(12) (19) (CA) Dem ande-Application

CIPO

(CANADIAN INTELLECTUAL

OPIC

OFFICE DE LA PROPRIETE

ey
A e 2 A 7
-\.\\ W .:;. 0.\ \:Q‘\:.“"::‘\:::‘ . ‘\\" b
‘n. ., \"I \‘ v :\:a:'o cl ‘c \1 \‘ \‘.--
R }:}f’ :‘:? :\3* 7 |
ST RN

INTELLECTUELLE DU CANADA

(72) LAWS, RICHARD, US
71y AVID TECHNOLOGY, INC., US

51) Int.C1.° GO6F 12/08
30) 1997/04/04 (08/835,104) US

3{ PrROPERTY OFFICE (21) (A]) 2,285,182

86) 1998/03/30
87) 1998/10/15

34) SYSTEME DE GESTION DE FICHIERS A STRUCTURE EN
BOUCLE POUR COLLECTE POST-OCCURRENCE DE
DONNEES D’ EVENEMENTS ASYNCHRONES

54y COMPUTER FILE SYSTEM PROVIDING LOOPED FILE
STRUCTURE FOR POST-OCCURRENCE DATA
COLLECTION OF ASYNCHRONOUS EVENTS

PROCESSOR

INPUT DEVICE

(57) On considere 1c1 un systeme d’exploitation
comportant un systeme de gestion de fichiers permettant
I’¢criture de donnees dans un fichier dans une boucle
logique de grappes d’emplacements memoire. L €criture
peut se faire en boucle fermé€e ou ouverte, avec
possibilit¢ de passage d'un mode a 1autre.
L’enregistrement avant 1’occurrence d’un €veénement

I*I Industrie Canada Industry Canada

INTERCONNECTION MECHANISM
MEMORY SYSTEM

OUTPUT DEVICE

(57) An operating system has a file system which
supports writing data to a file 1n a logical loop of clusters
of storage locations. Writing can be performed 1n looped
or unlooped modes, and a transition between looping and
non-looped recording may be supported. Recording prior
to occurrence of an asynchronous event 1s performed 1n
a looped mode. After occurrence of the asynchronous

OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA "".

%
...
a:'c;\
e s WHEREERS %
I.- ‘q b. 't‘ “q ‘wh \"\ \5
« - (‘\ N % .:- .
. e e T -
-

OPIC CIPO

PROPERTY OFFICE

asynchrone se fait en mode boucle fermee. Apres
occurrence de l'événement asynchrone, les donnees
recueillies dans la partie en boucle ferme¢e sont
fusionnees sans solution de continuite avec les donnees
recueillies ulterieurement par manipulation par le
systeme d’exploitation des pointeurs de grappes. Grace a
une telle structure geéncrale de manipulation des fichiers
dans le systeme informatique, on dispose de bien plus de
place en mémoire pour l'enregistrement en boucle
fermee. En fait, 11 est possible de recueillir plusieurs
minutes de vidéo en qualit¢ cinéma. En outre, ctant
donn¢ que c’est le systeme de gestion des fichiers qui
assure le stockage des donnees, 1l n’y a besoin d’aucune
application spécifique pour mettre les donnces
enregistrées sur un support physique d’enregistrement.
Un tel systeme de gestion de fichier convient a toute
application recueillant des donnees dans la perspective
de saisir 1’occurrence d’un événement asynchrone. Les
applications considérées portent notamment sur
I’enregistrement de films wvid¢o, la surveillance, la
collecte de données de test, et d’autres types de systemes
qu ont besoin d’enregistrer des ¢événements précedant
une condition specifique de "deéclenchement” al€atorre,
lesquels €vénements peuvent nécessiter de grandes
quantités de memoire.

I*I Industrie Canada Industry Canada

(CANADIAN INTELLECTUAL

21 (A1) 2,285,182
(86) 1998/03/30
87y 1998/10/15

event, the data collected 1n the looped portion 1s
scamlessly merged with subsequently collected data by
manipulation of pointers to the clusters by the operating
system. By providing such a general structure for use 1n
a f1le system of a computer, a substantially larger amount
of memory 1s available for looped recording. In fact,
several minutes of full motion broadcast quality video
may be captured. In addition, by using the file system to
handle the storage of data, an application does not need
to arrange recorded information on a physical recording
medium. Such a file sytem may be used in any
application which collects data for the purpose of
capturing the occurrence of an asynchronous event. Such
applications include, but are not limited to, motion video
recording, surveillance, test data collection, and other
types of systems that need to record events that precede
some arbitrary "trigger" condition and which may
require a large amount of storage.

CA 02285182 1999-09-28

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :
GO6F 17/30, G11B 27/034

| (11) International Publication Number: WO 98/45791

(43) International Publication Date: 15 October 1998 (15.10.98)

(21) International Application Number: PCT/US98/06230 | (81) Designated States: AU, CA, CN, DE, GB, JP, European patent
(AT, BE, CH, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU,
(22) International Filing Date: 30 March 1998 (30.03.98) MC, NL, PT, SE).

(30) Priority Data: Published
08/835,104 4 April 1997 (04.04.97) US With international search report.

(71) Applicant: AVID TECHNOLOGY, INC. [US/US];, Metropoli-
tan Technology Park, One Park West, Tewksbury, MA
01876 (US).

(72) Inventor: LAWS, Richard; 5 E1-Will Farm Road, Bedford,
MA 01740 (US).

(74) Agent: GORDON, Peter, J.; Wolf, Greenfield & Sacks, P.C.,
600 Atlantic Avenue, Boston, MA 02210 (US).

(54) Title: COMPUTER FILE SYSTEM PROVIDING LOOPED FILE STRUCTURE FOR POST-OCCURRENCE DATA COLLECTION
OF ASYNCHRONOUS EVENTS |

(57) Abstract |

| An operating system

has a file system which sup-
ports writing data to a file in
a logical loop of clusters of 7 44
storage locations. Writing
can be performed in looped
or unlooped modes, and a

transition between looping

and non-looped recording
may be supported. Record-
ing prior to occurrence of an

asynchronous event is per-

formed in a looped mode.

After occurrence of the asynchronous event, the data collected in the looped portion is seamlessly merged with subsequently collected
data by manipulation of pointers to the clusters by the operating system. By providing such a general structure for use in a file system of
a computer, a substantially larger amount of memory is available for looped recording. In fact, several minutes of full motion broadcast
quality video may be captured. In addition, by using the file system to handle the storage of data, an application does not need to arrange
recorded information on a physical recording medium. Such a file sytem may be used in any application which collects data for the
purpose of capturing the occurrence of an asynchronous event. Such applications include, but are not limited to, motion video recording,
surveillance, test data collection, and other types of systems that need to record events that precede some arbitrary "trigger" condition and
which may require a large amount of storage.

