(B) (11) KUULUTUSJULKAI SU
UTLAGNINGSSKRIFT

3 (47) Patentti- ja rekisterihallitus
Patent- och registerstyrelsen

(51) Kv.1k.5 - Int.c.1.5

C 07D 471/04 // C 07D 261/04
(C 07D 471/04, 221:00, 239:00)

SUOMI-FINLAND
(FI)

(21) Patentthakemus - Patentansökningsnummer
92201

(22) Hakemispäivity - Ansökningsdag
06.11.89

(24) Alkupäivity - Löpdag
06.11.89

(41) Tulut julkiseksi - Blivit offentlig
08.05.90

(44) Nähtäväksi mainita - Vuonna 2002 julkaistiin
30.06.94

(32) (33) (31) Etuokseus - Prioritet
07.11.88 US 267857 P

(71) Hakija - Sökande
1. Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340 Beerse, Belgium, (BE)

(72) Keksijä - Uppfinnare
1. Janssen, Cornelius Gerardus Maria, Koolhof 7, 2350 Vosselaar, Belgium, (BE)
2. Knaeps, Alfonsus Guilielmus, Hofkwartier 4, 2410 Herentals, Belgium, (BE)
3. Kennis, Ludo Edmond Josephine, Guido Gezellestraat 50, 3200 Turnhout, Belgium, (BE)
4. Vandenberk, Jan, Kempelaan 15, 2340 Beerse, Belgium, (BE)

(74) Asiakas - Ombud: Dy Kolster Ab

(54) Keskinnön nimitty - Uppfinningens benämning

Menetelmä terapeuttisesti käytettävän poiston (1,2-bentsisoksetalom-3-yylil)-1-piperidinylalkyl-6,7,8,9-tetrahydro-4H-pyrido/1,2-a/pyrimidinonilijohdannainen valmistamiseksi
Förfarande för framställning av terapeutiskt användbara (1,2-bensoxazol-3-yl)-1-piperidinylalkyl-
6,7,8,9-tetrahydro-4H-pyrido/1,2-a/pyrimidinderivat

(55) Viitejulkaisut - Anförda publikationer
FI C 81800 (C 07D 471/04)

(57) Tiivistelmä - Sammandrag

Keskintö koskee uusien kaavan I mukaisen 3-piperidinylalkyl-johdannaisen ja niihin stereokemia- liken isomeerien ja farmaseutisesti hyvää toimivien hoppoadditiosuolojen valmistusta

Uppfinningen avser framställningen av nya 3-piperidinyl-1,2-bensoxazoler med formeln I

jossa kaavassa Alk on C1-4-alkaanidiyllyl, R1 on vety, C1-4-alkyl tai halogeeni, R2 on C1-4-alkyllyli ja R3 on hydroksi tai R3-C(=O)O, jossa R4 on C1-19-alkyl. Nnilä yhdisteillä on antisykoottinen vaikutus.

och av deras stereokemiska isomerer samt farmaceutiskt godtagbara syraadditionssalt, varvid Alk C1-4-alkandiyl, R1 är vety, C1-4-alkyl eller halogen, R2 är C1-4-alkyl och R3 är hydroksi eller R3-C(=O)O, vari R4 är C1-19-alkyl. Dessa föreningar har antisykotisk aktivitet.
Menetelmä terapeuttisesti käyttökelpoisten (1,2-bentsisoksatsol-3-yyli)-1-piperidinylylalkyyli-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidinonijohdannaisten valmistamiseksi

Tämän keksinnön mukaisesti valmistetut yhdistetelö eroavat niistä piperidinylyliryhmän 1-asemassa olevan (2-C-1,3-alkyyli-6,7,8,9-tetrahydro-4-okso-4H-pyrido[1,2-a]pyrimidin-3-yyli)alkyylisubstituentissa olevan spesiifisen substituentin johtoa.

Tämä keksintö koskee menetelmää seuraavan kaavan 1 mukaisten uusien (1,2-bentsisoksatsol-3-yyli)-1-piperidinylylalkyyli-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-onijohdannaisten

![Chemical structure](image)

ja niiden farmaseuttisesti hyväksyttyävien happoadditio-suolojen ja stereoisomeeristen muotojen valmistamiseksi, jossa kaavassa

Alk on C₃₃-alkyleeni,
R¹ on halogeeni,
R² on C₃₃-alkyyli ja
R³ on hydroksi tai R⁴-C(=O)-O-, jossa R⁴ on C₃₃-alkyyli.

Edellä olevissa määritelmissä C₃₃-alkyleeni tarkoittaa alkyleeniradikaaleja, joissa on 1 - 3 hiiliatomi, kuten esimerkiksi metyleeniä, 1,2-etyleeniä, 1,3-propyleeniä; C₃₃-alkyyli tarkoittaa suoraketjuisia ja haarautuneita
tyydtytteitä hiilivetyryhmäiä, joissa on 1 - 3 hiiliatomi,
so. metyyliä, etyyliä, propyyliä ja 1-metyyllitettyliä; C_{1,15}-alkyyli tarkoittaa edellä määritellyn mukaisia C_{1,3}-alkyylliryhmäiä ja niiden korkeampia homologeja, joissa on 4 - 15 hiiliatomi, kuten esimerkiksi pentyyliä, heksyyliä, heptyyliä, okttyyliä, nonyyliä, dekyyliä, undekyyliä, do-
dekyyliä, tridekyyliä, tetradekyyliä, pentadekyyliä ja vastaavia jäännöksiä; halogeeni tarkoittaa fluoria, kloo-
ria, bromia ja jodia. Edellä määritellyn mukainen R³ voi
olla substituenttina missä tahansa 6,7,8,9-tetrahydro-2-C-
_{1,3}-alkyyli-4H-pyrido[1,2-a]pyrimidin-4-oniryhmän asemista
6, 7, 8 ja 9.

Edullisia ovat sellaiset kaavan (I) mukaiset yhdis-
teet, joissa R³ on substituenttina 6,7,8,9-tetrahydro-2-C-
_{1,4}-alkyyli-4H-pyrido[1,2-a]pyrimidin-4-oniryhmän asemassa
9.

Aivan erityisiä yhdisteitä ovat sellaiset kaavan
(I) mukaiset yhdisteet, joissa Alk on etyleeni; ja/tai R¹
on halogeeni, erityisesti fluori ja aivan erityisesti 6-
fluori; ja/tai R² on metyyli.

Kaavan (I) mukaisten yhdisteiden yllä määritellyis-
sä ryhmissä ovat erityisen kiinnostavia sellaiset yhdis-
teet, joissa R¹ on C_{7,11}-alkyyli, erikoisesti heptyyli, no-
nyli, undekyyli tai tridekyyli.

