wo 2013/@247¢ A1 |1 DFVN A0 Y O Y O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

~

(29) World Intellectual Property Ny
Organization
International Bureau

20 June 2013 (20.06.2013) Wi

POIPCT

(10) International Publication Number

WO 2013/090476 Al

(51)

21

(22)

(25
(26)
(30)

(71)

(72)

(81)

International Patent Classification:
GO6F 17/00 (2006.01) GO6F 15/16 (2006.01)
GOG6F 9/44 (2006.01)

International Application Number:
PCT/US20 12/0693 18

International Filing Date:
12 December 2012 (12.12.2012)

Filing Language: English
Publication Language: English
Priority Data:

13/323,198 12 December 201 1(12.12.201 1) us

Applicant: MICROSOFT CORPORATION [USUS];
One Microsoft Way, Redmond, Washington 98052-6399
Us).

Inventors: ICKMAN, Steven; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). RASKINO, David;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
Us).

Designated States (unless otherwise indicated, for every
kind d national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(84)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
ZM, ZW.

Designated States (unless otherwise indicated, for every
kind d regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, Sz, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to applyfor and be granted a
patent (Rule 4.17(H))

as to the applicant's entitlement to claim thepriority d the
earlier application (Rule 4.17(in))

Published:

with international search report (Art. 21(3))

(54) Title: LIGHTWEIGHT FRAMEWORK FOR WEB APPLICATIONS

110

s 100

102

CLOUD PLATFORM
124 108

SCRIPTING LANGUAGE-BASED

FRAMEWORK 114 116

3" PARTY
SERVICE 1

UI CREATION
COMPONENT

APPLICATION

INTERFACE
COMPONENT

DISTRIBUTED

. DATA STORE

| DATA ACCESS
| COMPONENT

— 112
CONTROLS

126

3 PARTY
SERVICE

SEARCH s

N COMPONENT |
INDEX o |
COMPONENT :

|

|

|

|

|

SERVER-SIDE

104

CLIENT-SIDE

FIG. 1

(57) Abstract: Various technologies described herein pertain to developing a web application using a scripting language-based
framework. A call can be received via an interface of the scripting language-based framework. The call can manage a control in-
eluded in the scripting language-based framework. Further, the call can be provided by an application that references the scripting
language based framework. Moreover, a user interface can be generated based on the control managed by the call, and backend
cloud-based services provided by adistributed data store on a cloud platform can be accessed based on the control managed by the

cal.

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

LIGHTWEIGHT FRAMEWORK FOR WEB APPLICATIONS
BACKGROUND
[0001] A web application is an application that can be accessed over anetwork such as
the Internet. A web application can be coded in abrowser-supported language (e.g.,
scripting language combined with markup language) that can be accessed and used
through a client-side web browser or another application on aclient device (e.g., mobile
application, desktop application, etc.). Web applications have become increasingly
popular due to ubiquity of web browsers and convenience of using web browsers as
clients. Moreover, the popularity of web applications has led to growth of centralized
application marketplaces.
[0002] Recently, cloud computing has become more pervasive. Accordingly, web
applications can be built on a cloud platform, where the web applications can run in the
cloud and/or use backend services provided by the cloud. Conventional development of
an application built on a cloud platform commonly involves aweb programmer having an
understanding of various cloud platform specific information (e.g., protocols, data
structures, etc.) in order to read data from the cloud, write datato the cloud, use other
backend services, and the like. In addition to such complexity associated with developing
an application on a cloud platform, conventional development oftentimes can betime
consuming. With the growth of the centralized application marketplaces, web
programmers are increasingly looking for ways to write powerful applications in lesstime
that work across mobile devices and web browsers.
SUMMARY

[0003] Described herein are various technologies that pertain to developing aweb
application using a scripting language-based framework. An interface of the scripting
language-based framework can be exposed. Moreover, acall can bereceived via the
interface of the scripting language-based framework. The call can manage a control
included in the scripting language-based framework. Further, the call can be provided by
an application that references the scripting language based framework. Moreover, auser
interface can be generated based on the control managed by the call, and backend cloud-
based services provided by a distributed data store on acloud platform can be accessed
based on the control managed by the call.
[0004] The scripting language-based framework can include a set of controls that are
pre-programmed to access the backend cloud-based services and generate user interfaces

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

when enabled. According to an example, an application can be developed that provides
callsto enable, disable, set values of properties of, etc. one or more of the controls
included in the scripting language-based framework. For instance, the calls can be
generated from scripting language code included in the application. Thus, an application
can be developed that employs functionality incorporated into the scripting language-
based framework (e.g., by managing the set of controls) rather than by including custom
code in the application to perform such functionality.
[0005] Invarious embodiments, the backend cloud-based services provided by the
distributed data store on the cloud platform can include one or more of writing datato the
distributed data store, reading data from the distributed data store, searching for data
retained in the distributed data store, indexing data in the distributed data store, and so
forth. Additionally or alternatively, one or more third party services can be accessible via
the distributed data store on the cloud platform and/or directly from the scripting
language-based framework.
[0006] The above summary presents asimplified summary in order to provide abasic
understanding of some aspects of the systems and/or methods discussed herein. This
summary isnot an extensive overview of the systems and/or methods discussed herein. It
isnot intended to identify key/critical elements or to delineate the scope of such systems
and/or methods. Its sole purpose isto present some concepts in asimplified form as a
prelude to the more detailed description that is presented later.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Fig. lillustrates afunctional block diagram of an exemplary system that
facilitates developing web applications.
[0008] Fig. 2illustrates afunctional block diagram of an exemplary system that
facilitates developing web applications that employ third party services.
[0009] Fig. 3illustrates afunctiona block diagram of an exemplary system for
developing an application using a scripting language-based framework.
[0010] Fig. 4isaflow diagram that illustrates an exemplary methodology for
developing aweb application.
[0011] Fig. Sisaflow diagram that illustrates another exemplary methodology for
developing aweb application.

