贾斌

(74) 专利代理机构 北京酷爱智慧知识产权代理
有限公司 11514
代理人 舒晓雪

(51) Int. Cl.
H03F 3/189(2006.01)
H03F 3/20(2006.01)

(54) 发明名称
多频带射频功率放大器

(57) 摘要
本申请公开了一种多频带射频功率放大器，为单级放大电路、两个或更多的单级放大电路
级联构成的多级放大电路；每个单级放大电路射频输入端和射频输出端之间又依次串联有放大
单元和匹配网络，在放大单元和匹配网络之间还
连接有一个或多个阻抗变换单元；每个阻抗变换
单元工作或不工作的状态相互组合，使得所述射
频功率放大器覆盖两个以上的频段。本申请取得
的技术效果是提供了一种覆盖多频段的射频功率
放大器，电路结构简单，使用方便。
1. 一种多频带射频功率放大器，其特征是，为单级放大电路、或两个或更多的单级放大电路级联构成的多级放大电路；每个单级放大电路在射频输入端和射频输出端之间依次串联有放大单元和匹配网络，在放大单元和匹配网络之间还连接有一个或多个阻抗变换单元；每个阻抗变换单元工作或不工作的状态相互组合，使得所述射频功率放大器覆盖两个以上的频段。

2. 根据权利要求1所述的多频带射频功率放大器，其特征是，每个阻抗变换单元中都包含开关器件，所述开关器件受控于信号而呈现接通或断开状态，相应地使得阻抗变换单元工作或不工作。

3. 根据权利要求2所述的多频带射频功率放大器，其特征是，所述开关器件为开关管。

4. 根据权利要求1所述的多频带射频功率放大器，其特征是，阻抗变换单元有n个，n为自然数，则所述射频功率放大器最多覆盖2^n个频带。

5. 根据权利要求4所述的多频带射频功率放大器，其特征是，在n=1时，当阻抗变换单元不工作，匹配网络在第一频段将射频输出端的负载匹配到放大单元的最佳阻抗，实现射频功率放大器覆盖第一频段；当阻抗变换单元工作，通过调试阻抗变换单元以使匹配网络和阻抗变换单元的总和在第二频段将射频输出端的负载匹配到放大单元的最佳阻抗，实现射频功率放大器覆盖第二频段。

6. 根据权利要求4所述的多频带射频功率放大器，其特征是，在n=2时，当两个阻抗变换单元都不工作，匹配网络在第一频段将射频输出端的负载匹配到放大单元的最佳阻抗，实现射频功率放大器覆盖第一频段；

当阻抗变换单元一工作，阻抗变换单元二不工作，通过调试阻抗变换单元一以使匹配网络和阻抗变换单元一的总和在第二频段将射频输出端的负载匹配到放大单元的最佳阻抗，实现射频功率放大器覆盖第二频段；

当阻抗变换单元一不工作，阻抗变换单元二工作，通过调试阻抗变换单元二以使匹配网络和阻抗变换单元二的总和在第三频段将射频输出端的负载匹配到放大单元的最佳阻抗，实现射频功率放大器覆盖第三频段；

当两个阻抗变换单元都工作，通过调试阻抗变换单元一和/或阻抗变换单元二以使匹配网络和阻抗变换单元一和/或阻抗变换单元二的总和在第四频段将射频输出端的负载匹配到放大单元的最佳阻抗，实现射频功率放大器覆盖第四频段；或者，放弃上述覆盖频段中的一个或多个。

7. 根据权利要求1所述的多频带射频功率放大器，其特征是，所述阻抗变换单元包括依次串联的电容二、电感二和开关管，电容二的另一端连接到射频通道，控制信号连接到开关管的控制端。

8. 根据权利要求1所述的多频带射频功率放大器，其特征是，所述阻抗变换单元包括依次串联的电容二、电容二和开关管，电感二的另一端连接到射频通道，控制信号连接到开关管的控制端。

9. 根据权利要求7或8所述的多频带射频功率放大器，其特征是，所述电容二、电容二和开关管均集成在射频功率放大器的裸片中。

10. 根据权利要求7或8所述的多频带射频功率放大器，其特征是，所述电容二和开关管均集成在射频功率放大器的裸片中，所述电感二由裸片封装时的金属线实现。
多频带射频功率放大器