- g W e ey el AP AR i AP~y - Al Tt Y e A = A g ——_
[4
¢

S

10

15

CA

-1 -

D FILE ST .
ASYNCBRONOUS E

".‘J. N LE _....'
OL.LE ON O]

Field of the Invention

The present invention is related to the recording of live information. More paruculariy,

the present invention is related to the recording of an asynchronous event atter the event occurs.

Background of the Invention

" A particular problem in the recording of live information, i.e.. the recording ox events as
they actually happen, is that a particular event of interest might occur without being recorded.
For example, in videography, a videographer might monjtor a location, such as a courthouse
door, with hopes of capturing an event, such as the exit of a particular person. There are two
primary reasons why such an event might not be captured by the videographer. First, the
videographer might not start recording tn time to capture the event. Second, the videograpber
might be recording, but might have to stop recording if no more media :s available and a change

to new media is not completed before the event occurs.

One mechanism has been suggested to solve this problem, and is illustrated :n PCT
Publication No. WO 96/26600. This publication descrives 2 motion video camera which records
video and audio media temperarily in a ring buffer. The data is writtsn contizuously to the ring
buffer, and the ring buffer contents are overwritten, until the camera is triggered to end iooped.
recording. The contents of the ring buffer are appended to a file which is subsequenty recorded

in 2 normal, linear recording mode. A form of buffer also is used in fault detection systems such
as flight data recorders, shown in U.S. Patents 4,409,670 and 5,056,056, and 4,646,241, and
logic analyzers, shown in U.S. Patents 4,373,193 and 4,139,303.

Maintaining data in a buffer and saving this data when a particular evert occurs bas
several problems. First of all, a typical buffer is usually implemeanted in integrated circuit
memory and thus usually holds only a few megabytes of data. Such a small burfer 1s insuflicieni
for use in recording asynchronous motion video events. Second, using such a buffer requires an

application to control the use of the buffer and the relationshup of the data 1o any subsequently

racordzd dats.

02285182 1999-09-28

AMENDED SHEET

10

15

20

25

30

WO 98/45791 -9 PCT/US98/06230
Summary of the Invention

The present invention provides an operating system having a file system which supports

writing data to a file in a logical loop of clusters of Storage locations. Writing can be performed
in looped or unlooped modes, and a transition between looping and non-looped recording may be
supported. Recording prior to occurrence of an asynchronous event is performed in a looped
mode. After occurrence of the asynchronous event, the data collected in the looped portion is
seamiessly merged with subsequently collected data by manipulation of pointers to the clusters
by the operating system. By providing such a general structure for use in a file system of a
computer, a substantially larger amount of memory is available for looped recording. In fact,
several minutes of full motion broadcast quality video may be captured. In addition, by using the
file system to handle the storage of data, an application does not need to arrange recorded
information on a physical recording medium.

Such a file system may be used in any application which collects data for the purpose of
capturing the occurrence of an asynchronous event. Such applications include, but are not
limited to, motion video recording, surveillance, test data collection, and other types of systems
that need to record events that precede some arbitrary “trigger” condition and which may require
a large amount of storage. ')

Accordingly, one aspect of the present invention is an operating system for a computer
which provides a file system through which files containing data are made accessible to
application programs. A mode of writing to a file may be enabled wherein data is written in a
continuous loop of clusters. Data is thereafter written to the file in a looped mode, wherein a
loop has a specified length. When the amount of data written to the file is greater than the loop
length, the data is still written into clusters within the loop. When looped writing is disabled, the
file 1s reconstructed into a linear sequence of clusters when looped writing is disabled.

There are numerous other aspects and embodiments of the present invention, including
but not limited to a motion video camera having such an operating system, as well as the
computer-implemented processes of creating, writing to and reconstructing such looped files.

The present invention also may be embodied in computer program products or digital

information products for distribution.

CA 02285182 1999-09-28

10

15

20

25

30

WO 98/45791 .3 PCT/US98/06230

» ¥ Ll ® a
. ' . ' >)
I AL AESUCIRIDLION ¢ 1€ 1 XYY 21,

Fig. 1 1s a block diagram describing a general purpose computer system with which the

present invention may be used;

Fig. 2 1s a diagram illustrating, by way of example, how files typically are allocated in

the computer system of Fig. 1;

Fig. 3 1s a diagram illustrating, by way of example, a file loop cluster chain in

accordance with the invention;

Fig. 4 1s a diagram 1illustrating, by way of example, how a file loop cluster chain is

unwrapped after loop mode is disengaged;

Fig. 5 1s an illustration of a data structure used to represent file loop control information

in one embodiment of the present invention;

Fig. 6 1s an illustration of a partial data structure for a file descriptor that has been
modified to support one embodiment of the present invention; ‘

Fig. 7 is a flow chart describing how an application program typically would use the
loop control functions of a file system in accordance with this embodiment of the present
invention;

Fig. 8 1s pseudocode describing' modifications to an “ioctl” function in the DOS
operating system 1n accordance with one embodiment of the present invention;

Fig. 9 1s a flow chart describing an embodiment of a file loop control function;

Fig. 10 1s a flow chart describing an embodiment of an unwrap function for correcting
file allocation and directory entries when looping of a file is disengaged;

Fig. 11 1s a flow chart describing how data is written to a looped segment to implement
a looped write function in accordance with one embodiment of the present invention; and

Fig. 12 1s a flow chart describing how a file is closed to ensure that file allocation table

entries for a file with a loop have been unwrapped.

Detailed Description

The present invention will be more completely understood through the following
detailed description which should be read in conjunction with the attached drawing in which
similar reference numbers indicate similar structures.

The file system of a computer is the mechanism by which an operating system manages

files. A file is a named logical construct which is defined and implemented by the operating

CA 02285182 1999-09-28

10

13

2%

AMENDED SHEET
. - 4.

system to map the name and a sequence of logical records of data to physical storage media. An
operating system may specifically support various record types or may leave them undefined to
be interpreted or controlled by application programs. A file 1s referred to by its name by
application programs and is accessed through the operating system using commands defined by
the operating system. An operating system provides basic file operations for creating a file,
opening a file, writing 2 file, reading a file and closing a file.