Kiinnostavimpia keksinnön mukaisesti valmistettuja
yhdisteitä ovat 3-[2-[4-(6-fluori-1,2-bentsisoksatsol-3-
yli)-1-piperidinyyli]etyiyli]-6,7,8,9-tetra-hydro-9-hyd-
roksi-2-metyylili-4H-pyrido[1,2-a]pyrimidin-4-oni sekä sen
farmaseuttisesti hyväksyttävät happoadditiosuolat ja enan-
tiomeeriset muodot.

Kaavasta (I) käy ilmi, että tämän keksinnön mukai-
sesti valmistetaan yhdisteillä on rakenteessaan vähin-
tään yksi asymmetriinen hiiliatomi, nimitään hiiliatomi,
jonon on liitettynyt R³-substituentti. Tämän keskuksen abso-
luuttinen konfiguraatio voidaan osoittaa stereokemiallis-

Kaavan (I) mukaisia yhdisteitä valmistetaan keksinnön mukaisesti siten, että

a) N-alkyloidaan 3-piperidinyli-1,2-bentsisoksatsolii, jolla on kaava (II)

![Diagram](image)

(II)

jossa R\(^1\) on kaavan (I) yhteydessä määritelty, alkylointi-reagenssilla, jolla on kaava (III)

![Diagram](image)

(III)

jossa R\(^1\), R\(^2\) ja Alk ovat kaavan (I) yhteydessä määriteltyt ja W on poistuva ryhmä, kuten halogeeni, reaktion suhteen inertissä liuottimessa korotetussa lämpötilassa, tai
b) kaavan (I-a)

mukaisen yhdisteen valmistamiseksi, jossa R¹, R² ja Alk ovat kaavan (I) yhteydessä määriteltyjä, saatetaan yhdiste, jolla on kaava (XIX)

jossa R¹, R² ja Alk ovat kaavan (I) yhteydessä määriteltyjä, reagoimaan Lewis-hapon, kuten joditrimeetyylisilaanin kanssa, ja haluttaessa

i) kaavan (I) mukaisen yhdisteen valmistamiseksi, jossa R¹ on ryhmä R⁴-C(=O)-O-, 0-asyloidaan menetelmällä a) tai b) saatu kaavan (I-a) mukainen yhdiste karboksyylihapolla, jolla on kaava (VI)

\[R⁴-COOH \] (VI)

jossa R⁴ on kaavan (I) yhteydessä määritelty, tai sen funktionaalisella johdannaisella reaktion suhteen inertissä liuottimessa,

ii) valmistetaan kaavan (I-a) mukaisen yhdisteen enantiomeeriset muodot muuttamalla kaavan (I-a) mukaisen
yhdisteen raseeminen seos isomeerien erotusreagenssin avulla diastereomeeristen suolojen tai yhdisteiden seoksen, erottamalla fysiakalisesti sanottu diastereomeeristen suolojen tai yhdisteiden seos ja muuttamalla erotetut diastereomeeriset suolat tai yhdisteet vastaaviksi kaavan (I-a) mukaisen yhdisteen enantiomeerisiksi muodoiksi, ja/tai

iii) muutetaan kaavan (I) mukainen yhdiste terapeutisesti aktiiviseksi ei-toksiseksi happoadditiosuolaksi happokäsittelyn avulla tai happosuola vapaaaksi emäksesi emäksen avulla.

Menetelmävävaihtoehdossa a) käytetyn lähtöaineen kaavassa (III) edustaa W sopivaa reaktiivista poistuvaa ryhmää kuten halogeenei, esim. klooria, bromia tai jodia. Mainittu N-alkylointireaktio voidaan sopivasti suorittaa sekoittamalla reagoivat aineet reaktion suhteen inertissä liuottimessa, joka voi olla esimerkiksi vesi; aromaattinen liuotin, esim. bentseeni, metyylibentseeni, dimetyylibentseeni, klooribentseeni, metoksibentseeni ja vastaavat; C_{16}-al kanoli, esim. metanoli, etanoli, 1-butanoli ja vasta vät; ketoni, esim. 2-propanoni, 4-metyyli-2-pentanoni ja vastaavat; esteri, esim. etyyliaisettaatti, Y-butyrolaktoni ja vastaavat; eetteri, esim. 1,1'-oksibisetaani, tetrahydrofurana, 1,4-dioksaani ja vastaavat; dipolaarinen apro ottinen liuotin, esim. N,N-dimetyyliformamidi, N,N-dimetyyliasetamidi, dimetyylisulfoksidi, pyridiini, 1,3-dimetyyli-3,4,5,6-tetrahydro-2(1H)-pyrimidinon, 1,3-dimetyyli-2-imidatsolidinoni, 1,1,3,3-tetrametyyliurea, 1-mety yli-2-pyrrolidinoni, nitrobenzenei, asetonitiili ja vastaavat; tai sellaisten liuotinten seokset. Voidaan mahdollisesti lisätä sopivaa emästä, kuten esimerkiksi alkali metalli- tai maa-alkalimetallikarbonaattia, -vetykarbonaattia, - hydroksidia, -oksidia, -karboksylaattia, -alkoksidia, -hydridiä tai -amidia, esim. natriumkarbonaattia, natriumvetykarbonaattia, kaliumkarbonaattia, natriumhyd-

Tässä ja muissakin menetelmävaihtoehtoissa voidaan reaktiotuotteet eristää väliaineesta ja mikäli tarpeellista lisäksi puhdistaa käyttäen alalla yleisesti tunnettua menetelmiä, kuten esimerkiksi uuttamista, kityyttämistä, hienoksi hiertämistä ja kromatografiaa.

Kaavan (I) mukaiset yhdisteet, joissa R³ on R⁴-(C=O)-O-, voidaan saada myös suorittamalla O-asylointi-reaktio menetelmällä a tai b saadulle kaavan (I-a) mukai-
selle yhdisteelle, jossa R³ on hydroksi, kaavan (VI) mukaisella karboksyylihapolla tai sen sopivalla reaktiivisella funktionaalisella johdannaisella, kuten esimerkiksi asyylihalogenidilla, symmetrisellä tai sekä-anhydridillä, esterillä tai amidilla, asyyliatsidilla ja vastaavilla johdannaisilla. Mainittuja funktionaalisia johdannaisia voidaan valmistaa noudattaen alalla tunnettuja meneteliä, -esimerkiksi antamalla kaavan (VI) mukaisen karboksyylihapon reagoida halogenoivana reagenssin kanssa, esimerkiksi tionyylkiloridi, fosforitrikloridi, fosforyylkiloridi, oksalyylkiloridin tai vastaavien kanssa, tai antamalla mainitun karboksyylihapon (VI) reagoida asyylihalogenidin esimerkiksi asetyylkiloridin tai vastaavien kanssa. Mainitut johdannaiset voidaan aikaansaada sinu tai haluttaessa eristää ja lisäksi puhdistaa ennen kuin niiden annetaan reagoida kaavan (I-a) mukaisen yhdisteen kanssa.

