wO 2014/066614 A2 |11 NVFV0 00O 0 0 0000 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization é 0 00 0 OO 00

International Bureau) L.
_").//)/ (10) International Publication Number

\

(43) International Publication Date WO 2014/066614 A2
1 May 2014 (01.05.2014) WIPOIPCT

(51) International Patent Classification: Not classified (81) Designated States (uniess otherwise indicated, for every
. .. kind of national protection available). AE, AG, AL, AM,
(21) International Application Number: PCTIUSI013/066577 AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
24 October 2013 (24.10.2013) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
- . KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(25) Filing Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(26) Publication Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
(30) Priority Data: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

13/660,457 25 October 2012 (25.10.2012) Us ZW.
(71) Applicant:. UDACITY, INC- [US/US]; .2465. Latham (84) Designated States (unless otherwise indicated, for every
Street, Third Floor, Mountain View, California 94040 kind of regional protection available). ARIPO (BW, GH,
(US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK, SM,
Alto, California 94022 (US). FAVREAU, Jacques; 343 TR), OAPI (BF, BI, CF, CG, CI, CM, GA, GN, GQ, GW,

Violet Ave., Unit A, Monrovia, California 91016 (US). KM, ML, MR, NE, SN, TD, TG).
THRUN, Sebastian; 2390 El Camino Real, Suite 100, Published:

Palo Alto, California 94022 (US). ARFVIDSSON,
Joakim; 2390 El Camino Real, Suite 100, Palo Alto, Cali-
fornia 94022 (US).

(74) Agents: SCHEER, Bradley W. et al.; P.O. Box 2938,
Minneapolis, Minnesota 55402 (US).

(72) Inventors: SOKOLSKY, Michael, 137 Rinconada Ave,
Palo Alto, California 94301 (US). STAVENS, David,
13818 Page Mill Road, Los Altos Hills, California 94022
(US). AU, Irene; 2390 El Camino Real, Suite 100, Palo

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: INTERACTIVE CONTENT CREATION SYSTEM

-~ 2800

Performance
Values
[P2/C2]

I+

Completion
Status 3

Execution of
P2ic2

Completion Completion
Status 1 Status 2

Completion
Status 4

Completion
Status 5

Fig. 28
501 502 C .
D Sansa [calouate
Pl et ¢4 Completi completion T
P2 c2 C5 S“’"“p 94"’” status upon Sompiton
il Q3 2 each of Status "x”
i letion of

Executable Content Completion compl

Program Storage Status 5 ———————» Eg’gg P3/C4,

Storage

(57) Abstract: According to various embodiments, a user interface (UI) includes a precedence graph area and an icon list displaying
multiple types of program icons. A user selection of one of the program icons is received, the user selection corresponding to mov-
ing the selected program icon to the precedence graph area, the selected program icon referencing a composer Ul to generate content
of a specific media type. The selected program icon is characterized as a first programcontent-pairing icon that references the content
created by the composer UL Thereafter, a user interaction with a plurality of program-content-pairing icons in the precedence graph
area is detected, the user interaction corresponding to specifying an ordering of the plurality of program-content-pairing icons. A
program tlow precedence graph referencing a program flow of an interactive program is the generated, based on the ordering of the
program-content-pairing icons in the precedence graph area.

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

INTERACTIVE CONTENT CREATION SYSTEM

PRIORITY APPLICATION

[0001] This application claims the benefit of priority to U.S. Application
Serial No. 13/660,457, filed October 25, 2012, which is incorporated herein by

reference in its entirety.

TECHNICAL FIELD

[0002] The present application relates generally to the technical field of

interactive content and, in one specific example, to an interactive content creation

system.
BACKGROUND
[0003] In an academic setting such as a classroom of a school or university,

various types of educational content may be created and utilized by an instructor.
For example, the instructor may create markings on a whiteboard, or type and print
a quiz onto a sheet of paper, or refer to content in a physical text. In certain cases,
classes conducted by an instructor may be recorded as a conventional video by a
traditional video recorder, so that the recorded educational content may be provided

to remote students that are not able to attend the classes in person.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Some embodiments are illustrated by way of example and not
limitation in the figures of the accompanying drawings in which:
[0005] Fig. 1 is a network diagram depicting a client-server system, within

which one example embodiment may be deployed.

[0006] Fig. 2 is a block diagram of an example system, according to various
embodiments.
[0007] Figs. 3-7 each illustrate exemplary portions of various user interface

1

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

windows, according to various embodiments.

[0008] Fig. 8a illustrates an exemplary portion of a user interface window,
according to various embodiments.

[0009] Fig. 8b illustrates a program flow precedence graph, according to

various embodiments.

[0010] Fig. 9 illustrates an exemplary method, according to various
embodiments.

[0011] Fig. 10 illustrates an exemplary method, according to various
embodiments.

[0012] Fig. 11 illustrates an exemplary method, according to various
embodiments.

[0013] Figs. 12-16 cach illustrate an example portion of a user interface

window, according to various embodiments.

[0014] Fig. 17a illustrates an exemplary portion of a user interface window,
according to various embodiments.

[0015] Fig. 17b illustrates a program flow precedence graph, according to
various embodiments.

[0016] Fig. 18 illustrates an exemplary method, according to various
embodiments.

[0017] Fig. 19 illustrates an exemplary method, according to various
embodiments.

[0018] Fig. 20 illustrates an exemplary portion of a user interface window,
according to various embodiments.

[0019] Fig. 21 illustrates a program flow precedence graph, according to
various embodiments.

[0020] Figs. 22-27 cach illustrate exemplary portions of various user
interface windows, according to various embodiments.

[0021] Fig. 28 illustrates an exemplary program stored in a computer
readable storage device, according to various embodiments.

[0022] Fig. 29 illustrates an exemplary method, according to various

embodiments.

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

[0023] Fig. 30 illustrates an exemplary method, according to various
embodiments.

[0024] Fig. 31 illustrates an exemplary method, according to various
embodiments.

[0025] Fig. 32 is a diagrammatic representation of a machine in the example
form of a computer system within which a set of instructions, for causing the

machine to perform any one or more of the methodologies discussed herein, may be

executed.
DETAILED DESCRIPTION
[0026] Example methods and systems for interactive content creation are

described. In the following description, for purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of
example embodiments. It will be evident, however, to one skilled in the art that the
present invention may be practiced without these specific details.

[0027] Fig. | is a network diagram depicting a client-server system 100,
within which one example embodiment may be deployed. A networked system 102
provides server-side functionality via a network 104 (c.g., the Internet or Wide Area
Network (WAN)) to one or more clients. Fig. | illustrates, for example, a web
client 106 (e.g., a browser), and a programmatic client 108 executing on respective
client machines 110 and 112.

[0028] An Application Program Interface (API) server 114 and a web server
116 are coupled to, and provide programmatic and web interfaces respectively to,
one or more application servers 118. The application servers 118 host one or more
applications 120. The application servers 118 are, in turn, shown to be coupled to
one or more databases servers 124 that facilitate access to one or more databases
126. According to various exemplary embodiments, the applications 120 may
correspond to one or more of the modules of the system 200 illustrated in Fig. 2.
While the applications 120 are shown in Fig. 1 to form part of the networked system
102, it will be appreciated that, in alternative embodiments, the applications 120

may form part of a service that is separate and distinct from the networked system

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

102.

[0029] Further, while the system 100 shown in Fig. 1 employs a client-
server architecture, the present invention is of course not limited to such an
architecture, and could equally well find application in a distributed, or peer-to-peer,
architecture system, for example. The various applications 120 could also be
implemented as standalone software programs, which do not necessarily have
networking capabilities.

[0030] The web client 106 accesses the various applications 120 via the web
interface supported by the web server 116. Similarly, the programmatic client 108
accesses the various services and functions provided by the applications 120 via the
programmatic interface provided by the API server 114.

[0031] Fig. 1 also illustrates a third party application 128, executing on a
third party server machine 130, as having programmatic access to the networked
system 102 via the programmatic interface provided by the API server 114. For
example, the third party application 128 may, utilizing information retrieved from
the networked system 102, support one or more features or functions on a website
hosted by the third party. The third party website may, for example, provide one or
more functions that are supported by the relevant applications of the networked
system 102.

[0032] Turning now to Fig. 2, an interactive content creation system 200
includes a user interface module 202, a precedence graph module 204, and a
database 206. The modules of the interactive content creation system 200 may be
implemented on a single device such as an interactive content creation device, or on
separate devices interconnected via a network. The aforementioned interactive
content creation device may correspond to, for example, one of the client machines
(e.g. 110, 112) or application server(s) 118 illustrated in Fig. 1.

[0033] The user interface module 202 is configured to display a content
creation user interface window on a client device (such as, for example, client
machines 110, 112 illustrated in Fig. 1, which may correspond to personal
computers, laptops, smart phones, tablet computing devices, etc.). Fig. 3 illustrates

an example of content creation user interface window 300 generated by the user

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

interface module 202 and displayed by the user interface module 202 on a client
device. As illustrated in Fig. 3, the content creation user interface window 300
includes a precedence graph area 310, and an icon list 320 displaying multiple types
of program icons, such as program icons “Q” 302 (hereinafter a quiz program icon),
“S” 304 (hereinafter a sketch program icon), and “V” 306 (hercinafter of video
program icon). As described in further detail below, the precedence graph arca 310
cffectively acts as a canvas for creating a program flow precedence graph that
describes a program flow of an interactive program. The user may create the
program flow precedence graph by dragging the appropriate icons (including
program icons 302, 304, and 306) from the icon list 320 to the precedence graph
arca 310. The user may be, for example, a creator of interactive educational content,
such as a teacher, instructor, educator, or professor.

[0034] Each of the program icons 302, 304, and 306 in the icon list 320
references a composer user interface (UI) configured to generate content of a
specific media type. For example, the video program icon 306 references a video
composer Ul configured to generate video content. Similarly, the sketch program
icon 304 references a sketch composer Ul configured to generate sketch content.
Likewise, the quiz program icon 302 references a quiz composer Ul configured to
generate quiz content. Such aspects will be described in further detail below. The
video composer Ul, sketch composer Ul, and quiz composer Ul may correspond to,
or may be implemented by, a video composer module 208, sketch composer module
210, and quiz composer module 212, respectively (see Fig. 2). Thus, any references
in this disclosure to an operation performed by a composer Ul may be attributable to
the corresponding module.