[n order to create a file, the operating system first identifies space in the storage media
which is controlled by the file system. An entry for the new file is then made in a directory
which includes entries indicating the names of the available files and their locations in the file
systern. Creation of a file may include allocating certain available space to the file. Opening a
file returns a handle to the application progran: which it uses to access the file. Closing a file

invalidates the handie.
In order to write data to a file, an application program issues a command to the

operating system which specifies both an indicator of the file, such as a file name, handle or
other descriptor, and the information to be written to the file. Given the indicator of the file, the
operating system searches the directory to find the location of the file. The directory entry stores
a pointer, called the write pointer, to the current end of the file. Using this pointer, the physical
location of the next available block of stcrage is computed and the information is written to that
block. The write pointer is updated in the directory to indicate the new end of the fiie.

In order to read data from a {le, an application program issues a command to the
operating system specifying the indicator of the {iie and the memory locations assigned to the
application where the next block of data should be placed. The aperating system searches its
dirsctory for the associated entry given the indicator of the file. The directory may provide a

pointer to a next block ¢f data to be read, or the application may program or specify some offset

from the beginning of the file to be used.

A primary advantage of using a file system is that, for an application program, the file is

a Jogical construct which can be created, opened, written to, read from and closed without any
concern for the physical storage used by the operating system.
Most physical media have a minimum unat size of storage, called a sector or block, to

which data may be written or from which data may be read. Typically, a one dimensional block
number 1s used to represent a sector, which 1s converted to a surface, track and sector within a

track using a well known formula in order to access the sector, A block is ‘used’ if it is part of a

CA 02285182 1999-09-28

AMENDED SHEET

—— NS

SN

~tmein & wernalrT SiaihferR e ey ' = S -y { - oy -

Ln

10

20

CA

I e

AMENDED SHEET)
. 5.

fle. Blocks may be used alone or in groups called clusters. As used berein the term cluster

means one or more blocks, which are ‘free’ if they are available for writing and incluston within
1 file. The free space may be represented in many ways, such as by a linked list or table or array.
There are three primary methods for allocating disk space; contiguous allocation, linked
allocation, and indexed allocation. In ene embodiment of the present mvention, the file system
that is modified is the MS-DOS file system which uses a file allocation table. The following

description uses such ar allocation method as an example implementaton. However, it should

he understood that other aliocation methods also may be used.

| In one embodiment of the present invention, the operating system provides support for
looped and unlooped writing to a data file by controlling how data is written to the data file. In
particular, as data is written to the {ile, the operating system writes daza to the same loop of
blocks over and over again, periodically overwriting the same blocks. This looped recording 1s
implemented by controlling a write pointer based on the current location at which data is being
written and the desired size of the loop. Upon the occurrence of a triggering event, such as, for
example, by a user pressing a button, the link from the currently written data block to the next
data block is broken and additional data blocks are allocated that are not part of the looped linked
list but are from previously unallocated storage. When the Joopec mode 1s disengaged or when

the file is closed, the file allocation table is modified by the operating system to ind:cate the

actual structure of the resulting data file.
One embodiment of the present invention will now be described in more detail with the

following figures. Referring now to Fig. 1, a switable computer system 20 on which the present
Invention may*be implemented, typically includes an output device 22 which displays
information to a user. The computer system 20 includes 2 main unit 24 connected to the output
device 22 and an input device 26, such as a keyboard. The main unit 24 generally includes a
processor 28 connscted to a memory system 30 via an interconnection mechanism 32. The input

device 26 also is connected to the procsssor 28 and memory system 30 via the connection

‘mechanism 32, as is the output device 22.

[t shouid be understood that one or more output devices may be connected to the
computer systemm. Example output devices include a cathode ray tube (CRT) display, liquid
crysta! displays (LCD), printers, communication devices such as 2 modem, and audio output. It

should also be understood that one or more input devices rmay be connected tq the compuier

02285182 1999-09-28

AMENDEC SHEET

KON VO 1 i

10

15

20

b
LA

CA

A 1 1 A -

AMENDED SHEET
-6 -

o -

system. Example input devices include a keyboard, keypad, track ball, mouse, pen and tablet,
communication device, audio input and scanner, It should be understood the mvention (s not

limited 1o the particular input or output devices used in combination with the computer system or

to those described herein.

The computer system 20 typically is a general purpose computer system which 1s
programmable using a high level compuier programming language, such as “C, or “Pascal” to
produce application programs. The computer systemn may also be specially programmed, special
purpose hardware. In a general purpose computer system, the processor is typically a
commercially available processor, of which the series x86 processors, available from Intel, and
the 680X0 series microprocessors available from Motorola are examples. Many other processors

are available. In the computer system the processor executes a program called an operating
system 21, of which UNIX, DOS and VMS are examples, which controls the exccution of other
computer programs and provides a flle system. scheduling, debugging, input/output conwrol,
compilation, storage assignment, data management and memory management, and

communication control and related services. The processor and operating system define a

computer platform for which application programs in high-level nrogramming languages are
written.

A memory system typically includes a computer readable and writeable nonvolatile
recording medium, of which a magnetic disk, a flash memory and tape are examples. The disk
may be removable, known as a floppy disk, or permanert, xnown as 2 hard drive. A disk hasa
number of tracks in which signals are stored, typically in binary form, i.e., & fcrm interpreted as 2
sequence of one and zeros. Such signals may define an appiication program to be execuied by
the processor, or information stored on the disk to be processed by the application program.
Typically, in operation, the processor causes data to be read from the nonvolatile recording
medium into an integrated circuit memory element, which is typically a volatle, random access
memory such as a dynamic random access memory (DRAM) or static memory (SRAM). The
integrated circuit memory element allows for faster access to the information by the processor
than does the aisk. The processer generally manipulates the data within the integrated circuit

memory and then copies the data to the disk when processing 1s completed. A variety of

mechanisms are known for managing daia movement berween the disk and the integrated circuit

02285182 1999-09-28

r

AMFNDED 725

10

15

20

25

30

WO 98/45791 ST PCT/US98/06230

memory element, and the invention is not limited thereto. It should also be understood that the
invention is not limited to a particular memory system.

It should be understood the invention is not limited to a particular computer platform,
particular processor, or particular high-level programming language. Additionally, the computer
system 20 may be a multiprocessor computer system or may include multiple computers
connected over a computer network. The file system is not limited to magnetic disks, but may
include other storage such as optical disks, or even memory-based files, such as RAM drives.