Kaavan (I-a) mukainen yhdiste ja kaavan (VI) mukainen karboksyylihappo voidaan myös esteröidä sopivana estereitä muodostamaan kykenevän reagenssin läsnä ollessa, esimerkiksi dehydratoivan reagenssin, esim. disykloheksylylikarbodi-imidin, 2-kloori-1-metylylipyridiniumjodidin, fosforitpentoksidin, 1,1'-karbonyylibis[1H-imidatsolin] 1,1'-sulfonyylibis-[1H-imidatsolin] tai vastaavien reagenssien läsnä ollessa.

Mainitut O-asylointireaktiot voidaan sopivasti suorittaa sekoittamalla reagoivat aineet valinnaiseesti sopivassa reaktion suhteen inertissä liuottimessa, joita ovat esimerkiksi halogenoitut hiilivety, esim. dikloorimetaani, trikloorimetaani ja vastaavat; aromaattinen hiilivety, esim. benseneeni, metylbentseeni ja vastaavat; eetteri, esim. 1,1'-oksibisetaani, tetrahydrofuraani ja vastaavat; tai dipolaarinen aproottiin liuotin, esim. N,N-dimetylyli-formamidi, N,N-dimetyylylisetamidi tai pyridini ja vastaavat. Joissakin tapauksissa voi olla tarkoituksen mukaista käyttää liuottimena jonkin reagenssin ylimääräää. Vesi,
happo, alkoholi tai amiini, joka vapautuu reaktion aikana, voidaan poistaa reaktioseoksesta käyttämällä alalla tunnettuja menettelyjä, kuten esimerkiksi atseotrooppista tislausta, kompleksin muodostusta, suolan muodostusta ja vastaavia menetelmiä. Joissakin tapauksissa voi erityisesti olla tarkoituksenmukaista lisätä sopivaa emästä, kuten esimerkiksi tertiääristä amiinia, esim. N,N-dietyylitamiinia, 4-etyylimorfolinia, pyridiiniä tai N,N-dimetyyli-4-aminopyridiiniä. Lisäksi reaktionopeuden suurentamiseksi mainittu asylointireaktio voidaan edullisesti suorittaa jonkin verran kohotetussa lämpötilassa ja erityisissä tapauksissa reaktioseoksen palautustislauslämpötilassa.

Kaavan (I) mukaisilla yhdisteillä on emäksiä omisivuja ja ne voidaan siten muuttaa niiden terapeuttisesti aktiivisiksi ei-myrkyllisiksi happoadditiosuoloiksen muodoiksi käsittelemällä sopivilla hapailla, esimerkiksi epäorganisilla hapailla kuten halogeenivetyhapolla, esim. kloorivety- tai bromivetyhapolla tai vastaavilla, rikkihapolla, typpihapolla, fosforihapolla tai vastaavilla; tai organisilla hapailla, kuin esimerkiksi etikka-, propaani-, hydroksietikka-, 2-hydroksipropani-, 2-oksopropaani-, 2- (E)-buteenidi-, (Z)-2-buteenidi-, 2-hydroksibutanähi-, 2,3-dihydroksibu-2-anidihappo, 2-hydroksi-1,2,3-propaanitrikarboxyli-, metaanisulfoni-, etaanisulfoni-, bentseenisulfoni-, 4-metyylibentseenisulfoni-, sykloheksaanisulfamidi-, 2-hydroksibentsoe-, 4-ammino-2-hydroksibentsoehipaolla tai vastaavanlaisilla hapailla. Päinvastoin voidaan suolamuoto muuttaa vapaaaksi emäsmuodoksia käsittelemällä alkaliolla.

Ilmaus happoadditiosuola käsittää yllä käytettynä myös solvaatit, joita kaavan (I) mukaiset yhdisteet kykenneväät muodostamaan, ja mainittujen solvaattien valmistuksen tarkoitetaan sisältyvän tämän keksinnön piiriin. Esimerkkejä sellaisista solvaateista ovat esim. hydraaatin, alkoholaatit ja vastaavat.
Kaavan (I-a) mukaisten yhdisteiden enantiomeerisia muotoja

voidaan saada muuttamalla kaavan (I-a) mukaisten yhdisteiden raseemiset seokset sopivan erotusreagenssin, kuten kirmalisen hapon, esim. viini-, omena- tai mantelahapon, kamferisulfonihapon, 4,5-dihydro-1H-2-bentsopyraani-2-karboksyylihapon tai vastaavanlaisten happojen tai niiden reaktiivisten funkctionaalisten johdannaisten, esim. asyl- lihalogenidien, avulla diastereomeeristen suolojen tai yhdisteiden, erityisesti estereiden, seokseksi; erottamalla fysikaalisesti mainitut diastereomeeristen suolojen tai yhdisteiden seokset käyttäen esimerkiksi selektiivistä kiteyttämistä tai kromatografiatekniikkoja, esim. neste- kromatografiaa ja vastaavanlaisia menetelmiä: ja muuttamalla lopuksi mainitut erotetut diastereomeeriset suolat tai yhdisteet kaavan (I-a) mukaisten yhdisteiden vasta- viksi enantiomeerisiksi muodoiksi suorittamalla hydrolyysi happamassa tai emäksisessä vesiliuoksessa, mahdollisesti kohotetussa lämpötilassa.

Jotkut edellä kuvatuissa menetelmissä käytettävät välituoitteet ja lähtöaineet ovat tunnettuja yhdisteitä, kun taas toiset ovat uusia. Kaavan (II) mukaiset välituoitteet ja menetelmiä niiden valmistamiseksi tunnetaan julkaisusta EPA-0 196 132. Kaavan (III) mukaiset alkylointireagenssit ovat uusia ja ne voidaan valmistaa käyttäen menetelmiä, jotka ovat alalla tunnettuja samankaltaisten yhdisteiden valmistamiseksi ja joita niitä kuvataan seuravassa yksityiskohtaisemmin.
Kondensoimalla mahdollisesti suojattu 2-aminopyrimidinijohdannainen (XI) α-asyylilaktonin (XII) kanssa aktivoivat reagenssin läsnä ollessa sopivassa reaktion suhteen inertissä liuottimessa voidaan saada kaavan (XIII) mukainen välituote.

\[
\text{(XI)} \quad \text{+} \quad \text{(XII)} \quad \rightarrow \quad \text{(XIII)}
\]

Kaavoissa (XI), (XIII) ja missä tahansa jäljempänä esiintyessään P merkitsee vetyä tai suojaryhmää, joka voidaan helposti poistaa, kuten esimerkiksi hydrogenolyysin avulla poistettavaa ryhmää, esim. fenyltrimetyyliä ja vastaavanlaisia ryhmää; hydrolysoitavaa ryhmää, esim. metylyliä ja vastaavanlaisia ryhmää. Sopivia aktivoivia reagensseja mainittua kondensatioreaktiota varten ovat tyyppisesti sellaiset halogenointireagenssit kuin esimerkiksi fosforylikloridi, fosforylibromidi, fosforitrikloridi, tioniylikloridi ja vastaavanlaiset reagenssit.

