
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization I

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/090476 Al
20 June 2013 (20.06.2013) P O P C T

(51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
G06F 17/00 (2006.01) G06F 15/16 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
G06F 9/44 (2006.01) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(21) International Application Number: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,

PCT/US20 12/0693 18 RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

(22) International Filing Date: TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

12 December 2012 (12. 12.2012) ZM, ZW.

(25) Filing Language: English (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

(26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

(30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

13/323,198 12 December 201 1 (12. 12.201 1) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(71) Applicant: MICROSOFT CORPORATION [US/US]; MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
One Microsoft Way, Redmond, Washington 98052-6399 TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(US). ML, MR, NE, SN, TD, TG).

(72) Inventors: ICKMAN, Steven; c/o Microsoft Corporation, Declarations under Rule 4.17 :
LCA - International Patents, One Microsoft Way, Red

— as to applicant's entitlement to apply for and be granted a
mond, Washington 98052-6399 (US). RASKINO, David;

patent (Rule 4.1 7(H))
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399 — as to the applicant's entitlement to claim the priority of the
(US). earlier application (Rule 4.1 7(in))

(81) Designated States (unless otherwise indicated, for every Published:
kind of national protection available): AE, AG, AL, AM, — with international search report (Art. 21(3))
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(54) Title: LIGHTWEIGHT FRAMEWORK FOR WEB APPLICATIONS

©

o FIG. 1

©
(57) Abstract: Various technologies described herein pertain to developing a web application using a scripting language-based

o framework. A call can be received via an interface of the scripting language-based framework. The call can manage a control in -
eluded in the scripting language-based framework. Further, the call can be provided by an application that references the scripting

o language based framework. Moreover, a user interface can be generated based on the control managed by the call, and backend
cloud-based services provided by a distributed data store on a cloud platform can be accessed based on the control managed by the
call.



LIGHTWEIGHT FRAMEWORK FOR WEB APPLICATIONS

BACKGROUND

[0001] A web application is an application that can be accessed over a network such as

the Internet. A web application can be coded in a browser-supported language (e.g.,

scripting language combined with markup language) that can be accessed and used

through a client-side web browser or another application on a client device (e.g., mobile

application, desktop application, etc.). Web applications have become increasingly

popular due to ubiquity of web browsers and convenience of using web browsers as

clients. Moreover, the popularity of web applications has led to growth of centralized

application marketplaces.

[0002] Recently, cloud computing has become more pervasive. Accordingly, web

applications can be built on a cloud platform, where the web applications can run in the

cloud and/or use backend services provided by the cloud. Conventional development of

an application built on a cloud platform commonly involves a web programmer having an

understanding of various cloud platform specific information (e.g., protocols, data

structures, etc.) in order to read data from the cloud, write data to the cloud, use other

backend services, and the like. In addition to such complexity associated with developing

an application on a cloud platform, conventional development oftentimes can be time

consuming. With the growth of the centralized application marketplaces, web

programmers are increasingly looking for ways to write powerful applications in less time

that work across mobile devices and web browsers.

SUMMARY

[0003] Described herein are various technologies that pertain to developing a web

application using a scripting language-based framework. An interface of the scripting

language-based framework can be exposed. Moreover, a call can be received via the

interface of the scripting language-based framework. The call can manage a control

included in the scripting language-based framework. Further, the call can be provided by

an application that references the scripting language based framework. Moreover, a user

interface can be generated based on the control managed by the call, and backend cloud-

based services provided by a distributed data store on a cloud platform can be accessed

based on the control managed by the call.

[0004] The scripting language-based framework can include a set of controls that are

pre-programmed to access the backend cloud-based services and generate user interfaces



when enabled. According to an example, an application can be developed that provides

calls to enable, disable, set values of properties of, etc. one or more of the controls

included in the scripting language-based framework. For instance, the calls can be

generated from scripting language code included in the application. Thus, an application

can be developed that employs functionality incorporated into the scripting language-

based framework (e.g., by managing the set of controls) rather than by including custom

code in the application to perform such functionality.

[0005] In various embodiments, the backend cloud-based services provided by the

distributed data store on the cloud platform can include one or more of writing data to the

distributed data store, reading data from the distributed data store, searching for data

retained in the distributed data store, indexing data in the distributed data store, and so

forth. Additionally or alternatively, one or more third party services can be accessible via

the distributed data store on the cloud platform and/or directly from the scripting

language-based framework.

[0006] The above summary presents a simplified summary in order to provide a basic

understanding of some aspects of the systems and/or methods discussed herein. This

summary is not an extensive overview of the systems and/or methods discussed herein. It

is not intended to identify key/critical elements or to delineate the scope of such systems

and/or methods. Its sole purpose is to present some concepts in a simplified form as a

prelude to the more detailed description that is presented later.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Fig. 1 illustrates a functional block diagram of an exemplary system that

facilitates developing web applications.