As described above, the operating system provides a file system, i.e., logical constructs
and associated commands, that provide a layer of abstraction between application programs and
how data 1s physically stored on a storage medium in the memory system. A file is represented
by a name, used by an application, which the operating system maps to storage locations. From
the standpoint of an application program, a file may be opened and written to, put into a loop
mode at some arbitrary point in time, and data is written to the file as if it had infinite storage
with the file system handling looping within the file. At some point in time the file is reverted to
a linear access mode when a certain event occurs, and additional data is written to newly
allocated disk space. The loop mode may be re-enabled and disabled again at any time. When
writing to the file 1s complete, the file is closed. Within the file system, pointers are manipulated
to hide from the application program the fact the file is looping on itself.

The mechanism to be described below can be implemented within any file system that
uses a block allocation scheme, maintains an allocation table to assign specific blocks to a file
and to track status of blocks, supports random access to blocks and has dynamic cluster or block
allocation. For example, the present invention may be used in a motion video recorder, such as
shown in PCT Application Serial No. US96/02460, hereby incorporated by reference, which may
use a version ot the MS-DOS operating system, which is part of the VxWorks real time kernel
from Wind River Systems, which is compatible with the MS-DOS 6.0 file system.

Fig. 2 1llustrates how blocks or clusters within files generally are managed by an
operating system. Typically, the operating system includes directory structure and a file
allocation table (FAT). The directory indicates, for several subdirectories, the name of each file,
and the corresponding block on disk which is the start of the data file. The FAT shows the
blocks allocated to each file and how they are constructed into a chain of blocks to define the file

contents. Example contents of blocks 0 through 10 are shown in Fig. 2. Assume, for example,

CA 02285182 1999-09-28

10

15

20

25

30

WO 98/45791 -8- PCT/US98/06230

that a file starts at block 4. The numbers within the blocks indicate the next block containing
data of this file. As illustrated, this file includes the contents of blocks 4, 5, 8 and 10. ‘FFFF’

indicates the last block.

Referring now to Fig. 3, an example loop of clusters is shown. In this figure, the block
number appears within the box representing the block. When looped control is instantiated, for
example while data is being written to block 10, additional blocks are allocated while more data
i1s written. When the amount of data written corresponds to the desired size of the loop, writing
continues with the first block of the loop. In this example, block 14 follows block 10. Data is
then written to blocks 17, 20 and 44. After data is written in block 44, writing continues with
block 14 until an end of loop is requested by the application. If the application were, for
example, to request unwrapping of the loop while writing a second time to block 17, data would
then be written to block 63, followed by block 83. The looped pointer structure shown in Fig. 3
also would be unwrapped. Such unwrapping can occur at the time of the request, e.g., after
writing to block 17, or when the data file is closed. The results of unwrapping this example
looped data file are shown in Fig. 4. In particular, block 10 is followed by blocks 20, 44, 14 and
17, which are then followed by blocks 63 and 83.

In order to represent the control information used to implement a looped file structure, a
data structure is added to the operating system called a loop control structure as shown in Fig. 5.
This structure stores a value indicating whether a loop mode has been enabled, as indicated at
100, the requested loop length, as indicated at 102, and the actual loop length as indicated in 104.
The actual length may differ from the requested length in order to accommodate for alignment of
the requested size to actual block sizes.

In order to support the creation of looped writing and unwrapping of looped files after
looped writing is terminated, the data structure of a file descriptor also has been modified to
include several additional values, as shown in Fig. 6. Fig. 6 also illustrates these values as
initialized. In particular, a loop active value 106 indicates the status of the looping mode of the
file, and is initially false. The loop offset 108 indicates the offset of the loop within the file. The
loop length 110 1ndicates the size of the loop, and is initially zero. The loop count 112 is
1nitially zero, but is non-zero once looping has occurred. Another value 114 indicates the last

cluster before the loop, which is initially zero. The cluster at which unwrapping occurs, called

02285182 1999-09-28

10

15

20

25

30

CA

WO 98/45791 -9- PCT/US98/06230

the unwrap cluster, also is stored at 116, and is initially zero. Finally, the last cluster in the loop
118 also 1s initially zero.

Referring now to Fig. 7, a flow chart déscribing how an application program would
utilize looped recording will now be described. The application program first initializes
variables, in step 200, corresponding to the file descriptor (Fig. 6) and the loop control structure
(Fig. 5). The desired file then is opened in step 202 and a pointer to its first write location 1s
obtained. It is possible that an application, for some period of time, may write data linearly to
the file in step 204. Eventually, the application may set the variables (see Fig. 5) for controlling
looped writing in step 206. These variables include the requested loop length 102 and setting the
loop enable 100 to true. An “ioctl” function, described below, then is called in step 208 to place
the desired file in looped recording mode. For some period of time, data may be written 1n step
210 to the loop in the file. When looped writing is to be terminated, the application sets the loop
control enable value 100 to false in step 212 and disables the looping by applying the “ioctl”
function in step 214. Data then can be written linearly to the data file in step 216. Eventually the
data file is closed in step 218.

Referring now to Fig. 8, file loops are implemented as a special I/O system control
function (commonly called ‘ioctl’ in the DOS operating system and other systems) which 1s
executed upon an open file pointer, such as indicated in step 208 of Fig. 7. An I/O control
function is implemented as a special function code and one or more parameters are passed to the
1/0 system by means of a simple function call. The I/O control function code in this example 1s
designated FIOLOOPMODE and is assigned a unique function code. This I/O control function
passes a parameter to the file system which is the loop control structure of Fig. 5.

Example pseudocode for modifying of the ioctl function is shown 1n Fig. 8. The
pseudocode of Fig. 8 indicates that this ioctl function receives a file descriptor of the file to
control, a function code, which may indicate the loop control function, and an argument, which
for the loop control function is the address in memory of the loop control structure (Fig. 5). The
requested function is performed, in this instance, by a “case” switch based on the received
function code, which calls a loop control function of the file system, described below 1n

connection with Figs. 9 and 10, as applied to the indicated file descriptor, and the loop control

structure (Fig. 5) specified by the argument.

02285182 1999-09-28

10

15

20

25

30

WO 98/45791 -10 - PCT/US98/06230

The loop control function now will be described in connection with Fig. 9. The file
loop control function begins by initializing in step 220. A loop pad and a loop cluster value,
described below, are initialized to zero and a volume descriptor for the file descriptor is accessed
to identify the number of bytes per cluster in this volume. Next, control of the file descriptor and
volume 1s taken in step 222. This step may be performed, for example, by using semaphores.
The file descriptor also may be checked to ensure that it is current and not deleted or obsolete. If
the file descriptor is not current, the semaphores are released and an error may be returned.

