United States Patent

[54] METAL FORMING LUBRICANT
[75] Inventors: Toru Katono; Yoshio Hachisu, both of Yokohama; Ryozi Saito, Tokyo; Kazushi Goto, Hiroshima; Haruo Kubotera; Kenzi Araki, both of Yokohama, all of Japan

Assignee: Nippon Kokan Kabushiki Kaisha, Ootemachi, Japan
[22] Filed: June 12, 1974
[21] Appl. No.: 478,820

Related U.S. Application Data

[63] Continuation of Ser. No. 132,151, April 7, 1971, abandoned, which is a continuation-in-part of Ser. No. 777,742, Nov. 21, 1968, abandoned.
[30] Foreign Application Priority Data
Nov. 22, 1967 Japan.................................. 42-7462
Oct. 23, 1968 Japan............................... 43-76804
Nov. 13, 1968 Japan................................ 43-82519
[52]
U.S. CI.

252/12; 252/34.7; 252/41;
252/49.5
[51] Int. Cl..... C10m 7/30; C10m 7/20; C10m 7/16 [58] Field of Search 252/12, 12.2, 12.4, 12.6, 252/34.7, 41, 49.5

$2,774,684$	$12 / 1956$	Fucinari............................ 117/65.2
$2,979,417$	$4 / 1961$	Kruger et al.................. 117/65.2
$3,023,163$	$2 / 1962$	Fucinari et al................. 252/49.3
$3,336,225$	$8 / 1967$	Sayad et al. 252/49.3
$3,432,434$	$3 / 1969$	Armstrong et al.............. 252/49.5
$3,779,918$	$12 / 1973$	Ikeda et al........................ 252/12

FOREIGN PATENTS OR APPLICATIONS

2,023,708 11/1970 Germany 252/12
Primary Examiner-Delbert E. Gantz
Assistant Examiner-I. Vaughn
Attorney, Agent, or Firm-Michael S. Striker

Abstract

[57] ABSTRACT a. A water-soluble surface-active agent selected from semi-hydrogenated beef tallow potash soap, oleic acid potash soap, oleic acid soda soap, polyoxyethylene lauryl ether, polyoxyethylene sorbitan monooleate, sorbitan trioleate, lauryl amino acetate, and stearyl amino acetate; b. A water-soluble synthetic resin which is a combination of an oil-modified alkyd resin with a phenol or cresol-novolac-type resin.

1 Claim, 5 Drawing Figures

WATER SOLUBLE SYNTHETIC RESIN (HITANOL 6080 N)
WATER SOLUBLE SURFACE ACTIVE AGENT $\frac{50}{50}$ (DICE-LEX SOAP)
TEST SHEET: SPC-3 480 mmg (BANKED DIAMETER) x
0.8 mm (THICKNESS)

LUBRICANT: DIE SIDE LUBRICATING STAMPING CONDITION: PUNCH DIAMETER 200 mmn , PUNCHING SPEED $18 \mathrm{~m} / \mathrm{min}$

TEST SHEET: $S P C-3$	$480 \mathrm{~mm} \boldsymbol{m}(B L A N K E D$ DIAMETER) \times
	0.8 mm (THICKNESS)
LUBRICANT: DIE SIDE LUBRICATING	
STAMPING CONDITION: PUNCH DIAMETER $200 \mathrm{~mm} \varnothing$	
	PUNCHING SPEED $18 \mathrm{~m} / \mathrm{min}$

METAL FORMING LUBRICANT

This is a continuation of application Ser. No. 132,151, filed on Apr. 7, 1971, which application Ser. No. 132, 151 in turn is a continuation-in-part of Serial No. 777,742 filed on Nov. 21, 1968, both now abandoned, by the same inventors in respect of "DRY LUBRICANT AND METHOD OF MANUFACTURING METALS COATED THEREWITH."

BACKGROUND OF THE INVENTION

The invention relates to a lubricant for coating steel, particularly steel sheets, to prepare the steel for forming operations, particularly deep-drawing.