[0008] Fig. 2 illustrates a functional block diagram of an exemplary system that

facilitates developing web applications that employ third party services.

[0009] Fig. 3 illustrates a functional block diagram of an exemplary system for

developing an application using a scripting language-based framework.

[0010] Fig. 4 is a flow diagram that illustrates an exemplary methodology for

developing a web application.

[0011] Fig. 5 is a flow diagram that illustrates another exemplary methodology for

developing a web application.

[0012] Fig. 6 illustrates an exemplary computing device.



DETAILED DESCRIPTION

[0013] Various technologies pertaining to developing web applications using a

lightweight, client-side framework are now described with reference to the drawings,

wherein like reference numerals are used to refer to like elements throughout. In the

following description, for purposes of explanation, numerous specific details are set forth

in order to provide a thorough understanding of one or more aspects. It may be evident,

however, that such aspect(s) may be practiced without these specific details. In other

instances, well-known structures and devices are shown in block diagram form in order to

facilitate describing one or more aspects. Further, it is to be understood that functionality

that is described as being carried out by certain system components may be performed by

multiple components. Similarly, for instance, a component may be configured to perform

functionality that is described as being carried out by multiple components.

[0014] Moreover, the term "or" is intended to mean an inclusive "or" rather than an

exclusive "or." That is, unless specified otherwise, or clear from the context, the phrase

"X employs A or B" is intended to mean any of the natural inclusive permutations. That

is, the phrase "X employs A or B" is satisfied by any of the following instances: X

employs A; X employs B; or X employs both A and B. In addition, the articles "a" and

"an" as used in this application and the appended claims should generally be construed to

mean "one or more" unless specified otherwise or clear from the context to be directed to

a singular form.

[0015] As set forth herein, a lightweight framework can facilitate rapid web application

development by a web programmer. The lightweight framework described herein can be a

scripting language-based framework. Moreover, the lightweight framework can enable

device-compatible user interface creation and access to data retained in a distributed data

store on a cloud platform and/or backend cloud-based services provided by or available

via the distributed data store on the cloud platform. In contrast, conventional frameworks

used for web application development oftentimes support user interface creation without

supporting data access. Accordingly, in conventional web application development, a web

programmer oftentimes needs to have knowledge of cloud technologies, data structures,

protocols, and so forth to develop a web application that reads data from the cloud, writes

data to the cloud, or employs other backend cloud-based services.

[0016] Referring now to the drawings, Fig. 1 illustrates a system 100 that facilitates

developing web applications. The system 100 includes a scripting language-based

framework 102, which, in an exemplary embodiment, is a client-side framework. For



instance, the scripting language-based framework 102 can be a feature-rich, lightweight

framework. Moreover, the scripting language-based framework 102 can support

development of web applications by mitigating overhead associated with common

activities performed during application development. Thus, a web programmer need not

perform such common activities during application development since functionality

associated with these activities can be incorporated into the scripting language-based

framework 102, and instead, the web programmer can create an application that uses the

functionality supplied by the scripting language-based framework 102.

[0017] Developing a web application typically involves building a set of user interfaces

and building data access to a backend system (and/or building the backend system). The

user interfaces can collect various forms of input from a user and can process the input to

conform to specifications of the backend system. Moreover, the user interfaces can

present an output to a user. The scripting language-based framework 102 simplifies

development of a web application by allowing a web programmer to manage both data

access to the backend system and creation of user interfaces with basic scripting language

code and/or markup language code. For example, the scripting language can be

JavaScript®. An example of the markup language can be HTML. It is to be appreciated,

however, that the claimed subject matter is not limited to the foregoing examples.

[0018] The scripting language-based framework 102 includes a data access component

104 and a user interface (UI) creation component 106. The data access component 104

integrates with a cloud-based backend system. In particular, the data access component

104 can access backend cloud-based services provided by a distributed data store 108 on a

cloud platform 110. For example, the data access component 104 can read data from the

distributed data store 108, write data to the distributed data store 108, employ third party

backend cloud-based service(s) abstracted by the distributed data store 108, and so forth.

The data access component 104 can be designed to automatically use the distributed data

store 108; thus, a web application developed by a web programmer can automatically use

the distributed data store 108 without the web programmer needing to integrate access to

backend cloud-based services provided by the distributed data store 108.

[0019] Moreover, the UI creation component 106 can generate a set of user interfaces.

The UI creation component 106 can generate user interfaces that can collect various forms

of input from a user and can process the input to conform to specifications of the backend

system. Further, the UI creation component 106 can generate user interfaces that can

present an output to a user.



