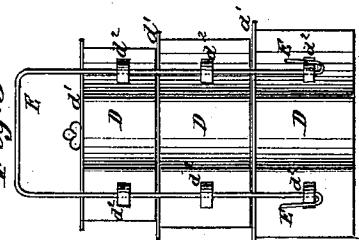


S. M. GOSSON.

ICE-CREAM FREEZER.


No. 171,663.

Patented Jan. 4, 1876.

WITNESSES:

A. W. Kingman
A. J. Terry

INVENTOR:

S. M. Gossen
BY
M. M. Gossen
ATTORNEYS.

UNITED STATES PATENT OFFICE.

SYLVAIN M. GOSSON, OF WHISTLER, ALABAMA.

IMPROVEMENT IN ICE-CREAM FREEZERS.

Specification forming part of Letters Patent No. 171,663, dated January 4, 1876; application filed September 11, 1875.

To all whom it may concern:

Be it known that I, SYLVAIN M. GOSSON, of Whistler, in the county of Mobile and State of Alabama, have invented a new and useful Improvement in Ice-Cream Freezer, of which the following is a specification:

Figure 1 is a side view of my improved freezer. Fig. 2 is a vertical section of the same, taken through the line $x x$, Fig. 1. Fig. 3 is a detail cross-section of the can, taken through the line $y y$, Fig. 2. Fig. 4 is a detail section, showing the connection of frame and uprights. Fig. 5 is a detail view of a set of buckets.

Similar letters of reference indicate corresponding parts.

The object of this invention is to furnish an improved ice-cream freezer, which will enable ice-cream of any desired number of different flavors to be kept distinct and separate while being frozen, and which shall be simple in construction, convenient in use, and effective in operation, freezing the cream quickly, doing its work with a much less outlay of labor, ice, and salt than ordinary freezers.

The invention consists in the ring-can, provided with the radial partitions, and with the cross-bars or spider for connecting it with the driving-shaft; in the cover provided with the funnel-tube, the cross-bar, and the lugs, in combination with the ring-can, and with the keepers attached to said can; in the combination of the sliding frame, the sliding gear-wheel, and the rack with the shafts, and with the uprights of the frame-work; and in the combination of the buckets with the compartments of the ring-can, as hereinafter fully described.

A is the tub, in the center of the bottom of which is secured a step, a^1 , to receive the lower end of the shaft B. To the bottom of the tub A is attached an arched or bridge bar, a^2 , through a hole in the center of which the shaft B passes, and upon the upper side of which rests a collar, b' , formed upon the said shaft B. C is a ring-can, the outer wall of which is made enough smaller than the tub A, to allow sufficient space for the ice, and the inner wall of which is made of such a diameter as to furnish space for ice around the shaft B. The interior or ring space of the

can C is divided into four, more or less, compartments by radial partitions c^1 . D are buckets, pans, or cups, which are made of such a shape as to fit into the compartments of the can C, and of a size depending upon the number of buckets to be used in each compartment. The buckets D are provided with covers d^1 , and with lugs d^2 upon their ends, to serve as handles in handling them, and to receive the arms of the loop or bail E, by means of which they are lowered into and raised out of the compartments of the can C. The arms of the bails E have hooks formed upon their ends to hook upon the lugs d^2 of the lower bucket D. To the bottom of the can C are attached two bars, c^2 , which cross the lower end of the central cavity of the can C, and have a square hole formed through their center to receive the shaft B, so that the can may be revolved by the revolution of the said shaft B. The bars or spider c^2 rest upon the collar b' of the shaft B, and thus support the can C. To the cover F of the can C is attached a cross-bar, f^1 , which has a square hole formed through its center to receive the shaft B. The cover F is provided with a tube, f^2 , the lower end of which fits into the central cavity of the can C, and its upper end projects and is made flaring, to serve as a funnel for convenience in introducing the ice and salt into the central cavity of the can C. To the cover F are attached lugs f^3 , which project downward to enter keepers c^3 , attached to the opposite sides of the upper part of the can C, to prevent the said cover and can from turning upon each other. The upper end of the shaft B enters a square hole formed in the lower end of the short vertical shaft G, which revolves in bearings attached to the frame P, that slides up and down upon the uprights H, and has a bevel-gear wheel, I, attached to its upper end. Into the teeth of the gear-wheel I mesh the teeth of a bevel-gear wheel, J, attached to a horizontal shaft, K, which revolves in bearings attached to the sliding frame P, and to one or both the ends of which is attached a crank, L. To the horizontal shaft K is attached one or two balance-wheels, M, according to the size of the apparatus. Upon the shaft K is placed a gear wheel, N, which is connected with it by a

tongue and groove, so that the said wheel may be carried around by and with said shaft, but may be slid longitudinally upon it, to throw the said gear-wheel into and out of gear with the toothed bar O, attached to one of the uprights H, so that by throwing the wheel N into gear with the rack O and turning the shaft K, the frame P and the gearing may be raised away from the shaft B. As the frame P rises its top cross-bar strikes against and catches upon a spring-catch, Q, attached to the cross-bar h', that connects the upper ends of the uprights H. The lower ends of the uprights H are attached to the middle parts of the side bars of the frame R, which is hinged at one end to the ear of the tub A, and the other end of which catches, when shut down, upon a spring-catch, S, attached to the other ear of said tub.

Having thus described my invention, I claim as new and desire to secure by Letters Patent—

1. The ring-can C, provided with the radial partition c¹, and with the cross-bars or spider c², for connecting it with its shaft B, substantially as herein shown and described.

2. The cover F, provided with the funnel-tube f², the cross-bar f¹, and the lugs f³, in combination with the ring-can C, and with the keepers c³, attached to said can, substantially as herein shown and described.

3. The combination of the sliding frame P, the sliding gear-wheel N, and the rack O with the shafts G K and the uprights H of the frame-work R H h', substantially as herein shown and described.

4. The combination of the buckets D with the compartments of the ring-can C, substantially as herein shown and described.

SYLVAIN M. GOSSON.

Witnesses:

B. F. CARVER,
E. W. NIX.