[0035] The user interface module 202 is configured to detect and receive a
user selection of one or more of the program icons, such as the quiz program icon
302, sketch program icon 304, and/or video program icon 306. For example, the
user interface module 202 may detect the user dragging one of the program icons
302, 304, 306 from the icon list 320 to the precedence graph arca 310. Once a
program icon is moved to the precedence graph area, that program icon

calls/launches the composer Ul referenced by that program icon. Alternatively, the

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

composer Ul referenced by that program icon may be launched by the user interface
module 202, when the user interface module 202 detects that the program icon has
been moved to the precedence graph area.

[0036] For example, as illustrated in Fig. 4a, once the user moves the video
program icon 306 to the precedence graph area 310 resulting in moved video
program icon 405, the video program icon 306 or the user interface module 202
calls/launches the video composer Ul referenced by the video program icon 306.
The video composer Ul may be a Ul of a video recorder application configured to
record video content, such as a video recorder application of the smartphone or
tablet computer operating in conjunction with a microphone and camera of the
smartphone or tablet computer. When the video program icon 405 is moved to the
precedence graph area 310, a pop-up user interface element 406 with a “Record
Video” button may be displayed for user selection (see Fig. 4a), thereby initiating
the video composer UI upon selection of the “Record Video” button in pop-up user
interface clement 406.

[0037] According to various embodiments, the launched video composer Ul
may permit the user of the smart phone to record, for example, a video of
themselves talking, a video of themselves demonstrating something, a video of them
talking while writing on a sheet of paper, on a whiteboard, in a word processing
application, and so forth. According to an embodiment, the video composer UI may
also allow the user to load an existing video file from the user's files and/or
directories. For example, Fig. 4b illustrates an exemplary portion of a video
composer Ul 400. The composer UI 400 includes camera window 401, as well as a
record button 420, pause button 422, and stop button 424. When the user selects the
record button 420, any audio-visual input received is recorded in real-time as a
video input with sound. For example, as illustrated in Fig. 4b, a camera is recording
the user presenting a class on a blackboard, which is being recorded as a video with
sound. A pause button 422 and a stop button 424 are also provided in the video
composer UI 400. It is also possible that the video composer Ul records audio
without video, or video without audio.

[0038] After the video composer Ul records/accesses the video content, the

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

user interface module 202 may associate the recorded video content with the
dropped video program icon 405 in the precedence graph area 310. For example, the
recorded video content may be stored in a storage arca, and the dropped video
program icon 405 may be associated with a reference link or pointer to the stored
video content. As illustrated in Fig. Sa, after the dropped video program icon 405 is
associated with video content, a checkmark or other indicia may be displayed in the
dropped video program icon to indicate that icon is now a “P#/C#” icon 405-1, as
described below.

[0039] According to various exemplary embodiments, once content has been
associated with a program icon in the precedence graph arca 310, the user interface
module 202 characterizes the program icon as a P#/C# icon or P#/C# pair (also
referred to as a program-content-pairing icon). A P#/C# icon references particular
content created by a particular program. For instance, “P1/C1” indicates that
“program 17 (e.g., a particular composer Ul) generates “content 17,

[0040] For example, Fig. 5b illustrates an alternative depiction of the
precedence graph area 310. As illustrated in Fig. Sb, precedence graph arca 500
includes P#/C# icon “P1/C1” 405-1 (which corresponds to the former video
program icon 405 illustrated in Fig. 4a). “P1/C1” indicates that “program 1” (e.g.,
the video composer Ul illustrated in Fig. 4b) generates “content 17 (such as the
video illustrated in Fig. 4b). As illustrated in Fig. 5b, an executable program storage
501 stores executable programs P1, P2, P3 which may correspond to a video
composer Ul/module, sketch composer Ul/module, and quiz composer Ul/module,
as described in this disclosure. Further, content storage 502 stores content created by
these executable programs, including the aforementioned content “C1” (e.g., the
video illustrated in Fig. 4B) generated by the program “P1” (e.g., the video
composer Ul illustrated in Fig. 4B), where this content is referenced by the P1/C1
icon 405-1.

[0041] Turning now to Fig. 6a, another example is illustrated. The user
moves the sketch program icon 304 to the precedence graph arca 310 resulting in
moved sketch program icon 605, and the sketch program icon 605 or the user

interface module 202 calls/launches the sketch composer Ul referenced by the

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

sketch program icon 304. When the sketch program icon 304 is moved to the
precedence graph area 310, a pop-up user interface element 606 with a “Record
Sketch” button may be displayed for user sclection (see Fig. 6a), thereby initiating
the sketch composer UI upon selection of the “Record Sketch” button in pop-up
user interface element 606.

[0042] As described throughout this disclosure, a sketch or sketch video
refers to any drawing or writing received directly based on user input, such as input
from the finger of the user or an object (e.g., stylus) received via a touchscreen of
the smart phone. Thus, the sketch may be similar to a freechand drawing in a sketch
pad or scratchpad. For example, Fig. 6b illustrates an exemplary portion of a sketch
composer UI 600. The sketch composer UI 600 includes sketch window 601, as
well as a record button 620, pause button 622, and stop button 624. When the user
selects the record button 620, any input received by the user is recorded in real-time
as a video input with sound. For example, as illustrated in Fig. 6b, the user is
creating markings on the touch screen of a tablet computing device, which is being
recorded as a video with sound (and when the video is displayed, the user will be
able to see the continuous drawing of the markings). If the user selects the pause
button 622, then the user may continue to draw in the sketch area 601, and when the
user selects the pause button 622 again, the sketch video and sound recording will
continue with the new user inputs already in place. For example, if an instructor
needs to draw a fairly complex diagram and does not want the sketch video
recording to capture the downtime while the instructor is drawing the complex
diagram, the user may select the pause button 622 and draw the complete diagram,
with the user inputs being reflected as markings in the sketch window 601. When
the user selects the pause button 622 again, the recording of the sketch video is
resumed with the fully drawn diagram being displayed. Thus, when a viewer is
viewing the sketch video at a later time, it will appear to the viewer that at one
moment there does not appear to be any diagram, and at the next moment the
diagram appears in the sketch video.

[0043] If the user selects the stop button 624, the recording the sketch video

is stopped, and moreover, any user input received via the touchscreen of the client

WO 2014/066614

10

15

20

25

30

PCT/US2013/066577

device is not registered or displayed sketch window 601. The user interface 600 of
the sketch recorder application also includes a load background button 630. When
the user selects the load background button 630, the user may select a background
picture, image, file, slideshow slide, etc. from the user's directory of files for display
as a background in the sketch arca 601 (and in the resulting sketch video). In this
way, the user is able to create a sketch video where they circle portions of images,
underline portions of documents, and the like. If the user selects the type text button
632, a keyboard may be displayed by the precedence graph module 204; the user
may select a given position of the sketch arca 601, and then any user input via the
displayed keyboard may be displayed as typed characters or text at the given
position.

[0044] After the sketch composer Ul records the sketch content, the user
interface module 202 may associate the recorded sketch content with the dropped
sketch program icon 605 in the precedence graph arca 310. For example, the
recorded sketch content may be stored in a storage area, and the dropped sketch
program icon 605 may be associated with a reference link or pointer to the stored
sketch content. As illustrated in Fig. 7a, after the dropped sketch program icon 605
is associated with sketch content, a checkmark or other indicia may be displayed in
the dropped sketch program icon to indicate that icon is now a “P#/C#” icon 605-1,
as described below.

[0045] That is, as described in various exemplary embodiments above, once
content has been associated with a program icon in the precedence graph arca 310,
the user interface module 202 characterizes the program icon as a P#/C# icon or
P#/C# pair (also referred to as a program-content-pairing icon). A P#/C# icon
references particular content created by a particular program. For instance, “P1/C1”
indicates that “program 1” (e.g., a composer UI) generates “content 17,

[0046] For example, Fig. 7b illustrates an alternative depiction of the
precedence graph area 310. As illustrated in Fig. 7b, precedence graph arca 500
includes P#/C# icon “P1/C1” 405-1 (which corresponds to the former video
program icon 405 illustrated in Fig. 4a) and P#/C# icon “P2/C2” 605-1 (which
corresponds to the former sketch program icon 605 illustrated in Fig. 6a). “P2/C2”

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

indicates that “program 2” (¢.g., the sketch composer Ul illustrated in Fig. 6b)
generates “content 2” (such as the sketch video illustrated in Fig. 6b). As illustrated
in Fig. 7b, an executable program storage 501 stores executable programs P1, P2,
P3 which may correspond to the video composer Ul, sketch composer UI, and quiz
composer Ul described in this disclosure. Further, content storage 502 stores content
created by these executable programs, including the aforementioned content “C2”
(c.g., the sketch illustrated in Fig. 6B) gencrated by the program “P2” (e.g., the
sketch composer Ul illustrated in Fig. 6B), which is referenced by the P2/C2 icon
605-1. Thus, according to various exemplary embodiments, the user interface
module 202 is configured to associate content with cach of the program icons in the
precedence graph area 310, and to then re-characterize these program icons as
P#/C# icons.

[0047] Operations of the precedence graph module 204 are now discussed.
According to various embodiments, the precedence graph module 204 is configured
to detect user interaction with the plurality of P#/C# icons in the precedence graph
arca 310. In particular, the user interaction may correspond to specifying an
ordering of the plurality of P#/C# icons, when the user draws lines between the
P#/C# icons or changes the arrangement of the P#/C# icons. Thereafter, the
precedence graph module 204 is configured to generate a program flow precedence
graph, based on the P#/C# icons in the precedence graph area 310 and the ordering
of the P#/C# icons specified by the user. The precedence graph module 204 may
generate the precedence graph by placing arrow connectors between the P#/C#
icons that reflect the ordering specified by the user.

[0048] For example, as illustrated in Fig. 7a, precedence graph area 310
includes the P1/C1 icon 405-1 and the P2/C2 icon 605-1, and Fig. 8a illustrates that
an arrow connector 808 has been inserted between P1/C1 icon 405-1 and P2/C2
icon 605-1, the arrow extending from P1/C1 icon 405-1 to P2/C2 icon 605-1. As
described in more detail below, the arrow connector 808 indicates that content
associated with the P2/C2 icon 605-1 is to be displayed after display of content
associated with the P1/C1 icon 405-1, during execution of an interactive program.