[0020] Further, the scripting language-based framework 102 includes a set of controls

112. According to an example, the scripting language-based framework 102 can include

one or more scripting language libraries that include the controls 112. The controls 112

can be utilized by the UI creation component 106 to create user interfaces and the data

access component 104 to access backend cloud-based services provided by the distributed

data store 108 on the cloud platform 110. According to an illustration, when a given

control from the controls 112 is enabled, the UI creation component 106 can generate a

user interface based on the given control and the data access component can access

backend cloud-based services provided by the distributed data store 108 on the cloud

platform 110 based on the given control. Thus, the given control can be utilized by the

web programmer as opposed to the web programmer writing custom code to provide the

functionality of the given control.

[0021] The scripting language-based framework 102 can further include an interface

component 114. The interface component 114 can be a scripting language interface for an

application 116 (e.g., a web application), where the application 116 can include scripting

language code and/or markup language code. The application 116 can reference the

scripting language-based framework 102 via the interface component 114 to employ

functionality incorporated into the scripting language-based framework 102. Moreover,

the application 116 can provide call(s) to the scripting language-based framework 102 via

the interface component 114. For instance, the call(s) can manage one or more of the

controls 112 (e.g., a call can manage a control from the controls 112). According to an

example, a call can be generated from scripting language code included in the application

116; thus, the application 116 can include scripting language code that can generate one or

more calls that manage one or more of the controls 112, where the one or more calls can

be provided to the scripting language-based framework 102 via the interface component

114.

[0022] The controls 112 in the scripting language-based framework 102 can be enabled

or disabled based upon the scripting language code included in the application 116 (e.g., in

response to the call(s) provided by the application 116 via the interface component 114).

Moreover, the controls 112 can have properties and effects that can be managed by the

scripting language code in the application 116 (e.g., in response to the call(s) provided by

the application 116 via the interface component 114). According to an example, one or

more of the controls 112 can be dynamically stylized based on the scripting language code

in the application 116. By way of another example, one or more of the controls 112 can



have a range of properties that can be set in response to the scripting language code in the

application 116.

[0023] The scripting language-based framework 102 can be used by a web programmer

when developing the application 116. The scripting language-based framework 102

provides functionality related to data access (e.g., via the data access component 104) and

user interface generation (e.g., via the UI creation component 106). Accordingly, use of

the scripting language-based framework 102 can reduce an amount of time spent by a web

programmer when developing the application 116. Thus, the scripting language-based

framework 102 can improve an ability of the web programmer of the application 116 to

manage data access and user interface creation using scripting language code and/or

markup language code.

[0024] The data access component 104 can directly access the distributed data store 108

on the cloud platform 110. Accordingly, the web programmer can generate the application

116 to read from and/or write to the distributed data store 108 using simple scripting

language code and/or markup language code. The web programmer can create the

application 116 without having knowledge of cloud technologies, data structures,

protocols, and the like. Rather, the application 116 can manage (e.g., enable, disable, set a

value of a property or effect, stylize, etc.) one or more of the controls 112; based on the

one or more of the controls 112 as managed by the application 116, the data access

component 104 can directly access the distributed data store 108 on the cloud platform

110.

[0025] The distributed data store 108 is built on the cloud platform 110. The distributed

data store 108 can be a fully scalable, replicated data store on the cloud platform 110. In

an exemplary embodiment, the distributed data store 108 can be a NoSQL store. Further,

the distributed data store 108 can be built on a search component 118 and an index

component 120. The search component 118 can be a search engine that provides full text

and/or image search. The cloud platform 110 can also provide other backend services in

addition to or instead of the search component 118 and the index component 120. Thus,

according to an example, the data access component 104 can search for data in the

distributed data store 108 using the search component 118, index data in the distributed

data store 108 using the index component 120, and so forth.

[0026] The distributed data store 108 on the cloud platform 110 is exposed through a set

of application programming interfaces (APIs) 122. The APIs 122 can be RESTful

(representational state transfer) APIs. Moreover, the APIs 122 can be integrated into the



scripting language-based framework 102. For example, the data access component 104

can employ the APIs 122 to access the distributed data store 108. Accordingly, the

scripting language-based framework 102 can abstract the APIs 122 such that a web

programmer need not learn how to utilize the APIs 122. Rather, the interface component

114 can expose a simple scripting language interface that can be employed by the web

programmer for developing the application 116. By way of example, the controls 112

available in the scripting language-based framework 102 can be exposed via the interface

component 114.