技术领域
【0001】本申请涉及一种射频功率放大器（RF power amplifier）。

背景技术
【0002】射频功率放大器在无线发射机（transmitter，缩写为TX）、无线收发机（transceiver，缩写为TRX）中得到广泛运用。发射机的调制电路所产的射频信号功率很小，需要经过一系列的放大以获得足够的射频功率以后，才能馈送到天线上发射出去。射频功率放大器就是用来将小功率的射频信号放大以获得足够大的射频输出功率。
【0003】早期的射频功率放大器通常只针对一个频带进行优化。随着多模多频移动终端的日益普及，现在的射频功率放大器越来越强调对多个频段的支持。
【0004】申请公布号为CN103986422A，申请公布日为2014年8月13日的中国发明专利申请公开了一种双频带射频功率放大器。所述的双频带电路包括在射频源和负载之间串联的主匹配模块和串联匹配模块，还在串联匹配模块和负载之间并联的并联匹配模块。该电路用于第一频率时，仅由主匹配模块进行阻抗匹配，串联匹配模块不影响阻抗匹配并联阻抗模块呈现开路状态。当用于第二频率时，仅由串联匹配模块和并联匹配模块进行阻抗匹配。该文献所公开的双频带电路内部、或其与主路径之间都没有开关，不同频率的射频信号自动选择是经过主匹配模块还是经过串联匹配模块和并联匹配模块，这就使得该双频带电路的结构较复杂、设计成本高。申请公布号为CN103997305A，申请公布日为2014年8月13日的中国发明专利申请公开了一种三频带射频功率放大器。所述的双频带电路内、或其与主路径之间都没有开关，不同频率的射频信号自动选择是经过主匹配模块还是经过串联匹配模块和并联匹配模块，这就使得该双频带电路的结构较复杂、设计成本高。
【0005】申请公布号为CN104617893A，申请公布日为2015年5月13日的中国发明专利申请公开了一种多频带射频功率放大器。所述射频功率放大器具有至少两级功放管，在第一级功放管与输入端之间具有输入匹配网络，相邻的第二级功放管之间具有级间匹配网络，最后一级功放管与输出端之间具有输出匹配网络。输入匹配网络、级间匹配网络、输出匹配网络的至少一个连接阻抗匹配元件，通过调整阻抗匹配元件就能使射频功率放大器工作在不同频段。该文献所公开的阻抗匹配元件为电容、电感或电阻，且阻抗匹配元件通过开关元件连接到各个匹配网络。开关器件可以是在射频开关或继电器。如果开关器件采用射频开关，则当阻抗匹配元件采用电容或/或电感时工作在射频频段会产生比较大的电压摆幅，该电压摆幅甚至会超过射频开关的控制电压而使得射频开关难以关断而始终维持接通状态。如果开关器件采用继电器，继电器的体积较大，难以与集成电路的制造和封装工艺相集成。

发明内容
【0006】本申请所要解决的技术问题是提供一种射频功率放大器，其中的放大单元可在不同频段都达到最佳匹配负载，得到性能优化，从而实现射频功率放大器覆盖两个以上的频段。
【0007】为解决上述技术问题，本申请多频带射频功率放大器为单级放大电路、或两个或
更多的单级放大电路级联构成的多级放大电路。每个单级放大电路在射频输入端和射频输出端之间又依次串联有放大单元和匹配网络组，在放大单元和匹配网络组之间还连接有一个或多个阻抗变换单元。每个阻抗变换单元工作或不工作的状态相互组合，使得所述射频功率放大器覆盖两个以上的频段。

[0008] 本申请取得的技术效果是提供了一种覆盖多频段的射频功率放大器，电路结构简单，使用方便。

附图说明
[0009] 图1是本申请多级带射频功率放大器的实施例一的结构示意图。
[0010] 图2是本申请多级带射频功率放大器的实施例一的具体结构示意图。
[0011] 图3是本申请多级带射频功率放大器的实施例一的具体结构示意图二。
[0012] 图4是本申请多级带射频功率放大器的实施例二的结构示意图。
[0013] 图5是本申请多级带射频功率放大器的实施例三的结构示意图。
[0014] 图6是本申请提供的电感的实现方式示意图。
[0015] 图中的附图标记为：L1为电感一；T1为功率管；C2为电容二；L2为电感二；T2为开关管；C3为电容三；L3为电感三。