[0049] The precedence graph module 204 may generate an arrow connector

10

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

such as the arrow connector 808 in various ways. According to an aspect, the
precedence graph module 204 may generate the arrow connector extending from a
first icon to a second icon (such as arrow connector 808 illustrated in Fig. 8a), after
the user draws a line extending from a first icon to a second icon (e.g., on a touch
screen of a tablet device). According to another aspect, the precedence graph
module 204 may generate the arrow connector after the user selects a “Connect”
user interface element. For example, with reference to Fig. 6a, after the user drags
the icon 304 into the precedence graph arca 310, pop-up user interface clement 606
automatically appears, and if the user selects the “Connect” option, the user is able
to select a first icon (e.g., icon 405 illustrated in Fig. 6a) and a second icon (e.g.,
icon 605 illustrated in Fig. 6a), and then the precedence graph module 204 will
automatically generate and display the arrow connector extending from the first icon
to the second icon (e.g., arrow connector 808 illustrated in Fig. 8a).

[0050] According to another aspect, the precedence graph module 204 may
generate the arrow connector automatically based on the user specification of the
arrangement of the icons in the precedence graph arca 310. For example, as
illustrated in Fig. 7a, the user may manipulate the arrangement of the P#/C# icons
405-1, 605-1 so as to adjust the relative positions of the P#/C# icons 405-1, 605-1,
so that one icon appears to the left of the other icon. The precedence graph module
204 may determine that if a second icon is dropped within a predetermined distance
of a first icon dropped in the precedence graph arca 310, and/or the second icon is
positioned in a particular direction with respect to the first icon (e.g., the second
icon is to the right of the first icon), then an arrow connector extending from the
first icon to the second icon should be generated and displayed. For example, with
reference to Fig. 8a, the aforementioned first icon may correspond to the P1/Cl1 icon
405-1 and the aforementioned second icon may correspond to the P2/C2 icon 605-1.
[0051] Thus, an ordering of the P#/C# icons may be specified by the user,
and the ordering may be indicated by one or more arrow connector's between the
P#/C# icons in a precedence graph. That is, after the user interacts with the P#/C#
icons in the precedence graph area 310 in order to specify an ordering of the P#/C#

icons, the precedence graph module 204 is configured to gencrate the program flow

11

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

precedence graph, based on the P#/C# icons in the precedence graph arca 310 and
the ordering of the P#/C# icons in the precedence graph arca 310 as specified by the
user.

[0052] As described throughout this disclosure, a program flow precedence
graph references a program flow of an interactive program. In other words, a
program flow precedence graph depicts a program flow (i.e., a series of steps in a
process and the order in which they occur). For example, a program flow
precedence graph may illustrate a series of boxes representing units of content and
arrows between each of the boxes indicating the order in which each unit of content
is to be played. As described above, the precedence graph module 204 may generate
and display a series of arrows between each of the P#/C# icons in the precedence
graph arca 310, to thereby generate and display a program flow precedence graph
comprised of the P#/C# icons in the precedence graph arca 310 and the generated
arrows. This program flow precedence graph generated by the precedence graph
module 204 corresponds to a set of instructions for display of various content (e.g.,
content associated with the P#/C# icons 405-1 and 605-1) to thereby gencrate an
interactive program such as an interactive video.

[0053] Fig. 8b illustrates a program flow precedence graph of a program,
gencrated based on the P#/C# icons and arrows illustrated in the precedence graph
arca 310 of Fig. 8a. That is, the precedence graph module 204 has generated and
displayed an arrow connector 808 extending from the P1/C1 icon 405-1 to the
P2/C2 icon 605-1, to thereby generate a precedence graph, which is also displayed
in Fig. 8b. The precedence graph illustrated in Fig. 8b indicates that the video
content associated with the P1/C1 icon 405-1 is played first, and then the sketch
content associated with the P2/C2 icon 605-1 is played immediately after the video
content, to form a single interactive program.

[0054] When the user selects the save button 330 in Fig. 8a, the program
flow precedence graph displayed in the precedence graph area 310 is stored as a
series of instructions (e.g., in a data file) for selective display of respective portions
of the content associated with the P#/C# icons in the program flow precedence

graph. That is, when the user accesses the file and initiates display, the video

12

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

content associated with the P1/C1 icon 405-1 is played first, and then the sketch
content associated with the P2/C2 icon 605-1 is played immediately after the video
content as a single interactive program. Thus, the precedence graph module 204 or
another application is configured to execute the interactive program, based on the
program flow referenced by the program flow precedence graph.

[0055] Fig. 9 is a flowchart illustrating an example method 900, according
to various embodiments. The method 900 may be performed at least in part by, for
example, the interactive content creation system 200 illustrated in Fig. 2 (or an
apparatus having similar modules, such as client machines 110 and 112 or
application server 112 illustrated in Fig. 1). In 901, the user interface module 202
displays, on a client device, a user interface (UI) including a precedence graph area
and an icon list displaying multiple types of program icons (see Fig. 3). In 902, the
user interface module 202 receives a user selection of one of the program icons, the
user selection corresponding to moving the selected program icon to the precedence
graph area, the selected program icon referencing a composer Ul to generate content
of a specific media type. In 903, the user interface module 202 associates the
generated content with the selected program icon, and characterizes the selected
program icon as a first program-content-pairing icon that references the content
created by the composer Ul (see, e.g., Fig. 7a).

[0056] In 904, the precedence graph module 204 detects a user interaction
with a plurality of program-content-pairing icons in the precedence graph arca, the
user interaction corresponding to specifying an ordering of the plurality of program-
content-pairing icons. For example, as described above, the user may draw an arrow
between various program—content—pairing icons, or may manipulate the
arrangement of the various program—content—pairing icons. In 905, the precedence
graph module 204 generates a program flow precedence graph referencing a
program flow of an interactive program, based on the ordering of the program-
content-pairing icons in the precedence graph area (see, ¢.g., Fig. 8a and 8b). The
generation of the program flow precedence graph may include placing arrow
connectors between the program-content-paring icons in the precedence graph area.

In 906, the precedence graph module 204 executes the interactive program, based on

13

WO 2014/066614

10

15

20

25

30

PCT/US2013/066577

the program flow referenced by the program flow precedence graph generated in
905.

[0057] Fig. 10 is a flowchart illustrating an example method 1000, according
to various embodiments. The method 1000 may be performed at least in part by, for
example, the interactive content creation system 200 illustrated in Fig. 2 (or an
apparatus having similar modules, such as client machines 110 and 112 or
application server 112 illustrated in Fig. 1). In 1001, the user interface module 202
receives a user selection of a video program icon moved to the precedence graph
arca. In 1002, a video composer Ul configured to record video content is launched.
In 1003, the user interface module 202 associates the recorded video content with
the video program icon, and characterizes the video program icon as a program—
content—pairing icon that references the video content created by the video
composer Ul

[0058] Fig. 11 is a flowchart illustrating an example method 1100, according
to various embodiments. The method 1100 may be performed at least in part by, for
example, the interactive content creation system 200 illustrated in Fig. 2 (or an
apparatus having similar modules, such as client machines 110 and 112 or
application server 112 illustrated in Fig. 1). In 1101, the user interface module 202
receives a user selection of a sketch program icon moved to the precedence graph
arca. In 1102, a sketch composer Ul configured to record sketch content is launched.
In 1103, the user interface module 202 associates the recorded sketch content with
the sketch program icon, and characterizes the sketch program icon as a program—
content—pairing icon that references the sketch content created by the sketch
composer Ul

[0059] As described above, the program icons included in the icon list 320
(see Fig. 3) also include a quiz program icon 302. As illustrated in Fig. 12, the user
moves the quiz program icon 302 to the precedence graph arca 310 resulting in
moved quiz program icon 1205, and the quiz program icon 302 or the user interface
module 202 calls/launches the quiz composer Ul referenced by the quiz program
icon 302. The quiz composer Ul may be configured to generate quiz content (such

as quizzes, exercises, or tests). When the quiz program icon 302 is dropped in the

14

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

precedence graph area 310, a pop-up user interface element 1206 with a “Generate
Quiz” button may be displayed for user selection (see Fig. 12), thereby initiating the
quiz composer Ul upon selection of the “Generate Quiz” button in pop-up user
interface clement 1206.

[0060] Fig. 13a illustrates an exemplary portion of a quiz composer Ul
1300. The quiz composer Ul 1300 includes a composition area 1310 (similar to the
sketch area 601 of Fig. 6) where the user can provide input by writing quiz
questions by hand, or the user can sclect the type text button and select a portion of
the composition area 1310, and then enter text for the questions of the quiz via a
keyboard displayed by the precedence graph module 204. As seen in Fig. 13a, the
user has already entered the text of “The carth is flat™ as a true-false quiz question.
When the user selects the true false answers selection button 1320, the pop-up user
interface clement 1330 appears with sample participant response icons, such as a
“true” participant response icon and a “false” participant response icon. As
illustrated in Fig. 13, the user may drag and drop the sample participant response
icons from the pop-up menu 1330 to a desired position in the composition area
1310. Thus, the user is able to generate an interactive quiz, where quiz participants
can view the quiz question, and are provided with a number of selection buttons to
enter their response.

[0061] Morcover, the quiz composer Ul permits the user to set the correct
answer for each quiz question. For example, as illustrated in Fig. 13b, after the user
has placed the true and false participant response icons in the desired positions, the
user may select the set correct answer button, which displays a selection rectangle
over cach possible participant response icon. As illustrated in Fig. 13b, when the
user selects one of the selection rectangles, a checkmark appears to indicate that this
is stored by the quiz composer Ul as the correct answer to the current quiz question.
Thus, the quiz composer Ul is able to understand what the correct answer for the
question is, so that when a participant takes the quiz, the quiz composer Ul may
determine whether the participants answered the quiz question correctly or
incorrectly. When the user selects the next question button, the user is able to enter

another quiz question, as illustrated in Fig. 14a.

15

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

[0062] In Fig. 14a, supposc the user has already entered the text of “The
largest ocean is:” and a number of responses such as “Indian ocean”, “Atlantic
Ocean”, etc. When the user selects the multiple-choice answers selection button
1322, the pop-up user interface clement 1430 appears with sample participant
response icons, such as a “A”, “B”, “C” and “D” multiple-choice participant
response icons. As illustrated in Fig. 14a, the user may drag and drop the sample
participant response icons from the pop-up menu 1430 to a desired position in the
composition area 1310. Thus, the user is able to generate an interactive quiz, where
quiz participants can view the quiz question and are provided with a number of
multiple-choice selection buttons to enter their response. Note that instead of the
user entering in the answers before dragging the multiple-choice icons into the
composition area 1310, once the user drags and drops a participant response icon in
the composition area 1310, a text box may be displayed proximate to the dropped
participant response icon to allow the user to enter text or frechand writing for the
multiple-choice answer.