[0027] Moreover, a set of third party services can be integrated into the distributed data

store 108: namely, a third party service 1 124, . . ., and a third party service N 126, where

N can be substantially any integer (collectively referred to herein as third party services

124-126). Accordingly, the distributed data store 108 can provide access to APIs of the

third party services 124-126. Hence, the data access component 104 can access the third

party services 124-126 (e.g., third party backend cloud-based services) via the distributed

data store 108 on the cloud platform 110. Examples of the third party services 124-126

can include a web search service, an image search service, a video search service, a social

networking service, a microblogging service, a mapping service, a semi-structured

database search service, an authentication service, a cloud platform service, and so forth.

It is to be appreciated, however, that the claimed subject matter is not limited to the

foregoing examples of the third party services 124-126, and rather, any third party service

is intended to fall within the scope of the hereto appended claims.

[0028] Further, upon completion of development, the application 116 can be uploaded to

a web hosting service (not shown). Since the application 116 can be written in scripting

language code and/or markup language code, the application 116 can be embedded or

uploaded to substantially any website, for example. Upon being made available, the

application 116 can be retrieved and loaded onto a web browser of a client device (not

shown) for execution. Further, the application 116 can be client device agnostic such that

it can work across modern desktop, laptop, and mobile browsers.

[0029] The following illustration demonstrates a conventional approach for developing

an application that maintains an address book in a cloud-based data store. A web

programmer can initially define data objects and relationships between the data objects

(e.g., people, organizations to which people belong, etc.). Thereafter, the web

programmer can build a set of user interfaces. According to an example, the web

programmer can build a user interface to create a contact, a user interface to associate the



contact with other contacts, a user interface to update a contact, a user interface to delete a

contact, a user interface to search over contacts, and so forth. Upon developing the user

interfaces and defining the data objects, the web programmer can build a set of backend

services (e.g., backend cloud-based services) and/or build a system that accesses a set of

backend services. Examples of the backend services can include a service to write data to

the cloud-based data store, a service to read data from the cloud-based data store, a service

to search over the data retained in the cloud-based data store, a service to edit data in the

cloud-based data store, a service to delete data from the cloud-based data store, and so

forth. The foregoing approach can be time consuming for the web programmer.

Moreover, such development can involve significant understanding of various protocols,

data structures, and so forth.

[0030] In contrast, the scripting language-based framework 102 is integrated with the

distributed data store 108 on the cloud platform 110. Moreover, the scripting language-

based framework 102 includes the set of controls 112 that can be managed as a function of

the scripting language code included in the application 116. Further, the controls 112 can

be pre-programmed within the scripting language-based framework 102 to access the

cloud-based backend system (e.g., the distributed data store 108 on the cloud platform

110). Thus, instead of the web programmer having to perform a range of backend

programming as well as user interface development, the web programmer can write

scripting language code and/or markup language code to manage the controls 112 of the

scripting language-based framework 102, which are integrated into the rich backend of the

distributed data store 108 on the cloud platform 110.

[0031] Now referring to Fig. 2, illustrated is a system 200 that facilitates developing

web applications that employ third party services. The system 200 includes the scripting

language-based framework 102, which can further comprise the data access component

104, the UI creation component 106, the set of controls 112, and the interface component

114. As described above, the data access component 104 can directly access the

distributed data store 108 on the cloud platform 110 via the APIs 122.

[0032] Moreover, one or more third party services can be directly integrated into the

scripting language-based framework 102. Thus, APIs of a third party service 1 202, . . .,

and a third party service M 204 (collectively referred to herein as third party services 202-

204) can be exposed to the data access component 104 of the scripting language-based

framework 102, where M can be substantially any integer. The scripting language-based

framework 102 can abstract the APIs of the third party services 202-204. Accordingly, the



application 116 can include scripting language code that manages one or more of the

controls 112, where the controls 112 can cause the data access component 104 to employ

one or more of the third party services 202-204 without the web programmer of the

application 116 needing to have knowledge of the data structures, protocols, etc. for the

APIs of the one or more third party services 202-204. Thus, the web programmer need not

write code that accesses the one or more third party services 202-204 when developing the

application 116 as such integration is incorporated into the scripting language-based

framework 102.

[0033] Examples of the third party services 202-204 can include a web search service,

an image search service, a video search service, a social networking service, a

microblogging service, a mapping service, a semi-structured database search service, an

authentication service, a cloud platform service, and so forth. Yet, the claimed subject

matter is not limited to the foregoing examples of the third party services 202-204.

According to an example, a third party service can be integrated into both the distributed

data store 108 and the data access component 104 (e.g., the third party service can be one

of the third party services 124-126 and one of the third party services 202-204).

Additionally or alternatively, a third party service can be integrated into either the

distributed data store 108 or the data access component 104 (e.g., the third party service

can be one of the third party services 124-126 or one of the third party services 202-204).