Suorittamalla välituotteelle (XIII) sen jälkeen katalyyttinen hydraus sopivassa reaktion suhteen inertissä liuottimessa vedyn läsnäollessa, mahdollisesti kohotettuessa lämpötilassa ja tai paineessa, käyttäen katalyyttinä kuin esimerkiksi palladium-hiilikatalyyttä tai vastaavanlaisia katalyyttejä, voidaan saada suojattu välituote (XIV) siinä tapauksessa että P on alkyyliryhmä, kuten esimerkiksi metylyli,

\[
\text{(XIV):}
\]

\[
P\text{-}\text{O} \quad \text{(XIV):}
\]

\[
P\text{-}\text{O} \quad \text{(XIV):}
\]

\[
P\text{-}\text{O} \quad \text{(XIV):}
\]
ta toisaalta, kun P on vety tai hydrogenolyysin avulla poistettava ryhmä, kuten esimerkiksi fenylimetyyli, voi- daan saada suoraan kaavan (III-a) mukainen alkylointireagenssi, jossa R' on hydroksi.

\[\text{Alk-W} \]

10 Sopivia liuottimia mainittua katalyyttistä hydraulreaktio-
ta varten ovat vesi; C\textsubscript{14}-alkanolit, esim. metanoli, etano-
li, 2-propanoli ja vastaavat; eetterit, esim. 1,1’oksi-
bisetaani, 1,4-dioksaani, tetrahydrofuranit, 2-metoksietan-
oli ja vastaavanlaiset; halogenoidut hiilivedyt, esim. trikloorimetaani ja vastaavanlaiset; dipolaariset aprop-
ttiset liuottimet, esim. N,N-dimetyyliformamidi ja vastaan-
vanlaiset; esterit, esim. etyylisetaatti, butyyl-ase-
taatti ja vastaavanlaiset; tai sellaisten liuotinten seoks-
set.

20 Välituotteesta (XIV), jossa P on alkyliryhmä, voi-
daan poistaa suojaus, jolloin saadaan kaavan (III-a) mu-
kainen reagenssi, kuumentamalla ensiksi mainittua väkevän
bromivety- tai jodivetyhapon kanssa tai suorittamalla
reaktio Lewis-happojen kanssa, joita ovat esimerkiksi boor-
ritrihalogenidit, esim. booritrifluoridi, booritrifloridi
ja erityisesti booritribromidi; joditrimeetyylisilaani; tai
alumiinikloridi ja vastaavanlaiset Lewishapot.

Kaavan (III-a) mukainen välituote voidaan O-asyloi-
da kaavan (VI) mukaisen karboksyltihihapon tai sen edellä
määriteltyyn mukaisen funktionaalisen johdannaisen avulla
kaavan (III-b) mukaiseksi alkylointireagensssiksi, jossa R'
on $R''\cdot(=O)\cdot O^-$, noudattaen samoja menetelmiä kuin on kuvat-
tu edellä kaavan (I-a) mukaisten yhdisteiden O-asylointia
varten.
Kaavan (I) mukaisten yhdisteiden puhtaita stereoisomeeriä muotoja voidaan myös saada sopivien välituotteiden ja lähtöaineiden puhtaista stereoisomeerisistä muodoista, edellyttäen, että välissä olevat reaktiot tapahtuvat stereospesifisesti. Kaavan (I) mukaisten yhdisteiden puhtaiden ja seoksena olevien stereoisomeeristen muotojen valmistuksen tarkoitetaan sisältyvän tämän keksinnön piiriin.
Kaavan (I) mukaisten yhdisteiden lisätuna on, että ne poistuvat melko hitaasti kehosta ja ovat siten pitkään vaikuttavia. Tämä voidaan osoittaa esimerkiksi mittamaalla tasoja plasmassa sen jälkeen, kun yhdisteitä on annettu koirille suun kautta, ja sen pitkään vaikuttavan oksennuksen vaikutuksen avulla, joka näillä yhdisteillä on koirin, joita on ärystetty dopamiinin agonistilla, apomorfinilla. Erityisesti sellaisilla kaavan (I) mukaisilla yhdisteillä, joissa R₁ on korkeampi alkyylikarbonylliloksiryhmä, kestää vaikutus kauan. Kaavan (I) mukaisia yhdisteitä tarvitsee siten antaa vain suhteellisen pitkin välissä, esim. usean päivän tai viikon välein, jolloin varsinainen antamisaika riippuu käytettävän kaavan (I) mukaisen yhdisteen luonteesta ja hoidettavan henkilön tilasta. Nämä yhdisteet mahdollistavat siten tehokkaamman hoidon: hitaan poistumisen ansiosta on helpompana ylläpitää stabilili myrkyttömän, tehokkaan suuruinen konsentraatio plasmassa ja antamiskertojen lukumäärän vähentämisestä voidaan odottaa seuraavan hoidettavan henkilön paremman mukautumisen määrättyyn lääkitykseen.

Kaavan (I) mukaisten yhdisteiden antipsykoottinen aktiivisuus ilmenee koetuloksista, jotka on saatu vähintään yhdessä kahdesta erilaisesta koemenetelmästä, nimittäin yhdistetystä apomorfiini (APO), tryptamiini (TRY) ja norepinefriini (NOR) -kokeesta rotilla ja apomorfinikokeesta koirilla. Mainittu yhdistetty apomorfiini-, tryptamiini- ja norepinefrinin koe on kuvattu julkaisussa Ach. int. Pharmacodyn., 227, 238 – 253 (1977) ja sen avulla saadaan empirinen arvio suhteellisesta spesifisyystä, jolla lääkkeet voivat vaikuttaa määrättyihin neurotransmitterijärjestelmiin sentraalisesti (keskushermoostossa) samoin kuin myös periferisesti. Erityisesti koe osoittaa kaavan (I) mukaisten testattavien yhdisteiden antagonisten aktiivisuuden dopamiinia kohtaan (ehkäisemällä oireet, joita tuo esiin dopamiinin agonisti apomorfiini),
<table>
<thead>
<tr>
<th>Yhdistetty koe rotilla; ED₃₀ ilmaistuna (mg/kg)</th>
<th>Koirien (APO)-koe ilmaistuna mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yhdistyte nro</td>
<td>(APO)</td>
</tr>
<tr>
<td>1</td>
<td>0,25</td>
</tr>
<tr>
<td>2</td>
<td>0,31</td>
</tr>
<tr>
<td>3</td>
<td>0,31</td>
</tr>
<tr>
<td>4</td>
<td>0,31</td>
</tr>
<tr>
<td>5</td>
<td>0,31</td>
</tr>
</tbody>
</table>