[0063] Morcover, the quiz composer Ul permits the user to set the correct
answer for each multiple-choice quiz question. For example, as illustrated in Fig.
14b, after the user has placed the multiple-choice participant response icons in the
desired positions, the user may select the set correct answer button, which displays a
selection rectangle over each possible multiple-choice participant response icon. As
illustrated in Fig. 14b, when the user sclects one of the selection rectangles, a
checkmark appears to indicate that this is stored by the quiz composer Ul as the
correct answer to the current multiple-choice quiz question. Thus, the quiz
composer Ul is able to understand what the correct answer for the question is, so
that when a participant takes the quiz, the quiz composer Ul may determine whether
the participants answered the quiz question correctly or incorrectly. When the user
selects the next question button, the user is able to enter another quiz question, as
illustrated in Fig. 15a.

[0064] In Fig. 15a, suppose the user has already entered the text of “Please
pick the hypotenuse of the triangle:” and has drawn the triangle (¢.g., by using a
drawing application or by pressing the load background button to load a file with a

16

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

picture of a triangle). When the user selects the choice point's answer selection
button 1324, the pop-up user interface clement 1530 appears with a sample
participant response icon. As illustrated in Fig. 15a, the user may drag and drop an
arbitrary number of the sample participant response icons from the pop-up menu
1530 to desired positions in the composition area 1310. Thus, the user is able to
generate an interactive quiz, where quiz participants can view the quiz question and
are provided with a number of choice point selection buttons to enter their response.
[0065] Morcover, the quiz composer Ul permits the user to set the correct
answer for each choice point quiz question. For example, as illustrated in Fig. 15b,
after the user has placed the choice point participant response icons in the desired
positions, the user may select the set correct answer button, which displays a
selection rectangle over each possible choice point participant response icon. As
illustrated in Fig. 15b, when the user sclects one of the selection rectangles, a
checkmark appears to indicate that this is stored by the quiz composer Ul as the
correct answer to the current choice point quiz question. Thus, the quiz composer Ul
is able to understand what the correct answer for the question is, so that when a
participant takes the quiz, the quiz composer Ul may determine whether the
participants answered the quiz question correctly or incorrectly. When the user
selects the next question button, the user is able to enter another quiz question, as
illustrated in Fig. 16a.

[0066] In Fig. 16a, suppose the user has already entered the text of “What is
9x5 ?”. When the user selects the text input answer selection button 1326, the pop-
up user interface element 1630 appears with a sample participant response text entry
box. As illustrated in Fig. 16a, the user may drag and drop the sample participant
response text entry box from the pop-up menu 1630 to a desired position in the
composition area 1310. Thus, the user is able to generate an interactive quiz, where
quiz participants can view the quiz question and are provided with a text entry box
to enter their response.

[0067] Morcover, the quiz composer Ul permits the user to set the correct
answer for each text entry question. For example, as illustrated in Fig. 16b, after the

user has placed the sample participant response text entry box in the desired

17

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

position, the user may select the set correct answer button, which displays a
selection rectangle over the candidate participant response text entry box. As
illustrated in Fig. 16b, when the user selects the selection rectangle, the user may
enter the correct answer to the current text entry quiz question. Thus, the quiz
composer Ul is able to understand what the correct answer for the question is, so
that when a participant takes the quiz, the quiz composer Ul may determine whether
the participants answered the quiz question correctly or incorrectly. The numerical
answer sclection button 1328 functions similarly to the text input answer selection
button 1326 just described, and will not be discussed in further detail in the interest
of clarity. It is apparent that the functions performed by the quiz composer you buy
may be performed by a quiz composer module.

[0068] When the user selects the finish button illustrated in Fig. 16b, then as
illustrated in Fig. 17a the quiz content generated by the user (which may include
multiple quiz questions) is associated with the quiz program icon 1205 dropped in
the precedence graph area 310. For example, the recorded quiz content may be
stored in a storage arca, and the dropped quiz program icon 1205 may be associated
with a reference link or pointer to the stored quiz content. As illustrated in Fig. 17a,
after the dropped quiz program icon 1205 is associated with quiz content, a
checkmark or other indicia may be displayed in the dropped quiz program icon to
indicate that icon is now a P#/C# icon 1205-1.

[0069] That is, as described above, according to various exemplary
embodiments, once content has been associated with a program icon in the
precedence graph area 310, the user interface module 202 re-characterizes the
program icon as a P#/C# icon or P#/C# pair (also referred to as a program-content-
pairing icon). A P#/C# icon references particular content created by a particular
program or composer Ul. For instance, “P1/C1” indicates that “program 1” (e.g., a
composer Ul) generates “content 17,

[0070] For example, Fig. 17b illustrates an alternative depiction of the
precedence graph area 310. As illustrated in Fig. 17b, precedence graph area 500
includes P#/C# icon “P3/C3” 1205-1 (which corresponds to the former quiz
program icon 1205 illustrated in Fig. 12). “P3/C3” indicates that “program 3” (e.g.,

18

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

the quiz composer Ul illustrated in Fig. 13a) gencrates “content 3” (such as the quiz
illustrated in figures 13a through 16b). As illustrated in Fig. 17b, an executable
program storage 501 stores executable programs P1, P2, P3 which may correspond
to the video composer Ul/module, sketch composer Ul/module, and quiz composer
Ul/module described in this disclosure. Further, content storage 502 stores content
created by these executable programs, including the aforementioned content “C3”
(c.g., the quiz illustrated in figures 13a through 16b) generated by the program “P3”
(e.g., the quiz composer Ul illustrated in Fig. 13a), which is referenced by the P3/C3
icon 1205-1.

[0071] Moreover, the precedence graph module 204 has generated an arrow
1708 between P2/C2 icon 605-1 and P3/C3 icon 1205-1, in order to gencrate a
program flow precedence graph. The arrow 1708 may have been gencrated based on
user interaction with the P#/C# icons in the precedence graph arca 310 (i.e., a user
specification of an ordering of the P#/C# icons), based on methods discussed
elsewhere in this disclosure. The program flow precedence graph illustrated in Fig.
17b indicates that the video content associated with the P1/C1 icon 405-1 is played
first, then the sketch content associated with the P2/C2 icon 605-1 is displayed
immediately thereafter, and then the quiz content associated with the P3/C3 icon
1205-1 is displayed, as a single interactive program. Of course, it is apparent that
the arrangement of the P#/C# icons and the corresponding program flow precedence
graph is completely customizable by the user. For example, the user may begin the
interactive media with the quiz followed by three video segments, followed by a
sketch segment, followed by another quiz. Thus, the users able to casily generate an
interactive program comprising various types of media - including audio, videos,
sketches, and quizzes - in various different arrangements.

[0072] Fig. 18 is a flowchart illustrating an example method 1800, according
to various embodiments. The method 1800 may be performed at least in part by, for
example, the interactive content creation system 200 illustrated in Fig. 2 (or an
apparatus having similar modules, such as client machines 110 and 112 or
application server 112 illustrated in Fig. 1). In 1801, the user interface module 202

receives a user selection of a quiz program icon dropped in the precedence graph

19

WO 2014/066614

10

15

20

25

30

PCT/US2013/066577

arca. In 1802, a quiz composer Ul configured to generate quiz content is launched.
In 1803, the user interface module 202 associates the generated quiz content with
the quiz program icon, and characterizes the quiz program icon as a program—
content—pairing icon that references the quiz content created by the quiz composer
UL

[0073] Fig. 19 is a flowchart illustrating an example method 1900, according
to various embodiments. The method 1900 may be performed at least in part by, for
example, the interactive content creation system 200 illustrated in Fig. 2 (or an
apparatus having similar modules, such as client machines 110 and 112 or
application server 112 illustrated in Fig. 1). In 1901, the user interface module 202
receives a user selection of a quiz program icon dropped in the precedence graph
arca. In 1902, a quiz composer Ul including a composition arca and multiple types
of participant response icons is displayed. In 1903, the quiz composer Ul receives
selection of one or more of the participant response icons, the user selection
corresponding to dragging and dropping each selected participant response icon to a
specific position in the composition area of the quiz composer UL In 1904, the quiz
composer Ul receives user specification of a correct answer associated with one of
the dropped participant response icons.

[0074] Referring back to Fig. 17b, the illustrated program flow precedence
graph is a linear precedence graph, given that only a single connection arrow
emanates from cach of the dropped icons. According to various exemplary
embodiments, when the user interacts with the P#/C# icons in the precedence graph
arca 310, a user can define an order of the P#/C# icons not only with linear arrow
indicators (as described above), but also with branching decision nodes. The
decision nodes cause the interactive program to proceed to display one piece of
content or another, depending on various conditions. For example, according to
various emoluments, a decision node provided between the first and second P#/C#
icons in the precedence graph arca 310 indicates that the content associated with the
second P#/C# icon is to be displayed after display of the content associated with the
first P#/C# icon, only if some condition associated with the decision node is

satisfied.

20

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

[0075] For example, Fig. 20 illustrates a content creation user interface 300
similar to that illustrated in Fig. 17a. In this example, a user has already placed
P#/C# icons 405-1, 605-1, 1205-1, 2006 (referencing a second video), and 2007
(referencing a third video) in the precedence graph area 310. The icon list area 320
also includes a NXT operator 308 corresponding to a decision node. The user may
select the NXT operator 308 in the icon list 320, and place it in the precedence
graph in order to dynamically controlled branching in an interactive program. For
example, NXT operator 2005 has been placed in the precedence graph after the
P#/C# icon 1205-1 and before the P#/C# icons 2006 and 2007. As illustrated in the
example of Fig. 20, the user has drawn an arrow from P#/C# icon 1205 to NXT
operator 2005, and two arrows emanating from NXT operator 2005 going to P#/C#
icon 2006 and P#/C# icon 2007.

[0076] Fig. 21 illustrates an alternative depiction of the precedence graph
arca 310. As illustrated in Fig. 21, precedence graph arca 500 includes P#/C# icon
“P1/C4” (which corresponds to the P#/C# icon 2006 illustrated in Fig. 20) and
P#/C# icon “P1/C5” (which corresponds to the P#/C# icon 2007 illustrated in Fig.
20). “P1/C4” indicates that “program 1” (¢.g., the video composer UI) generates
“content 4”7, and “P1/C5” indicates that “program 1” (e.g., the video composer UI)
generates “content 5”. As illustrated in Fig. 21, an executable program storage 501
stores executable programs P1, P2, P3 which may correspond to the video composer
Ul, sketch composer Ul, and quiz composer Ul described in this disclosure. Further,
content storage 502 stores content created by these executable programs, including
the aforementioned content “C4” and “C5”.