[0034] By way of example, when an Internet Protocol (IP) address of a client device

(e.g., a device executing the application 116) is to be provided to a third party service

(e.g., to return content relevant to the IP address), a control (e.g., from the controls 112)

can cause the data access component 104 to directly supply the IP address to the third

party service rather than indirectly passing the IP address to the third party service. Thus,

the data access component 104 can send the IP address to one or more of the third party

services 202-204 directly integrated there with rather than sending the IP address to one or

more of the third party services 124-126 accessible via the distributed data store 108 on

the cloud platform 110.

[0035] Now turning to Fig. 3, illustrated is a system 300 for developing the application

116 using the scripting language-based framework 102. The scripting language-based

framework 102 includes the data access component 104 that can access cloud-based

backend system(s) (e.g., the distributed data store 108 on the cloud platform 110 of Fig. 1,

the third party services 202-204 of Fig. 2, etc.), the UI creation component 106 that



generates user interfaces, and the interface component 114 that can interface with the

application 116.

[0036] Moreover, the scripting language-based framework 102 includes the controls

112. The controls 112 can be based on the model-view-controller (MVC) model, for

example. The controls 112 can be enabled or disabled as a function of the scripting

language code included in the application 116. For instance, when one or more of the

controls 112 are enabled in the application 116, the enabled contra l(s) 112 can cause the

UI creation component 106 to generate user interface(s). Further, the controls 112 can

have a range of properties and effects that can be applied to them. According to an

illustration, one or more of the controls 112 can be stylized based on the scripting

language code included in the application 116. For example, one or more of the controls

112 can be managed by the application 116 to cause the UI creation component 106 to

animate user interface(s) rendered on a display of a client device. Possible animations can

be incorporated into the controls 112 included in the scripting language-based framework

102. Pursuant to a further example, the controls 112 included in the scripting language-

based framework 102 can have dependencies on each other; following this example, the

dependencies between the controls 112 can allow the UI creation component 106 to

provide for rich animation in generated user interface(s). By way of another example, the

controls 112 may have a number of properties such as, for instance, a name, title, and so

forth.

[0037] Pursuant to an example, one or more of the controls 112 can manage

authentication for the application 116. For example, the application 116 can include

scripting language code that chooses an authentication scheme from a set of available

authentication schemes (e.g., provided by different third party services). Thereafter, the

selected authentication scheme can be employed across the system from the backend (e.g.,

the distributed data store 108 on the cloud platform 110 of Fig. 1) to through the frontend.

[0038] Further, the UI creation component 106 can include a tailoring component 302

that can detect capabilities of client device on which the application 116 is running and

modify user interfaces generated based on one or more of the controls 112 as a function of

the detected capabilities. For example, if the application 116 is loaded on a smartphone,

the tailoring component 302 can detect that the client device includes a camera and a

microphone. Following this example, the tailoring component 302 can modify the user

interfaces generated by the UI creation component 106 based on the one or more of the

controls 112 to include features related to the camera and microphone of the smartphone,



whereas such features can be omitted in the user interfaces generated by the UI creation

component 106 when the tailoring component 302 detects that a client device lacks a

camera and a microphone. By including the tailoring component 302, the scripting

language-based framework 102 can enable the application 116 to employ capabilities of a

client device on which the application 116 is executing. Moreover, the application 116

can work across mobile devices, desktops, laptops, etc. by utilizing the tailoring

component 302 incorporated in the scripting language-based framework 102 without

coding by the web programmer to support the various types of devices.

[0039] The UI creation component 106 can further include a flighting component 304

that can rollout features of the application 116 in phases. For instance, a web programmer

can desire that a certain subset of users have access to a feature of the application 116.

Thus, the flighting component 304 can provide the feature of the application 116 in user

interface(s) generated for the subset of users while hiding the feature in user interface(s)

generated for the remainder of the users of the application 116. By including the flighting

component 304 in the scripting language-based framework 102, custom code to enable

staggered rollout of features of the application 116 need not be written by a web

programmer.

[0040] Moreover, the scripting language-based framework 102 can include a notification

component 306 that receives notifications from and sends notifications to the controls 112.

Thus, in the scripting language-based framework 102, the notification component 306 can

exchange information between the controls 112, which can allow for having dependencies

between the controls 112. According to an illustration, the application 116 can be a

scripting language shell, which can include scripting language code that generates calls to

a plurality of the controls 112. Following this illustration, the plurality of the controls 112

called within the application 116 can receive shell-wide notifications from the notification

component 306, thereby facilitating interaction between the plurality of controls 112.