Kysymyksessä olevat yhdisteet ovat käyttökelpoisia neurotransmitteri-aineiden vapautumiseen liittyvien sairauksien hoidossa, minkä vuoksi niitä voidaan käyttää erityisesti mielisairauksien hoidossa, jolloin potilaalle annetaan koko elimistöön vaikuttava antipsykoottinen määrä kaavan (I) mukaista yhdistettä tai sen farmaseuttisesti hyväksyttävää happoadditiosuolaa, joka määrä on tehokas neurotransmitteri-aineiden vapautumiseen liittyvien sairauksien, erityisesti mielisairauksien, hoitamiseen. Sellaisten sairauksien hoidon asianuntijat kykenisivät helposti päättelemään tehokkaan määräntä edellä esitettyjen koetulosten perusteella. Yleisesti oletetaan, että tehokas antipsykoottinen määrä olisi noin 0,01 mg/kg - noin 4 mg/kg ruumiinpainoa, vielä mieluummin noin 0,04 mg/kg - noin 2 mg/kg ruumiinpainoa.

Seuraavat esimerkit on tarkoitettu valaisemaan keksintöä. Ellei toisin ole ilmoitettu, ovat niissä mainitut osat paino-osia.
A. Välituotteiden valmistus

Esimerkki 1

3-(2-kloorietyyli)-6,7,8,9-tetrahydro-9-hydroksi-2-
metyyli-4H-pyrido[1,2-a]pyrimidin-4-oni

a) Seoitetun seokseen, jossa oli 84 osaa fosfo-
ryylikloridia ja 540 osaa metyylibentseeiniä, lisätiin 20
osaa 3-(fenyylimetoksi)-2-pyridiiniamiinia. Seosta sekoite-
ttiin 50 °C:ssa ja lisätiin 22 osaa 3-asetyyli-4,5-di-
hydro-2(3H)-furanonia. Reaktioseosta sekoitetiin 5 tunnin
ajan 90 °C:ssa. Lisätiin toinen 22 osan annos 3-asetyyli-
4,5-dihydro-2(3H)-furanonia ja sekoittamista jatkettiin 30
minuutin ajan 90 °C:ssa. Liuosta seisotettiin yön ajan
90 °C:ssa. Seos kaadettiin murskatun jään joukkoon ja sii-
hen sekoitetiin 25 % ammoniumhydroksidiliuosta. Tuote
uutettiin trikloorimetaanilla. Uute kuivattiin, suodatet-
ttiin ja haidutettiin. Jäännös puhdistettiin pylväsksroma-
tografian avulla käyttäen silikageeliä ja eluenttina tri-
kloorimetaanin ja metanolin seosta (98:2 tilavuuden mu-
kaan). Koottiin puhtaat fraktiot ja eluentti haidutet-
ttiin. Jäännöstä sekoitetiin 2-propanolissa. Tuote suoda-
tettiin erilleen, pestiin 2-propanolin ja 1,1'-oksibise-
taanin seoksella ja kuivattiin 50 °C:ssa, jolloin saatiin
20,5 osaa (62,3 %) 3-(2-kloorietyyli)-2-metyyli-9-(feny-
imetoksi)-4H-pyrido[1,2-a]pyrimidin-4-onia, s.p. 141,1 °C
(välituote 1).

b) Seosta, jossa oli 3,3 osaa 3-(2-kloorietyyli)2-
metyyli-9-(fenyylimetoksi)-4H-pyrido[1,2-a]pyrimidin-4-
onia ja 120 osaa metanolia, hydrattiin normaalipaineessa
ja huoneen lämpötilassa käyttäen 2,0 osaa 10-%:ista pall-
dium-hiilikatalyyttiä. Sen jälkeen kun laskettu määrä ve-
tyä oli kulunut, katalyytti suodatettiin pois ja suodos
haidutettiin kuivin, jolloin saatiin 2,4 osaa (99 %) 3-
(2-kloorietyyli)-6,7,8,9-tetrahydro-9-hydroksi-2-metyyli-
4H-pyrido[1,2-a]pyrimidin-4-onia öljymäisenä jäännöksenä
(välituote 2).
Esimerkki 2

3-[2-[4-(6-fluori-1,2-bentsisosatsol-3-yyli)-1-piperidinyyli]etyyli]-6,7,8,9-tetrahydro-7-metoksi-2-metyyli-4H-pyrido[1,2-a]pyrimidin-4-oni

b) Seosta, jossa oli 10 osaa 3-(2-kloorietyyli)-7-metoksi-2-metyyli-4H-pyrido[1,2-a]pyrimidin-4-onia, 40 osaa 2-propanolia, joka oli kyllästetty kloorivedyllä, ja 160 osaa metanolia, hydrattiin normaalipaineessa ja houneen lämpötilassa käyttäen 2,0 osaa 10-%:ista palladiumhiilikatalyytiä. Sen jälkeen kun laskettu määrä vetyä oli kulunut, katalyytti suodatettiin pois piimaan avulla ja suodos haihdutettiin. Öljymäinen jäännös otettiin 80 osaan 2-propanolia ja 2,2′-oksibispropaania. Sen jälkeen kun oli sekoitettu yön ajan huoneen lämpötilassa, saostunut tuote suodatettiin erilleen, pesteiin 2-propanolin ja 2,2′-oksibispropanin seoksella ja kuivattiin tyhjössä 50 °C:ssa, jolloin saatiin 7,5 osaa (64,0 %) 3-(2-kloorietyyli)-6,7,8,9-tetrahydro-7-metoksi-2-metyyli-4H-pyrido[1,2-a]-pyrimidin-4-onimonohydrokloridia; s.p. 170 °C, (välitunte 4).

c) Seosta, jossa oli 6 osaa 3-(2-kloorietyyli)-6,7,8,9-tetrahydro-7-metoksi-2-metyyli-4H-pyrido[1,2-a]-
pyrimidin-4-onia, 4,8 osaa 6-fluori-3-(4-piperidinyyli)-
1,2-bentsisoksatsolimonohydrokloridia, 6,1 osaa –N–(1-me-
tyylietyyli)-2-propaaniaminia ja 16 osaa metanolia, se-
koitetiin yön ajan palautustislauslämpötilassa. Reaktio-
seos haihdutettiin ja jäähnös otettiin veteen. Tuote uut-
ettiin trikloorimetaanilla. Uute kuivattiin, suodatettiin
ja haihdutettiin. Jäähnös puhdistettiin pylväskromatogra-
fian avulla käyttäen silikageeliä ja eluenttina trikloori-
metaanin ja metanolin seosta (95:5 tilavuuden mukaan).
Koottiin puhtaat fraktiot ja eluentti haihdutettiin, jol-
loin saatiin 8,5 osaa (100 %) 3-[2-[4-(6-fluori-1,2-bent-
sisoksatsol-3-yli)-1-piperidinyylitetyylli]-6,7,8,9-tetra-
hydro-7-metoksi-2-metyyli-4H-pyrido[1,2-a]pyrimidin-4-onia
öljymäisenä jäähnöksenä (välituote 5).