具体实施方式
[0016] 请参阅图1，这是本申请多级带射频功率放大器的实施例一。所述射频功率放大器在射频输入端RFin和射频输出端RFout之间依次串联有放大单元和匹配网络，所述放大单元和匹配网络之间还连接有阻抗变换单元。所述阻抗变换单元中包含开关器件，例如为HBT（异质结双极晶体管）、MOSFET（金属-氧化物-半导体场效应晶体管）等开关管。所述开关器件受控于信号cont而呈现断开或接通状态，相应地使得阻抗变换单元工作或不工作。当开关器件断开时，阻抗变换单元不工作，匹配网络可以在第一频段将射频输出端RFout的负载匹配到放大单元的最佳阻抗，实现射频功率放大器覆盖第一频段。当开关器件接通时，阻抗变换单元工作，通过调试阻抗变换单元以使匹配网络和阻抗变换单元的总和在第二频段将射频输出端的负载匹配到放大单元的最佳阻抗，实现射频功率放大器覆盖第二频段。因此，图1所示的实施例一提供了一种双频带射频功率放大器。

[0017] 请参阅图2，作为一种示例，所述放大单元包括串联的电感一L1和功率管一T1。电感一L1的另一端接工作电压。功率管一T1的另一端接地，射频输入端RFin连接到功率管一T1的控制端。电感一L1和功率管一T1的连接端作为放大单元的输出端。当无射频信号输入时，功率管一T1不工作，放大单元也就不工作。当有射频信号输入时，功率管一T1才工作，放大单元也才工作。

[0018] 仍请参阅图2，作为一种示例，所述阻抗变换单元包括依次串联的电容二C2、电感二L2和开关管T2。电容二C2的另一端连接到射频通道，也就是连接到放大单元的输出端和匹配网络的输入端。开关管T2的另一端接地，控制信号cont连接到开关管T2的控制端。当控制信号无输入时，开关管T2不工作，阻抗变换单元也就不工作。当控制信号有输入时，开关管T2才工作，阻抗变换单元也才工作。

[0019] 请参阅图3，作为一种示例，所述阻抗变换单元包括依次串联的电感二L2、电容
二C2和开关管T2。电感L2的另一端连接到射频通道，也就是连接到放大单元的输出端和匹配网络的输入端。开关管T2的另一端接地，控制信号cont连接到开关管T2的控制端。当控制信号无输入时，开关管T2不工作，阻抗变换单元也就不工作。当控制信号有输入时，开关管T2才工作，阻抗变换单元才工作。

【0020】 仍请参阅图2，作为一种示例，所述匹配网络包括电感L3和电容C3。电感L3的一端连接放大单元的输出端和阻抗变换单元的接入端，电感L3的另一端连接射频输出端RFout。电容C3的一端连接射频输出端RFout，电容C3的另一端接地。

【0021】 请参阅图4，这是本申请多频带射频功率放大器的实施例2。所述射频功率放大器在射频输入端RFin和射频输出端RFout之间依次串联有放大单元和匹配网络，在放大单元和匹配网络之间还连接有两个以上(含两个)的阻抗变换单元。每个阻抗变换单元中包含开关器件，例如为HBT，MOS等开关管。每个开关器件受控于不同的信号cont_1，cont_2而各自呈现接通或断开状态，相应地使得每个阻抗变换单元工作或不工作。

【0022】 图4所示的实施例2中，放大单元，阻抗变换单元，匹配单元也可如图2或图3所示。

【0023】 图4所示的实施例2中，如果具有n个阻抗变换单元(n为自然数)，则提供了最多满足2n个频带的射频功率放大器。以n＝2为例，则提供了最多满足四个频带的射频功率放大器。当两个阻抗变换单元都不工作时，匹配网络可以在第一频段将射频输出端RFout的负方向匹配到放大单元的最佳阻抗，实现射频功率放大器覆盖第一频段。当阻抗变换单元一工作，阻抗变换单元二不工作，未修改匹配网络的情况下，通过调试阻抗变换单元一以使匹配网络和阻抗变换单元一的总和在第二频段将射频输出端的负载匹配到放大单元的最佳阻抗，实现射频功率放大器覆盖第二频段。当阻抗变换单元一不工作，阻抗变换单元二工作，未修改匹配网络的情况下，通过调试阻抗变换单元二以使匹配网络和阻抗变换单元二的总和在第三频段将射频输出端的负载匹配到放大单元的最佳阻抗，实现射频功率放大器覆盖第三频段。当两个阻抗变换单元都工作，未修改匹配网络的情况下，通过调试阻抗变换单元一和/或阻抗变换单元二以使匹配网络和阻抗变换单元一和/或阻抗变换单元二的总和在第频段将射频输出端的负载匹配到放大单元的最佳阻抗，实现射频功率放大器覆盖第四频段。当然也可根据需要放弃覆盖其中的一个或多个频段。