[0077] When the user selects the NXT operator 2005 in the precedence
graph arca 310 of Fig. 20, the user may be able to set the branching conditions for
this decision node. According an exemplary embodiment, the branching conditions
for a decision node may be defined in terms of a specific performance value
associated with a quiz. For example, since the quiz content referenced by the P#/C#
icon 1205-1 includes a number of questions or exercises (see figures 13a to 16b),
and since the quiz composer Ul is able to determine when a participant answers

cach question correctly during execution of the interactive program, a performance

21

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

value for the quiz associated with the P#/C# icon 1205-1 may be generated during
the execution of the interactive program.

[0078] For example, the quiz composer Ul referenced by the P#/C# icon
1205-1 may display the user interface 2200 of Fig. 22 (perhaps after the user
generates the quiz content i.c. after the user selects the finish button in Fig. 16b).
The user interface 2200 allows the user to specify a performance value associated
with the quiz, where the performance value may equal the number of correct
answers, or a percentage of questions answered correctly, or may equal a specific
value (e.g. 0 or 1) based on the number of correct answers, and so on, as illustrated
in Fig. 22. Thus, when the quiz content associated with the P#/C# icon 1205-1 is
displayed during execution of the interactive program, the quiz composer Ul or the
precedence graph module 204 generates the performance value, based on the
performance value criteria specified by the user, and based on inputs by a
participant answering questions in the quiz.

[0079] Thus, the branching conditions for a decision node (e.g., NXT
operator 2005) may be defined in terms of the specific performance value associated
with a quiz. For example, when the user selects the NXT operator 2005 in the
precedence graph area 310 in Fig. 20, the user interface 2300 of Fig. 23 may be
displayed to permit the user to set the branching conditions for this decision node.
As illustrated in Fig. 23, the user can specify that if the performance value of the
quiz associated with the P#/C# icon 1205-1 “Q” satisfies a condition (¢.g., greater
than or equal to 15), then the program flow of the precedence graph will proceed to
P#/C# icon 2006 “V1”. On the other hand, the user can specify that if the
performance value of the quiz associated with the P#/C# icon 1205-1 “Q” satisfics
another condition (e.g., less than 15), then the program flow of the precedence graph
will proceed to P#/C# icon 2007 “V3”. As illustrated in Fig. 23, the P#/C# icons
listed in the user interface 2300 may be automatically prefilled for the convenience
of the user, based on the arrows connected to the decision node and the P#/C# icons
connected to those arrows. Thus, the program flow of the program flow precedence
graph illustrated in Fig. 21 indicates that, during execution of the interactive

program, if the viewer answers 15 or more questions correctly in the quiz associated

22

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

with P#/C# icon 1205-1, then the user will be shown the video associated with
P#/C# icon 2006. On the other hand, if the viewer answers less than 15 questions
correctly in the quiz associated with P#/C# icon 1205-1, then the user will be shown
in the video associated with P#/C# icon 2007.

[0080] Thus, the performance value provides qualitative criteria for
branching decisions by the NXT operator. For example, when a student completes a
quiz, a score is determined and a branching decision is made based upon the
performance value of the score. The NXT operator can be “programmed” by placing
a condition on the branch in the precedence graph to be dependent upon input
provided by the student, i.e. quiz answers. Thus, the system 200 provides an
interface to (1) define the quiz (2) define the format (UI) in which the quiz is
presented to the student and (3) to condition branching through the program upon
quiz answers.

[0081] According another exemplary, the branching conditions for a
decision node may be defined in terms of a global completion status value
maintained during execution of an interactive program. The completion status value
may be similar to a global variable and generated during each execution of the
interactive program. The user may define how the global variable is to be
incremented by each P#/C# icon in the program flow. For example, according to an
exemplary embodiments, when the user associates content with each icon in order to
generate a P#/C# icon, the user may be presented with the user interface 2400
illustrated in Fig. 24, which allows the user to specify how the completion status
value will be modified by that particular P#/C# icon. For example, as illustrated in
Fig. 24, the user may specify that when the participant completes viewing a video,
sketch or quiz, the corresponding P#/C# icon is to implement the global completion
status value by 1. As other examples, the user may specify that the global
completion status value may be incremented after the participant completes viewing
a specific percentage of a video /sketch, or completes a specific number of
questions/exercises in the quiz, or completes a specific question in the quiz, and the
like, as illustrated in Fig. 24. Thus, the completion status value is modified by one

or more P#/C# icons during execution of the interactive program, based on criteria

23

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

defined by the user and participant input received by participant during the
execution of the interactive program.

[0082] Fig. 25 illustrates another program flow precedence graph for an
interactive program that utilizes the aforementioned global completion status value.
The icon list 320 and the precedence graph in Fig. 25 includes a choice icon 2501
(similar to the multiple-choice question of a quiz, and configured to receive user
selection of one of a number of choice such as whether the user wants to take the
quiz Q1, Q2, or Q3), as well as a badge icon 2502 (configured to award credits to a
participant of the interactive program), and a notification icon 2503 (configured to
automatically transmit a message to an address associated with a participant of the
interactive video).

[0083] As illustrated in Fig. 25, the program flow described in the program
flow precedence graph indicates that a video is to be displayed first. Thereafter, the
decision node makes a branching decision based on the value of a global completion
status value. When the user selects the decision node in the precedence graph area,
the user interface 2600 of Fig. 26 may be displayed to permit the user to set the
branching conditions for this decision node. As illustrated in Fig. 26, the user can
specify that if the completion status value satisfies a condition (¢.g., greater than or
equal to 2), then the program flow of the precedence graph will proceed to the badge
icon B. On the other hand, the user can specify that if the global status value
satisfies another condition (e.g., less than 2), then the program flow of the
precedence graph will proceed to choice icon C. Referring back to Fig. 25, when the
user generates the three quizzes associated with the quiz P#/C# icons Q1, Q2, Q3,
the user may instruct each P#/C# icon Q1, Q2, Q3 to increment the completion
status value based on the criteria illustrated in Fig. 24. That is, the user may specify
that when a participant completes a quiz, the corresponding P#/C# icon is to
implement the global completion status value by 1 (assuming the global completion
status value originally has a value of 0). As illustrated in Fig. 25, after onc of the
quizzes Q1, Q2, Q3 is completed, the program flow returns to the decision node.
[0084] Thus, the decision node makes a branching decision based on the

number of quizzes completed by the user. If the global completion status value is

24

WO 2014/066614

10

15

20

25

30

PCT/US2013/066577

less than 2 (i.e., if the user has only completed 1 quiz or has not completed any
quizzes) then the user is presented with the choice of which quiz to take via the
choice icon C. On the other hand, if the global completion status value is greater
than or equal to 2 (i.e., if the user has completed at least 2 quizzes), then the
program flow proceeds to the badge icon B and then the notification icon N. Thus,
the completion status may be used as a global value to make branching decisions by
a NXT operator based upon ‘where you are’ in the program. For example, in a math
course, a student may be required to complete at least 15 of 20 exercises in a quiz,
or at least two out of three quizzes, ctc., before advancing to the next segment of the
course. The completion status keeps track of how many exercises or quizzes the
student has completed.

[0085] According to another exemplary embodiment, the user may place
completion status checkpoint icons at various positions in the precedence graph,
where the global completion status value is incremented if those checkpoints are
accessed during the program flow referenced by the precedence graph. For example,
Fig. 27 illustrates the program flow precedence graph similar to that illustrated in
Fig. 25. The icon list 320 includes completion status checkpoint icon 2801 that the
user may move into the precedence graph area 310. As seen in Fig. 27, the user has
placed three completion status checkpoint icons in the precedence graph, one after
cach quiz QI1, Q2, Q3. The precedence graph is otherwise similar to the precedence
graph illustrated in Fig. 25, and the results of the execution of the interactive
program in Fig. 27 and Fig. 25 is the same.

[0086] According to various embodiments, the content creation user
interface window 300 may also include a publisher icon (not illustrated), that
generates a uniform resource locator (URL) to access the interactive video
represented by the program flow precedence graph in the precedence graph arca
310.

[0087] Fig. 28 is an illustrative drawing representing a computer program to
configure a computer to perform a process composed using Ul functionality in
accordance with some embodiments. The computer program is stored in a computer

readable storage device. As described above, the program is represented by the

25

WO 2014/066614

10

15

20

25

30

PCT/US2013/066577

precedence graph that includes P#/C# icons and decision nodes. P1/C1 represents an
information structure stored in the storage device that indicates that “program 17 is
used to configure a computer to display/present “content 1”. NXT indicates a
decision node in the precedence graph to determine the next P#/C# to execute. In an
exemplary embodiment, the default next P#/C# to execute is the next P#/C#
indicated by the next data structure in order in the graph, as indicated by the arrow
connectors in Fig. 28. If the composer does not explicitly specify a special ordering
of execution using a decision node, then the default ordering as specified by the
arrow connectors and or the arrangement of the P#/C# icons is used. Put another
way, if the user does not insert a NXT operator between P#/C# icons (or if no
conditions are associated with this NXT operator), then the ordering as indicated by
arrangement in the Ul (e.g., in the precedence graph arca 310 illustrated in Fig. 3) is
the default precedence, and program flow proceeds in the order indicated by the
placement of icons in the UI.

[0088] As described above, in composing the program, the composer can
place upon the NXT operators performance criteria that are the result of student
input, and completion status criteria (global variable is) indicative of ‘where you
are’ in the program. These criteria can be used separately or together to determine
the next stage of the program to transition to. The default is to transition to the next
stage “in order” in the layout created by the user.

[0089] Moreover, as described in various exemplary embodiments, a
program icon (¢.g., one of the program icons 302, 304, and 306 illustrated in Fig. 3)
references a Ul of a composing program to generate content in a certain media, e.g.,
video, audio, sketching, quizzes, tests, etc. However, after the content has been
associated with a given node of the program represented by a program icon, the
program icon then refers to the P#/C# combination that is operative to present the
content created by the composer Ul At that point, the icon represents a P/#C# pair
that can be ‘hooked’ into a program flow using a precedence graph.