B. Loppputuotteiden valmistus
Esimerkki 3
3-[2-4-(6-fluori-1,2-bentsisoksatsol-3-yli)-1-pi-
peridinyylitetyylli]-6,7,8,9-tetrahydro-9-hydroksi-2-metyyl-
li-4H-pyrido-[1,2-a]pyrimidin-4-oni
Seosta, jossa oli 12,5 osaa 3-(2-kloorietyylli)-
6,7,8,9-tetrahydro-9-hydroksi-4H-pyrido[1,2-a]pyrimidin-4-
onia, 10,0 osaa 6-fluori-3-(4-piperidinyyli)-1,2-bentsi-
soksatsolimonohydrokloridia, 10 osaa –N–(1-metyylietyyli)-
2-propaaniaminia ja 120 osaa metanolia, sekoitetiin yön
ajan 60 °C:ssa. Reaktioseos haihdutettiin ja öljymäinen
jäähnös otettiin trikloorimetaanin ja pestiin vedellä.
Orgaaninen kerros kuivattiin, suodatettiin ja haihdutet-
ttiin. Jäähnös puhdistettiin kaksi kertaa pylväskromatogra-
fian avulla käyttäen silikageeliä ja eluentteina ensin
trikloorimetaanin ja metanolin seosta (95:5 tilavuuden
mukaan) ja sitten ammoniakilla kyllästettyä trikloorime-
taanin ja metanolin seosta (95:5 tilavuuden mukaan). Koot-
tiin puhtaat fraktiot ja eluentti haihdutettiin. Jäähnös
kiteytettiin 2-propanonista. Jäähdyttämisen jälkeen suo-
datettiin saostunut tuote erilleen, se pestiin 2-propa-
nolin ja 2,2′-oksibispropanin seoksella ja uudelleenki-
teytettiin 2-propanolista. Tuote suodatettiin erilleen ja
kuivattiin, jolloin saatiin 3,6 osaa (21,1 %) 3-[2-4-(6-
fluori-1,2-bentsisoksatsol-3-yyli)-1-piperidinyyljetyyl-
li]-6,7,8,9-tetrahydro-9-hydroksi-2-metyyli-4H-pyrido-
[1,2-a]pyrimidin-4-onia; s.p. 179,8 °C. (Yhdiste 1).

Esimerkki 4

(+)- ja (-)-3-[2-[4-(6-fluori-1,2-bentsisoksatsol-1-
3-yyli)]1-piperidinyyljetyylli]-6,7,8,9-tetrahydro-9-hyd-
roksi-2-metyyli-4H-pyrido[1,2-a]pyrimidin-4-oni

Sekoitettuun liuokseen, jossa oli 5,4 osaa 3-
[2-[4-(6-fluori-1,2-bentsisoksatsol-3-yyli)]1-piperidi-
nyyljetyylli]-6,7,8,9-tetrahydro-9-hydroksi-2-metyyli-
4H-pyrido[1,2-a]pyrimidin-4-onia ja 1,6 osaa N,N-dimetyy-
li-4-pyridiiniamiinia 39 osassa dikloorimetaania, lisät-
tiin tippoittain liuos, jossa oli 5,4 osaa (+)-3,4-dihydro-
1H-2-bentsopyraani-2-karbonyylikloridia 39 osassa dikloor-
imetaania. Kun lisääminen oli suoritettu loppuun, jatket-
tiin sekoittamista 4 tunnin ajan huoneen lämpötilassa.

Reaktioseosta pestiin peräkkäin vedellä, 1 N natriumhy-
drokсидiliuoksella ja vedellä, ja se kuivattiin, suodatet-
tiin ja hahdutettiin. Jäänöös puhdistettiin pylväskroma-
tografian avulla käyttäen silikageeliä ja eluenttina am-
moniakilla kyllästettyä asetonitriilin ja veden seosta
(50:50 tilavuuden mukaan). Koottiin kaksi puhdasta frak-
tiota ja eluentti hahdutettiin. Kumpikin jäänöös erotet-
tiin liuoksesta natriumchloridilla ja saatiin kaksi diaste-
reoisomeeristä esteriä. Ensimmäinen isomeeri yhdistettiin
16 osaan metanolia, 1 osaan N-(1-metyylietyylli)-2-pro-
paaniamiinia ja 1 osaan kanssa vettä ja seosta sekoitet-
tiin 160 minuutin ajan 60 °C:sse. Seos hahdutettiin ja
jäänöös puhdistettiin pylväskromatografian avulla käyttäen
silikageeliä ja eluenttina trikloorimetaanin ja metanolin
seosta (90:10 tilavuuden mukaan). Koottiin puhtaat frak-
tiot ja eluentti hahdutettiin. Jäänöös kiteytettiin 2-
propanolista. Tuote suodatettiin erilleen ja kuivattiin, jolloin saatiin 0,2 osaa (36 %) (+)-3-[2-(4-(6-fluori-1,2-bentsisoksatsol-3-yyli)-1-piperidinyyli)-etyyli]-6,7,8,9-tetrahydro-9-hydroksi-2-metyyli-4H-pyrido[1,2-a]pyrimidin-4-onia; s.p. 160,7 °C, αD = + 15,42° (c = 0,5 % etanolisssa). (Yhdiste 2) Toinen isomeeri yhdistettiin 16 osaan metanolia, 1 osaan N-(1-metyylietyyli)-2-propaniaminioja ja 1 osaan vettä ja seosta sekoitettiin 160 minuutin ajan 60 °C:ssa. Seos haihdutettiin ja jäänäös puhdistettiin pylväskromatografian avulla käyttäen silikageeliä ja eluenttina trikloorimetaanin ja metanolin seosta (90:10 tilavuuden mukaan). Koottiin puhtaat fraktiot ja eluentti haihdutettiin. Jäänäös kiteitettiin 2-propanolista. Tuote suodatettiin erilleen ja kuivattiin, jolloin saatiin 0,2 osaa (3,6 %) (-)-3-[2-(4-(6-fluori-1,2-bentsisoksatsol-1,3-yyli)1-piperidinyyli)etyyli]-6,7,8,9-tetrahydro-9-hydroksi-2-metyyli-4H-pyrido[1,2-a]pyrimidin-4-onia; s.p. 156,9 °C αD = -22,81° (c = 0,5 % etanolisssa). (Yhdiste 3)

Esimerkki 5

3-[2-(4-(6-fluori-1,2-bentsisoksatsol-3-yyli)-1-piperidinyyli)etyyli]-6,7,8,9-tetrahydro-2-metyyli-4-okso-4H-pyrido[1,2-a]pyrimidin-9-olin asetaattiesteria ja butanoattiesteriä.