[0041] For example, two controls (e.g., from the controls 112) can be included on a

webpage; one control can be a list view of names and the other control can be a detailed

view, for instance. Following this example, the two controls can exchange information via

the notification component 306. Thus, for instance, if a name is selected (e.g., clicked on)

in the list view, then the detailed view can show details corresponding to the name

selected in the list view. Moreover, the notification component 306 can exchange

information used by the controls 112 to effectuate event chaining. Accordingly, behaviors



of the controls 112 can be chained based on events (e.g., loading data, processing a

transaction, completion of an animation, received user input, etc.).

[0042] Further, the data access component 104 can include a source binding component

308 that can bind controls 112 to data sources (e.g., cloud-based backend system(s)).

According to an example, the source binding component 308 can bind two of the controls

112 to objects from different sources. Pursuant to this example, the source binding

component 308 can bind one of the controls 112 to objects from a first social networking

service, and the other one of the controls 112 to objects from a second social network

service; yet, it is to be appreciated that the claimed subject matter is not limited to the

foregoing example. Since the source binding component 308 can bind controls 112 to

different data sources, the data access component 104 can employ a normalized schema

for information from the various data sources. Such normalization of the schema can

allow for flexible exchange of information between the controls 112. In various

embodiments, the source binding component 308 can bind one or more of the controls 112

to an open data protocol (ODdata) source; however, it is to be appreciated that the claimed

subject matter is not so limited.

[0043] Figs. 4-5 illustrate exemplary methodologies relating to developing web

applications using a scripting language-based framework. While the methodologies are

shown and described as being a series of acts that are performed in a sequence, it is to be

understood and appreciated that the methodologies are not limited by the order of the

sequence. For example, some acts can occur in a different order than what is described

herein. In addition, an act can occur concurrently with another act. Further, in some

instances, not all acts may be required to implement a methodology described herein.

[0044] Moreover, the acts described herein may be computer-executable instructions

that can be implemented by one or more processors and/or stored on a computer-readable

medium or media. The computer-executable instructions can include a routine, a sub

routine, programs, a thread of execution, and/or the like. Still further, results of acts of the

methodologies can be stored in a computer-readable medium, displayed on a display

device, and/or the like.

[0045] Fig. 4 illustrates a methodology 400 for developing a web application. At 402,

an interface for a scripting language-based framework can be exposed. At 404, a call can

be received via the interface. The call received via the interface can manage a control

included in the scripting language-based framework. Further, the call can be provided by

an application that references the scripting language-based framework. For example, the



call can enable the control, disable the control, set a property or effect of the control, and

so forth. At 406, a user interface can be generated based on the control as managed by the

call. At 408, backend cloud-based services provided by a distributed data store on a cloud

platform can be accessed based on the control as managed by the call.

[0046] Now turning to Fig. 5, illustrated is a methodology 500 for developing a web

application. At 502, an interface for a scripting language-based framework that includes a

set of controls pre-programmed to access backend cloud-based services and generate user

interfaces when enabled can be exposed. At 504, a call that enables a control from the set

of controls included in the scripting language-based framework can be received via the

interface. The call can be provided by an application that references the scripting

language-based framework. At 506, a user interface can be generated based on the control

enabled by the call. At 508, the backend cloud-based services provided by a distributed

data store on a cloud platform can be accessed based on the control enabled by the call.

[0047] Referring now to Fig. 6, a high-level illustration of an exemplary computing

device 600 that can be used in accordance with the systems and methodologies disclosed

herein is illustrated. For instance, the computing device 600 may be used in a system that

develops a web application using a scripting language-based framework. By way of

another example, the computing device 600 may be used in a system that executes a web

application built upon a scripting language-based framework. The computing device 600

includes at least one processor 602 that executes instructions that are stored in a memory

604. The instructions may be, for instance, instructions for implementing functionality

described as being carried out by one or more components discussed above or instructions

for implementing one or more of the methods described above. The processor 602 may

access the memory 604 by way of a system bus 606. In addition to storing executable

instructions, the memory 604 may also store an application, a scripting language-based

framework, and so forth.

[0048] The computing device 600 additionally includes a data store 608 that is

accessible by the processor 602 by way of the system bus 606. The data store 608 may

include executable instructions, an application, a scripting language-based framework, etc.

The computing device 600 also includes an input interface 610 that allows external

devices to communicate with the computing device 600. For instance, the input interface

610 may be used to receive instructions from an external computer device, from a user,

etc. The computing device 600 also includes an output interface 612 that interfaces the



computing device 600 with one or more external devices. For example, the computing

device 600 may display text, images, etc. by way of the output interface 612.

[0049] Additionally, while illustrated as a single system, it is to be understood that the

computing device 600 may be a distributed system. Thus, for instance, several devices

may be in communication by way of a network connection and may collectively perform

tasks described as being performed by the computing device 600.