[0090] Thus, according to an aspect, an icon transforms in significance from
a call to a Ul to create content (e.g., one of the program icons 302, 304, and 306
illustrated in Fig. 3) to a P/#C# pair that can be ‘hooked’, through use of respective

26

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

data structure indicating the respective pair, into the program flow (see Fig. 28). Put
another way, the composer first interacts with an icon to access a composer Ul for a
media represented by the icon. Secondly, the composer interacts with the same icon,
except that the icon now represents a P/#C# pair in a precedence graph, and the
composer’s interaction with the P#/C# pair involves ‘hooking’ the P/#C# pair into a
program flow represented by the precedence graph. In this second interaction, the
composer may interact with the precedence graph by placing NXT operators on the
precedence graph to dynamically control branching between the various P#/C#
icons. The NXT operators may be dependent upon performance variables, which
may be created and specified by the composer during the first interaction with a
program icon (where the composer may specify that performance results should be
stored at ‘some’ memory location). The NXT operator may be conditioned to make
a branch decisions based upon the performance value stored at the memory location.
[0091] Fig. 29 represents the composer Ul (e.g., an educator UI) involved
with creating a quiz UI. There are a series of screen displays that require the
composer (e.g., an educator) to perform the three “Designate” steps 2901, 2902, and
2903. In 2901, the composer designates various input choices (e.g., see Figs. 13a-
16b). In 2902, the composer designates a presentation style (¢.g., using buttons
1320-1328 illustrated in Fig. 13a). In 2903, the composer designates performance
values as a function of student input (e.g., as a function of a number of corrects
answers received by a student, see Fig. 22).

[0092] Fig. 30a represents composer action in defining a performance-based
branch associated with a NXT operator associated with a branching decision. In
3001, a composer selects a location in a precedence graph (e.g., see Fig. 20, where
the user drags the NXT operator 308 to a location in the precedence graph). In 3002,
the composer designates branching decision criteria for the NXT operator (e.g.,
specifies the ‘next’ P#/C# icon to go to) based on performance values (see Fig. 23).
Fig. 30b represents composer action in defining a (global) completion status-based
branch associated with a NXT operator associated with a branching decision. In
3011, a composer selects a location in a precedence graph (e.g., see Fig. 25, where

the user drags the NXT operator 308 to a location in the precedence graph). In

27

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

3012, the composer designates branching decision criteria for the NXT operator
(e.g., specifies the ‘next’ P#/C# icon to go to), based on a completion status value
(see Fig. 26).

[0093] Fig. 31 represents the screen displays in which a quiz (such as the
quiz generated in Figs. 13a-16b) is presented to a student and in which a student
presents answers, which are used to generate performance values based on various
criteria (see Fig. 22). The performance results are stored in a designated location
that is accessed by the NXT operator (as described in Fig. 30a) to make a branching
decision.

[0094] While embodiments of this disclosure describe examples based on
educator/student relationships, the embodiments of this disclosure are of course
applicable more broadly than to educator/student relationships. For example, the
same concepts could be applicable to a “scavenger hunt” or to a museum tour” or
any environment where participants are required to make a selection from among a

plurality of choices displayed to the participant.

MODULES, COMPONENTS AND LOGIC

[0095] Certain embodiments are described herein as including logic or a
number of components, modules, or mechanisms. Modules may constitute either
software modules (¢.g., code embodied (1) on a non-transitory machine-readable
medium or (2) in a transmission signal) or hardware-implemented modules. A
hardware-implemented module is tangible unit capable of performing certain
operations and may be configured or arranged in a certain manner. In example
embodiments, one or more computer systems (e.g., a standalone, client or server
computer system) or one or more processors may be configured by software (e.g.,
an application or application portion) as a hardware-implemented module that
operates to perform certain operations as described herein.

[0096] In various embodiments, a hardware-implemented module may be
implemented mechanically or electronically. For example, a hardware-implemented
module may comprise dedicated circuitry or logic that is permanently configured

(e.g., as a special-purpose processor, such as a field programmable gate array

28

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

(FPGA) or an application-specific integrated circuit (ASIC)) to perform certain
operations. A hardware-implemented module may also comprise programmable
logic or circuitry (e.g., as encompassed within a general-purpose processor or other
programmable processor) that is temporarily configured by software to perform
certain operations. It will be appreciated that the decision to implement a hardware-
implemented module mechanically, in dedicated and permanently configured
circuitry, or in temporarily configured circuitry (e.g., configured by software) may
be driven by cost and time considerations.

[0097] Accordingly, the term "hardware-implemented module" should be
understood to encompass a tangible entity, be that an entity that is physically
constructed, permanently configured (e.g., hardwired) or temporarily or transitorily
configured (e.g., programmed) to operate in a certain manner and/or to perform
certain operations described herein. Considering embodiments in which hardware-
implemented modules are temporarily configured (e.g., programmed), each of the
hardware-implemented modules need not be configured or instantiated at any one
instance in time. For example, where the hardware-implemented modules comprise
a general-purpose processor configured using software, the general-purpose
processor may be configured as respective different hardware-implemented modules
at different times. Software may accordingly configure a processor, for example, to
constitute a particular hardware-implemented module at one instance of time and to
constitute a different hardware-implemented module at a different instance of time.
[0098] Hardware-implemented modules can provide information to, and
receive information from, other hardware-implemented modules. Accordingly, the
described hardware-implemented modules may be regarded as being
communicatively coupled. Where multiple of such hardware-implemented modules
exist contemporancously, communications may be achieved through signal
transmission (e.g., over appropriate circuits and buses) that connect the hardware-
implemented modules. In embodiments in which multiple hardware-implemented
modules are configured or instantiated at different times, communications between
such hardware-implemented modules may be achieved, for example, through the

storage and retrieval of information in memory structures to which the multiple

29

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

hardware-implemented modules have access. For example, one hardware-
implemented module may perform an operation, and store the output of that
operation in a memory device to which it is communicatively coupled. A further
hardware-implemented module may then, at a later time, access the memory device
to retrieve and process the stored output. Hardware-implemented modules may also
initiate communications with input or output devices, and can operate on a resource
(e.g., a collection of information).

[0099] The various operations of example methods described herein may be
performed, at least partially, by one or more processors that are temporarily
configured (e.g., by software) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured, such processors may
constitute processor-implemented modules that operate to perform one or more
operations or functions. The modules referred to herein may, in some example
embodiments, comprise processor-implemented modules.

[00100] Similarly, the methods described herein may be at least partially
processor-implemented. For example, at least some of the operations of a method
may be performed by one or processors or processor-implemented modules. The
performance of certain of the operations may be distributed among the one or more
processors, not only residing within a single machine, but deployed across a number
of machines. In some example embodiments, the processor or processors may be
located in a single location (e.g., within a home environment, an office environment
or as a server farm), while in other embodiments the processors may be distributed
across a number of locations.

[00101] The one or more processors may also operate to support performance
of the relevant operations in a "cloud computing" environment or as a "software as a
service” (SaaS). For example, at least some of the operations may be performed by a
group of computers (as examples of machines including processors), these
operations being accessible via a network (e.g., the Internet) and via one or more

appropriate interfaces (¢.g., Application Program Interfaces (APIs).)

30

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

ELECTRONIC APPARATUS AND SYSTEM

[00102] Example embodiments may be implemented in digital electronic
circuitry, or in computer hardware, firmware, software, or in combinations of them.
Example embodiments may be implemented using a computer program product,
¢.g., a computer program tangibly embodied in an information carrier, e.g., in a
machine-readable medium for execution by, or to control the operation of, data
processing apparatus, ¢.g., a programmable processor, a computer, or multiple
computers.

[00103] A computer program can be written in any form of programming
language, including compiled or interpreted languages, and it can be deployed in
any form, including as a stand-alone program or as a module, subroutine, or other
unit suitable for use in a computing environment. A computer program can be
deployed to be executed on one computer or on multiple computers at one site or
distributed across multiple sites and interconnected by a communication network.
[00104] In example embodiments, operations may be performed by one or
more programmable processors executing a computer program to perform functions
by operating on input data and generating output. Mcthod operations can also be
performed by, and apparatus of example embodiments may be implemented as,
special purpose logic circuitry, ¢.g., a ficld programmable gate array (FPGA) or an
application-specific integrated circuit (ASIC).

[00105] The computing system can include clients and servers. A client and
server are generally remote from cach other and typically interact through a
communication network. The relationship of client and server arises by virtue of
computer programs running on the respective computers and having a client-server
relationship to each other. In embodiments deploying a programmable computing
system, it will be appreciated that that both hardware and software architectures
require consideration. Specifically, it will be appreciated that the choice of whether
to implement certain functionality in permanently configured hardware (e.g., an
ASIC), in temporarily configured hardware (¢.g., a combination of software and a
programmable processor), or a combination of permanently and temporarily

configured hardware may be a design choice. Below are set out hardware (e.g.,

31

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

machine) and software architectures that may be deployed, in various example

embodiments.

EXAMPLE MACHINE ARCHITECTURE AND MACHINE-READABLE
MEDIUM

[00106] Fig. 32 is a block diagram of machine in the example form of a
computer system 3200 within which instructions, for causing the machine to
perform any one or more of the methodologies discussed herein, may be executed.
In alternative embodiments, the machine operates as a standalone device or may be
connected (e.g., networked) to other machines. In a networked deployment, the
machine may operate in the capacity of a server or a client machine in server-client
network environment, or as a peer machine in a peer-to-peer (or distributed)
network environment. The machine may be a personal computer (P#/C#), a tablet
P#/C#, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular
telephone, a web appliance, a network router, switch or bridge, or any machine
capable of executing instructions (sequential or otherwise) that specify actions to be
taken by that machine. Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of instructions to perform any
one or more of the methodologies discussed herein.

[00107] The example computer system 3200 includes a processor 3202 (e.g.,
a central processing unit (CPU), a graphics processing unit (GPU) or both), a main
memory 3204 and a static memory 3206, which communicate with each other via a
bus 3208. The computer system 3200 may further include a video display unit 3210
(e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)). The computer
system 3200 also includes an alphanumeric input device 3212 (c.g., a keyboard or a
touch-sensitive display screen), a user interface (UI) navigation device 3214 (e.g., a
mouse), a disk drive unit 3216, a signal gencration device 3218 (e.g., a speaker) and

a network interface device 3220.

32

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

MACHINE-READABLE MEDIUM

[00108] The disk drive unit 3216 includes a machine-readable medium 3222
on which is stored one or more sets of instructions and data structures (e.g.,
software) 3224 embodying or utilized by any one or more of the methodologies or
functions described herein. The instructions 3224 may also reside, completely or at
least partially, within the main memory 3204 and/or within the processor 3202
during execution thereof by the computer system 3200, the main memory 3204 and
the processor 3202 also constituting machine-readable media.

[00109] While the machine-readable medium 3222 is shown in an example
embodiment to be a single medium, the term "machine-readable medium" may
include a single medium or multiple media (c.g., a centralized or distributed
database, and/or associated caches and servers) that store the one or more
instructions or data structures. The term "machine-readable medium" shall also be
taken to include any tangible medium that is capable of storing, encoding or
carrying instructions for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present invention, or that is
capable of storing, encoding or carrying data structures utilized by or associated
with such instructions. The term “machine-readable medium” shall accordingly be
taken to include, but not be limited to, solid-state memories, and optical and
magnetic media. Specific examples of machine-readable media include non-volatile
memory, including by way of example semiconductor memory devices, e.g.,
Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable
Programmable Read-Only Memory (EEPROM), and flash memory devices;
magnetic disks such as internal hard disks and removable disks; magneto-optical

disks; and CD-ROM and DVD-ROM disks.