Seosta, jossa oli 4,3 osaa 3-[2-(4-(6-fluori-1,2-bentsisoksatsol-3-yyli)-1-piperidinyyli)etyyli]-6,7,8,9-tetrahydro-9-hydroksi-2-metyyli-4H-pyrido[1,2-a]pyrimidin-4-onia ja 30 osaa etikkahappoanhydridiä, sekoitettiin 4 tunnin ajan 50 °C:ssa. Jäähdytämisen jälkeen reaktioseos kaadettiin veeteen ja käsiteltiin ammoniumhydroksidiliuoksella. Tuote uutettiin 4-metyyli-2-pentanonilla. Uute kuivattiin, suodatettiin ja haihdutettiin. Jäänäös puhdistettiin pylväskromatografian avulla käyttäen silikageeliä ja eluenttina trikloorimetaanin ja metanolin seosta (95,5 tilavuuden mukaan). Koottiin puhtaat fraktiot ja eluentti haihdutettiin tyhjössä. Jäänäös kiteitettiin 2,2′-oksibis-
propaanista. Tuote suodatettiin erilleen ja kuivattiin, jolloin saatiin 3,0 osaa (64,0 %) 3-[2-[4-(6-fluori-1,2-bentsisoksatsol-3-yyli)-1-piperidinyyli]etyyli]-6,7,8,9-tetrahydro-2-metyyli-4-okso-4H-pyrido[1,2-a]pyrimidin-9-olín asetaattiesteri]; s.p. 143,6 °C (Yhdiste 4)

Samalla tavoin ja käyttäen asylointireagenssina butaanihappoanhydryidä valmistettiin myös [3-[2-[4-(6-fluori-1,2-bentsisoksatsol-3-yyli)-1-piperidinyyli]etyyli]-6,7,8,9-tetrahydro-2-metyyli-4-okso-4H-pyrido[1,2-a]pyrimidin-9-yyli]butanoaatti, s.p. 112,9 °C. (Yhdiste 5)

Esimerkki 6

[3-[2-[4-(6-fluori-1,2-bentsisoksatsol-3-yyli)-1-piperidinyyli]etyyli]-6,7,8,9-tetrahydro-2-metyyli-4-okso-4H-pyrido[1,2-a]pyrimidin-9-yyli]dekanoaattidihydrokloridi

Sekoitettuun liuokseen, jossa oli 1,2 osaa 3-[2-[4-(6-fluori-1,2-bentsisoksatsol-3-yyli)-1-piperidinyyli]etyyli]-6,7,8,9-tetrahydro-9-hydroksi-2-metyyli-4H-pyrido[1,2-a]pyrimidin-4-onia 21 osassa dikloorimetaania ja 5 osassa vettä, lisättiin samanaikaisesti tipoittain liuos jossa oli 1,1 osa dekanoyylikloridia 13 osassa dikloorimetaania, ja liuos, jossa oli 1 osa natriumhydroksidia 6 osassa vettä. Kun lisääminen oli suoritettu loppuun, jatkettiin sekoittamista 2 tunnin ajan huoneen lämpötilassa. Lisättiin toinen 1,1 osan annos dekanoyylikloridia ja sekoittamista jatkettiin yön ajan huoneen lämpötilassa. Tuote uutettiin dikloorimetaanilla. Uute pestiin vedellä, kuivattiin, suodatettiin ja haihdutettiin. Jäänös puhdistettiin pylväskromatografian avulla käyttäen silikageeliä ja eluentina trikloorimetaanin ja metanolin seosta (95:5 tilavuuden mukaan). Koottiin puhtaat fraktiot ja eluentti haihdutettiin. Jäänös muutettiin hydrokloridisulolaksi 2-propanolissa. Tuote suodatettiin erilleen ja kuivattiin, jolloin saatiin 0,9 osaa (45,9 %) [3-[2-[4-(6-fluori-1,2-bentsisoksatsol-3-yyli)-1-piperidinyyli]etyyli]-6,7,8,9-
tetrahydro-2-metyyli-4-okso-4H-pyrido[1,2-a]pyrimidin-9-yyli]dekanoaattidihydrokloridia; s.p. 221,,4 °C.
(Yhdiste 6)

Esimerkki 7

3-[2-[4-(6-fluori-1,2-bentsisosatsol-3-yyl)-1-piperidinyyll][etyyll]-6,7,8,9-tetrahydro-7-hdroksi-2-metyyli-4H-pyrido[1,2-a]pyrimidin-4-on ja sen dekanoaat-tiesteri

Seosta, jossa oli 8,5 osaa 3-[2-[4-(6-fluori-1,2-bentsisosatsol-3-yyl]-1-piperidinyyll][etyyll]-6,7,8,9-tetrahydro-7-metoki-2-metyyli-4H-pyrido[1,2-a]pyrimidin-4-onia, 14 osaa jodtrimetyylisilaania ja 40 osaa asetoniiriiliä, sekoitettiin yön ajan 70 °C:ssa. Lisättiin toinen 2,8 osan annos jodtrimetyylisilaania ja reaktioseosta sekoitettiin hetken aikaa 90 °C:ssa ja sitten yön ajan palautustislauslämpötilassa. Jähdyttämisen jälkeen seos haihdutettiin. Jäännös otettiin etanoliin ja seos haihudutettiin jälleen. Jäännös otettiin veteen ja käsiteltiin natriumhydroksidiliuoksella. Tuote uutettiin trikloorimetaanilla. Uute kuivattiin, suodatettiin ja haihdutettiin. Jäännös puhdistettiin pylväskromatografian avulla käyttäen silikageeliä ja eluenttina trikloorimetaanin ja metanolin seosta (95:5 tilavuuden mukaan). Koottiin haluttu fraktio ja eluentti haihdutettiin. Jäännöksestä muodostettiin kiinteä aine etanolissa. Tuote suodatettiin erilleen ja kuivattiin, jolloin saatiin 0,3 osaa (3,7 %) 3-[2-[4-(6-fluori-1,2-bentsisosatsol-3-yyl)-1-piperidinyyll][etyyll]-6,7,8,9-tetrahydro-7-hdroksi-2-metyyli-4H-pyrido[1,2-a]pyrimidin-4-onia; s.p. 156,2 °C (Yhdiste 7).