Given proper imitialization, if the loop control enable value 100 (Fig. 5) is set to false,
as determined 1n step 224, then the loop active value 106 (Fig. 6) is checked to ensure that it is
also not false (step 226). An error is returned in step 228 if the file is not in loop mode and a
loop disable command is received. Any semaphores on the volume or file descriptor also are
released 1n case of such an error.

If the file already has been looped at least once, its position information is recorded.
More particularly, the loop count value 1s checked in step 230. If it is non-zero, then the file
pointer 1s set to the end of the loop in step 232 by setting the file descriptor new pointer (not
shown) to the sum of the loop offset and the loop length. The unwrap cluster value 116 is set to
the file descriptor of the last cluster to which data was written in step 234. The loop active value
106 1s then set to false in step 236 and the loop is unwrapped in loop step as is described in more
detail below in connection with Fig. 10.

If the loop control enable value 100 is true, as determined in step 224, and if the loop
active value 106 already 1s set to true as determined in step 240, an error is returned in step 242
indicating that the file already has been enabled for looping. If such an error occurs, any
semaphores controlling the volume and file descriptor should be released. Otherwise, if the start
offset 1s not on a cluster boundary, as determined in step 244, another error message may be
returned in step 246, which also should result in the release of the volume and file descriptor
semaphores. Step 244 may be performed by dividing the file descriptor’s new pointer by the
number of bytes per cluster, and checking if there is a remainder.

Next, the offset at which looping is started is set in step 248. This is performed by
setting the loop oftset value 108 of the file descriptor to the new pointer value. The loop size is
then adjusted up to the next whole cluster size in step 250. - In particular, the loop pad value is

computed as the remainder of the re.quested length 102 divided by the number of bytes per

CA 02285182 1999-09-28

TNV 1AL 1 1 e P sp— - — - . - -y o——— -, ® % Gtems g e gy ey = = ow

10

15

20

25

30

WO 98/45791 - 11 - PCT/US98/06230

cluster. The loop cluster initiated in step 220 value is set to the requested loop length divided by
the number of bytes per cluster, without remainder. This value represents the number of clusters
in the loop. If the number of clusters is zero or if the loop pad value is not equal to zero, the loop
cluster value is incremented by one. Step 250 ensures that the number of clusters in the loop 1s at
least one and is larger than the requested length of the loop.

The loop active value 106 and loop length value 110 then are set in step 256 to activate
looping during the write function, as will be described below in connection with Fig. 11. The
actual loop length 104 then is set in step 258. An indication of the current cluster which is the
last cluster before the loop is then stored in step 260. If the loop offset is zero, then this value
114 is set to zero. Otherwise, this value 114 is set to indicate the current cluster. Any
semaphores then are released in step 262, which completes the 1octl function operation. Success
1s returned in step 264.

The unwrap function which patches up the file allocation table and directory entry
structure when a loop is disengaged, as called in step 238, will now be described in connection
with Fig. 10. The unwrap process begins with some initialization in step 264. For example,
some variables are initialized to obtain the pointer to the file’s directory entry and the volume
descriptor, which is obtained from the file descriptor, and to set an integer value representing the
first cluster in the loop to zero. This value is called the first cluster value. Next, a file 1s
unwrapped if looping actually occurred. Accordingly, the file descriptor loop counter 112 1s
checked in step 266. If looping did not occur, then process ends and success 1s returned 1n step
294. The loop active value 106 is checked in step 268. If this value indicates that looping is
active, an error is returned in step 270.

If the loop counter is greater than zero, indicating looping occurred, and looping 1s no
longer active, then the directory entry for the file is read in step 272. If the unwrap cluster 116 1s
the last cluster in the loop, as determined in step 274 by comparing value 116 to value 118, the
process also ends in step 294. Otherwise, the file allocation table 1s modified as will now be
described in connection with the remaining steps of Fig. 10. To correct the file allocation table,
it is first determined whether the loop started at file offset zero, in step 276, by determining
whether the last cluster before the loop, 1.€., valug 114 in the file descriptor, is equal to zero. If
the start of the file is the first cluster in the loop then the first cluster value is set to a value

indicating the cluster defining the start of the file, as obtained from the director entry 1n step 278.

CA 02285182 1999-09-28

10

15

20

25

30

WO 98/45791 _12 - PCT/US98/06230

The directory entry then is modified to indicated that the next cluster in the file following the
unwrap cluster 116, determined using the volume descriptor, is the new start of the file (step
280).

If the loop did not start at the file offset zero, i.e., the last cluster before loop value 114
1s not equal to zero, the first cluster value is set in step 282 to be the next cluster, according to the
volume descriptor, after the last cluster before loop value 114 of the file descriptor. A file
allocation table entry is then written to connect the last cluster before the loop to the cluster after
the unwrap cluster in step 284. For example, the cluster corresponding to value 114, and the next
cluster after the unwrap cluster 116, determined using the volume descriptor, are linked in the
file allocation table.

Next, the unwrap cluster 116 connected to the first cluster in any post-loop segment. In
particular, if the next cluster after the last cluster in the loop 118 is not null, determined using the
volume descriptor in step 286, a file allocation table entry is written to link the unwrap cluster
116 to the next cluster after the last cluster in the loop 118 (step 288). If the volume descriptor
does not indicate a cluster following the last cluster in the loop 118, the unwrap cluster is the end
of the file. Accordingly, a file allocation table entry is written Iindicating that the end of file
occurs after the unwrap cluster 116 (step 290). Finally, the last cluster in the loop 118 is linked
to the cluster corresponding to the first cluster value in step 292, by writing a file allocation table
entry. After these steps are completed, the unwrap function returns successfully in step 294,

Having now described example ioctl functions, how the actual writing of data causes
looping back to a first block in a loop now will be described. This looping functionality is
implemented in the file system’s write function. The write function includes inputs indicating
the file descriptor pointer, a pointer to a buffer indicating the data to be written, and an Integer
representing the number of bytes to write (step 299). In the process of writing data, in addition
to pertorming standard functionality, also it is determined whether the loop is active in step 300
by analyzing the loop active field 106 of the file descriptor data structure. If the new pointer for
the file descriptor is not within the clusters allocated for the loop, as determined in step 302, this
condition 1ndicates that looping should occur. If the current value of the loop counter 112 is
zero, this loop is the first loop and the loop count 112 1s incremented (step 304). If this is the
first loop, an indication of this cluster is stored as the last cluster in the loop 118 in step 306. The

file pointer is rewound in step 308 by setting the new pointer for the file descriptor to the loop

CA 02285182 1999-09-28

10

15

WO 98/45791 .13 - PCT/US98/06230

offset pointer 108. The writing process can then continue to write data in step 310 using the
rewound file pointer. -

As described above, the ioctl functions of Figs. 9 and 10 handle the unwrapping of the
looped file allocation table entries when the mechanism is engaged. However, it may be
desirable to ensure that these entries have been unwrapped when the file is closed. Accordingly,
as will now been described in connection ﬁvith Fig. 12, the standard close function can be
modified. After initializing the file descriptor value in step 319, the loop counter is examined 1n
step 320. If it is non-zero, indicating that looped writing had occurred, then the loop active field
is examined in step 322. If the loop is active, the loop is then unwrapped in step 324 (using the
process of Fig. 10) and the loop active value 106 is reset. The close function can then return its
status in 326.