TRANSMISSION MEDIUM

[00110] The instructions 3224 may further be transmitted or received over a
communications network 3226 using a transmission medium. The instructions 3224
may be transmitted using the network interface device 3220 and any one of a

number of well-known transfer protocols (e.g., HTTP). Examples of communication

33

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

networks include a local area network (“LAN™), a wide area network (“WAN”), the
Internet, mobile telephone networks, Plain Old Telephone (POTS) networks, and
wireless data networks (e.g., WiFi and WiMax networks). The term "transmission
medium" shall be taken to include any intangible medium that is capable of storing,
encoding or carrying instructions for execution by the machine, and includes digital
or analog communications signals or other intangible media to facilitate
communication of such software.

[00111] Although an embodiment has been described with reference to
specific example embodiments, it will be evident that various modifications and
changes may be made to these embodiments without departing from the broader
scope of the invention. Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense. The accompanying
drawings that form a part hereof, show by way of illustration, and not of limitation,
specific embodiments in which the subject matter may be practiced. The
embodiments illustrated are described in sufficient detail to enable those skilled in
the art to practice the teachings disclosed herein. Other embodiments may be
utilized and derived therefrom, such that structural and logical substitutions and
changes may be made without departing from the scope of this disclosure. This
Detailed Description, therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended claims, along with the full
range of equivalents to which such claims are entitled.

[00112] Such embodiments of the inventive subject matter may be referred to
herein, individually and/or collectively, by the term “invention” merely for
convenience and without intending to voluntarily limit the scope of this application
to any single invention or inventive concept if more than one is in fact disclosed.
Thus, although specific embodiments have been illustrated and described herein, it
should be appreciated that any arrangement calculated to achieve the same purpose
may be substituted for the specific embodiments shown. This disclosure is intended
to cover any and all adaptations or variations of various embodiments.

Combinations of the above embodiments, and other embodiments not specifically

34

WO 2014/066614 PCT/US2013/066577

described herein, will be apparent to those of skill in the art upon reviewing the

above description.

35

WO 2014/066614

10

15

20

25

30

PCT/US2013/066577

CLAIMS

What is claimed is:

1. A method comprising:

displaying, on a client device, a user interface (Ul) including a precedence
graph arca and an icon list displaying multiple types of program icons;

receiving a user selection of one of the program icons, the user selection
corresponding to moving the selected program icon to the precedence graph area,
the selected program icon referencing a composer Ul to generate content of a
specific media type;

associating the generated content with the selected program icon, and
characterizing the selected program icon as a first program-content-pairing icon that
references the content created by the composer Ul

detecting a user interaction with a plurality of program-content-pairing icons
in the precedence graph area, the user interaction corresponding to specifying an
ordering of the plurality of program-content-pairing icons; and

generating a program flow precedence graph referencing a program flow of
an interactive program, based on the ordering of the program-content-pairing icons

in the precedence graph area.

2. The method of claim 1, further comprising:
executing the interactive program based on the program flow referenced by

the program flow precedence graph.

3. The method of claim 1, wherein the ordering is specified via an
arrow connector between first and second program-content-pairing icons in the
precedence graph area,

the arrow connector indicating that content associated with the second
program-content-pairing icon is to be displayed immediately after display of content
associated with the first program-content-pairing icon during execution of the

interactive program.

36

WO 2014/066614

10

15

20

25

PCT/US2013/066577

4. The method of claim 3, wherein the arrow connector is generated
based on manual user input of a line between the first and second program-content-

pairing icons in the precedence graph area.

5. The method of claim 3, wherein the arrow connector is generated
automatically based on respective positions of the first and second program-content-

pairing icons in the precedence graph area.

6. The method of claim 5, wherein the respective positions are defined
by user manipulation of an arrangement of the first and second program-content-

pairing icons in the precedence graph area.

7. The method of claim 1, wherein the ordering is specified via a
decision node between first and second program-content-pairing icons in the
precedence graph area,

the decision node indicating that, if a condition is satisfied, content
associated with the second program-content-pairing icon is to be displayed after
display of content associated with the first program-content-pairing icon during

execution of the interactive program.

8. The method of claim 7, wherein the condition is a specific
performance value associated with the first program-content-pairing icon, the
performance value being received by the decision node during execution of the

interactive program.

9. The method of claim 7, wherein the condition is a completion status

value received by the decision node during execution of the interactive program.

37

WO 2014/066614

10

15

20

25

30

10. The method of claim 1, wherein the composer Ul referenced by the
selected program icon generates quiz content and receives a user specification of

performance value criteria for determining a performance value.

1. The method of claim 10, wherein the performance value is generated
after display of the quiz content during execution of the interactive program, based
on the performance value criteria and participant input received during the display

of the quiz content.

12. The method of claim 10, wherein the performance value criteria
indicates that the performance value is determined based on a number of correct

answers input by a participant during the display of the quiz content.

13. The method of claim 1, wherein the composer Ul referenced by the
selected program icon generates the content and receives a user specification of

completion status criteria for modifying a completion status value.

14. The method of claim 10, wherein the completion status value is
modified after display of the content during execution of the interactive program,
based on the completion status criteria and participant input received during the

display of the content.

15. The method of claim 1, further comprising receiving a user selection
of'a completion status checkpoint icon displayed in the icon list, the user selection
corresponding to moving the completion status checkpoint icon between two

program-content-pairing icons in the program flow precedence graph.
16. The method of claim 1, wherein a completion status value is

incremented if the completion status checkpoint icon is accessed during execution

of the interaction program.

38

PCT/US2013/066577

WO 2014/066614

10

15

20

25

30

PCT/US2013/066577

17. The method of claim 1, further comprising:

receiving a user selection of a quiz program icon in the precedence graph
area;

displaying, on the client device, a quiz composer Ul including a composition
arca and multiple types of participant response icons;

receiving user sclection of one or more of the participant response icons, the
user selection corresponding to moving each selected participant response icon to a
specific position in the precedence graph arca; and

receiving user specification of a correct answer associated with one of the

moved participant response icons.

18. The method of claim 10, wherein the multiple types of participant
response icons include a true-false input participant response icon, a multiple choice
input participant response icon, a text input participant response icon and a

numerical input participant response icon.

19. A non-transitory machine-readable storage medium having embodied
thereon instructions executable by one or more machines to perform operations
comprising:

displaying, on a client device, a user interface (Ul) including a precedence
graph arca and an icon list displaying multiple types of program icons;

receiving a user selection of one of the program icons, the user selection
corresponding to moving the selected program icon to the precedence graph area,
the selected program icon referencing a composer Ul to generate content of a
specific media type;

associating the generated content with the selected program icon, and
characterizing the selected program icon as a first program-content-pairing icon that
references the content created by the composer Ul

detecting a user interaction with a plurality of program-content-pairing icons
in the precedence graph area, the user interaction corresponding to specifying an

ordering of the plurality of program-content-pairing icons; and

39

WO 2014/066614 PCT/US2013/066577

10

15

20

25

30

generating a program flow precedence graph referencing a program flow of
an interactive program, based on the ordering of the program-content-pairing icons

in the precedence graph area.

20. An apparatus comprising:
a user interface module configured to:
display, on a client device, a user interface (Ul) including a
precedence graph arca and an icon list displaying multiple types of program icons;
receive a user selection of one of the program icons, the user
selection corresponding to moving the selected program icon to the precedence
graph area, the selected program icon referencing a composer Ul to generate content
of a specific media type; and
associate the generated content with the selected program icon, and
characterizing the selected program icon as a first program-content-pairing icon that
references the content created by the composer UI; and
a precedence graph module configured to:
detect a user interaction with a plurality of program-content-pairing
icons in the precedence graph area, the user interaction corresponding to specifying
an ordering of the plurality of program-content-pairing icons; and
generate a program flow precedence graph referencing a program
flow of an interactive program, based on the ordering of the program-content-

pairing icons in the precedence graph area.

40

WO 2014/066614

100
A

PCT/US2013/066577

1/32
130~ 110~ M2~
3RD PARTY SERVER CLIENT MACHINE CLIENT MACHINE
3RD PARTY WEB PROGRAMMATIC
APPLICATION CLIENT CLIENT
] | \
7 ! A
128 108
104
NETWORK
(E.G.,
INTERNET)
Y 114 Y 116
AP| SERVER WEB SERVER
(PROGRAMMATIC (WEB
INTERFACE) INTERFACE)
A A
118
APPLICATION SERVER(S)
120~
L «——
APPLICATION(S)
= I
DATABASE
SERVER(S) DATABASE(S)

WO 2014/066614 PCT/US2013/066577

2/32

INTERACTIVE CONTENT CREATION
SYSTEM 200

USER INTERFACE
MODULE 202

DATABASE 206

PRECEDENCE
GRAPH MODULE
204

VIDEO
COMPOSER
MODULE 208

QUIZ COMPOSER
MODULE 212

SKETCH
COMPOSER
MODULE 210

Fig. 2

WO 2014/066614 PCT/US2013/066577

3/32

§300
a~

Save
330

Fig. 3

Q

(@]
m

302
304
306

WO 2014/066614

4/32

PCT/US2013/066577

302

304

306

|98}
N
o

—

V Record ——406

Video

Connect

Save
330
Fig. 44
401
[+3 =4
o
Record Pause Stop
420 422 424

Fig. 4B

300

A

5400

306

302 Q V
/
S

WO 2014/066614

5/32

PCT/US2013/066577

w
N
o
w
=
o

405-1

3300

Save
330

Fig. 54

405-1
P1/
C1
501 502
3 L3
P1 C1
P2
P3
Executable Content
Program Storage
Storage

5500

Fig. 5B

WO 2014/066614

302

304

306

PCT/US2013/066577

5300

6/32
320 310
405-1 605
Q \/./ Record —606
_ - > 4 gketch :
onnec
Sir~
Save
330
Fig. 64
601
t:gl(j:d Type Text Record Pause Stop
eyl 632 620 622 624