Noudattaen esimerkin 6 menetelmää muutettiin yhdiste 7 [3-[2-[4-(6-fluori-1,2-bentsisosatsol-3-yyl]-1-piperidinyyll][etyyll]-6,7,8,9-tetrahydro-2-metyyli-4-okso-4H-pyrido[1,2-a]pyrimidin-7-yyli]dekanoaatiksi.
(Yhdiste 8).
Patenttivaatimukset

1. Menetelmä terapeuttisesti käyttökelpoisen (1,2-bentsisoksatsol-3-yyli)-1-piperidinyyllialkyyli-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-onin valmistamiseksi, jolla on kaava (I)

![Chemical Structure](I)

tai sen farmaseuttisesti hyväskyttävän happoadditiosuolan tai niiden stereoisomeerisen muodon valmistamiseksi, jossa kaavassa

Alk on C_{1-3}-alkyleeni,
R' on halogeemi,
R' on C_{1-3}-alkyyli ja
R'' on hydroksi tai R'''=O(=O)-, jossa R'' on C_{1-15}-alkyyli, tunnettu siitä, että
a) N-alkyloidaan 3-piperidinyyli-1,2-bentsisoksatsoli, jolla on kaava (II)

![Chemical Structure](II)

jossa R' on kaavan (I) yhteydessä määritelty, alkylointireagenssilla; jolla on kaava (III)

![Chemical Structure](III)
jossa R_1^2, R_1^3 ja Alk ovat kaavan (I) yhteydessä määritellyt ja W on poistuva ryhmä, kuten halogeeni, reaktion suhteen inertissä liuottimessa korotetussa lämpötilassa, tai

b) kaavan (I-a)

mukaisen yhdisteen valmistamiseksi, jossa R_1^1, R_1^2 ja Alk ovat kaavan (I) yhteydessä määritellyt, saatetaan yhdiste, jolla on kaava (XIX)

jossa R_1^1, R_1^2 ja Alk ovat kaavan (I) yhteydessä määritellyt, reagoimaan Lewis-hapon, kuten jodtrimetyylisilaanin kanssa, ja haluttaessa

i) kaavan (I) mukaisen yhdisteen valmistamiseksi, jossa R_1^3 on ryhmä R_1^4C(=O)O-, O-asyloidaan menetelmällä a) tai b) saatu kaavan (I-a) mukainen yhdiste karboksyylihappolla, jolla on kaava (VI)

$$R_1^4$$-COOH

(VI)
jossa R' on kaavan (I) yhteydessä määritelty, tai sen funktionaalisella johdannaisella reaktion suhteen inertissä liuottimessa,

ii) valmistetaan kaavan (I-a) mukaisen yhdisteen enantiomeeriset muodot muuttamalla kaavan (I-a) mukaisen yhdisteen raseeminen seos isomeerien erotusreagenssin avulla diastereomeeristen suolojen tai yhdisteiden seoksessa, erottamalla fysikaalisesti sanottu diastereomeeristen suolojen tai yhdisteiden seos ja muuttamalla erotetut diastereomeeriset suolat tai yhdisteet vastaaviksi kaavan (I-a) mukaisen yhdisteen enantiomeerisiksi muodoiksi, ja tai

iii) muutetaan kaavan (I) mukainen yhdiste terapeuttisesti aktiiviseksi ei-toksiseksi happoadditiosuolaksi happokäsittelyn avulla tai happosuola vapaaksi emäskesi emäksen avulla.

2. Patenttivaatimuksen 1 mukainen menetelmä, tunteuttaisi, että valmistetaan 3-[(2-[4-(6-fluorri-1,2-bentsisoksatsol-3-yli)-1-piperidinyli)etyyli]-6,7,8,9-tetrahydro-9-hydroksi-2-metyyli-4H-pyrido[1,2-a]-pyrimidin-4-oni, sen farmaseuttisesti hyväksyttävä happoadditiosuola tai niiden enantiomeerinen muoto.
Patentkrav

1. Förfarande för framställning av en terapeutiskt användbar (1,2-bensisoxazol-3-yl)-1-piperidinylalkyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-on med formeln (I)

![Chemical Structure](image)

eller ett farmaceutiskt godtagbart salt därav eller en stereoisomern form därav, i vilken formel

Alk är C\textsubscript{13}-alkylen,
R1 är halogen,
R2 är C\textsubscript{13}-alkyl, och
R3 är hydroxi eller R4-C(=O)-O-, vari R4 är C\textsubscript{13}-alkyl, kännetecknat därav, att

a) en 3-piperidinyl-1,2-bensisoxazol med formeln (II)

![Chemical Structure](image)

vari R1 är som definierats i samband med formeln (I), N-alkyleras med en alkyleringsreagens med formeln (III)

![Chemical Structure](image)
vari R², R³ och Alk är som definierats i samband med formeln (I) och W är en avgående grupp såsom halogen, i ett reaktionsinert lösningsmedel vid en förhöjd temperatur, eller

b) för framställning av en förening med formeln (I-a)

![Diagram](I-a)

vari R¹, R² och Alk är som definierats i samband med formeln (I), omsätts en förening med formeln (XIX)

![Diagram](XIX)

vari R¹, R² och Alk är som definierats i samband med formeln (I), med en Lewis-syra, såsom jodtrimetysilan, och om så önskas

i) för framställning av en förening med formeln (I), vari R³ är en grupp R⁴-C(=O)-O-, O-acyleras en genom förfarande a) eller b) erhållen förening med formeln (I-a) med en karboxylsyra med formeln (VI)

\[R^4-\text{COOH} \]

(vari R⁴ är som definierats i samband med formeln (I), eller
ett funktionellt derivat därav i ett reaktionsinert lösningsmedel,

 ii) framställs enantiomera former av föreningar med formeln (I-a) genom att omvandla en racemisk blandning av en förening med formeln (I-a) med hjälp av en isomerseparreringsreagens till en blandning av diastereomera saltet eller föreningar, genom att fysikaliskt separera nämnade blandning av diastereomera saltet eller föreningar och genom att omvandla de separerade diastereomera saltarna eller föreningarna till motsvarande enantiomera former av föreningen med formeln (I-a), och/eller

 iii) omvandlas en förening med formeln (I) till ett terapeutiskt aktivt ogiftigt salt medelst syrabehandling eller ett syrasalt till en fri bas med hjälp av en bas.

2. Förfarande enligt patentkrav 1, kännetecknat därav, att man framställer 3-[2-[4-(6-fluo-
r-1,2-bensisoxazol-3-yl)-1-piperidinyl]ethyl]-6,7,8,9-tet-
rahydro-9-hydroxi-2-metyl-4H-pyrido[1,2-a]pyrimidin-4-on, ett farmaceutiskt godtagbart salt därav eller en stereo-
isomer form därav.