Having now described a few embodiments of the invention, 1t should be apparent to
those skilled in the art that the foregoing is merely illustrative and not limiting, having been
presented by way of example only. Numerous modifications and other embodiments are within
the scope of one of ordinary skill in the art and are contemplated as falling within the scope of
the irlvenﬁon as defined by the appended claims and equivalents thereto.

What 1s claimed 1s:

CA 02285182 1999-09-28

W

‘:}\\' '

10

15

20

30

N .
b

TSN AN E | BN -

Ll
-rre

-‘!'iCA 02285_}82 1999'09'28 PN IR R R ok ST RO SR M 2F SRR SURN TR RS

, 14 AMENDED SHEET
CLAIMS
. An operating system for a computer system having a memory system baving a plurality

of logical blocks of memory storage locations, the operaling system providing a file system
through which at least one file containing data is made accessible to at least one application
program, the Opcmﬁng system comprising:

means for mapping a first file of the at least one file to a first two or more loop blocks of the
plurality of blocks; a.né

means for cnabling a loop mode of writing to the first file wheretn data is written 1n a

continuous loop of the first loop blocks.

2. The operating system of ¢laim 1, wherein:

the Jdata comprises mecia data.

3. The operating system of claim 1, wherein:
the first loop blocks have a total actual loop length, and
the operating systemn further comprises

means for receiving a requested loop length, and
means for providing that the total actual locp length 1s at least as great as the

requested loop length.

4. The operating sysiem of claim 3, wheren:

the requested loop length is user-selected.
5 The operating system of claim 1, further comprising:

means for detecting cne or more triggering events; and

means for disabling the loop mode in response to & first triggering event.

6. The operating system of claim §, further comprising:

means for enabling a linear sequence mode of writing to the first 1ije.

7. The operating system of claim €, wherein:

AMENDED SHEET

e i ek S e - W v -

NS R BRI NS I F IUR

10

15

20

o - ...CA 02285182 1999-09-28 -

AMENDED SHEEY "

- 14/1 -

the means for enabling a linear sequence mode is invoked responsive 1o the first tnggering

event.

8. The operating system of claim 6, further comprising:

means for reconstructing the first file into a linear sequznce of blocks when the loop mode

is disabled.

9. The operating system of ciaim 6, further comprising:
means for reconstructing the first file into a linear sequence of blocks when the 10Cp maode

is disabled and the linear sequence mode is enabled.

10. The operating system of claim 9 , wherein:
the means for r:econstructing comprises
means for determining a last loop block that is the last of the first loop blocks Into
which data is written prior to disabling the lcop mode,
means for determining a first non-loop block that is the £rst block intc which cata
is written subsequent 1o enabling the linear sequence mode and that is not a loop block, and
means for mapping the first file to the last loop block and the first non-loop block so
that, in the first tile, data in the first non-loop block logically sequentially follow immediately afier
data in the iast [oop block.

11. The operating system of claim 10, wherein:

the means for reconstructing further comprises
means for mapping the first fiie to each of the first loop blocks so that, in the first file,

data in the first loop blocks logically sequentially follow according to an order in which data was
written to the first loop blocks, and

means for mapping the first file to one or more sequential non-loop blocks, it any,
nto which data is writter subsequent to the writing of data to the first non-loop block so that, in the
frst file, data in the one or more sequential non-loop blocks logically sequentially follow according

t0 an orcer in which data was written to them.

rurEnDED SHEET

10

13

20

8
L

30

-, CA 02285182 1999-09-28 ‘- ~

AMENDED SHE,
1472 -

12, The operating system of claim 11, further comprising:
means for disabling the linear sequential mode in response to a second tnggenng event;

means for mapping the first file to a second rwe or more loop blocks of the plurality of

blocks not already mapped to the first file; and
means for re-enabling the loop mode of writing to the first fiie wherein, responsive to the

second triggering event, data is written in a continuous loop of the second loop blocks.

13. A method for providing looped and unlooped writing to at least one file of a file system
provided by a computer operating system operaling On a computer system having a memory
sysfem having a plurality of logical blocks of memory storage locations, the at least one file
coptaining data and being accessible 1o at least one application program, the method comprising

the steps of:
mapping a first file of the at least one file to a first two or more loop blocks of the plurality

of blocks; and
epabling a loop mode of writing to the first file wherein data is written in 2 CONUNUOUS

loop of the first loop blocks.

14. The method of claim 13, wherein.

the data comprises media data.

15. The method of claim 13, wherein:
the first loop blocks have a total actual loop length, and

the method further comprises the steps of
receiving a requested loop length, and
providing that the total actual loop length is at least as great as the requesied loop

length.

16. The method of ciaim 13, further comprising the steps or:
detecting one or more triggering eveats; and

disabling the loop mode in response to a first triggering event.

e d

T . - — —— - P e W~ whay

1 4
j'\

',\("‘;3;

oy
b

16

20

30

TR R | | KR DE T

'CA 02285182 1999-09-28 - -' '

« 1.

.. - 14/3 -

17 The method of claim 16, further comprising the step of:

enabling a linear sequence mode of writing to the first file.

18. The method of claim 17, whereln.
the step of enabling a linear sequence mode is taken responsive to the first triggenng event.

19. The method of claim 17, further comprising the step of:
reconstructing the first file intc a linear sequence of blocks when the loop mode is disabled.

90. The method of claim 17, further comprising the step ot
reconstructing the first file into a linear sequence of blocks when the loop mode is disabled

and the linear sequence mode 1s enabled.

21. The method of ¢claim 20, wherem:

the step of reconstructing comprises the steps of
determining a last loop block that is the last of the first loop blocks into which data

is written prior to disabling the loop mode.
determining a first aon-loop block that is the first block into which data IS Written

subsequent to enabling the linear sequence mode and that is not a loop block, and
mapping the first file to the last loop block and the first non-loop block so that, in te

first file, data in the first non-loop block logically sequentially foilow immediately after data in the

last loop block.