Deep-drawing of steel sheets is particularly used for making automobile parts, electrical home appliance parts and metal pipes. It is also used on steel for drawing to form metal wires, particularly electric wires.
The lubricant for these purposes must form a film on the metal and must meet a number of requirements.
a. It must have high power lubricating properties.
b. It must be adapted to be readily removed from the metal after forming.
c. It must have good anti-corrosion properties.
d. It must be useful for dry forming of the steel parts.
e. It must have a high resistance against sticking to the different parts involved.
f. It must be well adapted for welding, including spot welding.
g. It must be non-toxic, non-odorous, and noninflammable.
Present day lubricants meet some of these objectives, but cannot meet them all.
Particularly steel sheets coated with conventional lubricants are hard to dry and require extensive periods for the drying operation. They often are not useful for high-speed stamp- or punch-forming of metals, and if used for these purposes require undue apparatus and processes to be employed.
The present invention, accordingly, has the object to provide for a lubricant for these purposes which will meet all of these requirements and still be easily applicable to the steel, in particular to steel sheets for deepdrawing operations.

SUMMARY OF THE INVENTION

These objects are met by a lubricant which comprises a mixture of a surface-active agent and a water-soluble synthetic resin in relative amounts between 20 and 80 parts of surface-active agent and between 80 and 20 parts of water-soluble resin. Preferably, the lubricant includes 1 to 50 parts of a water-soluble or water-emulsifiable lubricating oil for each 100 parts of the mixture of surface-active agent and water-soluble resin.
The steel is coated with the lubricant after preheating to between 80° and $100^{\circ} \mathrm{C}$ and subsequent drying so as to reduce its moisture content to below 10% by weight. The coating is thereafter applied to the steel.
The novel features which are considered as characteristic for the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and is method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a diagrammatic illustration of the relationship between the amount of added water-soluble oil in the lubricant of the invention and the outer diameter of a test piece after breakage in flat bottom deep-drawing;
FIG. 2 is a comparative diagram showing on one hand a conventional lubricant, and on the other hand the lubricant of the present invention;
FIG. 3 is a similar comparative diagram showing the drying speed of the lubricant of the invention compared with the drying speed of soap;
FIG. 4 is a diagram illustrating the relationship between the amount of lubricant coated on the steel and the limit of drawing ratio (LDR)(maximum drawing ratio);

FIG. 5 is a diagram illustrating the relationship bewteen the residual moisture on the steel and the limit of drawing ratio (LDR) in a steel coated with the lubricant of the invention.

DETAILED DESCRIPTION OF THE INVENTION AND OF PREFERRED EMBODIMENTS

As will be further explained below, the lubricant of the invention is suitable for stamping speeds in excess of $20 \mathrm{~m} / \mathrm{min}$. Conventional dry lubricants used for this purpose fail at speeds exceeding $10 \mathrm{~m} / \mathrm{min}$. They are only good for rates up to $100 \mathrm{~mm} / \mathrm{min}$. Actually, the properties of the lubricant of the invention do improve with higher stamping speeds. The lubricant of the invention, as will be further explained, is suitable for stamping speeds even in excess of $20 \mathrm{~m} / \mathrm{min}$.
A wide range of water-soluble surface-active agents may be used in the lubricants of the invention. Reference is made to the comparative tests with different lubricants illustrated in Table 6 below. A broad list of suitable surface-active agents includes the following:

1. Anionic water-soluble surface-active agents: aliphatic acid salts in carboxylic acid soap of the formula $\mathrm{RCOONa}\left(\mathrm{K}, \mathrm{NH}_{4}\right)$ wherein $\mathrm{R}: \mathrm{C}_{8}-\mathrm{C}_{22}$. Examples are alkali metal soaps of saturated or unsaturated aliphatic acids, for example oleic acid soda soap, oleic acid potash soap, castor oil soap, beef tallow soda soap, soyabean oil soap.
2. Cationic agents:
aliphatic amine salts:

wherein X is an acid, and R_{1}, R_{2} and R_{3} are H or alkyl from C_{8} to C_{22}. An example is acetamine (lauryl amine acetate, $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NH}_{2} \cdot \mathrm{CH}_{3} \mathrm{COOH}$, ["Acetamine 24" made by Kao Soap Company] or stearyl amine acetate 60 ["Acetamine 86 " made by the same company]).
3. Nonionic agents:
4. polyoxyethylene alkyl ethers $\mathrm{RO}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{n} \mathrm{H}$, for example polyoxyethylene oleyl ether ("Emulgen 430 " of the Kao Soap Company [$\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}\left(\mathrm{C}_{2}\right.$ $\left.\left.\mathrm{H}_{4} \mathrm{O}\right)_{n} \mathrm{H}\right]$)
5. polyoxyethylene sorbitan alkylesters (for example "Emasol 4130" of the same company, a polyoxyethylene sorbitan monooleate)
6. sorbitan alkyl esters, for example "Emazol 430", which is sorbitan trioleate (aromatic group), made by the same company.
Preferred anionic water-soluble surface-active agents are saturated aliphatic acid salts having 8 to 22 carbon atoms. An example is a mixture of capric acid $\left(\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{COOH}\right)$, lauric acid ($\left.\mathrm{C}_{11} \mathrm{H}_{31} \mathrm{COOH}\right)$, myristic acid ($\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{COOH}$), palmitic acid ($\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COOH}$), stearic acid ($\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}$), and a mixture of unsaturated aliphatic acids having 8 to 22 carbon atoms, oleic acid $\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}\right]$, linolic acid $\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}\right]$, linolenic acid $\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right) \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right.\right.$ $)_{7} \mathrm{COOH}$, and ricinoleic acid $\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}\right]$.
The water-soluble synthetic resins may be the following:
7. Resins which generally come under the term "phenolic resins" such as cresol-modified novolac-type resins;
8. alkyd resins such as linseed oil, coconut oil, or castor oil modified alkyd resins;
9. phenolic-alkyd resin combinations such as linseed oil-modified alkyd resins which are combined (further modified) with a cresol or phenol novolac resin.
The resins must be water-soluble and should also be soluble in combination with the surface-active agent and the water-soluble oil.
As has been indicated, preferably a third component is included in the combination. This is a water-soluble or water-emulsifiable oil, by which term is understood an oil which is dispersed in water by emulsification.
The amounts of the three components are as follows: The mixture between surface-active agent and watersoluble synthetic resin should comprise 20 to 80 parts of the surface active agent and 80 to 20 parts of the water-soluble resin.
To 100 parts of this mixture, if desired, there may then be added 1 to 50 parts of the water-soluble oil. All parts to be understood by weight.
If the water-soluble surface-active agent is present in excess of 80%, and a corresponding reduction of the water-soluble resin is effected, the results regarding adhesion to the steel sheet are generally poor. Conversely, if the water-soluble resin exceeds 80 parts, and the surface-active agent is present in correspondingly lower amouats, the resultant mixture becomes too sticky and the resistance to sticking and blocking is decreased.
If the amount of the water-soluble oil is below 1 part, the oil would have no appreciable effect. On the other hand, if the oil exceeds 50 parts of the mixture of the mixture of surface-active agent and resin, it will be difficult to obtain uniformity of the composition because of coagulation.
The optimum ratios of amounts are about as follows:
water-soluble surface-active agent
water-soluble synthetic resin
water-soluble oil water-soluble oil

30-70 parts
70-30 parts
5-40 parts

The lubricant is applied in an aqueous solution of a water content of between 5 and 60% by weight. Again, if the amount of water is too small, the solution becomes sticky and no uniform coating will be obtained. On the other hand, if too much water is added, the dry- be effected by a high-pressure steam blast on the order of 2 to $15 \mathrm{~kg} / \mathrm{cm}^{2}$ directed against the surface of the steel sheet or, alternatively, the sheet may be immersed 5 in hot water at a temperature above $90^{\circ} \mathrm{C}$.

Table 1 illustrates the heating times required to heat a steel sheet up to $100^{\circ} \mathrm{C}$ for various thicknesses and various methods of applying heat.

TABLE 1

Time for heating steel sheet to $100^{\circ} \mathrm{C}$ by different heating methods.		
Method of heating	Thickness of sheet (mm)	Heating time
high-pressure	0.8	within 1 sec .
steam; $2 \mathrm{~kg} / \mathrm{cm}^{2}$	3.2	within 1 sec.
high-pressure	0.8	within 1 sec .
stearn; $15 \mathrm{~kg} / \mathrm{cm}^{2}$	3.2	within 1 sec .
immersion into hot	0.8	10 sec .
water $100^{\circ} \mathrm{C}$	3.2	35 sec .
placing in furnace	0.8	15 sec .
at $570^{\circ} \mathrm{C}$	3.2	43 sec .
15 cm distant	0.8	120 sec .
from an infrared radium lamp (250W)	3.2	450 sec .

With the high-pressure steam heat, the necessary temperature increase can be obtained with a simple and inexpensive apparatus, provided that steam of sufficiently high pressure is used.
The immersion in hot water at a temperature of $100^{\circ} \mathrm{C}$ requires somewhat longer times and the introduction into a furnace requires a rather long time. By infrared radium lamp, the time of application is rather excessive.
After completion of the cleansing and preheating step the lubricant is applied by coating. This may be done by air spray or by other methods such as rollers or immersion.
The viscosity of the lubricant should be such as to permit application within 15-45 seconds with a Ford Cup No. 4, depending on the amount of lubricant applied and the speed of the conveyor belt.
For application the lubricant should be at a temperature between room temperature $\left(25^{\circ} \mathrm{C}\right)$ and $50^{\circ} \mathrm{C}$, but it may also be applied at high temperatures up to $90^{\circ} \mathrm{C}$, depending on circumstances.
If the application is by immersion, the sheet may then be passed through squeeze rollers to adjust the amount of coating. If the application is by immersion at a temperature of about $90^{\circ} \mathrm{C}$, it is also possible to omit the entire preheating step.
The coated sheet then is preferably dried by a hot-air blast.
Table 2 shows the drying time for coating a dry metal sheet with the lubricant of the invention at an amount of $10 \mathrm{~g} / \mathrm{m}^{2}$ and a residual moisture content of 5%. The lubricant employed in these and other tests was that of Example 1, to be described below.

TABLE 2
Relationship between drying conditions and drying time

Hot blast	temp. of sheet before coating		drying time
$100^{\circ} \mathrm{C}$	room temperature	$\left(25^{\circ} \mathrm{C}\right)$	30 sec .
wire velocity		$100^{\circ} \mathrm{C}$	10 sec .
$5 \mathrm{~m} / \mathrm{sec}$			
$185^{\circ} \mathrm{C}$	room temperature	$\left(25^{\circ} \mathrm{C}\right)$	14 sec .
wire velocity		$100^{\circ} \mathrm{C}$	4 sec
$5 \mathrm{~m} / \mathrm{sec}$.			

The lubricant of the invention may be used on any kind of steel sheet or steel of other forms. However, a sheet steel of a thickness below 3.2 mm is preferred. Preferably, the coating of this type of sheet steel is effected at a conveyor line speed below $100 \mathrm{~m} / \mathrm{min}$. The optimum concentration of the aqueous solution applied
is between 25 and 60% by weight. Preferably, the amount applied of the lubricant is about 1 to $30 \mathrm{~g} / \mathrm{m}^{2}$ on the dry sheet.
The hot blast for drying is preferably applied at a temperature between 100° and $200^{\circ} \mathrm{C}$ and a blast velocity of 2 to $20 \mathrm{~m} / \mathrm{sec}$. The residual moisture should in any case be below 10% and preferably be below 5%.
If the water-soluble synthetic resin used in the lubricant of the invention contains an amine group, a separate anti-corrosion agent may not be necessary. Otherwise, it is preferred to add about 0.05 to 5% of anti-corrosion agent, this amount being relative to the total amount of lubricant.
The following example will further illustrate the invention.
In these examples, as well as in the tables mentioned before, the following materials were employed:

The water-soluble resin in the above tables and in all examples, except Example 5, was a linseed oil-modified alkyd resin which was combined (further modified) with a cresol novolac resin. The particular commercial product is identified as "Hitanol 6080N". This is a product of the Hitachi Company, Ltd. of Japan. In Example 5 a similar resin was used, except that the novo-lac-type resin was a phenol resin. This product is identified as "Hitanol 311 " of the same company.
The alkyd resin is the conventional reaction product of a polybasic acid and polyhydric alcohol. In the examples the polybasic acid was phthalic anhydride and the alcohol was glycerol.
Instead of the linseed oil modification a tung oil or castor oil modification could also be resorted to.
The water-soluble surface-active agent in all above tables and all examples was beef tallow soda soap. However, in Table 6, included in Example 4, comparisons are shown with other water-soluble surface-active agents which show that similar results can be obtained with other surface-active materials.

Except where otherwise indicated, the beef tallow soda soap used in the above tables and the examples is the product commercially available under the tradename "Dice-Lex" and is a product of the Nippon Oil and Fat Company, Ltd. of Japan.
The water-soluble oil used in the above tables and in the examples, except as otherwise indicated, was a mineral base cutting oil which is incorporated in the water by emulsification. Its product identification is "JIS K2241 WI". Table 3, which forms part of Example 1, shows the use of different types of water-soluble oils which, however, all come under the above general description of mineral oil base water-soluble or wateremulsifiable cutting oils. Where nothing else is indicated, the product employed was the product available under the tradename "Griton 114" from the Toho Chemical Industries Company, Ltd. of Japan.

EXAMPLE 1

18.6 parts of beef tallow soda soap as identified above, 18.6 parts of a water-soluble phenol-modified 60 linseed-modified alkyd resin, and 6.9 of water-soluble oil were dissolved in 55.9 parts of water at a temperature of $60^{\circ}-80^{\circ} \mathrm{C}$. The water-soluble phenol alkyd resin had a pH of 9.0 , a viscosity of 4.10 (poise) and a red-dish-brown color. The water-soluble oil had a density of 0.93 , a contents of non-volatiles of 93% and also a reddish-brown color.
The steel sheet was a sheet of 460 mm width (blank diameter) and 0.8 mm thickness. It was first cleansed
and degreased. The lubricant was then applied and, after application, was subjected to drying for 6 minutes at a temperature of $120^{\circ} \mathrm{C}$. A well-dried film of high an-ti-stick properties was thus obtained. The sheet itself zonsisted of cold-rolled steel. The flat-bottom deepdrawing in the following test was effected with a die punch of 200 mm diameter - 5R and an opposed die of 203 mm diameter - 10R. After carrying out the drawing speration on the coated steel sheet, the outer diameter, after breakage, was measured to determine the lubrizating property of the deep-drawing operation.
The test results appear from the following Table 3.

TABLE 3

Test No.	Surfactant "Dice-Lex"	Resin "Hitanol 6080N"	Water-soluble oil	Outer diameter after breakage (mm)	Remarks (all tests)
I	18.6 parts	18.6 parts	6.9 parts "Griton 113"	406	coating
					condition:
2	"	"	$\begin{gathered} 6.9 \text { parts } \\ \text { "Griton } 114 \text { " } \end{gathered}$	405	coating on die
3	"	"	6.9 parts		
			"Griton 120"	409	
					side;
4	"	"	6.9 parts	411	
			"Griton 1000 "		
					drying
5	"	"	$\begin{aligned} & 6.9 \text { parts } \\ & \text { "Sorton C" } \end{aligned}$		
				409	condition:
control: superior stamping oil B (one side)				440	$120^{\circ} \mathrm{C}, 6 \mathrm{~min}$.

The so-called superior stamping oil B was a commersial product used for control purposes, which had a vissosity of 660 .
As can be seen from the test, where the die side of the :heet blank was lubricated with this latter oil, the outer liameter after breakage was 440 mm .
As distinguished with the lubricant of the invention Tests 1-5), the outer diameter after breakage was $105-411 \mathrm{~mm}$. The lubricant in these cases was also apslied to the die side of the steel sheet.
With reference to the drawings, FIG. 1 shows that the suter diameter, after breakage, with a lubricant vherein the beef tallow soda soap and the water-solu,le phenol alkyd resin were present at a ratio of 50:50 ind the amount of water-soluble oil was varied as indi:ated, the different figures for the outer diameter after reakage were obtained. The low figure with a 30% vater-soluble oil addition is particularly remarkable.

TABLE 4

ubricant	Film thickness (μ)		Flat-bottom deep-drawing ($200 \mathrm{~mm} \phi$) ${ }^{*}$	
	measured value	average value	outer diameter after breakage (mm)	Average value
.ccording to xample 2	7	9	drawn	very well
	9		drawn	
	10		drawn	
smmercial rippable nyl aloride jating	13	16	467	466
	15		470	
	20		460	
	33	37	466	466
	37		466	
	41		465	

his table shows the outer diameters at breakage upon die drawing of circular ane steel sheets. The lower the number the better are the results obtained. itamping speed $18 \mathrm{~m} / \mathrm{min}$ of flat-bottom drawing. iameter after breakage $D=360$ to 390 mm .

Table 4 shows different test results prepared at the stated test conditions with an aluminum-killed steel and shows specifically comparative results with the lubricant of the invention and a strippable vinyl chloride coating.
Table 5 shows similar tests comparing the lubricant of the invention with a commercial dry lubricant film product B, a superior stamping oil No. 660 and a machine oil. The aluminum-killed steel sheet in this case was identified as SPC-1 of Japanese industrial Standard. The stamping conditions were as given above.

TABLE 5

Lubricant Comp	R (limit dra steel sheet SPC - 3). steel sheet SPC - 1
according to Ex. 2	2.375	2.300
commercial dry		
lubricant film B	2.300	2.225
Stamping Oil B	2.225	2.175
Stamping Oil A	2.000	1.970
Note: commercial dry lubric Stamping oil A (machi Stamping oil B (machi	acid salt) 120)	

EXAMPLE 3

16 parts of beef tallow soda soap, 24 parts of water60 soluble phenol alkyd resin, and 10 parts of water-soluble oil were dissolved in water as in Example 2. This solution, as in Example 2, was applied on the die side of cold rolled steel sheet (SPC-3, 480 mm blanked diameter and 0.8 mm thickness). With the same test as in Ex-
65 ample 2, the results with the lubricant according to the present invention were a diameter after breakage of D $=370-380 \mathrm{~mm}$, while prior-art stamping oil B gave $\mathrm{D}=$ 440 mm to 445 mm , stamping oil A gave $\mathrm{D}=460$ to

465 mm , commercial dry lubricant B gave $D=435$ to 440 mm , and commercial dry lubricant A gave $\mathrm{D}=445$ to 455 mm . FIG. 2 shows these values in graph form which indicate that the present invention is by far superior to the conventional lubricants in flat bottom deep drawing.

EXAMPLE 4

30 parts of each of the soaps in Table 6 were added to 15 parts of a phenol alkyd resin and 5 parts of a water-soluble oil. Table 4 shows the test results of flat bottom deep drawing obtained when these lubricants dissolved in 50 parts of warm water were coated on the die side of cold rolled steel sheet similar to that in Example 1 , followed by drying.

TABLE 6

Soaps	Outer diameter after breakage (mm)
semi-hydrogenated beef tallow potash soal (anionic) oleic acid potash soap (anionic) 360 polyoxyethylene lauryl ether (non-ionic) 405 polyoxyethylene sorbitan 380 monooleate (non-ionic) 405 sorbiton trioleate (non-ionic) 410 lauryl amino acetate, 410 stearyl amino acetate (cationic) 400 oleic acid soda soap (anionic) 400$.$control: stamping oil B	

EXAMPLE 5

The water-soluble synthetic resin identified in Table 7 was added to 25 parts of semi-hydrogenated beef tallow soda soap and 7.0 parts of water-soluble oil. Table 3 shows the test results of flat bottom deep drawing

TABLE 7

Water-soluble synthetic resin	outer diameter after breakage (mm)
phenol resin ("Hitanol 31I" of	
Hitachi Company, Ltd.)	395
alkyd resin (water sol "TD-125"	
of Nippon Reichhold Company)	392
melamine resin series (super bechamin "TD-95" of Nippon Reichhold)	
methoxymethylated nylon of the nylon series sold by Teikoku	405
Chemical Company, Ltd.) vinyl acetate (Sekisui Kagaku K.K.)	402

EXAMPLE 6

Similarly as in Example 2, 12.9 parts each of the water-soluble cutting oils in Table 8 were added to 20 parts of beef tallow soda soap and 20 parts of phenol alkyd resin. Table 8 shows the test results as in Example 1 in which flat bottom deep drawing was carried out using the lubricant dissolved in 50 parts of warm water.

TABLE 8

Water-soluble cil	outer diameter after breakage (mm)
mineral oil emulsion (trade name "Swallow Cut No.4"	
of Maruzen, Sekiyu Co. Ltd.)	
mineral oil emulson	
(trade name "lio Cut wX" of	403
Daikyo Sekiyu Co., Ltd.)	405

EXAMPLE 7
Table 9 shows the results of stamping tests of cold rolled steel sheet of 0.8 mm thickness coated with the lubricant of Example 1 which was subjected, respectively, to hot-blast drying, a preheating process, and combined preheating and hot-blast drying.

TABLE 9

preheating process	coating process airless spray	drying process hot blast $5 \mathrm{~m} / \mathrm{sec}$.	cooling process: cold-air blast for 5 sec after coating	residual moisture (\%)	Stamping properties		Remarks
					LDR	height of plate after stretch forming*	
none	$10 \mathrm{~g} / \mathrm{m}^{2}$	$150^{\circ} \mathrm{C}$		25\%	1.88	49.0	
,'	"	$\begin{aligned} & 5 \mathrm{sec} . \\ & 150^{\circ} \mathrm{C} \end{aligned}$					
"	"	${ }^{40 \mathrm{sec} .}$		below 5\%	2.39	62.1	
	\ldots	$300^{\circ} \mathrm{C}$ 5 sec.		7\%	225		too many bubbles
degreased liquid							
$100^{\circ} \mathrm{C}$, 1 sec .	"	none	after 5 sec .	31\%	1.90	48.6	
10 sec .	"	"	after 5 sec .	24\%	1.86	49.2	
hot water		$150^{\circ} \mathrm{C}$	after 5 sec.		1.86	49.2	
$100^{\circ} \mathrm{C}, 1 \mathrm{sec}$. hot water	"	5 sec .	"	22\%	1.92	49.3	
$100^{\circ} \mathrm{C}$		$150^{\circ} \mathrm{C}$					
10 sec .	$10 \mathrm{~g} / \mathrm{m}^{2}$	5 sec .	after 5 sec .	below 5\%	2.36	62.4	better
pressure							
steam							
$6 \mathrm{~kg} / \mathrm{cm}^{2}$		$150^{\circ} \mathrm{C}$					
1 sec .	"	5 sec .	"	below 5\%	2.38	62.3	best

Note: residual moisture $=\left(W-W_{o}\right) / W \quad W=$ weight of film/unit area $\quad W_{o}=$ perfectly dry weight/unit area
the larger the number, the better is the result obtained
which were obtained by using a lubricant dissolved as in Example 1 in 50 parts of warm water.

Table 10 shows the results obtained by coating the above lubricant on hot rolled steel sheet of 3.2 mm
thickness and preheating to dry it, and otherwise similar conditions.
tests as to the residual moisture therein and the resistance to sticking.

TABLE 10

In connection with Table 9 and Table 10, the values of LDR were obtained under the following conditions: punch diameter: 200 mm , radius of die shoulder: 5 mm , punching speed: $18 \mathrm{~m} / \mathrm{min}$. The height of stretch forming was obtained under the following conditions: spherical punch of radius 75 mm , die: 160 mm in diameter, bead: 190 mm in diameter and punch speed: 100 $\mathrm{mm} / \mathrm{min}$.

According to the method of the present invention, as is evident from Table 9 and Table 10, the residual moisture can be reduced to less than 5% within 5 seconds, thereby obtaining excellent results in stamping such as LDR or height of stretch forming.

Table 11 shows tests of the residual moisture of coated film and the fraction of rusted area in $\%$ after exposing steel sheet coated with the lubricant of the present invention to room air.

TABLE 11

Exposure time		Residual moisture (\%)			
	3	7	15	30	
45 days	0%	1%	8%	12%	
90 days	16%	20%	21%	56%	

[^0]| Ex-
 posure | Residual
 moisture
 $(\%)$ | 3 | 7 | 15 | 30 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| time | | | | | |

As shown in Table 11 and Table 12, it is advantageous to reduce the residual moisture below 5%, both from the test results on rusting and the resistance to sticking. Furthermore, even if the lubricant of the present invention is coated on steel sheet with water-soluble skin pass oil, there is only little effect obtained. 5 That is to say, when the lubricant of this invention was coated in an amount of $10 \mathrm{~g} / \mathrm{m}^{2}$ on cleansed steel sheet by the method of the invention, the LDR was 2.39. When the steel sheet was coated with the commercial product "Multi-luble 50 A " (trade name) in an amount of $0.2 \mathrm{~g} / \mathrm{m}^{2}$, the limit of the drawing ratio was 2.36 .

EXAMPLE 8
Table 13 shows comparative tests of cold drawing properties obtained in following two methods: 50 parts of water were added to the mixture of 23 parts of DiceLex which is beef tallow soda soap and 27 parts of Hitanol 6080 N (water-soluble phenol alkyd resin). The mixture was heated to $70^{\circ} \mathrm{C}$ and coated on carbon steel tube STKM44 (42.7 mm in outer diameter and 4.5 mm in thickness). The tube was drawn to a reduction in
area of $20 \%, 30 \%$ and 40%, respectively, and the drawing loads were measured. As control, values were obtained by using zinc phosphate and fatty acid soap. The present invention got nearly equal results with those of the above-mentioned lubricants which were obtained in substantially more complicated processes.

TABLE 13

	Ratios of reduction in area			
	20%	30%	40%	10
method of the invention	11.0 t	14.3 t	17.6 t	
ubbricant:				
zinc phosphate and fatty acid soap	10.5 t	12.3 t	15.2 t	15

EXAMPLE 9

7.0 parts of water-soluble oil were mixed with 21.5 parts of beef tallow soda soap and 21.5 parts of water soluble phenol alkyd resin. 50 parts of water at $20^{\circ} \mathrm{C}$ were then added. The solution formed was heated to $70^{\circ} \mathrm{C}$, and the same steel tube as in Example 8 was drawn to reduction in area of $20 \%, 30 \%$ and 40%, and the drawing loads were measured. As described in Example 8, the values thus obtained were compared with those obtained by using zinc phosphate and fatty acid soap lubricant. Table 14 shows the comparison tests.

TABLE 14

	Ratios of reduction in area		
method of the invention	20%	30%	40%
lubricant: zinc phosphate and fatty acid soap	10.4 t	13.0 t	15.0 t

As can be seen, with addition of water-soluble oil, results superior to those of conventional methods were obtained. The lubricant of the invention does not require the conventional zinc phosphate treatment $\left(80^{\circ} \mathrm{C}\right)$, water-washing thereafter, neutralizing treatment $\left(80^{\circ} \mathrm{C}\right)$ and fatty acid soap treatment $\left(75^{\circ} \mathrm{C}\right)$. That is, the lubricant of the invention is treated at $20^{\circ}-40^{\circ} \mathrm{C}$ and this step of treatment therefore is very simple. After drawing even if being left for 1 month, no corrosion is noted, and if washed in alkali after drawing, metallic glaze remained on the surface. Roughness of surface was less than 1 micron in H max.

EXAMPLE 10

A mixture was prepared by adding, as described in Example 8, 50 parts of water to the solution of 30 parts of beef tallow soda soap and 20 parts of water-soluble phenol alkyd resin. With this solution cold drawing was performed on stainless steel tube SUS $27,35 \mathrm{~mm}$ in outer diameter and 3.8 mm in thickness by reduction in area of 20% and 30%, and measuring the drawing loads. These tests were compared with those by conventional methods, as shown in Table 15.

TABLE 15

	Ratios of reduction in area	
method of the invention	20%	30%
	14.1 t	17.7 t

TABLE 15-continued

	Ratios of reduction in area	
lubricant: zinc phosphate and fatty acid soap	13.5 t	15.9 t

EXAMPLE 11
7.0 parts of water-soluble oil were added to 21.5 parts of beef tallow soda soap and 21.5 parts of watersoluble phenol alkyd resin. Thereto 50 parts of water were adde as described in each of the examples. The same steel tube as described in Example 11 was coated and then drawn to reduction in area of 20% and 30%. The measured drawing load was compared with those necessary with conventional methods as stated above. The results appear from Table 16.

TABLE 16

	ratios of reduction in area	
	20%	30%
method of the invention lubricant: zinc	12.7 t	15.4 t
phosphate and fatty acid soap	13.5 t	15.9 t

This case confirms the superiority to the conventional method. The same excellent results were also obtained in Examples 11 and 12 as in Examples 9 and 10.

EXAMPLE 12

7.0 parts of water-soluble oil were added to 21.5 parts of beef tallow soda soap and 21.5 parts of watersoluble phenol alkyd resin. Thereto 50 parts of water were added. The lubricant was used for coating mild steel wire, electric copper wire and electric aluminum wire, each being 1.54 mm in diameter, and each then drawn to a reduction in area of 20%. The drawing load was compared with those necessary with the conventional lubricant, as shown in Table 17.

TABLE 17

	method of the invention	conventional method
mild steel wire electric copper wire	43 kg	44 kg
electric aluminum wire	28 kg	33 kg

EXAMPLE 13

18.6 parts of beef tallow soda soap and 18.6 parts of water-soluble phenol alkyd resin were added to 60 parts of hot water at temperatures of $60^{\circ}-80^{\circ} \mathrm{C}$ under the same condition as in Example 1 (Griton 114). Flat bottom drawing test with the lubricant was 425 mm in the outer diameter after breakage.

Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can by applying current knowledge readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention and, therefore, such adaptations should and
are intended to be comprehended within the meaning and range of equivalence of the following claims.

What is claimed as new and desired to be protected by Letters Patent is set forth in the appended

We claim:

1. A dry lubricant for coating steel to prepare it for deep drawing and molding operations, the lubricant comprising a mixture of a surface-active agent selected from the group consisting of semi-hydrogenated beef tallow potash soap, oleic acid potash soap, oleic acid and or cresol-novolac type resin, the two components being present in relative amounts between 20 and 80% of the said surfaceactive agent and between 80 and 20% of the said synthetic resin.

[^0]: Note: cold rolled steel sheet was used.
 Test conditions:
 temperature: $18-30^{\circ} \mathrm{C}$
 relative humidity: $40-83 \%$
 coating amount: $10 \mathrm{~g} / \mathrm{m}^{2}$