[0012] Fig. 6 illustrates an exemplary computing device.

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

DETAILED DESCRIPTION
[0013] Various technologies pertaining to developing web applications using a
lightweight, client-side framework are now described with reference to the drawings,
wherein like reference numerals are used to refer to like elements throughout. In the
following description, for purposes of explanation, numerous specific details are set forth
in order to provide athorough understanding of one or more aspects. It may be evident,
however, that such aspect(s) may be practiced without these specific details. In other
instances, well-known structures and devices are shown in block diagram form in order to
facilitate describing one or more aspects. Further, it isto beunderstood that functionality
that is described as being carried out by certain system components may be performed by
multiple components. Similarly, for instance, a component may be configured to perform
functionality that is described as being carried out by multiple components.
[0014] Moreover, theterm "or" isintended to mean an inclusive "or" rather than an
exclusive "or." That is, unless specified otherwise, or clear from the context, the phrase
"X employs A or B" isintended to mean any of the natural inclusive permutations. That
is, the phrase "X employs A or B" is satisfied by any of the following instances: X
employs A; X employs B; or X employs both A and B. In addition, the articles "a' and
"an" asused in this application and the appended claims should generally be construed to
mean "one or more" unless specified otherwise or clear from the context to be directed to
asingular form.
[0015] Asset forth herein, alightweight framework can facilitate rapid web application
development by aweb programmer. The lightweight framework described herein can be a
scripting language-based framework. Moreover, the lightweight framework can enable
device-compatible user interface creation and access to data retained in a distributed data
store on a cloud platform and/or backend cloud-based services provided by or available
via the distributed data store on the cloud platform. In contrast, conventional frameworks
used for web application development oftentimes support user interface creation without
supporting data access. Accordingly, in conventional web application development, aweb
programmer oftentimes needs to have knowledge of cloud technologies, data structures,
protocols, and so forth to develop aweb application that reads data from the cloud, writes
data to the cloud, or employs other backend cloud-based services.
[0016] Referring now to the drawings, Fig. 1lillustrates a system 100 that facilitates
developing web applications. The system 100 includes a scripting language-based

framework 102, which, in an exemplary embodiment, is a client-side framework. For

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

instance, the scripting language-based framework 102 can be a feature-rich, lightweight
framework. Moreover, the scripting language-based framework 102 can support
development of web applications by mitigating overhead associated with common
activities performed during application development. Thus, aweb programmer need not
perform such common activities during application development since functionality
associated with these activities can beincorporated into the scripting language-based
framework 102, and instead, the web programmer can create an application that uses the
functionality supplied by the scripting language-based framework 102.

[0017) Developing aweb application typically involves building a set of user interfaces
and building data access to abackend system (and/or building the backend system). The
user interfaces can collect various forms of input from auser and can process the input to
conform to specifications of the backend system. Moreover, the user interfaces can
present an output to auser. The scripting language-based framework 102 simplifies
development of aweb application by allowing aweb programmer to manage both data
access to the backend system and creation of user interfaces with basic scripting language
code and/or markup language code. For example, the scripting language can be
JavaScript®. An example of the markup language can be HTML. It isto be appreciated,
however, that the claimed subject matter isnot limited to the foregoing examples.

[0018] The scripting language-based framework 102 includes a data access component
104 and auser interface (Ul) creation component 106. The data access component 104
integrates with a cloud-based backend system. In particular, the data access component
104 can access backend cloud-based services provided by adistributed data store 108 on a
cloud platform 110. For example, the data access component 104 can read data from the
distributed data store 108, write data to the distributed data store 108, employ third party
backend cloud-based service(s) abstracted by the distributed data store 108, and so forth.
The data access component 104 can be designed to automatically use the distributed data
store 108; thus, aweb application developed by aweb programmer can automatically use
the distributed data store 108 without the web programmer needing to integrate access to
backend cloud-based services provided by the distributed data store 108.

[0019] Moreover, the Ul creation component 106 can generate a set of user interfaces.
The Ul creation component 106 can generate user interfaces that can collect various forms
of input from auser and can process the input to conform to specifications of the backend
system. Further, the Ul creation component 106 can generate user interfaces that can

present an output to a user.

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

[0020] Further, the scripting language-based framework 102 includes a set of controls
112. According to an example, the scripting language-based framework 102 can include
one or more scripting language libraries that include the controls 112. The controls 112
can be utilized by the Ul creation component 106 to create user interfaces and the data
access component 104 to access backend cloud-based services provided by the distributed
data store 108 on the cloud platform 110. According to an illustration, when agiven
control from the controls 112 is enabled, the Ul creation component 106 can generate a
user interface based on the given control and the data access component can access
backend cloud-based services provided by the distributed data store 108 on the cloud
platform 110 based on the given control. Thus, the given control can be utilized by the
web programmer as opposed to the web programmer writing custom code to provide the
functionality of the given control.

[0021] The scripting language-based framework 102 can further include an interface
component 114. The interface component 114 can be a scripting language interface for an
application 116 (e.g., aweb application), where the application 116 can include scripting
language code and/or markup language code. The application 116 can reference the
scripting language-based framework 102 via the interface component 114 to employ
functionality incorporated into the scripting language-based framework 102. Moreover,
the application 116 can provide call(s) to the scripting language-based framework 102 via
the interface component 114. For instance, the call(s) can manage one or more of the
controls 112 (e.g., acall can manage a control from the controls 112). According to an
example, acall can be generated from scripting language code included in the application
116; thus, the application 116 can include scripting language code that can generate one or
more calls that manage one or more of the controls 112, where the one or more calls can
be provided to the scripting language-based framework 102 via the interface component
114.

[0022] The controls 112 in the scripting language-based framework 102 can be enabled
or disabled based upon the scripting language code included in the application 116 (e.g., in
response to the call(s) provided by the application 116 viathe interface component 114).
Moreover, the controls 112 can have properties and effects that can be managed by the
scripting language code in the application 116 (e.g., in response to the call(s) provided by
the application 116 via the interface component 114). According to an example, one or
more of the controls 112 can be dynamically stylized based on the scripting language code

in the application 116. By way of another example, one or more of the controls 112 can

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

have arange of properties that can be set in response to the scripting language code in the
application 116.

[0023] The scripting language-based framework 102 can be used by aweb programmer
when developing the application 116. The scripting language-based framework 102
provides functionality related to data access (e.g., via the data access component 104) and
user interface generation (e.g., viathe Ul creation component 106). Accordingly, use of
the scripting language-based framework 102 can reduce an amount of time spent by aweb
programmer when developing the application 116. Thus, the scripting language-based
framework 102 can improve an ability of the web programmer of the application 116 to
manage data access and user interface creation using scripting language code and/or
markup language code.

[0024] The data access component 104 can directly access the distributed data store 108
on the cloud platform 110. Accordingly, the web programmer can generate the application
116 to read from and/or write to the distributed data store 108 using simple scripting
language code and/or markup language code. The web programmer can create the
application 116 without having knowledge of cloud technologies, data structures,
protocols, and the like. Rather, the application 116 can manage (e.g., enable, disable, set a
value of aproperty or effect, stylize, etc.) one or more of the controls 112; based on the
one or more of the controls 112 as managed by the application 116, the data access
component 104 can directly access the distributed data store 108 on the cloud platform
110.

[0025] The distributed data store 108 isbuilt on the cloud platform 110. The distributed
data store 108 can be afully scalable, replicated data store on the cloud platform 110. In
an exemplary embodiment, the distributed data store 108 can be aNoSQL store. Further,
the distributed data store 108 can bebuilt on a search component 118 and an index
component 120. The search component 118 can be a search engine that provides full text
and/or image search. The cloud platform 110 can also provide other backend services in
addition to or instead of the search component 118 and the index component 120. Thus,
according to an example, the data access component 104 can search for data in the
distributed data store 108 using the search component 118, index data in the distributed
data store 108 using the index component 120, and so forth.

[0026] The distributed data store 108 on the cloud platform 110 is exposed through a set
of application programming interfaces (APIs) 122. The APIs 122 can be RESTful
(representational state transfer) APIs. Moreover, the APIs 122 can beintegrated into the

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

scripting language-based framework 102. For example, the data access component 104
can employ the APIs 122 to access the distributed data store 108. Accordingly, the
scripting language-based framework 102 can abstract the APIs 122 such that aweb
programmer need not learn how to utilize the APIs 122. Rather, the interface component
114 can expose asimple scripting language interface that can be employed by the web
programmer for developing the application 116. By way of example, the controls 112
available in the scripting language-based framework 102 can be exposed via the interface
component 114.

[0027] Moreover, aset of third party services can be integrated into the distributed data
store 108: namely, athird party service 1 124, ..., and athird party service N 126, where
N can be substantially any integer (collectively referred to herein asthird party services
124-126). Accordingly, the distributed data store 108 can provide access to APIs of the
third party services 124-126. Hence, the data access component 104 can access the third
party services 124-126 (e.g., third party backend cloud-based services) via the distributed
data store 108 on the cloud platform 110. Examples of the third party services 124-126
can include aweb search service, an image search service, avideo search service, a social
networking service, amicroblogging service, amapping service, a semi-structured
database search service, an authentication service, a cloud platform service, and so forth.
It isto be appreciated, however, that the claimed subject matter isnot limited to the
foregoing examples of the third party services 124-126, and rather, any third party service
isintended to fall within the scope of the hereto appended claims.

[0028] Further, upon completion of development, the application 116 can be uploaded to
aweb hosting service (not shown). Since the application 116 can be written in scripting
language code and/or markup language code, the application 116 can be embedded or
uploaded to substantially any website, for example. Upon being made available, the
application 116 can beretrieved and loaded onto aweb browser of aclient device (not
shown) for execution. Further, the application 116 can be client device agnostic such that
it can work across modern desktop, laptop, and mobile browsers.

[0029] The following illustration demonstrates a conventional approach for developing
an application that maintains an address book in acloud-based data store. A web
programmer can initially define data objects and relationships between the data objects
(e.g., people, organizations to which people belong, etc.). Thereafter, the web
programmer can build a set of user interfaces. According to an example, the web

programmer can build auser interface to create a contact, auser interface to associate the

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

contact with other contacts, auser interface to update a contact, auser interface to delete a
contact, auser interface to search over contacts, and so forth. Upon developing the user
interfaces and defining the data objects, the web programmer can build a set of backend
services (e.g., backend cloud-based services) and/or build a system that accesses a set of
backend services. Examples of the backend services can include a service to write datato
the cloud-based data store, a service to read data from the cloud-based data store, a service
to search over the data retained in the cloud-based data store, a service to edit datain the
cloud-based data store, a service to delete data from the cloud-based data store, and so
forth. The foregoing approach can betime consuming for the web programmer.

Moreover, such development can involve significant understanding of various protocols,
data structures, and so forth.

[0030] In contrast, the scripting language-based framework 102 isintegrated with the
distributed data store 108 on the cloud platform 110. Moreover, the scripting language-
based framework 102 includes the set of controls 112 that can be managed as a function of
the scripting language code included in the application 116. Further, the controls 112 can
be pre-programmed within the scripting language-based framework 102 to access the
cloud-based backend system (e.g., the distributed data store 108 on the cloud platform
110). Thus, instead of the web programmer having to perform arange of backend
programming aswell asuser interface development, the web programmer can write
scripting language code and/or markup language code to manage the controls 112 of the
scripting language-based framework 102, which are integrated into the rich backend of the
distributed data store 108 on the cloud platform 110.

[0031] Now referring to Fig. 2, illustrated is a system 200 that facilitates developing
web applications that employ third party services. The system 200 includes the scripting
language-based framework 102, which can further comprise the data access component
104, the Ul creation component 106, the set of controls 112, and the interface component
114. Asdescribed above, the data access component 104 can directly access the
distributed data store 108 on the cloud platform 110 via the APIs 122.

[0032] Moreover, one or more third party services can be directly integrated into the
scripting language-based framework 102. Thus, APIs of athird party service 1202, ...,
and athird party service M 204 (collectively referred to herein asthird party services 202-
204) can be exposed to the data access component 104 of the scripting language-based
framework 102, where M can be substantially any integer. The scripting language-based
framework 102 can abstract the APIs of the third party services 202-204. Accordingly, the

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

application 116 can include scripting language code that manages one or more of the
controls 112, where the controls 112 can cause the data access component 104 to employ
one or more of the third party services 202-204 without the web programmer of the
application 116 needing to have knowledge of the data structures, protocols, etc. for the
APIs of the one or more third party services 202-204. Thus, the web programmer need not
write code that accesses the one or more third party services 202-204 when developing the
application 116 as such integration isincorporated into the scripting language-based
framework 102.

[0033] Examples of the third party services 202-204 can include aweb search service,
an image search service, avideo search service, asocial networking service, a
microblogging service, amapping service, a semi-structured database search service, an
authentication service, acloud platform service, and so forth. Yet, the claimed subject
matter isnot limited to the foregoing examples of the third party services 202-204.
According to an example, athird party service can beintegrated into both the distributed
data store 108 and the data access component 104 (e.g., the third party service can be one
of the third party services 124-126 and one of the third party services 202-204).
Additionaly or aternatively, athird party service can beintegrated into either the
distributed data store 108 or the data access component 104 (e.g., the third party service
can be one of the third party services 124-126 or one of the third party services 202-204).
[0034] By way of example, when an Internet Protocol (IP) address of aclient device
(e.g., adevice executing the application 116) isto be provided to athird party service
(e.g., toreturn content relevant to the IP address), a control (e.g., from the controls 112)
can cause the data access component 104 to directly supply the IP address to the third
party service rather than indirectly passing the I P address to the third party service. Thus,
the data access component 104 can send the | P address to one or more of the third party
services 202-204 directly integrated there with rather than sending the IP address to one or
more of the third party services 124-126 accessible via the distributed data store 108 on
the cloud platform 110.

[0035] Now turning to Fig. 3, illustrated is a system 300 for developing the application
116 using the scripting language-based framework 102. The scripting |anguage-based
framework 102 includes the data access component 104 that can access cloud-based
backend system(s) (e.g., the distributed data store 108 on the cloud platform 110 of Fig. 1,
the third party services 202-204 of Fig. 2, etc.), the Ul creation component 106 that

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

generates user interfaces, and the interface component 114 that can interface with the
application 116.

[0036] Moreover, the scripting language-based framework 102 includes the controls
112. The controls 112 can be based on the model-view-controller (MVC) model, for
example. The controls 112 can be enabled or disabled as a function of the scripting
language code included in the application 116. For instance, when one or more of the
controls 112 are enabled in the application 116, the enabled contral(s) 112 can cause the
Ul creation component 106 to generate user interface(s). Further, the controls 112 can
have arange of properties and effects that can be applied to them. According to an
illustration, one or more of the controls 112 can be stylized based on the scripting
language code included in the application 116. For example, one or more of the controls
112 can be managed by the application 116 to cause the Ul creation component 106 to
animate user interface(s) rendered on adisplay of aclient device. Possible animations can
be incorporated into the controls 112 included in the scripting language-based framework
102. Pursuant to afurther example, the controls 112 included in the scripting language-
based framework 102 can have dependencies on each other; following this example, the
dependencies between the controls 112 can allow the Ul creation component 106 to
provide for rich animation in generated user interface(s). By way of another example, the
controls 112 may have anumber of properties such as, for instance, aname, title, and so
forth.

[0037] Pursuant to an example, one or more of the controls 112 can manage
authentication for the application 116. For example, the application 116 can include
scripting language code that chooses an authentication scheme from a set of available
authentication schemes (e.g., provided by different third party services). Thereafter, the
selected authentication scheme can be employed across the system from the backend (e.g.,
the distributed data store 108 on the cloud platform 110 of Fig. 1) to through the frontend.
[0038] Further, the Ul creation component 106 can include atailoring component 302
that can detect capabilities of client device on which the application 116 isrunning and
modify user interfaces generated based on one or more of the controls 112 as a function of
the detected capabilities. For example, if the application 116 isloaded on a smartphone,
the tailoring component 302 can detect that the client device includes acamera and a
microphone. Following this example, the tailoring component 302 can modify the user
interfaces generated by the Ul creation component 106 based on the one or more of the

controls 112 to include features related to the camera and microphone of the smartphone,

10

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

whereas such features can be omitted in the user interfaces generated by the Ul creation
component 106 when the tailoring component 302 detects that a client device lacks a
camera and amicrophone. By including the tailoring component 302, the scripting
language-based framework 102 can enable the application 116 to employ capabilities of a
client device on which the application 116 is executing. Moreover, the application 116
can work across mobile devices, desktops, laptops, etc. by utilizing the tailoring
component 302 incorporated in the scripting language-based framework 102 without
coding by the web programmer to support the various types of devices.

[0039] The Ul creation component 106 can further include aflighting component 304
that can rollout features of the application 116 in phases. For instance, aweb programmer
can desire that a certain subset of users have access to a feature of the application 116.
Thus, the flighting component 304 can provide the feature of the application 116 in user
interface(s) generated for the subset of users while hiding the feature in user interface(s)
generated for the remainder of the users of the application 116. By including the flighting
component 304 in the scripting language-based framework 102, custom code to enable
staggered rollout of features of the application 116 need not be written by aweb
programmer.

[0040] Moreover, the scripting language-based framework 102 can include anotification
component 306 that receives notifications from and sends notifications to the controls 112.
Thus, in the scripting language-based framework 102, the notification component 306 can
exchange information between the controls 112, which can allow for having dependencies
between the controls 112. According to an illustration, the application 116 can be a
scripting language shell, which can include scripting language code that generates calls to
aplurality of the controls 112. Following this illustration, the plurality of the controls 112
called within the application 116 can receive shell-wide notifications from the notification
component 306, thereby facilitating interaction between the plurality of controls 112.
[0041] For example, two controls (e.g., from the controls 112) can beincluded on a
webpage; one control can be alist view of names and the other control can be a detailed
view, for instance. Following this example, the two controls can exchange information via
the notification component 306. Thus, for instance, if aname is selected (e.g., clicked on)
in the list view, then the detailed view can show details corresponding to the name
selected in the list view. Moreover, the notification component 306 can exchange

information used by the controls 112 to effectuate event chaining. Accordingly, behaviors

11

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

of the controls 112 can be chained based on events (e.g., loading data, processing a
transaction, completion of an animation, received user input, €tc.).

[0042] Further, the data access component 104 can include a source binding component
308 that can bind controls 112 to data sources (e.g., cloud-based backend system(s)).
According to an example, the source binding component 308 can bind two of the controls
112 to objects from different sources. Pursuant to this example, the source binding
component 308 can bind one of the controls 112 to objects from afirst socia networking
service, and the other one of the controls 112 to objects from a second social network
service; yet, it isto be appreciated that the claimed subject matter isnot limited to the
foregoing example. Since the source binding component 308 can bind controls 112 to
different data sources, the data access component 104 can employ anormalized schema
for information from the various data sources. Such normalization of the schema can
allow for flexible exchange of information between the controls 112. In various
embodiments, the source binding component 308 can bind one or more of the controls 112
to an open data protocol (ODdata) source; however, it isto be appreciated that the claimed
subject matter isnot so limited.

[0043] Figs. 4-5 illustrate exemplary methodologies relating to developing web
applications using a scripting language-based framework. While the methodologies are
shown and described asbeing a series of acts that are performed in a sequence, it isto be
understood and appreciated that the methodologies are not limited by the order of the
sequence. For example, some acts can occur in adifferent order than what is described
herein. In addition, an act can occur concurrently with another act. Further, in some
instances, not all acts may berequired to implement amethodology described herein.
[0044] Moreover, the acts described herein may be computer-executable instructions
that can be implemented by one or more processors and/or stored on a computer-readable
medium or media. The computer-executable instructions can include aroutine, asub-
routine, programs, athread of execution, and/or the like. Still further, results of acts of the
methodologies can be stored in a computer-readable medium, displayed on a display
device, and/or the like.

[0045] Fig. 4 illustrates a methodology 400 for developing aweb application. At 402,
an interface for a scripting language-based framework can be exposed. At 404, acall can
bereceived viathe interface. The call received via the interface can manage a control
included in the scripting language-based framework. Further, the call can be provided by

an application that references the scripting language-based framework. For example, the

12

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

call can enable the control, disable the control, set aproperty or effect of the control, and
so forth. At 406, auser interface can be generated based on the control as managed by the
cal. At 408, backend cloud-based services provided by adistributed data store on a cloud
platform can be accessed based on the control as managed by the call.

[0046] Now turning to Fig. 5, illustrated is amethodology 500 for developing aweb
application. At 502, an interface for a scripting language-based framework that includes a
set of controls pre-programmed to access backend cloud-based services and generate user
interfaces when enabled can be exposed. At 504, acall that enables a control from the set
of controls included in the scripting language-based framework can bereceived via the
interface. The call can be provided by an application that references the scripting
language-based framework. At 506, auser interface can be generated based on the control
enabled by the call. At 508, the backend cloud-based services provided by a distributed
data store on acloud platform can be accessed based on the control enabled by the call.
[0047) Referring now to Fig. 6, ahigh-level illustration of an exemplary computing
device 600 that can be used in accordance with the systems and methodologies disclosed
herein isillustrated. For instance, the computing device 600 may be used in a system that
develops aweb application using a scripting language-based framework. By way of
another example, the computing device 600 may be used in a system that executes aweb
application built upon ascripting language-based framework. The computing device 600
includes at least one processor 602 that executes instructions that are stored in amemory
604. The instructions may be, for instance, instructions for implementing functionality
described as being carried out by one or more components discussed above or instructions
for implementing one or more of the methods described above. The processor 602 may
access the memory 604 by way of a system bus 606. In addition to storing executable
instructions, the memory 604 may also store an application, a scripting language-based
framework, and so forth.

[0048] The computing device 600 additionally includes a data store 608 that is
accessible by the processor 602 by way of the system bus 606. The data store 608 may
include executable instructions, an application, a scripting language-based framework, etc.
The computing device 600 also includes an input interface 610 that alows external
devices to communicate with the computing device 600. For instance, the input interface
610 may be used to receive instructions from an external computer device, from auser,

etc. The computing device 600 also includes an output interface 612 that interfaces the

13

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

computing device 600 with one or more external devices. For example, the computing
device 600 may display text, images, etc. by way of the output interface 612.

[0049] Additionally, while illustrated as a single system, it isto be understood that the
computing device 600 may be a distributed system. Thus, for instance, several devices
may bein communication by way of anetwork connection and may collectively perform
tasks described as being performed by the computing device 600.

[0050] Asused herein, the terms "component”" and "system" are intended to encompass
computer-readable data storage that is configured with computer-executable instructions
that cause certain functionality to be performed when executed by aprocessor. The
computer-executable instructions may include aroutine, afunction, or the like. It isalso
to be understood that a component or system may be localized on a single device or
distributed across several devices.

[0051] Further, asused herein, the term "exemplary" isintended to mean "serving as an
illustration or example of something.”

[0052] Various functions described herein can be implemented in hardware, software, or
any combination thereof. If implemented in software, the functions can be stored on or
transmitted over as one or more instructions or code on a computer-readable medium.
Computer-readable media includes computer-readable storage media. A computer-
readable storage media can be any available storage media that can be accessed by a
computer. By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other medium that can be used to
carry or store desired program code in the form of instructions or data structures and that
can be accessed by acomputer. Disk and disc, as used herein, include compact disc (CD),
laser disc, optical disc, digital versatile disc (DVD), floppy disk, and blu-ray disc (BD),
where disks usually reproduce data magnetically and discs usually reproduce data
optically with lasers. Further, apropagated signal isnot included within the scope of
computer-readable storage media. Computer-readable media also includes communication
media including any medium that facilitates transfer of a computer program from one
place to another. A connection, for instance, can be a communication medium. For
example, if the software istransmitted from awebsite, server, or other remote source using
acoaxia cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless
technologies such asinfrared, radio, and microwave, then the coaxial cable, fiber optic

cable, twisted pair, DSL, or wireless technologies such asinfrared, radio and microwave

14

10

WO 2013/090476 PCT/US2012/069318

are included in the definition of communication medium. Combinations of the above
should also be included within the scope of computer-readable media.

[0053] What has been described above includes examples of one or more embodiments.
It is, of course, not possible to describe every conceivable modification and alteration of
the above devices or methodologies for purposes of describing the aforementioned
aspects, but one of ordinary skill in the art can recognize that many further modifications
and permutations of various aspects are possible. Accordingly, the described aspects are
intended to embrace all such aterations, modifications, and variations that fall within the
spirit and scope of the appended claims. Furthermore, to the extent that the term
"includes’ isused in either the details description or the claims, such term isintended to
be inclusive in amanner similar to the term "comprising” as "comprising” isinterpreted

when employed as atransitional word in aclaim.

15

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

CLAIMS

1 A method of developing aweb application, comprising:

exposing an interface for a scripting language-based framework;

receiving, viathe interface, a call that manages a control included in the scripting
language-based framework, wherein the call is provided by an application that references
the scripting language-based framework;

generating auser interface based on the control as managed by the call; and

accessing backend cloud-based services provided by adistributed data store on a
cloud platform based on the control as managed by the call.

2. The method of claim 1, wherein the call is generated from scripting language code
included in the application.

3. The method of claim 1, wherein the call that manages the control one of enables

the control or disables the control.

4. The method of claim 1, wherein the control is pre-programmed within the scripting
language-based framework to access the backend cloud-based services provided by the
distributed data store on the cloud platform.

5. The method of claim 1, further comprising setting avalue of at least one of a

property of the control or an effect of the control based upon the call.

6. The method of claim 1, wherein accessing the backend cloud-based services
provided by the distributed data store on the cloud platform based on the control as
managed by the call further comprises a least one of:

writing datato the distributed data store on the cloud platform based on the control
as managed by the call;

reading data from the distributed data store on the cloud platform based on the
control as managed by the call;

searching for datain the distributed data store on the cloud platform based on the
control asmanaged by the call; or

indexing datain the distributed data store on the cloud platform based on the
control as managed by the call.