22. The method of ¢laim 21, wheretn:
the step of reconstructing further comprises the steps of
mapping the first file 1o each of the first loop blocks so that, in the first file, data In

the first loop blocks logically sequentially follow according to an order in which data was written

to the first loop blocks, and
mapping the first file to one or more sequential non-leop dlocks, 1< any, into which

data is written subsequent to the writing of data to the first non-loop block 50 that, in the first fule,

KOS

NPESREEY RN L DRSS L T

10

§3

CA 02285182 1999-09-28 - -

AMENDED SHEET

- - 14/4 -

data in the one.or more sequential non-locp blocks logically sequentially foliew according to an

order in which date was written 10 them.

23. The method of claim 22, further comprising the steps of:
disabling the linear sequential mode in response 0 a second triggenng event,

mapping the first file to a second two or more loon blocks of the plurality ¢f blocks not

already mapped to the first file; and
re-enabling the loop mode of writing to the first file wherein, responsive to the second

triggering event, data is written in a continuous 100p of the second loop blocks.

24, A computer system comprising:
a central processing unit;
an operating system that provides a file system having at ieast one file; and

at least one memory storage system having stored therein a set of application instructions tor
execution of an application program by the central processing urit in cooperation with the operating

systern, the memory system also having a plurality of logical blocks of memory storage locations;

wherein
the file system supports writing data to the at least one file iz a coatinuous logcal

loop of a first plurality of loep blocks of the plurai:ty of logical blocks having a first loap length,

wherein the data is accessible to the application program.

25. The computer system of claim 24, wheren:

the data comprises media data.

26; The computer system of claim 24, wherein:
the file system ‘*'z.m'.ber supports writing data to the at least one file in a logical linear sequence

of one or more of & ﬁrst set of non-loop blocks of the plurality of logical blocks comprised of blocks

that are not foop blocks, wherein the data in the first set of noc-loop blocks 1s accessible to the

application progran.

27. The computer system of claim 26, wheren:

I WA AL
: .

ROy N

Ly o et T M . — A e —— - - S—— - W — - A————— = i gy
b

10

13

20

.. CA 02285182 1999-09-28

: i SRR L -

AMENDED SHEES

- 14/5 -

- -

prior to pecurrence of a first asynchrocous event, the file system provides that data is written

to the first plurality of loop blocks, and
responsive to occurrence of the first asynchronous event, the file system provides that data

is written to the first set of non-loop blocks and further provides that the data written t0 the first
plurality of loop blocks is logically sequentially linked with data written to the first set of non-loop
hiocks in an order in which the date was written so that those of the first plurality of loop blocks wnto
which data was written, and those of thee first set of non-Joop blocks into which data was written,

are reconstructed into a linear sequence of blocks accessible to the application program by accessing

the file.

28. The computer system of claim 27, wherein:
the file system provides the sequential linking by manipulation of pointers to at least one of

the first plurality of loop blocks and at least one of the first set of non-loop blocks.

29. The computer system of claim 24, wherein.:
the first loop length is at least 2s great as a user-determined requested loop length.

30. The computer system of claim 29, wherein:

when an amount of data written to the at least one file is greater than the loop length, data

is written to the first plurality of loop blocks according to an order in which data was wntten into

the loop blocks.

i)

31. The computer system of claim 27, wherein:

responsive to an occurrence of a second asynchronous gvent, the file system provides that
data is written to a second piurality of loop blocks of the plurality of iogical blocks or memory
storage locations that do not comprise any of the first plurality of loop blocks 1nto which data has

been written or any of the first set of one or more non-loop blocks into which data bas been written.

32. The computer system of claim 31, wherein:
responsive to an occurrence of a third asynchronous event, the fiie system provides that data

is written to a second set of one or more non-loop blocks that do not comprise any of the iirst or

AN

| '
L]

10

13

20

23

Ciw . CA 02285182 1999-09-28
AMGENNED) SHEEEY
- 14/6 -

second pluralities of loop blocks into which data has been written or any of the first set of one or

more noz-loop blocks into which data has been written.

33. A computer program product for use with 2 computing system having an operating system
that provides a file system having at least one file containing data and being accessibie to at least one
application program, the computing system further having at least one memory storage system
having a plurality of logical blocks of memory storage locations, the computer program product

comprising a computer usable medium having embodied therein computer readable program code

method steps comprising:
mapping a first file of the at least one file to a first two or more loop blocks of the plurality

of blocks; ard
enabling a loop mode of writing to the first fiie wherein data is written in 2 coRtinuous

loop of the first loop blocks.

34, The computer p:rogram product of claim 33, wheren:
the data comprises media data.

35. The computer program product of claim 33, wheren the method steps further comprise:

detecting one or rnore triggering events; and

disabling the loop mode in response to a first triggering event.

36. The computer program product of claim 35, wherem the method steps further comprise:

enabling a linear sequence mode of writing to the first file.

37. The computer program product of claim 36, wherein:
the step of enabling a linear sequence mode Is taken responsive to the first mggering zvent.

38. The computer program product of claim 36, wherein the metiod steps turther comprise:

reconstructing the first file into & linear sequence of blocks when the loop mode 1s disabled.

10

I3

|',,1CA 0_2285182 1999'09'28 - -

mwu -W‘F“ *‘m (T

- 14/7 -

o -

39. A method for providing looped and unlooped writing to at jeast one file of a file system
provided by a éomputer operating system having an I/O system, the operating system operating
on a computer system having a cenrral processing unit (CPU) and a memory system having a
plurality of logical blo..ks of memory storage locations, the memory system having stored therein
a set of application instructions for execution of an application program by the CPU in
cooperation with the operating system, the at least one file containing data and being accessible
(o the application program, the method comprising.
initiaiizing a loop conol dawa structure compnsing

a first vé.lue indicating a user-requested length of the first loop, and

2 second value indicating an actua! length of the first loop determined to be at least
as great as the uscr-reduested length;

opening the at least one flie;
determining a first block of the at least one file that is a first write location;

implemeating an /O system control function comprising passing the first and second values

of the loop contro] data structure to the I/0 system; and
activating a loop control function of the file system that, based on the first write location anc

the loop control data structure, enables writing to the first loop.

‘ l. , ’F.' 1' '.-'4. ’
s/ r '
PN

4.4 TOT,:&L ;HIEE.lB ¥

"1

CA 02285182 1999-09-28

WO 98/45791 - PCT/US98/06230

1/8

PROCESSOR
INPUT DEVICE |—-—| INTERCONNECTION MECHANISM OUTPUT DEVICE

MEMORY SYSTEM

Fig. 1

o 1 2 3 4 5 6 7 8 9 10
FFFE | FFFF n 23 | 10 | 43
w-—
Fig. 2

T
E—*FFFF'

Fig. 3

SUBSTITUTE SHEET (rule 26)

CA 02285182 1999-09-28

WO 98/45791 PCT/US98/06230

2/8

G z

100
102
104

LC_ENABLE BOOLEAN
LC_REQ_LENGTH INTEGER
LC_ACTUAL_LENGTH INTEGER

Fig. 5

FD_LOOPACTIVE BOOLEAN FALSE 106
FD_LOOPOFFSET INTEGER 0 108

FD_LOOPLENGTH INTEGER 0 10

FD_LOOPCOUNT INTEGER 12
FD_LASTCLUSTBEFLOOP | INTEGER 114

FDO_UNWRAPCLUSTER INTEGER | 0 116

FO_LASTCLUSTINLOOP INTEGER 0 118

Fig. 6

SUBSTITUTE SHEET (rule 26)

CA 02285182 1999-09-28

WO 98/45791 PCT/US98/06230

3/8

INITIALIZE FILE

DESCRIPTOR AND 200 WRITE TO DATE FILE [~210
LOOP CONTROL IN LOOPED MODE
STRUCTURE
212
202 DISABLE LOOP
OPEN FILE [~ ONTROL
PERFORM IOCTL 214
WRITE DATA 04 FUNCTION TO
LINEARLY TO FILE DISABLE LOOPED
WRITING
i l
SET LOOP LENGTH WRITE DATA e
AND ENAGLE 206 LINEARLY TO FILE
LOOPED WRITING
|
Y 208
PERFORM 10CTL
| FUNCTIONTO 218
ENABLE LOORED CLOSE THE FILE
WRITING
Fig. 7

SUBSTITUTE SHEET (rule 26)

CA 02285182 1999-09-28

WO 98/45791

4/8

LOCAL STATUS dosFSIoctl
(
FAST DOS_FILE_DESC *pDosFd /*
contxrol */
int function /*
int arg /%

/* Perform requested function */
switch (function)

{

case FIOLOOPCONTROL:

PCT/US98/06230

file descriptor of file to

function code */
some argument */

retValue = dosFsLoopControl (pDosFd4d,
(DOS _LOOP_CONTROL *) arg):;

break:

return status;

}

Fig. 8

SUBSTITUTE SHEET (rule 26)

WO 98/45791

NITIALIZE VOLUME
POINTER, BYTES
PER CLUSTER, AND
LOOP CLUSTER AND
PAD VALUES

222

TAKE CONTROL OF

FILE DESCRIPTOR
AND VOLUME

224

TO BE DISABLED

CA

5/8
220
1S LOOP YES
ACTIVE
?
NO

IS NEW
POINTER ON "\ YES

CLUSTER
BOUNDARY,

NO RETURN ERROR

YES
228
226
SLOOP "\ NO
ACTIVE RETURN ERROR
?
YES
236
230

HAS THE
FILE LOOPED
ONCE

YES RESET LOOPING

PARAMETERS

NO
| 239 234
SET UNWRAP
SET FILE POINTER CLUSTER TO THE
TO END OF LOOP LAST CLUSTER
WRITTEN

02285182 1999-09-28

242

RETURN ERROR

248 |

SET OFFSET Al
WHICH LOOPING
STARTED

250

ADJUST LOOP SIZE

TO NEXT WHOLE
CLUSTER SIZE

256

SET CONTROLS TO

ACTIVATE LOOPING
IN WRITE FUNCTION

258

SET ACTUAL LOOP
LENGTH IN LOOP
CONTROL

STRUCTURE

238

UNWRAP LOOP

SUBSTITUTE SHEET (ruie 26)

PCT/US98/06230

260

STORE THIS

CLUSTER AS THE
FIRST ONE OF LOOP

262

] RELEASE
SEMAPHORES

264

RETURN SUCCESS

Fig. 9

CA 02285182 1999-09-28

WO 98/45791

6/8

264 276
INITIALIZE POINTERS
TO FILE DIRECTORY LOOP
ENTRY AND VOLUME STARTED AT
AND FIRST CLUSTER OFFSET O -
VALUE
278

266

DID SET FIRST CLUSTER

LOOPING
OCCUR?

VALUE TO START OF
- FILE

] 280
268 *
I SET START OF FILE
IS LOOPING TO CLUSTER
ACTIVE? | FOLLOWING
UNWRAP CLUSTER
270 i
| CONNECT UNWRAP
, CLUSTER TO
RETURN ERROR ' | CLUSTER AFTER
LAST CLUSTER IN
R LOOP
272
L
GET POINTER TO |
DIRECTORY ENTRY
FOR THIS FILE
|
294
Fig. 10

288

PCT/US98/06230

SET FIRST CLUSTER
VALUE TO LAST

CLUSTER BEFORE
LOOP

284

CONNECT LAST
CLUSTER BEFORE
LOOP TO CLUSTER
AFTER UNWRAP
CLUSTER

286

IS LAST
CLUSTER IN

LOOP AN
EOF

+___,

MARK UNWRAP
CLUSTER AS END OF
FILE

290

LINK LAST CLUSTER
IN LOOP TO FIRST
CLUSTER IN LOOP

292

RETURN
SUCCESS

SUBSTITUTE SHEET (rule 26)

WO 98/45791

CA 02285182 1999-09-28

7/8

INITIALIZE FILE
DESCRIPTOR AND
BUFFER POINTERS
AND AMOUNT TO
WRITE

300

IS
LOOPING

ACTIVE? NO

YES

302

IS NEW
POINTER PAST
END OF
LOOP?

NO

YES
304

1S THIS

FIRST LOOP

NO >

YES 306

STORE CURRENT
CLUSTER AS LAST IN

CHAIN

308

REWIND THE FILE
POINTER TO THE
BEGINNING OF THE
LOOP

Fig. 11

299

PCT/US98/06230

310

RETURN NUMBER
OF BYTES WRITTEN

SUBSTITUTE SHEET (rule 26)

WO 98/45791

CA 02285182 1999-09-28

8/8

INITIALIZE FILE
DESCRIPTOR

319

320

DID
LOOPING
OCCUR?

IS
LOOPING
ACTIVE

UNWRAP
LOOP

| 326

RETURN STATUS

Fig. 12

SUBSTITUTE SHEET (rule 26)

PCT/US98/06230

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings

