OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA t‘.

OPIC CIPO

PROPERTY OFFICE

(72) WALDIN, RAY SOON JR., US
(72) NACHENBERG, CAREY, US
(71) SYMANTEC CORPORATION, US

51) Int.C1.° GO6F 9/44
30) 1998/03/25 (09/047,949) US

(12) (19) (CA) Dem ande-Application

(CANADIAN INTELLECTUAL

(21) (A1) 2,325,544
86) 1999/03/25
87) 1999/09/30

54y MISE A JOUR DE LOGICIELS PARINCREMENT A PLUSIEURS

NIVEAUX

54y MULTI-TIERED INCREMENTAL SOFTWARE UPDATING

SATCH | § PATCH T PATENY UPDATE DATA
T

- A :)-¢ m‘
CATEAE

£oa 2 1 §

(57) La presente mnvention concerne la mise a jour d une
application de logiciel (110) passant a une version plus
recente au moyen de corrections de mise a jour par
incréement (122). Les corrections de mise a jour par
increment (122) renferment chacune 1’'information
necessaire pour la transformation de la version d’une
application en une autre version. On peut faire passer
n'1mporte quelle version d’une application (110) a une
autre version de cette application, en utilisant une serie
de corrections de mise a jour par increment (122). Les
corrections de mise a jour par increment (122)
approprices se font suitvant un mode multi-niveaux, de
sorte que certaines corrections (122) mettent a jour
I’application (110) d’un seul niveau de version, les autres
mettant a jour I"application (110) de plusieurs niveaux de
VErs1on.

I*I Industrie Canada Industry Canada

(57) A software application (110) 1s updated to a newer
version by means of incremental update patches (122).
The incremental update patches (122) each contain that
information necessary to transform one version of an
application to another version. Any version of an
application (110) may be upgraded to any other version
of the application, through the use of a series of
incremental update patches (122). The appropnate
incremental update patches (122) are distributed in a
multi-tiered manner, such that some update patches
(122) update the application (110) by only one version,
and others update the application (110) by several
VErs1ions.

'L R AN Ty b Faman e s e s

| application, through the use of a series of incremental update patches

| in a multi-tiered manner, such that some update patches (122) update the

CA 02325544 2000-09-25

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :
GO6F 9/44

(11) International Publication Number-: WO 99/49391

(43) International Publication Date: 30 September 1999 (30.09.99)

(21) International Application Number: PCT/US99/06619 | (81) Designated States: CA, European patent (AT, BE, CH, CY, |
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
(22) International Filing Date: 25 March 1999 (25.03.99) SE). |

(30) Priority Data: Published |
09/047,949 25 March 1998 (25.03.98) US Without international search report and to be republished
upon receipt of that report. l

(71) Applicant: SYMANTEC CORPORATION {[US/US}); 10201
Torre Avenue, Cupertino, CA 95014 (US). |

(72) Inventors: WALDIN, Ray, Soon; 175 Bluxome #105, San I
Francisco, CA 94107 (US). NACHENBERG, Carey; 19585
Shadow Glen Circle, Northridge, CA 91326 (US).

Palo Alto Square, Palo Alto, CA 94306 (US).

(74) Agents: RADLO, Edward, J. et al.; Fenwick & West LLP, Two ;
|

(34) Title: MULTI-TIERED INCREMENTAL SOFTWARE UPDATING

(57) Abstract

A software application (110) is updated to a newer version by
means of incremental update patches (122). The incremental update
patches (122) each contain that information necessary to transform
one version of an application to another version. Any version of
an application (110) may be upgraded to any other version of the

.:-,1
w

S — —— e ——

PATCH BUILDER
120

PATCH SOFTWARE

PUBLISHER
FILE 122 LiS

|
|
|
e

(122). The appropriate incremental update patches (122) are distributed

application (110) by only one version, and others update the application
(110) by several versions.

| [
C:A DB DA

ROULEIIS

10

15

20

25

30

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

Multi-Tiered Incremental Software Updating

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to incremental software updating, and more

spectfically to a system and method for using an automated, multi-tiered approach to

performing incremental software updates.

2. Descniption of Backeround Art

Some computer software publishers update their software “applications”'(computer
programs and data files associated with the programs) frequently. For some types of software
applications, such as virus protection software, these updates are particularly frequent. Virus
protection software applications are designed to detect computer viruses on a computer
system, and may also remove viruses which are found. An example of such a software
application is Norton Anti-Virus, published by Symantec Corporation of Cupertino,
California. Because these virus protection software applications rely on data about specific
viruses, and new viruses are constantly being written to avoid current virus detection
capabilities, 1t 1s necessary to update virus protection software applications on a regular basis
to account for the newest viruses. Frequent updating of data files is also necessary for some
database publishers, who must put up-to-date information in their databases, and remove
obsolete information therefrom. Periodic updating of general software applications to expand
capabilities and eliminate “bugs” is also common.

Currently, several methods are used to update software applications. The simplest of
these is to distribute one entire software application to replace an older one. This method, the
“full update” method, is simple, but expensive and inconvenient. Typically the software is
distributed on some type of removabie media, such as floppy disks or CD-ROMs, which are
costly to produce and distribute. The time an end user must wait for the removable medium to
arrive and the time it takes for the software application to install itself on a computer system
are inconvenient. This inconvenience is compounded where updates occur frequently.

Because of the large size of software applications it is generally not feasible to distribute such

W g

10

15

20

25

30

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

updates over computer networks, such as the Internet. When full updates are distributed over
the Internet, they often cause such high loads on servers that other users suffer slow-downs on
the network, and the servers.have trouble meeting the demands.

In order to bypass many of the problems associated with this type of software updating,
some software publishers distnbute “incremental updates.” These updates do not contain
entire software applications, but rather only that information necessary to transform a given
version of a software application to a newer version. Among the methods available to perform
such incremental software updating is binary patching, performed by programs such as
RTPatch, pubhished by Pocket Soft, Inc. A binary patcher replaces only those binary bits of a
software application which are different in a newer version. Because most software updates
Involve changes to only a small portion of a software application, a binary patcher needs, in
addition to the old software application, only a small data file including the differences
between the two versions. The smaller data files distributed for a binary patch update are often
less than 1% of the s1ze of a full update, taking advantage of the large amount of redundancy
in the two versions. '

The use of incremental update methods allows for smaller updates which can be
distributed by means that are not conducive to the distribution of full updates, such as
distribution over the Internet. The smaller incremental updates also make distribution by
floppy disk more feasible where a full update would have required many disks, and an
Incremental update may require only one. However, incremental update methods introduce
another problem: the incremental update is specifically useful for updating only one particular
version of a software application to another particular version. When updates occur
frequently, as with virus protection software applications, end users may often update from an
arbitranly old version to the newest version, skipping over several previously released
versions. An incremental update for the newest version of a software application will update
only from the most recent version, however.

One solution to this problem has been for software publishers to group a number of
binary patch data files together into one distribution. The user of an arbitranly old version can
then apply each incremental update, one at a time, to update to the newest version. However,
the number of incremental updates may be large, due to the fact that the grouping covers a
large number of versions. The benefits of smaller distributed update files begin to disappear,

as the size of the grouped-together incremental updates grows. This method of updating

2

10

15

20

235

30

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

applications can also be cumbersome, as a series of update patches need to be selected from
the group and applied to the software application one after another.

Another solution to the problem of incremental update version-specificity has been to
create a unique patch file for transforming every previous version of the applcation to the
most current version. Some users may not wish to update their software applications to the
most current version. however, for a number of reasons. Some may be within a corporate
setting, where an information services department aliows updates only to versions it has had a
chance to test and approve. Others may have older computer systems which do not support the
Increased resource requirements of the newest version of an application. For these reasons,
publishers of software updates using this method must generally keep updates available from
every previous version of an application to a large number of more recent versions. This
results in a geometrically growing number of update patch files to produce, store and maintain
for users. In the case of publishers who update their applications frequently, such as
publishers of virus-protection software applications, this may quickly become untenable.

One alternauve to the methods described above is the use of “push” technology, 1n
which servers maintain databases of what versions of a software application each user has.
The servers then send the necessary updates to each user, as they become availlable. This
system requires “smart” servers, however, to monitor user configurations, determine what each
user needs, and send the appropriate update information. This results in a server-intensive
system which can cause a drain on server resources comparable to that experienced in the full
update scheme, when many users are simultaneously requesting full updates.

What 1s needed is a system for updating sofiware applications from an arbitrary first
version to an arbitrary second version which does not require a large amount of information to
be stored and maintained by a software publisher, does not require the user to acquire a large
amount of data to perform such an update, and does not require the use of “smart” servers.

SUMMARY OF THE INVENTION

The present invention is a method and apparatus for distributing the appropriate
incremental software update information to users. A software publisher (118) provides update
patches (122) which will update users’ software applications (110) from one state to another.
The update patches (122) are ‘tiered.” Update patches on the first tier (200) update from a

given application state to the subsequent application state. Update patches on the second tier

10

15

20

25

30

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

(202) update an application from a given state to the state which is two versions later. The tier
of an update patch indicates how many individual updates are spanned by the patch.

By selectively providing tiered update patches, software publishers (118) can facilitate
quick, efficient updating of users’ applications (110) without producing and marntaining large
numbers of update patches (122). These update patches (122) may be provided to users
simultaneously through a variety of distribution channels (124), since a “smart server’ is not
necessary to provide users with the needed update patches (122). This allows for selective
redundancy, as update patches (122) which are likely to be needed by many users may be
made available through more of the available distribution channels (124) than others,
providing a robust distribution system.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other more detailed and specific objects and features of the present invention
are more fully disclosed in the following specification, reference being had to the '
accompanying drawings, in which:

Figure 1 1s a block diagram of a first embodiment of the present invention, in which a
software application 110 on a user’s computer 116 is updated with incremental update patches
122 from a remote source 118.

Figure 2 1s an illustration of the relation of various tiers of updates to a series of
application states in the present invention.

Figure 3 is an illustration of an example of the use of multi-tiered incremental updates
to perform a software application update according to the present invention.

Figure 4 1s an illustration of an example of a sub-optimal software application update
using incremental updates.

Figure 5 1s an illustration of an example of a publishing schedule for multi-tiered
incremental updates which meets the necessary condition for optimal updates accordin g to the
present mvention.

Figure 6 1s an illustration of an updating program 126 using a catalog 404 to determine
an appropriate sequential set of update packages 412 based on attributes of an application 110.

Figure 7 1s an illustration of an updating program 126 constructing a sorted directory
408 of available catalogs 404 from different sources 400 and 402.

10

15

20

25

30

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

Figures 8a and 8b are a flowchart showing how an updating program determines what
update patches need to be applied to effect an update, and how the updating program carries
out the updating.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In one embodiment, the present invention may be implemented as an update
mechanism for a virus protection software application. In other embodiments, the present
nvention may be used to update general computer readable files, which may include data fiies,
program files, database files, graphics files, or audio files. For illustrative purposes only, the
invention will be described as embodied in an update mechanism for virus protection software.

Referring to Figure 1, a virus protection software application 110 which Incorporates a
number of virus detecting routines 112, and utilizes a number of data files containing virus
information 114, 1s installed on a user’s computer 116. Because of the rate at which new
viruses are created. it is desirable to update the virus protection software applications on the
user's computer frequently. These updates could take place as often as daily, or even more
frequently if desired. Generally, these updated applications 110 will include only small
changes to the data files 114, but sometimes larger changes to the virus detecting routines 112
will also be included.

In order to fully describe the embodiment of the present invention, it is first
necessary to describe DeltaPackages, DeltaCatalogs, and DeltaDirectories.
DeltaPackages

Each time an updated software application 110 is produced by the virus protection
software publisher, the updated form of the software application constitutes a new version.
The software publisher uses an incremental update builder, such as binary patch file builder
120, to produce at least one incremental update, such as binary patch file 122, which can
transform a previous version of the software application to the current version. A binary patch
file builder 120 is a program which takes two versions of a software application, for example
versions A and B, and produces a binary patch file, 122, which can be used with version A of
the software application to produce version B. In this example, version A would be the
“source” state and version B would be the “destination” state of the application. This binary
patch file 122 can either be an executable file which acts directly on version A of the software
application, or it can be a data file which is used by a separate binary patch program (not

shown) to transform version A of the software application to version B. The binary patch files

5

o et el A A AR AN ARG R 400 d Wy e o

10

15

20

25

30

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

122 are stored on an update data source 124 (a “server”’) which makes the patch files 122
available to an updater program 126 (a “chent™). The updater program 126 determines what
patch files 122 are necessary, retrieves them and applies them to the application to be updated
110. In the 1llustrative embodiment, the incremental update files are binary patch files which
are digitally signed compressed executable modules, and the java ARchive (JAR) platform-
Independent file format, available from Sun Microsystems, is used for this purpose. Because
they are digitally signed, the authenticity of the updates can be ensured. When executed, the
incremental update file automatically transforms a software application from a source state to a
destination state. These self-contained executable incremental update files conforming to the
JAR format are referred to as “DeltaPackages” 122, and are one example of what 1s referred to
herein as an “‘update patch”.

In Figure 2, a series of application states are given, designated state A through state S.
Each application state is a software application version which is produced by the software
publisher later in time than a version with an alphabetically earlier letter designation. The
DeltaPackages 122, which are referred to as “tier 1” DeltaPackagés 200, are so named because
they each effect a transition from an application state which is only one version earlier than the
destination state. There is a tier 1 DeltaPackage 200 for updating to each application state
other than the initial application state, A. The software publisher may produce higher tier
DeltaPackages 122, such as “tier 3” DeltaPackages 202 and “tier 9 DeltaPackages 204. A tier
3 DeltaPackage 202 is used to transform an application from a source state three versions
earlier than the destination state, and a tier 9 DeltaPackage 204 is used to transform an
application from a source state nine versions earlier than the destination state. Many other
tiers of DeltaPackages 122 may be produced, but the benefits of additional tiers must be
weighed against the costs, described below. In Figure 2, tier 1 DeltaPackages 200 are
produced for each new version, tier 3 DeltaPackages 202 are produced for every third version,
and tier 9 DeltaPackages 204 are produced for every ninth version.

For illustrative purposes, each DeltaPackage 122 is given a designation which is “A”
followed by two letters. The first ietter indicates the application source state upon which the
DeltaPackage 122 works and the second letter indicates the application destination state
produced. For the case where there are not multiple “flavors” of the application which need to
be updated in parallel, a relatively simple process is employed to update the application.

DeltaPackages 122 are applied to a user’s software application incrementally, beginning with

6

10

15

20

25

30

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

the highest tier DeltaPackage 122 available which has a source state equal to the current state
of the application, and a destination state no later than the desired ending state. After the
DeltaPackage 122 1s applied, and the application is updated to the destination state of the
DeltaPackage 122, another DeltaPackage 122 is chosen in the same manner, with the new
application state providing the source state of the next DeltaPackage 122. This continues until
the desired ending state of the application is reached.

Figure 3 1llustrates this procedure for a case in which it is desired to transform an
application of state F to an application of state T. Following the procedure described above,
such a ransformation 1s accomplished through only four incremental updates, from F to G to J
to S to T. Each time a new DeltaPackage 122 is to be selected, the one chosen is the highest
tier DeltaPackage 122 with the current application state as a source state. and a destination
state which does not exceed the desired ending state.

When fewer incremental updates are required to perform a given transformation, fewer
DeltaPackages 122, and therefore less information, needs to be transferred to the application.
The procedure descnibed above produces a desired transformation using the smallest number
of available DeltaPackages 122, as long as one condition is met: no available DeltaPackage
122 may have a source state which is between the source and destination states of an available
DeltaPackage 122 with a lower tier. As long as this condition is met, then the procedure
described above will perform an optimum transformation, using the smallest number of
available DeltaPackages 122 to get from the beginning state to the desired ending state. If the
condition is not met then the procedure described above may result in a transformation which
uses more of the available DeltaPackages 122 than necessary. An example of a sub-optimal
transformation 1s illustrated in Figure 4. In that case, a transformation from state G to state S
uses four DeltaPackages 122 (AGJ, ATM, AMP and APS), when it need only use three (AGH,
AHI, and AIS). Because the AIS DeltaPackage 122 has a source state (I) which is between the
source and destination states of a lower tier DeltaPackage (AGJ), the AIS DeltaPackage 122
violates the above condition, and a sub-optimal set of DeltaPackages 122 is used. In practice,
a software publisher may easily ensure that the available DeltaPackages 122 meet this
condition, since each DeltaPackage 122 is produced later in time than DeltaPackages 122 with
earher destination states. In the above example, before issuing DeltaPackage AIS, the

publisher would eliminate DeltaPackage AGJ and possibly replace it with another, such as
DeltaPackage AGI.

10

15

20

25

30

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

In the example of Figure 3, if only the tier 1 DeltaPackages 200 had been available,

fourteen DeltaPackages 122 would have been required for the transformation. instead of four,
and much unnecessary information would have been transferred to the apphcation. The total
number of DeltaPackages 122 which would have been produced by the publisher, however,
would have been smaller, the higher tier DeltaPackages 122 not having been produced. On the
other hand. if a tier 14 DeltaPackage 122 designated AFT had been available, only one
DeltaPackage 122 would have been required, and very little information would have been
transferred to the user. However, the availability of a DeltaPackage 122 which accomplishes
any particular transformation in one step can be assured only by producing individual
DeltaPackages 122 from every source state to every destination state, which requires a number
of DeltaPackages 122 approaching N! (where N is the number of file states). Producing and
maintaining such a large number of individual DeltaPackages 122 is not feasible in many
situations. as explained above. These considerations must be considered by a software
publisher in determining the most efficient DeltaPackage 122 publishing schedule. For the
1llustrative embodiment, it was determined that providing DeltaPackages 122 of tiers 1, 3 and
9 would be most efficient.

The uers of DeltaPackages 122 produced do not need to be published according to any
fixed schedule, but rather may be determined as new updates become available. In Figure 5 an
irregular publishing schedule of DeltaPackages 122 is shown. There are four separate tiers of
DeltaPackages 122 available with J as a source state. The decision to create so many
DeltaPackages 122 with the same source state may be based on the fact that many copies of
the application in the J state are known to be at large. Many publisher-specific, application-
specific, and information transport mechanism-specific factors will affect the desirability of a
publishing schedule for DeltaPackages 122.

DeltaCatalogs

Software publishers often produce different “flavors” of a single software application,
directed to different computer architectures, different operating systems, and users who speak
different languages. The scheme for publishing incremental updates laid out above is adequate
for the case in which there is only one flavor of a software application. For the more general
case of several application flavors, however, some additional mechanisms can be used to
handle the additional complexities of parallel updating. A system which addresses these

complexities is described in the second illustrative embodiment of the present invention.

8

Ty =y = (A = N P A s e e . ees » N 1S MOLED el e b bl sl hs

10

15

20

25

30

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

In the case of virus definition updates, there are often updates which are not operating
system-specific, and sometimes there are updates which are not even computer architecture-
specific. Other times, updates are specific to these, and other, categories. A single update
DeltaPackage 122 may be useful to update some flavors of an application, but not others. To
handle these complexities, update catalogs, referred to as “DeltaCatalogs,” are utilized. These
update catalogs are another example of what are referred to herein as “update patches.” Rather
than having a single DeltaPackage 122 correspond to each incremental update (i.e. “AIS™) as
above. a DeltaCatalog corresponds to each incremental update (i.e. “AIS™). Each DeltaCatalog
has an associated source state and an associated destination state, and specifies the necessary
update information by specifying which DeltaPackages 122 should be used by each flavor of
the application to update from the source state to the destination state. In one embodiment,
DeltaPackages 122 are given unique IDs which do not conform to the “AAB” format used
above for 1llustrative purposes, and are specified by the DeltaCatalogs using these unique IDs.
With DeltaCatalogs substituted for DeltaPackages 122, the general scheme described above is
utilized.

There are a number of different ways DeltaCatalogs can be implemented. In this
embodiment, the Extensible Markup Language (XML) standard is used to create a document
type defimtion. The XML standard is available from W3C Publications, World Wide Web
Consortium, Massachusetts Institute of Technology, Laboratory for Computing Sciences,
NEA43-356, 545 Technology Square, Cambridge, MA 02139. An example document type
definition corresponding to the XML: standard, referred to as DPML (for DeltaPackage
Markup Language), 1s given in Appendix A. In this document type definition, there are a
number of types of entries a DeltaCatalog may contain. These types are Product (the type of
software application), Package (a specific DeltaPackage 122), OS (operating system), CPU
(computer architecture) and Language (the language spoken by the users of the software
application). An entry of any of these types except Package may in tumm contain entries of the
types Product, Package, OS, CPU or Language. None of the entry types may contain a
DeltaCatalog, and the Package must contain an “ID” which corresponds to a specific
DeltaPackage 122. Also, the “to”, or destination state, data field and the “from”, or source

state, data field must be given for a DeltaCatalog.

An example of a DeltaCatalog contained in a file written to conform to the XML

format 1s given in Appendix B. In the DeltaCatalog file itself, the document type definition for

9

10

20

25

30

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

“DPML" is specified by including a uniform resource locator (URL) pointing to the location

of a current specification of the document type definition. Alternatively, the data type
definition may be included 1n the file explicitly. A software application to be updated contains
the attributes of current state, Product, OS, CPU, and Language, and has access to the desired
ending state of the software application, as described below. In order to determine a sequential
set of DeltaPackages 122 which need to be applied to the software application to effect the
transformation from the current state to the desired ending state, an updating mechanism,
referred to as a “DeltaUpdater™ 1s used. The DeltaUpdater may be a separate program. or may
be part of the software application itself. It goes through the same basic procedure outlined
above, with DeltaCatalogs taking the place of DeltaPackages 122. The DeltaCatalog of the
highest tier available which has a “from” field matching the application’s current state and
which has a “to™ field which does not exceed the ending state is selected by the DeltaUpdater.
The DeltaCatalog 1s then processed, with the DeltaUpdater processing only those sub-entries
contained within entries with attributes which match those of the application. An example is
illustrated 1n Figure 6. The DeltaCatalog 404 contains a simplified form of the information
contained in the DeltaCatalog file of Appendix B. Application 110 has the attributes of
“NAYV version 2.0 runming on Windows NT on an alpha computer using North American
English.” The DeltaUpdater 126 would process only Package ID’s “487" and “766,” as all
other Package entries correspond to different attributes. Those DeltaPackages 122 which
correspond to these two IDs would then make up a sequential set 412 of DeltaPackages 122 to
be applied to application 110 in the order they were encountered in DeltaCatalog 404. When
applied to application 110, the DeltaPackages 122 of set 412 transform application 110 from
state 1 to state 8, the states given 1n the “from” and *“to” fields of DeltaCatalog 404. If the
desired ending state were still later than state 8, then this procedure would again be applied to
select and process another DeltaCatalog 404, one which has a “from” value of 8.
DeltaDirectories

A number of transfer mechanisms are available to a DeltaUpdater for retrieving
DeltaCatalogs and DeltaPackages 122. Among these are the NNTP Usenet server protocol,
available from Internic as “Request For Comments 977”; the HTTP protocol, available from
Internic as “Request For Comments 1945”; the FTP protocol, available from Internic as
“Request For Comments 959”; and direct access to a “file server” using a protocol such as the

Universal Naming Convention (UNC). A file server may be, among other things. internal disk

10

10

15

20

25

30

o d OO I D E VAL U A B AT B M e o L) e

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

media, removable disk media, or a network resource. Other distribution mechanisms are

request. The present invention utilizes so called “dumb media,” meanin g that the medium
supplying the requested information need not interact with the DeltaUpdater beyond simply
supplying requested data. Specifically, “smart servers,” such as those used in “push”
technology, are not necessary. A smart server determines what update mnformation is
necessary, given information about the state of the software application, and then supplies that
information. The described transfer mechanisms allow DeltaCatalogs and DeltaPackages 122
to be retneved from “catalog sources™ and “update data sources” on which they are stored.

A typical system embodying the present invention will have available more than one of
the mentioned transfer mechanisms, as illustrated in Figure 7. A DeltaUpdater 126 will have
access to a list 403 of locations, specified as URLSs, where needed data may be found. In
general, these URLs will specify a number of NNTP news-servers with news-groups, HTTP
servers with directory paths, FTP servers with directory paths, and file servers with directory
paths. In the embodiment illustrated in Figure 7, an NNTP server 400 and a file server 402
contain available DeltaCatalogs 404. The flowchart of Figure 8 shows the steps carried out by
the DeltaUpdater 126. When an update process is begun, the locations specified in list 403
will be polled 502 in order until one is found which contains the required DeltaCatalogs 404.
The DeltaUpdater 126 builds a “DeltaDirectory” 408, which is a list of available DeltaCatalogs
404 at the specified location: For transfer mechanisms which support querying of a file -
directory, such as HTTP, FTP and file servers, the DeltaDirectory 408 is constructed with the
information returned by such queries. For these transfer mechanisms, the DeltaCatalog 404
source and destination state information is contained in the name of each DeltaCatalo g file.
DeltaCatalogs 404 are named according to a scheme where the first four characters specify a
source state, the next four characters specify a destination state, and the file extension is “cat.”
For NNTP, the DeltaUpdater 126 retrieves headers for available messages, and looks for
DeltaCatalog information in the headers. The DeltaCatalog information specifies that the
message 1s a DeltaCatalog 404, and specifies the source and destination states are for the

DeltaCatalog 404.

After retrieving the source state and destination state for each avaijlable DeltaCatalog

404, the DeltaUpdater 126 organizes this information in the DeltaDirectory 408 by sorting 504

11

| & 4

10

15

20

30

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

the DeltaCatalogs 404 first by source state, and next by reverse destination state. The
DeltaCatalogs 404 of the preferred transport mechanism are used. if possible. Otherwise.
DeltaCatalogs 404 of alternate transport mechanisms are used. This ordenng of the
DeltaCatalog 404 information allows the DeltaUpdater 126 to move through the
DeltaDirectory 408 efficiently, finding the URL of each DeltaCatalo g 404 with the necessary
source state, and the farthest destination state which does not exceed the desired ending state.
The DeltaUpdater 126 determines 506 the current state of the application to be updated. and
the desired ending state of the application. The application can supply its current state to the
DeltaUpdater 126, but the DeltaUpdater 126 needs other information to determine the desired
ending state. The method by which the DeltaUpdater 126 determines the desire ending state of
the application 1s addressed below.

The sequential set 412 of DeltaPackages 122 is cleared out 508, in preparation for the
determination of the set 412. The DeltaUpdater 126 moves through the DeltaDirectorv 408
sequentially 1n the loop comprising steps 510, 512, and 514 to find the first DeltaCatalog 404
in the DeltaDirectory 408 which has the current state as a source state. The DeltaUpdater 126
then moves through the DeltaDirectory 408 from this DeltaCatalog 404 to find the
DeltaCatalog 404 which has the farthest destination state which is not beyond the desired
ending state (loop 516, 518, and 520). If all of the DeltaCatalogs 404 which have the current
state as a source state have a destination state which is beyond the desired ending state, then
the update will fail 520.

When a DeitaCatalog 404 is identified at 516 which has a destination state which is not
beyond the desired ending state, the DeltaCatalog 404 is requested 524 from the appropriate
source 400 or 402. After the requested DeltaCatalog 404 is received 526, the DeltaCatalog
404 1s processed 528, as described above, to determine an incremental set of DeltaPackages
122 which are appended to the sequential set 412. The current state of the application 1s then
set 530 to the destination state of this DeltaCatalog 404, and if that state is not the desired
ending state 532 the processing continues at step 514, and another DeltaCatalog 404 is
determined.

When the full sequential set of DeltaPackages 122 necessary for an update are
determined 532, the DeltaUpdater 126 requests 534 each needed DeltaPackage 122. The
DeltaUpdater 126 receives 536 the requested DeltaPackages 122 using the appropriate

protocol, then uses the digital signature to verify that the DeltaPackages 122 are authentic and

12

2 SN IR M) PR et raa S Bt ds ooe - e

10

15

20

25

30

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

have not been altered. Each DeltaPackage 122 retrieved is executed in sequence 538,
transforming the application from the beginning state to the desired ending state. In other
embodiments, the DeltaUpdater 126 retrieves all of the DeltaPackages 122 specified by a
DeltaCatalog 404 before moving on to the next DeltaCatalog 404,

DeltaDirectives

The beginnming state of an application update is determined by the DeltaUpdater with
reference to the application itself, which will carry some designation of the current state. The
desired ending state. however, is not necessarily as easy to identify. One possibility would be
for the DeltaUpdater to simply update the application to the latest state for which
DeltaCatalogs are available. In many situations, however, it may not be desirable to the user
of a software application to update the application to the latest available state. For example, In
corporate settings, Information Services departments may wish to test out and venfy the
stability of a version of a software application before allowing the applications owned by the
corporauon to be updated to that version. This is often the case when the update 1s a major
revision. Also, some networked computer systems may require that all copies of a particular
application be at exactly the same state. One solution would be for an Information Services
department to control the availability of DeltaCatalogs 404. Alternatively, it is desirable in
some situations to utilize “DeltaDirectives,” which are issued in connection with a given
computer or network, specifying to which destination state an update 1s allowed. A
DeltaDirective is a file or NNTP message containing a single value, the allowed destination
state. The filename or NNTP message header identifies the file or NNTP message as a
DeltaDirecuive. The location for such DeltaDirectives is made available to the DeltaUpdater
before the update procedure is begun. As illustrated in Figure 7, the DeltaUpdater 126
identifies the latest available DeltaDirective 405 in the prescribed location, obtains the
DeltaDirective 405, and reads the desired ending state from it. This desired ending state is
used by the DeltaUpdater 126 in steps 506, 516, and 532 of Figure 8. The publisher of the
updates may make available general DeltaDirectives 405 which specify the latest available
state. The DeltaUpdater for any given computer may be set to look to the DeltaDirectives 405
1ssued by the software publisher or those issued by some other authorty, such as an

Informauon Services department.

The above description is included to illustrate the operation of the preferred

embodiments and is not meant to limit the scope of the invention. The scope of the invention

13

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

1s to be hmited only by the following claims. From the above description, many variations

will be apparent to one skilled in the art that would yet be encompassed by the spirit and scope

of the present invention.

14

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

APPENDIX A

DPML .DTD

<?XML version="1.0"7?>

<!DOCTYPE DeltaCatalog {

<!ELEMENT DeltaCatalog (Product | Package | 0OS | CPU | Language) *>
<!ATTLIST DeltaCatalog from CDATA #IMPLIED>

<!ATTLIST DeltaCatalog to CDATA #REQUIRED>

<!ELEMENT Product (Product | Package | 03 | CPU | Language) *>
<!ATTLIST Product name CDATA #IMPLIED>

<!ATTLIST Product version CDATA #IMPLIED>

<!ATTLIST Product ID CDATA #IMPLIED>

<'ATTLIST Product maxversion CDATA #IMPLIED>

<'ATTLIST Product minversion CDATA #IMPLIED>

<!ELEMENT OS (Product | Package | 0S | CPU | Language) *>
<!ATTLIST OS nams CDATA #IMPLIED>

<!ATTLIST OS version CDATA #IMPLIED>

<!ATTLIST OS maxversion CDATA #IMPLIED>

<!ATTLIST OS minversion CDATA #IMPLIED>

<!ELEMENT CPU (Product | Package | 0OS | CPU | Language)*>
<!ATTLIST CPU name CDATA #IMPLIED>

<!ELEMENT Language (Product | Package | 0S | CPU | Language) *>
<IATTLIST Language name CDATA #IMPLIED>
<!ATTLIST Language locale CDATA #IMPLIED>

<!ELEMENT Package EMPTY>
<!ATTLIST Package 1D CDATA #REQUIRED>

] >

15

10

15

20

25

30

35

40

WO 99/49391

CATALOG.CAT

<?¥XML version="1.Cl" 7?>

<!DOCTY~ZZ

CA 02325544 2000-09-25

APPENDIX B

PCT/US99/06619

DeltaCatalog system “http://www.symantec.com/DPML.DTD">
<DeltaCatalog from="1" to="8">

<Product name="NAV” ID="12345">

<0OS name="Wing%5”>

<Product version="”1.0">

<rackage ID="1025">

</Product>

<ProaQuct version="2.0">

<Pacxage ID="1026">

</Product>

</08>

<0S name="WinNT">

<Product version="1.0">

<Package ID="1027">

</Proauct>

<Product version="2.0">

<CPU name="x86">
<O0S vesion="3.51">
<Package ID="1100">
</0S>
<OS version="4.0">
<Package ID="250">
</08>
</CPU>
<CPU name="Alpha”>
<Package ID="487">
</CPU>

</Product>

</0S>

<Language name="English” locale="NorthAmerica”>

<Package ID="T766">

</Language>

<Language name="French” locale="Canada’”>
<Package ID="4775">

</Language>

</Product>

</Delta

f\n-b-
“wd o

alog>

16

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619
LAIMS

1. A system for transforming a computer readable file of a beginning state to a computer
readable file of an ending state, where the beginning state and the ending state are both
5 states within a sequence of states associated with the computer readable file. the system
comprising:

at least two update patches, each update patch having a first state and a second state

associated therewith, the first state and the second state of each update patch

being states within the sequence of states, the first state of each update patch

10 preceding 1n the sequence of states the second state of that update patch, and

each update patch specifying information about differences between the first

state and the second state associated with that update patch;
at least one update data source, each update data source having access to at least one of
the update patches, each update data source being disposed to receive a request

15 which is associated with one of the update patches, for transmitting the update

patch associated with the request; and
a chient coupled to each update data source and having access to the computer readable
hile, disposed to receive transmitted update patches from each update data
source, for determining a sequential set of update patches which specify
20 information for transforming the computer readable file from the beginning
state to the ending state. '
2. The system of claim 1, wherein:
the ending state 1s specified by a directive file available to the client.
3. The system of claim 1, wherein:
25 at least one update data source is selected from the group consisting of an NNTP
Usenet server, an HTTP server, an FTP server, and a file system server which is
locally accessible to the client.

4. The system of claim 1, wherein:

the update patches are binary patches which include binary differences between the

30 first state and the second state.

J. The system of claim 1, wherein:

17

[CLL T, T

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

the sequential set contains that number of update patches which is the smallest number

of accessible update patches necessary for the client to transform the computer
readable file from the beginning state to the ending state.

6. The svstem of claim 1, wherein:

5 each update patch has a tier associated with it, the tier being a number which

corresponds to the number of states between the first state and the second state

associated with the update patch; and

at least one of the update patches has a tier which is different from the tier of another

update patch.

10 7. The system of claim 6, wherein:

the chient transmits a request associated with each update patch of the sequential set to
the update data source which has access to that update patch, receives each
requested update patch from the update data source which has access to the
requested update patch, and updates the computer readable file from the
15 beginning state to the ending state with the update patches received; and

the update patches are binary patches which include binary differences between the

first state and the second state.

8. The system of claim 1, wherein:

the client transmits a request associated with each update patch of the sequential set of

20 update patches to the update data source which has access to that update patch,
receives each requested update patch from the update data source which has
access to the requested update patch, and updates the computer readable file

from the beginning state to the ending state with the update patches received.

9. The system of claim 8, wherein:

25 at least one of the update patches is a catalog which specifies at least one other file
' which specifies information about differences between two states.
10. The system of claim 9, wherein:
each catalog has a tier associated with it, the tier being a number which corresponds to
the number of states between the first state and the second state associated with

30 the catalog; and

at least one of the catalogs has a tier which is different from the tier of another catalog.

11. The system of claim 10, wherein:

18

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

the ending state is specified by a directive file available to the client.
12. The system of claim 8, wherein:
at least one of the update patches is a catalog which specifies at least one binary patch
file which includes information about binary differences between two states.
5 13. The system of claim 12, wherein:
each catalog has a tier associated with 1t, the tier being a number which corresponds to
the number of states between the first state and the second state associated with

the catalog; and

at least one of the catalogs has a tier which is different from the tier of another catalog.
10 14. The system of claim 13, wherein:
the ending state is specified by a directive file available to the chient.

I5. A computer implemented method for transforming a computer readable file of a beginning
state to a computer readable file of an ending state using available update patches, the
beginning state and the ending state both being states within a sequence of states

15 associated with the computer readable file, each update patch having a first state and a
second state associated therewith, the first state of each update patch preceding in the
sequence of states the second state of that update patch, and each update patch
specifying information aboﬁt differences between the first state and the second state
associated with that update patch, the computer implemented method comprising the

20 steps of:
determining a sequential set of update patches from those available such that the first

state associated with the initial update patch in the sequential set of update
patches 1s the beginning state, the first state associated with each other update
patch in the sequential set of update patches is the same state as the second state

25 associated with the preceding update patch in the sequential set of update

patches, and the second state associated with the final update patch in the
sequential set of update patches is the ending state;

requesting each update patch in the sequential set of update patches from at least one
update data source, wherein each update data source has access to at least one

30 of the available update patches, and is disposed to receive the request and

transmit the requested update patch;

19

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

receiving each requested update patch in the sequential set of update patches from at
least one update data source; and

producing a computer readable file of the ending state by using each update patch in

the sequential set of update patches to transform the computer readable file
S from the first state associated with the update patch to the second state

associated with the update patch.
16. The method of claim 15, wherein:

the ending state 1s specified by a directive file.

17. The method of claim 15, wherein:

10 at least one update data source is selected from the group consisting of an NNTP

Usenet server, an HTTP server, an FTP server, and a locally accessible file

system server.
18. The method of claim 15, wherein:

the update patches are binary patches which include binary differences between the

15 first state and the second state.

19. The method of claim 15, wherein:

the sequential set of update patches contains that number of update patches which is
the smallest number of available update patches necessary to transform the

computer readable file from the beginning state to the ending state.
20 20. The method of claim 15, wherein:

the step of determining the sequential set of update patches comprises:

determining a sequential set of catalogs from available catalogs, each catalog

specifying at least one update patch;

interpreting each catalog of the sequential set of catalogs seriatim to determine

25 an incremental set of update patches associated with the catalog; and
combining the incremental sets of update patches.

21. The method of claim 15, wherein:

each update patch has a tier associated with it, the tier being a number which

corresponds to the number of states between the first state and the second state

30 associated with the update patch; and

at least one of the update patches has a tier which is different from the tier of another

update patch.

20

10

15

20

25

30

i AR BRT (S8 SATTVE, FPa o O e L .

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

22. A method of publishing update information for a computer readable file which is

associated with a sequence of states. the method COMprising:

creating at least two update patches, such that each update patch has a first state and a
second state associated therewith, the first state and the second state of each
update patch being states within the sequence of states, the first state of each
update patch preceding in the sequence of states the second state of that update

patch, and each update patch specifying information about differences between

the first state and the second state; and
storing the update patches such that each update patch 1s accessible to at least one
update data source, where each update data source is disposed to receive a

request associated with one of the update patches and transmit the requested

update patch.

23. The method of claim 22, wherein: .

each update patch has a tier associated with it, the tier being a number which
corresponds to the number of states between the first state and the second state
associated with the update patch; and

at least one of the update patches has a tier which is different from the tier of another
update patch.

24. The method of claim 22, further comprising:
creating at least two catalogs, each catalog specifying at least one update patch; and
storing the catalogs such that each catalog is accessible by at least one catalog source,

where the catalog source is disposed to receive a request associated with one of
the catalogs, and transmit the requested catalog.

25. A computer readable medium containing a computer program which transforms a
computer readable file of a beginning state to a computer readable file of an ending
state using available update patches, the beginning state and the ending state both being
states within a sequence of states associated with the computer readable file, each
update patch having a first state and a second state associated therewith, the first state
of each update patch preceding in the sequence of states the second state of that update
patch, each update patch specifying information about differences between the first
state and the second state associated with that update patch, each update patch having a

tier associated with it, the tier being a number which corresponds to the number of

21

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

states between the first state and the second state associated with the update patch, and
at least one of the update patches has a tier which is different from the tier of another
update patch, the computer program performing the steps of:
determining a sequential set of update patches from those available such that the first
5 state associated with the initial update patch in the sequential set of update
patches 1s the beginning state, the first state associated with each other update
patch 1n the sequential set of update patches is the same state as the second state
associated with the preceding update patch in the sequential set of update
patches, and the second state associated with the final update patch in the
10 sequential set of update patches is the ending state:
requesting each update patch in the sequential set of update patches from at least one
update data source, wherein each update data source has access to at least one
of the available update patehes, and is disposed to receive the request and
transmit the requested update patch;
15 receiving each requested update patch in the sequential set of update patches from at
least one update data source; and
producing a computer readable file of the ending state by using each update patch in
the sequential set of update patches to transform the computer readable file
from the first state associated with the update patch to the second state

20 associated with the update patch.

22

A0 d-A0 0 1a 114 40 g rardd S AR LN LS 13RS = v - B

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

1/7

PATGH BUILDER
120

PATCH SOFTWARE
FILE 122 PUBLISHER
B-A 18

FIG.1

PATCH PATCH PATCH | UPDATE DATA

Lt t22) | Fil tez || FILE f22 SOURCE
B-A 124

PATCH PATCH { | PATCH

FILE 122 | | FILE 122 | | FILE 122
C-A D-B D-A

SUBSTITUTE SHEET (RULE 26)

02325544 2000-09-25

CA

PCT/US99/06619

WO 99/49391

2/7

¥

X A

— ~ LSVASHV 40V OdV/\dOV ONV-NIWU/A\WIV-

SIrV=

(S) (8) (0) (d) (O ,z~ (W)

T m?oqwn_d O&ZQ

SdV

"SIV

) (0 d O N W) (D c:

zidw xd.vu rIvV =
Al

v.

¢ I

1) c:) (

m
x HV HO

C. H
26..:.3 ov on_d.... = = =i4d3ll1l 00¢

POVT —— """ -——¢H3ll 202

e —— 643l1l bH0<

¢ Ild

) (9) () (3) @) 121 (g1 1y}

V o.._qmuu odwmouqmeﬂdq 43l1 00¢
d ¢ d3ll 20l

643l v0C

rvv

SUBSTITUTE SHEET (RULE 26)

IO 1P~ Y '

AR LI g INT N ea .

o rien d ek

02325544 2000-09-25

CA

PCT/US99/06619

WO 99/49391

3/7

S) ¢
e

v 2

@)

JW/\HOT-ONT NN\ WTT=1T-

O

0 d) 0 (N) (W O O EGCEO H O & @ @@ O @ W

/N

Y \
V. 0&&%&0“02&:26 s_.-dm:_xdn PVACIV™ _IQ?O V »ou_N}Q} V r.... QM\\

uor o Ao

2\
N

IVV

[/ \

'Ol

0

RRER
3IV-3aV/\QoVv-08vV-8y

| m_ﬁ
rYArIVNIHV-HOY\ 93
PVU-~=—=- PLOU-~<-— - = oQV-< - —= -ed3ll

dill
2d3ll

€3l

SUBSTITUTE SHEET (RULE 26)

| CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

10-8
08 erenay DELTA CATALOG
0S=WIN95 = FIG.6
PRODUCT VERSION=.0

PACKAGE=102
PRODUGT VERSION=20

PACKAGE=1026
05=WINNIT
PRODUCT VERSION=1.0
PACKAGE =102
PRODUGT VERSION=2.0

CPU=X86
0S VERSION=3.01

PACKAGE =1100
05 VERSION=4.0
PACKAGE =250
CPU=ALPHA
PACKAGE =487
L ANGUAGE=NORTH AMERICAN ENGLISH
PACKAGE=766

LANGUAGE=FRENCH CANADIAN
PACKAGE=4179

DELTA UPDATER
126

DATA | APPLICATION

FILES| 2

114 PRODUCT=NAV
1 PRODUCT VERSION=2.0
INTERNAL

05=WINNT
ROUTINES
112

SEQUENTIAL
SETOF

PACKAGES
412

PACKAGLE 487

PACKAGE 766

CPU=ALPHA

LANGUAGE=NORTH AMERICAN ENGLISH
CURRENT STATE-]

SUBSTITUTE SHEET (RULE 26)

CA 02325544 2000-09-25

WO 99/49391 ' PCT/US99/06619

FIG,7 5/7
OOOIOOOZ.CATALOG 00010002.CATALOG
CATALOGS H00010003,CATALOG 00010003.CATALOG
404 | !
000101 00.CATALOG 000]01 00.CATALOG
I 00060100.CATALOG 00060100,CATALOG
0

5000302.CATALOG

NNTP SERVER 400

03000302,CATALOG

FILE SERVER402

DELTA CATALOGS

00010100.CATALOG

00010003.CATALOG
00010002.CATALOG

DELTA UPDATER
126

DELTA
00060100.CATALOG DIRECTORY
URLs 203 03000302.CATALOG | = 408

FILE SERVER...
NNTP...

FTP...
DELTA DIRECTIVE 405
AUTHORIZED ENDING STATE

SUBSTITUTE SHEET (RULE 26)

CA 02325544 2000-09-25

WO 99/49391 6/7 PCT/US99/06619

F1G.80 208

| DETERMINE AVAILABLE
DELTA géTZALOGS.

SORT AVAILABLE DELTA CATALOGSINTO A DELTA DIRECTORY

SORT FIRST BY SQURCE STATE,SECOND BY REVERSE

DESTINATION STATE,
504

OET SEQUENTIAL SET OF

DELTA PACKAGES TO ZERO.
908

GO TO THE FIRST DELTA CATALOG

INTHE DELTA DIRECTORY.
510

MOVE TO NEXT ’ S
DELTA CATALOG IN THEje—"S0URCE STATE =

DELTA DIRECTORY. URRE'QZSTAT E?
514 512

TES YES
MOVE TO NEXT

SOURCE STATES DELTA CATALOG N
GURRENT STATE 2~ THE DELTADRECTORY QIATE>DESIRED ENDIN
520

R

N0

SUBSTITUTE SHEET (RULE 26)

CA 02325544 2000-09-25

WO 99/49391 PCT/US99/06619

1/7

F1G.8b
REQUEST DELTA CATALOG,
524
RECEIVE DELTA CATALOG. STOP
526 290

PROCESS DELTA CATALOG TO
[DENTIFYDELTA PACKAGES

AND APPEND THEM TO THE

SEQUENTIAL SET
528

APPLY EACH
DELTA PACKAGE IN

THE SEQUENTIAL SET
538

SET CURRENT STATE T0 RECEIVE EACR

DESTINATION STATE OF DELTA PACKAGE IN
RETRIEVED DELTA CATALOG| | THE SEQUENTIAL SET
530 536
ves [REQUEST EACH
CURRENT STATE = DELTA PACKAGE IN

DE SIRED ENDING STATE?
532

o N(

THE SEQUENTIAL SET.
534

SUBSTITUTE SHEET (RULE 26)

v 'r v #l ' ﬂ’
T
- :)-¢ m
gz | |t e | [tz
£h R A

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - abstract drawing