7. The method of claim 1, wherein accessing the backend cloud-based services
provided by the distributed data store on the cloud platform based on the control as

16

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

managed by the call further comprises accessing athird party service integrated into the
distributed data store on the cloud platform based on the control as managed by the call.

8. The method of claim 7, wherein the third party service integrated into the
distributed data store on the cloud platform comprises one or more of aweb search
service, an image search service, avideo search service, a social networking service, a
microblogging service, amapping service, a semi-structured database search service, an

authentication service, or acloud platform service.

9. The method of claim 1, further comprising employing athird party service directly
integrated into the scripting language-based framework based on the control as managed
by the call.

10. The method of claim 1, wherein the application comprises scripting language code
that provides aplurality of callsthat manage aplurality of controls included in the
scripting language-based framework.

11. Themethod of claim 10, further comprising exchanging information between the

plurality of controls managed by the plurality of calls provided by the application.

12. The method of claim 10, further comprising:

binding afirst one of the plurality of controls to objects from afirst data source;
and

binding a second one of the plurality of controlsto objects from a second data

source.

13. The method of claim 1, wherein the scripting language-based framework is a

client-side framework.

14. A scripting language-based framework, comprising:

a set of controls pre-programmed to access backend cloud-based services and
generate user interfaces when enabled;

an interface component that receives acall that manages a control from the set,
wherein the call isprovided by an application that references the scripting language-based
framework;

auser interface (Ul) creation component that generates auser interface based the
control as managed by the call; and

a data access component that accesses backend cloud-based services provided by a

distributed data store on a cloud platform based on the control as managed by the call.

17

10

15

20

25

30

WO 2013/090476 PCT/US2012/069318

15. The scripting language-based framework of claim 14, wherein the data access
component accesses athird party service integrated into the distributed data store on the

cloud platform based on the control as managed by the call.

16. The scripting language-based framework of claim 14, wherein the data access
component utilizes athird party service directly integrated into the scripting language-

based framework based on the control as managed by the call.

17. The scripting language-based framework of claim 14, further comprising a
notification component that exchanges information between aplurality of controls in the
Set.

18. The scripting language-based framework of claim 14, further comprising a
tailoring component that detects capabilities of a client device on which the application is
running and modifies the user interface generated based on the control as a function of the
capabilities.

19. The scripting language-based framework of claim 14, wherein the data access
component at least one of writes datato the distributed data store on the cloud platform
based on the control as managed by the call, reads data from the distributed data store on
the cloud platform based on the control as managed by the call, searches for datain the
distributed data store on the cloud platform based on the control as managed by the call, or
indexes data in the distributed data store on the cloud platform based on the control as
managed by the call.

20. A computer-readable storage medium including computer-executable instructions
that, when executed by aprocessor, cause the processor to perform acts including:

exposing an interface for a scripting language-based framework that includes a set
of controls pre-programmed to access backend cloud-based services and generate user
interfaces when enabled;

receiving, viathe interface, acall that enables a control from the set of controls
included in the scripting language-based framework, wherein the call is provided by an
application that references the scripting language-based framework;

generating auser interface based on the control enabled by the call; and

accessing the backend cloud-based services provided by a distributed data store on
acloud platform based on the control enabled by the call.

18

PCT/US2012/069318

WO 2013/090476

1/6

| K

HAIS-INAI'TD

HAIS-HIAYAES

LNANOJIAOD
ozl /) XAANI
LNANOJIAOD N
o1l /| HOWUVAS ADIAUAS
POL— T P ———— ALAV g€
AN _ w N 91—
INANOJINOD *
TOUIN A|_|hv
g —] STOUINOD SSA00V vava (Y7 [siav | OIS viva :
_ qaLNgraLsid
LNANOJINOD LNANOJINOD /
P>
NOLLYOI'lddY ADVAUAINI NOLLVI™D 1IN | L 1 ADIAYES
ALV oo
o1l — SHOMANV YA | /« ——
AQASVI-IOVAONVT ONLLAIDS _ o o w: bl
WHO0J4LVTd dNOT
7 ony |
201 901 ~_
_ 011
_
_

001 I\«

PCT/US2012/069318

WO 2013/090476

2/6

L —

NOILLVOI'lddV

911

149 S

(4

K|

002 I\«

N 011

WEDIAYES | , ., |1EDIAYAES
ALYV o€ ALAVd f
por — wr—"
N
ADIAYAS
POL— ALYV o€
AN AV w N 91—
INANOJINOD m *
|| STOUINOD SSADDVVIVA (Y [sigv +| TIOLS VLV :
aaLNgrILSIa
| | INANOJINOD INANOJINOD /
ADVAUALLINI NOLLVIHD IN L wwmmwmmm
7 STHOMANVIA /« — ™
AQASVI-19VIONVT ONLLIIIDS HOLLY abcqw: bl
201 - . 901

WO 2013/090476 PCT/US2012/069318

3/17
/— 300
102
/_
SCRIPTING LANGUAGE-BASED FRAMEWORK
106 UI CREATION
302 ——_ COMPONENT NOTIFICATION| — 306
COMPONENT
M~ [FLIGHTING I
COMPONENT e
™ CONTROLS
104 DATA ACCESS
COMPONENT i 114
308 =~ [SOURCE BINDING | |<l» égiﬁf&cﬁ
COMPONENT
* A

116
APPLICATION

CLOUD-BASED
BACKEND SYSTEM(S)

FIG. 3

WO 2013/090476 PCT/US2012/069318

4/7

400
\

EXPOSE AN INTERFACE FOR A /— 402
SCRIPTING LANGUAGE-BASED
FRAMEWORK

l

RECEIVE, VIA THE INTERFACE, A
CALL THAT MANAGES A CONTROL
INCLUDED IN THE SCRIPTING
LANGUAGE-BASED FRAMEWORK, |~ 44
WHEREIN THE CALL IS PROVIDED
BY AN APPLICATION THAT
REFERENCES THE SCRIPTING
LANGUAGE-BASED FRAMEWORK

l

GENERATE A USER INTERFACE /— 406
BASED ON THE CONTROL AS
MANAGED BY THE CALL

l

ACCESS BACKEND CLOUD-BASED
SERVICES PROVIDED BY A
DISTRIBUTED DATA STOREON A |~ 408
CLOUD PLATFORM BASED ON THE
CONTROL AS MANAGED BY THE
CALL

FIG. 4

WO 2013/090476

500
\

5717

START

PCT/US2012/069318

EXPOSE AN INTERFACE FOR A
SCRIPTING LANGUAGE-BASED
FRAMEWORK THAT INCLUDES A
SET OF CONTROLS PRE-
PROGRAMMED TO ACCESS
BACKEND CLOUD-BASED
SERVICES AND GENERATE USER
INTERFACES WHEN ENABLED

502
v

l

RECEIVE, VIA THE INTERFACE, A
CALL THAT ENABLES A CONTROL
FROM THE SET OF CONTROLS
INCLUDED IN THE SCRIPTING
LANGUAGE-BASED FRAMEWORK,
WHEREIN THE CALL IS PROVIDED
BY AN APPLICATION THAT
REFERENCES THE SCRIPTING
LANGUAGE-BASED FRAMEWORK

504
v

l

GENERATE A USER INTERFACE
BASED ON THE CONTROL
ENABLED BY THE CALL

506
v

l

ACCESS THE BACKEND CLOUD-
BASED SERVICES PROVIDED BY A
DISTRIBUTED DATA STORE ON A

CLOUD PLATFORM BASED ON THE
CONTROL ENABLED BY THE CALL

508
v

FIG. §

WO 2013/090476

600
\

6/7

PCT/US2012/069318

602 604
/_ /_
PROCESSOR MEMORY
l l N 606 l
INPUT OUTPUT
INTERFACE DATA STORE INTERFACE
N 610 N 608 N 612

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2012/069318

A. CLASSIFICATION OF SUBJECT MATTER

GO6F 17/00(2006.01)i, GO6F'9/44(2006.01)1, GO6F 15/16(2006.01)1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 17/00; GO6F 15/16; GO6F 9/445; GO6F 15/173; GO6F 3/00; GO6F 9/44; GO6F 9/455

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

platform, user interface, and similar terms.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: web application, development, framework, scripting language, interface, control, cloud

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2007-0106946 Al (GOETZ, PHLIP et al.) 10 May 2007 1-20
See paragraphs [OOlOHOOll] , [0013], and [0039]-[0040] ;
cl ains 1, 4-6, 14, and 17-19; and figure 2.

A US 2009- 0313004 Al (LEVI , YEHUDA et al .) 17 Decenber 2009 1-20
See paragraphs [0005]-[0007] , [0025]-[0031] , and [0047]; claim 1; and
figures 1-3 and 8.

A US 2011- 0191407 Al (FU, YUPENG et al.) 04 August 2011 1-20
See paragraphs [0005], [0007], [0011], and [0074]-[0076] ; claim 1; and
figure 2.

A US 2011- 0265164 Al (LUCOVSKY, MARK et al.) 27 COctober 2011 1-20
See paragraphs [0002] and [0022]-[0024] ; and figure 3.

A US 7,546,576 B2 (EG.I , PAUL) 09 June 2009 1-20
See colum 2, line 25 - colum 3, line 10; colum 19, lines 17 - 33;
claim 1; and figure 5.

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Specia categories of cited documents:

"A" document defining the general state of the art which isnot considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or which is
citedto establish the publication date of citation or other
specia reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

“P* document published prior tothe international filing date but later
than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document istaken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to aperson skilled inthe art

document member of the same patent family

e

ey

ng"

Date of the actual completion of the international search

26 March 2013 (26.03.2013)

Date of mailing of the international search report

28 March 2013 (28.03.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
, 189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan
L City, 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

NHO, J Myong

Telephone No. 82-42-481-8528

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members PCT/US2012/069318

Patent document Publication Patent family Publication

cited in search report date member(s) date

us 2007-0 106946 A1 10 .05, 2007 EP 1952274 Al 06.08. 2008
wo 2007-053 169 Al 10.05, 2007

us 2009-03 13004 A1 17 .12, 2009 None

us 201 1-0 191407 A1 04.08. 2011 wo 2011-091388 A2 28.07,2011
wo 201 1-09 1388 A3 17.11 2011

Us 201 1-0265 164 A1 27.10,2011 AU 2011-201795 Al 10.11. 2011
EP 2381363 A2 26.10,2011
EP 2381363 A3 07.03.2012
JP 2011-233 146 A 17.11 2011

Us 7546576 B2 09.06. 2009 us 2003-0084120 Af 01.05. 2003

Form PCT/ISA/210 (patent family annex) (July 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