【0024】 图1所示的实施例1和图4所示的实施例2都是单级放大电路，为满足射频信号的功率放大需求，有时也需要有多个单级放大电路相串联形成多级放大电路。

【0025】 请参阅图5，这是本申请多频带射频功率放大器的实施例3。所述射频功率放大器在射频输入端RFin和射频输出端RFout之间依次串联有两个以上(含两个)的单个放大电路，每个单级放大电路可以是图1所示的实施例1或者图4所示的实施例2。

【0026】 在图2，图3示例性提供的放大单元、阻抗变换单元、匹配单元中都包含电感、电容、功率管和开关管。在一种实现方式中，电感、电容、功率管和开关管都制造在射频功率放大器裸片(die)中，例如都采用砷化镓HBT器件实现。在芯片设计阶段通常由仿真等手段确定电感的感值，一旦裸片制造出来后，电感的感值无法调整。仿真可能存在一定偏差，制造也可能影响电感的感值，如果最终制造出来的电感感值与实际应用所需偏差较大，就无法应用在高敏感度场合。在另一种实现方式中，电容、功率管和开关管都制造在射频功率放大器裸片中，电感则在该裸片封装时予以实现。后一种电感的实现方法可以对电感的感值进行一定程度内调整。
请参阅图6，假设一个射频功率放大器器件采用砷化镓HBT器件实现，其中未实现电感。该器件在封装时需要将部分或全部的触点通过金属线连接到基板的部分或全部引脚，称为打线。该器件具有A、B两个触点，封装时如将触点A、触点B分别通过两条金属线连接到基板的同一引脚（这些触点上的触点、基板上的引脚例如不对外连接），则触点A和触点B之间就由金属线构成一个电感AB。该电感AB的感值可由金属线的长短进行调整，将金属线打得较高可使金属线较长，将金属线打得较低可使金属线较短。

与现有方案相比，本申请的多频带射频功率放大器具有如下特点：

其一，抗阻变换单元的结构简单，仅为串联的电容、电感和开关管。其中开关管决定与主路径接通或关断，避免了设计复杂的、无开关的阻抗变换单元。

其二，抗阻变换单元中的各器件都可采用集成电路的制造和/或封装工艺予以实现，其中电容和开关管优选采用砷化镓HBT器件实现，电感优选采用打线工艺实现，从而可调整电感的感值。由于射频频段的前期仿真设计存在一定误差，因此其电感的感值可调，大大降低了芯片设计阶段的精度要求，从而有效缩短芯片研发周期。

其三，抗阻变换单元内部包含开关器件，所述开关器件的一端接地，另一端连接电容和/或电感。工作在射频频段时，即使电容和/或电感产生比较大的电压摆幅，也不会影响开关器件的接通或关断。

其四，抗阻变换单元中由于包含电容，因此可以起到隔直作用，使得阻抗变换单元在直流上不存在漏电。这使得阻抗变换单元不会增加整个射频功率放大器的直流功耗，还使得较弱的控制信号cont _#即可驱动阻抗变换单元。

其五，当阻抗变换单元接通连接到主路径，串联的电感和电容构成对地谐振通路。通过选择合适的电容与电感，可以使得该谐振通路的谐振频率是射频通路主路径的通过频段的二次频率，这相当于一个二次谐波滤波器，抑制射频通路上的二次谐波，提高线性度。

以上仅为本申请的优选实施例，并不用于限定本申请。对于本领域的技术人员来说，本申请可以有各种更改和变化。凡在本申请的精神和原则之内，所作的任何修改、等同替换、改进等，均应包含在本申请的保护范围之内。