[0050] As used herein, the terms "component" and "system" are intended to encompass

computer-readable data storage that is configured with computer-executable instructions

that cause certain functionality to be performed when executed by a processor. The

computer-executable instructions may include a routine, a function, or the like. It is also

to be understood that a component or system may be localized on a single device or

distributed across several devices.

[0051] Further, as used herein, the term "exemplary" is intended to mean "serving as an

illustration or example of something."

[0052] Various functions described herein can be implemented in hardware, software, or

any combination thereof. If implemented in software, the functions can be stored on or

transmitted over as one or more instructions or code on a computer-readable medium.

Computer-readable media includes computer-readable storage media. A computer-

readable storage media can be any available storage media that can be accessed by a

computer. By way of example, and not limitation, such computer-readable storage media

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic

disk storage or other magnetic storage devices, or any other medium that can be used to

carry or store desired program code in the form of instructions or data structures and that

can be accessed by a computer. Disk and disc, as used herein, include compact disc (CD),

laser disc, optical disc, digital versatile disc (DVD), floppy disk, and blu-ray disc (BD),

where disks usually reproduce data magnetically and discs usually reproduce data

optically with lasers. Further, a propagated signal is not included within the scope of

computer-readable storage media. Computer-readable media also includes communication

media including any medium that facilitates transfer of a computer program from one

place to another. A connection, for instance, can be a communication medium. For

example, if the software is transmitted from a website, server, or other remote source using

a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless

technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic

cable, twisted pair, DSL, or wireless technologies such as infrared, radio and microwave



are included in the definition of communication medium. Combinations of the above

should also be included within the scope of computer-readable media.

[0053] What has been described above includes examples of one or more embodiments

It is, of course, not possible to describe every conceivable modification and alteration of

the above devices or methodologies for purposes of describing the aforementioned

aspects, but one of ordinary skill in the art can recognize that many further modifications

and permutations of various aspects are possible. Accordingly, the described aspects are

intended to embrace all such alterations, modifications, and variations that fall within the

spirit and scope of the appended claims. Furthermore, to the extent that the term

"includes" is used in either the details description or the claims, such term is intended to

be inclusive in a manner similar to the term "comprising" as "comprising" is interpreted

when employed as a transitional word in a claim.



CLAIMS

1. A method of developing a web application, comprising:

exposing an interface for a scripting language-based framework;

receiving, via the interface, a call that manages a control included in the scripting

language-based framework, wherein the call is provided by an application that references

the scripting language-based framework;

generating a user interface based on the control as managed by the call; and

accessing backend cloud-based services provided by a distributed data store on a

cloud platform based on the control as managed by the call.

2 . The method of claim 1, wherein the call is generated from scripting language code

included in the application.

3 . The method of claim 1, wherein the call that manages the control one of enables

the control or disables the control.

4 . The method of claim 1, wherein the control is pre-programmed within the scripting

language-based framework to access the backend cloud-based services provided by the

distributed data store on the cloud platform.

5 . The method of claim 1, further comprising setting a value of at least one of a

property of the control or an effect of the control based upon the call.

6 . The method of claim 1, wherein accessing the backend cloud-based services

provided by the distributed data store on the cloud platform based on the control as

managed by the call further comprises at least one of:

writing data to the distributed data store on the cloud platform based on the control

as managed by the call;

reading data from the distributed data store on the cloud platform based on the

control as managed by the call;

searching for data in the distributed data store on the cloud platform based on the

control as managed by the call; or

indexing data in the distributed data store on the cloud platform based on the

control as managed by the call.

7 . The method of claim 1, wherein accessing the backend cloud-based services

provided by the distributed data store on the cloud platform based on the control as



managed by the call further comprises accessing a third party service integrated into the

distributed data store on the cloud platform based on the control as managed by the call.

8. The method of claim 7, wherein the third party service integrated into the

distributed data store on the cloud platform comprises one or more of a web search

service, an image search service, a video search service, a social networking service, a

microblogging service, a mapping service, a semi-structured database search service, an

authentication service, or a cloud platform service.

9 . The method of claim 1, further comprising employing a third party service directly

integrated into the scripting language-based framework based on the control as managed

by the call.

10. The method of claim 1, wherein the application comprises scripting language code

that provides a plurality of calls that manage a plurality of controls included in the

scripting language-based framework.

11. The method of claim 10, further comprising exchanging information between the

plurality of controls managed by the plurality of calls provided by the application.

12. The method of claim 10, further comprising:

binding a first one of the plurality of controls to objects from a first data source;

and

binding a second one of the plurality of controls to objects from a second data

source.

13. The method of claim 1, wherein the scripting language-based framework is a

client-side framework.

14. A scripting language-based framework, comprising:

a set of controls pre-programmed to access backend cloud-based services and

generate user interfaces when enabled;

an interface component that receives a call that manages a control from the set,

wherein the call is provided by an application that references the scripting language-based

framework;

a user interface (UI) creation component that generates a user interface based the

control as managed by the call; and

a data access component that accesses backend cloud-based services provided by a

distributed data store on a cloud platform based on the control as managed by the call.



15. The scripting language-based framework of claim 14, wherein the data access

component accesses a third party service integrated into the distributed data store on the

cloud platform based on the control as managed by the call.

16. The scripting language-based framework of claim 14, wherein the data access

component utilizes a third party service directly integrated into the scripting language-

based framework based on the control as managed by the call.

17. The scripting language-based framework of claim 14, further comprising a

notification component that exchanges information between a plurality of controls in the

set.

18. The scripting language-based framework of claim 14, further comprising a

tailoring component that detects capabilities of a client device on which the application is

running and modifies the user interface generated based on the control as a function of the

capabilities.

19. The scripting language-based framework of claim 14, wherein the data access

component at least one of writes data to the distributed data store on the cloud platform

based on the control as managed by the call, reads data from the distributed data store on

the cloud platform based on the control as managed by the call, searches for data in the

distributed data store on the cloud platform based on the control as managed by the call, or

indexes data in the distributed data store on the cloud platform based on the control as

managed by the call.

20. A computer-readable storage medium including computer-executable instructions

that, when executed by a processor, cause the processor to perform acts including:

exposing an interface for a scripting language-based framework that includes a set

of controls pre-programmed to access backend cloud-based services and generate user

interfaces when enabled;

receiving, via the interface, a call that enables a control from the set of controls

included in the scripting language-based framework, wherein the call is provided by an

application that references the scripting language-based framework;

generating a user interface based on the control enabled by the call; and

accessing the backend cloud-based services provided by a distributed data store on

a cloud platform based on the control enabled by the call.















A. CLASSIFICATION OF SUBJECT MATTER

G06F 17/00(2006.01)i, G06F 9/44(2006.01)1, G06F 15/16(2006.01)1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F 17/00; G06F 15/16; G06F 9/445; G06F 15/173; G06F 3/00; G06F 9/44; G06F 9/455

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: web application, development, framework, scripting language, interface, control, cloud
platform, user interface, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2007-0106946 Al (GOETZ, PHILIP et a l .) 10 May 2007 1-20

See paragraphs [0010H0011] , [0013], and [0039]-[0040] ;

claims 1, 4-6, 14, and 17-19; and figure 2 .

A US 2009-0313004 Al (LEVI , YEHUDA et a l .) 17 December 2009 1-20

See paragraphs [0005]-[0007] , [0025]-[0031] , and [0047]; claim 1; and

figures 1-3 and 8 .

A US 2011-0191407 Al (FU, YUPENG et al.) 04 August 2011 1-20

See paragraphs [0005], [0007], [0011], and [0074]-[0076] ; claim 1; and

figure 2 .

A US 2011-0265164 Al (LUCOVSKY, MARK et al.) 27 October 2011 1-20

See paragraphs [0002] and [0022]-[0024] ; and figure 3 .

A US 7,546,576 B2 (EGLI , PAUL) 09 June 2009 1-20

See column 2 , line 25 - column 3 , line 10; column 19, lines 17 - 33;

claim 1; and figure 5 .

Further documents are listed in the continuation of Box C . patent family annex.

* Special categories of cited documents: later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of citation or other document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

26 March 2013 (26.03.2013) 2 8 March 2013 (28.03.2013)
Name and mailing address of the ISA/KR Authorized officer

Korean Intellectual Property Office
mm 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan NHO, Ji Myong
v City, 302-70 1, Republic of Korea

Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8528 '

Form PCT/ISA/210 (second sheet) (July 2009)



Information on patent family members PCT/US2012/069318

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2007-0 106946 A 10 .05 2007 EP 1952274 A 06 .08 2008
W0 2007-053 169 A 10 .05 2007

US 2009-03 13004 A 17 . 2 2009 None

US 201 1-0 191407 A 1 04 .08 20 W0 20 1-09 388 A2 28 .07 201
W0 20 1-09 1388 A3 17 . 11 201

US 201 1-0265 164 A 1 27 . 0 20 AU 20 1-20 1795 A1 10 . 11 201
EP 238 1363 A2 26 . 10 201
EP 238 1363 A3 07 .03 2012
JP 20 1-233 146 A 17 . 11 201

US 7546576 B2 09 .06 2009 US 2003-0084120 A 0 1.05 2003

PCT/ISA/210 (patent family annex) (July 2009)


	abstract
	description
	claims
	drawings
	wo-search-report