Fig. 6B

5600

WO 2014/066614

PCT/US2013/066577
7/32
300
320 310 g
205-1 605-1
@ ™ 5
/),
xS
306} V

Save
330
Fig. 74
55500
405-1 605-1
\
P1/ P2/
C1 C2

501 502
C Y
P1 C1
P2 C2

P3

Executable Content

Program Storage
Storage

Fig. 7B

WO 2014/066614

8/32

PCT/US2013/066577

302

304 —

306

405-1 605-1

808

Save
330

Fig. 84

405-1 605-1
N
P1/ P2/
C1 C2
808
501 502
Y >
P C1
P2 2
P3
Executable Content
Program Storage
Storage

Fig. 8B

§300

E>500

WO 2014/066614 PCT/US2013/066577

9/32

(START) 900
I)

901 — Display user interface (Ul)
902 —— Receive user selection of program icon
A 4

903 —— Associate content with selected program icon

l

004 — Detect user interaction
905 — Generate program flow precedence graph
906 — Execute interactive program

l
(FINISH)

Fig. 9

WO 2014/066614 PCT/US2013/066577

:§1000

10/32

(START)

l

1001 Receive user selection of video program icon
1002 Launch video composer Ul
1003—

Associate generated video content

(FINISH)

Fig. 10

WO 2014/066614 PCT/US2013/066577

11/32

§1 100

C START)

l

1101 Receive user selection of sketch program icon
1102 Launch sketch composer Ul
1103—

Associate generated sketch content

< FINISH)

Fig. 11

PCT/US2013/066577

WO 2014/066614

12/32

oommw

71 Ol

0€e
ONES

108UU0D

90¢ I—

ZIND
9jelousn)

Gocl

1-509

1-901

(@]
-
o)

o
o
m

— 90€

— ¥0¢

— c0¢

WO 2014/066614 PCT/US2013/066577

13/32
—1300
rue-Fals Multiple Choice Text Input Numerical 5
Answers Choice Points Answer Answer
1320 1322 1324 1326 1328
@ True b -y 1310
@ Falsé ‘
1/330 ‘ The earth is flat
True
Load
Back- Type Text Set Corregt Next . Finish
ground Answer Question

Fig. 134

1300
True-Falsq | Multiple Choice || Text Input | | Numerical S
Answers Choice Points Answer Answer
1320 1322 1324 1326 1328
1310
The earth is flat
1 True [/ False

Load
Back- Type Text iet Correc Next , Finish
ground nswer Questior

Fig. 13B

WO 2014/066614 PCT/US2013/066577

14/32
True-False] | Multiple Choice ||Text Input | | Numerical
Answers Choice Points Answer Answer
1320 1324 1326 132

| @B |@D

The largest ocean is:
@® A Indian Ocean Southern Ocean

Atlantic Ocean Pacific Ocean

1322
- @A |@C|— 1430 1310

Load .
Back- Type Text Set Correct] | Next Finish
ground Answer Question
Fig. 144
True-False Multiple Choice Text Input Numerical
Answers Choice Points Answer Answer
1320 1322 1324 1326 132
1310
The largest ocean is:
A Indian Ocean _1C Southern Ocean
1B Atlantic Ocean [V D Pacific Ocean
Load
Next .
Finish
Back- Type Text Aet Correct Question
qround nswer

Fig. 14B

S1 300

S’I 300

WO 2014/066614

PCT/US2013/066577

§1 300

§1 300

15/32
True-Fals Multiple Choice || I'ext Input Numericg!
Answers Choice Points Answer Answer
1320 1322 1324 1326 1328
@ — 1530 1310
Please pick the hypotenuse of the‘riangle:
Load
Back- Type Text Set Correc Next . Finish
Answer Question
round
Fig. 154
[True-False Multiple Choice |[Text Input Numericdl
Answers Choice Points Answer Answer
1320 111322 1324 1320 1113280 1
1310
Please pick the hypotenuse of the triangle:
]
Load
Back- Type Text Set Correct | | Next Finish
round Answer Question

Fig. 15B

WO 2014/066614

PCT/US2013/066577

True-False
Answers

Multiple

132

Text Input

| Enter Answer |

Numerical

What is 9 x 5? ,

/

4

| Enter A_r)__swer |

S’I 300

Load
Back- Type Text iet Correct gext tion Finish
ground nswer uestio
Fig. 164
True-Fals Multiple Choice || Text Input Numerical
Answers Choice Points Answer Answer
1 1322 1324 1326 1328
1310
What is 9 x 5?
—_——_————
Load
Back- Type Text iet Correct{ | \ .. Finish
ground nswer Question

Fig. 16B

S’I 300

WO 2014/066614 PCT/US2013/066577
17/32
—300
320
320 310 \
405-1 605-1 1205-1
\
-[Q [V Q
/1 /| f
808 1708
304 S
306-H V
Save
330
Fig. 174
5500
405-1 605-1 1205-1
\\
808 1708
501 502
C Y
P1 C1
P2 C2
P3 C3
Executable Content
Program Storage
Storage

Fig. 17B

WO 2014/066614 PCT/US2013/066577

18/32

:31800

(START)

l

1801 Receive user selection of quiz program icon
1802 Launch quiz composer Ul
1803—

Associate generated quiz content

(FINISH)

Fig. 18

WO 2014/066614

19/32

(STA RT)

l

PCT/US2013/066577

251900

1901 —

Receive user selection of quiz program icon

1902—

Display quiz composer Ul

1903—

Receive user selection of
participant response icons

1904—

Receive user specification of correct answer

(FINISH)

Fig. 19

PCT/US2013/066577

WO 2014/066614

20/32

oomm\

07 ‘Sl

0€e
ONES

1-507%

(@]
-
o)

XN |

o
o
m

— 80€

—90¢€

— 0€

— C0€

PCT/US2013/066577

WO 2014/066614

21/32

oomm\

[T 81

900¢

abelo)g
obelols weibo.g
JUSIUOD 3|qenoaxg

€9 €d

6D 20 ¢d

¥ 1D ld
> B >

<09 T0S

1-901

PCT/US2013/066577

WO 2014/066614

22/32

7l Ol

|[goue)n

1S

= SIamsue 1091102 JO "'Ou JI

= SJamsue 1081100 JO "oU JI

Aj1921109 palamsue suolsanb Jo 9, =

SJamMmsue 1084100 JO "ON =

snjeA aouewlopad ()

anje/ souewWIOpad ()

enjeA eouewlousd @

O JO BLdIO anjeA @ouewlopad 18S

OONNAMi

PCT/US2013/066577

WO 2014/066614

23/32

€7 o1

EN

0} ob uay;

¢\

0} ob uay)

|[goue)n

1S

GL |~

A\

Gl

JO anje\ aduewlolad J|

JO 9nje/ @duewliouad J|

BLIB)IID UoIsIoa Buiyouelg

*H01Vvd3dO 1XN

oomw%

PCT/US2013/066577

WO 2014/066614

24 /32

$7 Ol

[ooue)d 1°S
AQ anjeA snje)s uons|dwod Juswaidul = zinb ul uonsanb jo uons|dwon O
Ag anjeA snjejs uona|dwod Juswaloul = zinb ul sasiolaxa/suonsanb Jo uons|dwon O
AQ anjeA snje)s uons|dwod JuswalIdul = Yo}aY)S/08PIA JO 9, Jo uone|dwo) O

L | Aq enjeA snje)js uolje|dwoo jJuswaioul = zinb/yoieys/oapIA jo uons|dwo) ®

BLI9)LIO snje)s uole|dwoo }8g

oothﬁi

PCT/US2013/066577

25/32

WO 2014/066614

§Z Ol

0€e

ONES Z L eosz

gl
v —+t 10G¢

XN

—1t-80¢€

> —1 90€

Sl
Z 0 — <%

o

~

™
S
o
m

oomwm«

PCT/US2013/066577

WO 2014/066614

26/32

97 ‘31

|[goue)n

1S

ojobusyl ‘| ¢z

> an[eA snjejs uofs|dwo) j|

ojobuayy‘| ¢

< onjeA snjejg uopajdwo) j|

BLIS)ID uoIsIoag Buiyoue.g
H01VvVd3dd0O LXN

oomw%

PCT/US2013/066577

27/32

WO 2014/066614

LT Bl

o€ Z 1 covz

oABS
m —1-¢0¥¢
v —+t LO0V2

49940 |—1-108¢

XN
—1—80¢

> —1 90€

308y m — 7o
N O

O

-—

(a0
3
o

oomwm\

PCT/US2013/066577

WO 2014/066614

28/32

G¢o/ed

‘0/ed ‘€D/ed
1O uon||dwod
JO yoes

uodn snjeis
uona|dwod
ajenoeD

X, SNIEIS

G snjejs

uons|dwon

¥ Snieys

uons|dwon

G sniejs
uonsdwon

| B I] . .vo
X
LIXN /ed

X, ¥ snieis
uons|dwon

X, € snielg
uons|dwon

€ snjejs

uons|dwon

¢ Snieig
uonsdwon

abeluo)g
obelols weibouy
JUSJUOD 8|qeinoaxg
1%0) ed
¢0 ¢O Zd
7O 1O ld
<> >
c0s 10§

[zored]
sonjep
souewopad |

¢Qlcd
JO UoIIN28X3

| snjeis
uons|dwon

97 Ol

WO 2014/066614 PCT/US2013/066577

29/32

§2900

“~

2901
Designate

input choice/
[requests

2902—
Designate

Presentation
| Style

- 2903— Designate

; performance
Educator Ul values as a
function of
student input

Fig. 29

WO 2014/066614 PCT/US2013/066577

30/32

j3000

3001

Select graph
location

30027 Designate
‘next’ as a
function of
student input

Fig. 304

3010
3011— S

Select graph
location

301271 Designate
‘next” as a
function of
(global)
completion
status

Fig. 30B

PCT/US2013/066577

WO 2014/066614

31/32

[2D/zd] (s)enjea
aouewlopad

00 rmWi

21015

[€ 81

SU92.0S
N uspnis
[zDred]
(s)enjea
pouew.ousd B (]
aulweaq [{
U —

WO 2014/066614 PCT/US2013/066577

j3200

32/32

3202
L PROCESSOR VIDEO 5 3210
DISPLAY
3224 —{INSTRUCTIONS
32042
MAIN MEMORY 3212
ALPHA-NUMERIC
INPUT DEVICE 5
3224——INSTRUCTIONS

5200 3214
L STATIC <«——>»BUSjl«——> (?(;JI\T'I'SSCI)QL 5
MEMORY

DEVICE
3220 DRIVE UNIT 3216
COMPUTER- 5
NETWORK READABLE
INTERFACE ————> > MEDIUM 3222

DEVICE
INSTRUCTIONS[3224

3226 \

3218
SIGNAL 5
<«——» GENERATION
DEVICE

Fig. 32

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings

