wo 2010/033961 A1 | I IO O OO RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(9) Workd ntellctual Propety Organiation /82 | UM O
International Bureau S,/ 0
20 . ..
. L.) (10) International Publication Number
(43) International Publication Date \'{:/_?___/
25 March 2010 (25.03.2010) PCT WO 2010/033961 Al
(51) International Patent Classification: (72) Inventor; and
GO6F 12/00 (2006.01) (75) Inventor/Applicant (for US only): PARAB, Nitin
(21) International Application Number: [IN/US]; Riverbed Technology, Inc., 199 Fremont St.,
PCT/US2009/057772 San Francisco, California 94105 (US).
. -) (74) Agent: HOLLANDER, Jonathan, Law Office of
(22) International Filing Date: Jonathan Hollander PC, 660 4th Street #198, San Francis-
22 September 2009 (22.09.2009) co, California 94107 (US).
(25) Filing Language: English (81) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of national protection available). AE, AG, AL, AM,
L. AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
12/235,548 22 September 2008 (22.09.2008) UsS DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(71) Applicant (for all designated States except US): HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

RIVERBED TECHNOLOGY, INC. [US/US]; Pierre

KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Keeley, 199 Fremont St., San Francisco, California 94105
(US).

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: STORAGE SYSTEM FOR DATA VIRTUALIZATION AND DEDUPLICATION

(57) Abstract: A data virtualization storage appliance performs data
deduplication transformations on the data. The original or non-dedu-
plicated file system is used as shell to hold directory/file hierarchy and
metadata. The data of the file system is stored by a separate data stor-
age in a transformed and deduplicated form and may be implemented
as one or more hidden files. The shell file system preserves the hierar-

500

4 FRONTEND VIRTUAL FILE SYSTEM LAYER 505 \

VNODE CACHE,
NAMESPACE,
OPEN/CLOSE FILE STATE.
SHARE RESERVATIONS

FILE / DIRECTORY
DELEGATION
LOGCKS

FILE BOUNCING,
LAYOUT DELEGATION

- J . ..
chy structure and potentially the file metadata of the original, non-
deduplicated file system in its original format, allowing clients to ac-
4 DATA DE-DUPLICATION LAYER 510 Y cess file metadata and hierarchy information easily. The data of a file

may be removed from the shell file system and replaced with a data
layout that specifies the arrangement of deduplicated data segments
needed to reconstruct the file data. The data layout associated with a
file may be stored in a separate data stream in the shell file system.

DATA
SEGMENT
CACHES,
READ/WRITE
BUFFERS

CONTEXT
ADDRESSABLE
DE-
DUPLICATING
STORAGE

HOT FILES,
PERSISTENT
OBJECT
STORE

METADATA
OPERATIONS
BYPASS

-
-

4 DIRECT ACCESS LAYER 515 \

INTENT LOGGING OF
METADATA OPERATIONS,
SNAPSHOT
COORDINATION,
LOG REPLAY AND
RECOVERY

DIRECTORY CACHE,
NAME LOOKUP,
DIRECTORY SEARCH,
IN-MEMORY METADATA
OPERATIONS

PAGE CACHE

d BACKEND LAYER 520 N

NETWORK FILE SYSTEMS

ee
.

NATIVE FILE SYSTEMS

ae

FIG. 5

WO 2010/033961 A1 I W00 00000 A

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, ML, MR, NE, SN, TD, TG).

TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, .

ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Ly, Yublished:
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, — with international search report (Art. 21(3))

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

STORAGE SYSTEM FOR DATA VIRTUALIZATION AND
DEDUPLICATION

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is related to U.S. Patent Application No. 12/117,629, filed May &,
2008, and entitled “Hybrid Segment-Oriented File Server and WAN Accelerator”; and U.S.
Patent Application No. 12/235,325, filed September 22, 2008, and entitled “Log Structured
Content Addressable Deduplicating Storage,” both of which are incorporated by reference

herein for all purposes.

BACKGROUND
[0002] The present invention relates generally to data storage systems, and systems and
methods to improve storage efficiency, compactness, performance, reliability, and
compatibility. In computing, a file system specifies an arrangement for storing, retrieving,
and organizing data files or other types of data on data storage devices, such as hard disk
devices. A file system may include functionality for maintaining the physical location or
address of data on a data storage device and for providing access to data files from local or
remote users or applications. A file system may include functionality for organizing data
files, such as directories, folders, or other container structures for files. Additionally, a file
system may maintain file metadata describing attributes of data files, such as the length of the
data contained in a file; the time that the file was created, last modified, and/or last accessed;
and security features, such as group or owner identification and access permission settings

(e.g., whether the file is read-only, executable, etc.).

[0003] Many file systems are tasked with handling enormous amounts of data.
Additionally, file systems often provide data access to large numbers of simultaneous users
and software applications. Users and software applications may access the file system via
local communications connections, such as a high-speed data bus within a single computer;
local area network connections, such as an Ethernet networking or storage area network
(SAN) connection; and wide area network connections, such as the Internet, cellular data
networks, and other low-bandwidth, high-latency data communications networks. Storage

appliances allow clients access to store and retrieve data on a file system using network

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

storage protocols, such as NFS, and CIFS. Storage appliances often build their file systems

using raw disk interfaces to access disk storage systems.

[0004] A file system may support multiple data streams or file forks for each file. A data
stream is an additional data set associated with a file system object. Many file systems allow
for multiple independent data streams. Unlike typical file metadata, data streams typically
may have any arbitrary size, such as the same size or even larger than the file’s primary data.
Each data stream is logically separate from other data streams, regardless of how it is
physically stored. For files with multiple data streams, file data is typically stored in a
primary or default data stream, so that applications that are not aware of streams will be able
to access file data. File systems such as NTFS refer to logical data streams as alternate data
streams. File systems such as XFS use the term extended attributes to describe additional
data streams. Network File Protocols such as CIF and NFSv4 support naming, reading,

writing, creating and deleting of additional data streams.

[0005] Storage virtualization appliances are storage front-ends that export virtual file
systems that are built using storage appliances and accessed through file storage protocols.
The storage virtualization may present the data and metadata of the file system to clients as a
virtual file system, such that the underlying structure and arrangement of data and metadata is
hidden from users and applications. The storage virtualization appliance intercepts and
processes all client commands to the virtual file system, accesses and optionally updates the
data and metadata in the underlying file data and metadata storage in the native file system,
and optionally provides a result back to the users or applications. Many storage virtualization
appliances do metadata virtualization wherein a virtual directory and files hierarchy is
exported from one or more directory/file hierarchies. Such storage virtualization appliances
my be referred as metadata virtualization appliance. A data virtualization storage appliance is
an storage virtualization system that uses the file/directory hierarchy of exiting storage
appliance but for clients’ data write operations applies transformations to the data and stores
the data in a format different than the format in which client sent the data and on read
operations by the client sends the data to the client in client's original format applying

transformation on the fly.

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

BRIEF SUMMARY
[0006] An embodiment of the invention includes a data virtualization storage appliance that
performs data deduplication transformations on the data. In an embodiment, the original or
non-deduplicated file system is used as shell to hold the directory/file hierarchy and file
metadata. In an embodiment, the data of the file system is stored by a separate data storage in
a transformed and deduplicated form. In an embodiment, the deduplicated data store can be
implemented as one or more hidden files. The shell file system preserves the hierarchy
structure and potentially the file metadata of the original, non-deduplicated file system in its

original format, allowing clients to access file metadata and hierarchy information easily.

[0007] In an embodiment, the data of a file is removed from the shell file system and
replaced with a data layout that specifies the arrangement of deduplicated data segments
needed to reconstruct the file data. In an embodiment, the data layout associated with a file
may be stored in a separate data stream in the shell file system. In another embodiment, the
data layout may be stored in the main data stream of the associated file in the original file

System.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The invention will be described with reference to the drawings, in which:

Figure 1 illustrates an example file system suitable for implementation with embodiments of

the invention;

Figure 2 illustrates an example arrangement of data and metadata of a file system according

to an embodiment of the invention;

Figure 3 illustrates updating data and metadata of a file system according to an embodiment

of the invention,;

Figures 4A-4C illustrate examples of deduplicating data storage according to an embodiment

of the invention,;

Figure 5 illustrates a virtual file system stack suitable for implementing file systems

according to embodiments of the invention;

Figures 6A-6C illustrate storing virtual file system layer data in additional file streams

according to embodiments of the invention; and

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

Figure 7 illustrates an example hybrid WAN acceleration and deduplicating data storage

system suitable for use with embodiments of the invention.

In the drawings, the use of identical reference numbers indicates identical components.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
[0009] Figure 1 illustrates an example file system 100 suitable for implementation with
embodiments of the invention. File system 100 organizes files within a hierarchy of
directories. For example, root directory 105 includes directories A 110 and B 115 as well as
file A 120. Directory B 115 includes file B 130. Directory A 110 includes directory C 125.
Directory C 125 includes file C 135. Each file may include file data and file metadata. File
metadata is information maintained by the file system to describe the location and attributes
of a file. For example, file C 135 includes file C data 140 and file C metadata 145. In this
example, the file C metadata 145 includes data defining the file type, the file size, the file’s
most recent modification date, and access control parameters, such as granting or denying

users or applications read and/or write access to the file.

[0010] Figure 2 illustrates an example arrangement of data and metadata of a file system
200 according to an embodiment of the invention. In file system 200, the file data and file
metadata are stored in separate logical, and potentially physical, locations. This allows the

file system 200 to scale more efficiently over large numbers of storage devices.

[0011] File system 200 includes metadata storage 205. Metadata storage 205 includes
metadata 207 for all of the files and other objects, such as directories, aliases, and symbolic
links, stored by the file system. For example, metadata storage 205 may store metadata 207a,
207b, and 207c¢ associated with files A 120, B 130, and C 135 of file system 100 in figure 1,

in addition to metadata 207d for any additional files or objects in the file system.

[0012] File system 200 also includes file data storage 210. File data storage 210 includes
data 212 for all of the files and other objects, such as directories, aliases, and symbolic links,
stored by the file system. For example, data storage 210 may store data 212a, 212b, and 212¢
associated with files A 120, B 130, and C 135 of file system 100 in figure 1, in addition to
data 212d for any additional files or objects in the file system. The data 212 may be stored in
its native format, as specified by applications or users, or, as described in detail below, the
data 212 may be transformed, compressed, or otherwise modified to improve storage

efficiency, file system speed or performance, or any other aspect of the file system 200.

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

[0013] Embodiments of metadata storage 205 and data storage 210 may each be
implemented using one or more physical data storage devices 225, such as hard disks or hard
disk arrays, tape libraries, optical drives or optical disk libraries, or volatile or non-volatile
solid state data storage devices. Metadata storage 205 and data storage 210 may be
implemented entirely or partially on the same physical storage devices 225 or may be
implemented on separate data storage devices. The physical data storage devices 225 used to
implement metadata storage 205 and data storage 210 may each comprise a logical storage
device, which in turn is comprised of a number of physical storage devices, such as RAID

devices.

[0014] The metadata storage 205 and data storage 210 are connected with storage front-end
220. In an embodiment, storage front-end 220 is connected with the physical storage devices
225 storing metadata storage 205 and data storage 210 via storage network 215. Storage
network 215 may include Fibre Channel, InfiniBand, Ethernet, and/or any other type of
physical data communication connection between physical storage devices 225 and the
storage front-end 220. Storage network 215 may use any data communications or data
storage protocol to communicate data between physical storage devices 225 and the front-end
220, including Fibre Channel Protocol, iFCP, and other variations thercof; SCSI, iSCSI,
HyperSCSI, and other variations thereof; and ATA over Ethernet and other storage device

interfaces.

[0015] The storage front-end 220 provides file system and data virtualization and is
adapted to interface one or more client systems 230 with the data and metadata stored by the
file system 200. In this example, the term client means any computer or device accessing the
file system 200, including server computers hosting applications and individual user
computers. A client 230 may connect with storage front-end via network connection 227,
which may include wired or wireless physical data communications connections, for example
Fibre Channel, Ethernet and/or 802.11x wireless networking connection, and may use
networking protocols such TCP/IP or Fibre Channel Protocol to communicate with storage

front-end 220.

[0016] The storage front-end 220 may present the data and metadata of the file system 200
to clients as a virtual file system, such that the underlying structure and arrangement of data
and metadata within the metadata storage 205 and data storage 210 is hidden from clients

230. The virtual file system provided by storage front-end 220 presents clients 230 with a

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

view of the file system data and metadata as a local or networked file system, such as an
XFS, CIFS, or NFES file system. Because the storage front-end 220 presents a virtual file
system to one or more clients 230, depending upon the file system protocol, a client may
believe that it is managing files and data on a raw volume directly. The storage front-end 220
intercepts and processes all client commands to the virtual file system, accesses and
optionally updates the data and metadata in the data storage 210 and metadata storage 205,
and optionally provides a result back to the clients 230. In processing client commands to the
virtual file system, the storage front-end may perform data processing, caching, data
transformation, data compression, and numerous other operations to translate between the
virtual file system and the underlying format of data in the data storage 210 and metadata
storage 205.

[0017] Data virtualization refers to any process or technique for converting data from its
original format into a different format for more efficient storage, communication, or
processing. Data virtualization also refers to any process or technique for converting
virtualized data back to original format for users and applications. Data deduplication is one
type of data virtualization that eliminates redundant data for the purposes of storage or
communication. To reduce the storage capacity requirements and improve file system
performance, embodiments of the invention may be used with a deduplicating file system that
reduces redundant data stored within a single file or over many files. Figures 4A-4C
illustrate examples of deduplicating data storage according to an embodiment of the

invention.

[0018] Figure 4A illustrates an example 400 of a deduplicating file storage suitable for use
with an embodiment of the invention. A file F1 405 includes file data 406 and file metadata
407. In an embodiment, the file data 406 is partitioned or segmented into one or more
segments based on factors including the contents of the file data 406, the potential size of a
segment, and the type of file data. There are many possible approaches for segmenting data
for the purposes of deduplication, some of which make use of hashes or other types of data
characterizations. One such approach, which may make use of hashes in some embodiments,
is the hierarchical segmentation scheme described in U.S. Patent 6,667,700 entitled “Content-
Based Segmentation Scheme for Data Compression in Storage and Transmission Including
Hierarchical Segment Representation,” which is incorporated by reference herein for all
purposes. Hierarchical schemes which make use of hashes may take on a number of

variations according to various embodiments, including making use of hashes of hashes. In

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

addition, many other segmentation schemes and variations are known in the art and may be

used with embodiments of the invention.

[0019] Regardless of the technique used to segment file data 407, the result is a segmented
file 408 having its file data represented as segments 409, such as segments 409a, 409b, 409¢,
and 409d in example 400. In example 400, segment 409a includes data D1 and segment 409¢
includes data D3. Additionally, segments 409b and 409d include identical copies of data D2.
Segmented file 408 also includes the same file metadata 407 as file 405. In embodiments of
the invention, file data segmentation occurs in memory and segmented file 408 is not written

back to data storage in this form.

[0020] Following the segmentation of the file data 406 into file segments 409, each
segment is associated with a unique label. In example 400, segment 409a representing data
D1 is associated with label L1, segments 409b and 409d representing data D2 are associated
with label L2, and segment 409¢ representing data D3 is associated with label L3. In an
embodiment, the file F1 405 is replaced with deduplicated file F1 410. Deduplicated file F1
410 includes data layout F1 412 specifying a sequence of labels 413 corresponding with the
data segments identified in the file data 406. In this example, the data layout F1 412 includes
a sequence of labels L1 413a, L2 413b, L3 413c, L2 413d, corresponding with the sequence
of data segments D1 409a, D2 409b, D3 409c, and a second instance of segment D2 409d.
Deduplicated file 410 also includes a copy of the file metadata 407

[0021] A data segment storage 415 includes copies of the segment labels and
corresponding segment data. In example 400, data segment storage 415 includes segment
data D1, D2, and D3, and corresponding labels L1, L2, and L3. Using the data layout within
a file and the data segment storage 415, a storage system can reconstruct the original file data
by matching in sequence each label in a file’s data layout with its corresponding segment data

from the data segment storage 415.

[0022] As shown in example 400 of figure 4A, the use of data deduplication reduces the
storage required for file F1 405, assuming that the storage overhead for storing labels 417 in
the data layout 415 and data segment storage 415 is negligible. Furthermore, data
deduplication can be applied over multiple files to further increase storage efficiency and

increase performance.

[0023] Figure 4B illustrates an example 440 of data deduplication applied over several
files. Example 440 continues the example 400 and begins with deduplicated file F1 410 and

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

data segment storage 415 as described above. Example 440 also includes a second file, file
F2 444 including file metadata 448 and file data segmented into data segments D1 446a, D2
446b, D3 446¢, and D4 446d. Data segments 446a, 446b, and 446¢ are identical in content to

the data segments 409a, 409b, and 409c¢, respectively, discussed in figure 4A.

[0024] In an embodiment, the file F2 444 is replaced with deduplicated file F2 450.
Deduplicated file F2 450 includes data layout F2 452 specifying a sequence of labels 454
corresponding with the data segments identified in the file data 446. In this example, the data
layout F2 452 includes a sequence of labels L5 454c and L4 454d. Additionally, example
440 replaces deduplicated file F1 410 with a more efficient deduplicated file F1 410°. The
deduplicated file F1 410’ includes data layout 412’ including labels L5 454a and L2 454b.

[0025] An updated data segment storage 415° includes copies of the segment labels and
corresponding segment data. In example 440, data segment storage 415° includes segment
data D1 and labels L1 417b, segment data D2 and label L2 417¢c, segment data D3 and label
L3 417d, and segment data D4 and label L4 417¢.

[0026] Additionally, in this example implementation of data deduplication, labels may be
hierarchical. A hierarchical label is associated with a sequence of one or more additional
labels. Each of these additional labels may be associated with data segments or with further
labels. For example, data segment storage 415° includes label L5 417a. Label L5 417a is
associated with a sequence of labels L1, L2, and L3, which in turn are associated with data
segments D1, D2, and D3, respectively. In other embodiments, labels or label-equivalents

may be non-hierarchical.

[0027] Using the data layout within a file and the data segment storage 415°, a storage
system can reconstruct the original file data of a file by recursively matching in sequence
cach label in a file’s data layout with its corresponding segment data from the data segment
storage 415°. For example, an storage system may reconstruct the data of file F2 444 by
matching label L5 454c¢ in data layout F2 452 with the sequence of labels “L1, L2, and L3”
using label 417a in data segment storage 415°. The storage system then uses labels L1 4170,
L2 417c, and L3 417d to reconstruct data segments D1 446a, D2 446b, and D3 446¢ in file
F2. Similarly, label 454d in data layout F2 452 is matched to label 417¢ in data segment
storage 415°, which reconstructs data segment D4 446d.

[0028] The data layouts and file system metadata of files in a deduplicating data storage

system may be arranged in a number of ways. Figure 4C illustrates one example of a

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

deduplicating file system 460 according to an embodiment of the invention. File system 460
organizes files within a hierarchy of directories. For example, root directory 465 includes
directories A 470 and B 475 as well as file A 480. Directory B 475 includes file B 490.
Directory A 470 includes directory C 485. Directory C 485 includes file C 495.

[0029] In example file system 460, cach file may include a file data layout and file
metadata. As described above, file data layout specifies a sequence of labels representing
data segments needed to reconstruct the original data of the file. For example, file A 480
includes file A data layout 484 and file C metadata 482, file B 490 includes file B data layout
494 and file B metadata 492, and file C 495 includes file C data layout 499 and file C
metadata 497.

[0030] The data segment storage 462 exists as one or more scparate files. In an
embodiment, the data segment storage 462 is implemented as visible or hidden files on a
separate logical storage partition or storage device. In a further embodiment, the data
segment storage 462 is implemented in a manner similar to file data storage 210 discussed
above. Additionally, the deduplicated file system 460 may be implemented, at least in part,

using the metadata storage 205 discussed above.
[0031] In an embodiment, file data layout may be stored as the contents of the file.

[0032] A file system may support multiple data streams or file forks for each file. A data
stream is an additional data set associated with a file system object. Many file systems allow
for multiple independent data streams. Unlike typical file metadata, data streams typically
may have any arbitrary size, such as the same size or even larger than the file’s primary data.
Each data stream is logically separate from other data streams, regardless of how it is
physically stored. For files with multiple data streams, file data is typically stored in a
primary or default data stream, so that applications that are not aware of streams will be able
to access file data. File systems such as NTFS refer to logical data streams as alternate data
streams. File systems such as XFS use the term extended attributes to describe additional
data streams. Network file protocols such as CIFS and some versions of NFS also support

additional data streams.

[0033] In an embodiment, the data layout of a deduplicated file may be stored in a separate
data stream. The primary or default data stream of a file may be empty or contain other data
associated with a file object. In this embodiment, the deduplicated file system is a “shell” of

the original file system. The deduplicated file system preserves the hierarchy structure and

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

potentially the file metadata of the original, non-deduplicated file system in its original
format. However, the file data itself is removed from file objects and replaced with data

layouts in a different data stream.

[0034] When an application or client attempts to read file data from a file system, an
embodiment of a storage front-end intercepts the read request. This embodiment then
accesses the data layout of the file from the appropriate data stream. Using the data layout,
an embodiment of the storage front-end retrieves one or more data segments specified by the
data layout to reconstructs all or a portion of the file data. This embodiment of the storage
front-end then returns the reconstructed data satisfying the read request to the application or

client.

[0035] Similarly, when an application or client attempts to write file data to a file system,
an embodiment of the storage front-end intercepts the write request and the data to be stored.
The storage front-end transforms the data to be stored into one or more data segments. The
storage front-end may perform the data segmentation itself, or, as discussed in detail below, a
WAN accelerator may optionally be leveraged to perform data segmentation. Unique labels
for each data segment are generated. In an embodiment, the label is based on the contents of
the data segment, for example using a hash function, so that data segments with identical data

will have the same label.

[0036] An embodiment of the storage front-end then stores the data layout for the write
data in the file system, for example in a separate data stream, and stores the associated data
segments and labels in the data segment storage. In an embodiment, the storage front-end
first queries the data segment storage to determines if any of the data segments representing
the write data have been previously stored, for example as the result of previous data write
operations including the one or more of the same data segments. The storage front-end stores
any data segments that have not been previously stored along with their associated labels in
the data segment storage. For data segments that have been previously stored in the data
segment storage, an embodiment of the storage front-end updates label metadata in the data
segment storage to indicate that an additional data layout is referencing these previously

stored data segments.

[0037] As shown in figure 2, file system 200 separates the storage of file metadata from the
storage of file data for improved efficiency, performance, and scalability. However, this may

create problems when updating both the file data and file metadata. For example, some file

10

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

data operations, for example changing the data in a file, may also cause changes in the file’s
associated metadata, for example updating the size or modified date metadata. With separate
storage of file data and metadata, prior systems commonly use a complex and inefficient two-
phase commit process to ensure that the updates to the file data and metadata are

synchronized and intact.

[0038] Figure 3 illustrates an example 300 of updating data and metadata of a file system
according to an embodiment of the invention. In example 300, a client 305 sends a command
307 to update or modify file data. This command is intercepted by the storage front-end 310,
which converts it into a corresponding data storage command 315. Data storage command
315 is adapted to be processed by a file data storage system 320, which is similar to the file

data storage 210 discussed above.

[0039] In an embodiment, data storage command 315 includes metadata transaction
parameters 317. The metadata transaction parameters 317 are adapted to update the metadata
associated with the file being updated by the data storage command 315. For example, if the
command 307 is adapted to change the size of the file, then the corresponding data storage
command 315 will include metadata transaction parameters 317 specifying changes in the file

size and modified date attributes of the file’s metadata.

[0040] In an embodiment, metadata transaction parameters 317 are generated by the
storage front-end 310. In an alternate embodiment, a client 305 may be capable of
communicating directly with the file data storage system 320. In this embodiment, the client
generates the data storage command 315 and its metadata transaction parameters 317 directly

and the command 307 and storage front-end 310 may be bypassed.

[0041] In an embodiment, the data storage command 315, including the metadata
transaction parameters 317, is provided to the file data storage 320. In response to receiving
the data storage command 315, the file data storage 320 attempts to modify the appropriate
file data as specified by the data storage command 315. If the file data storage 320 is
successful in executing the data storage command 315, the file data storage 320 provides the
metadata transaction parameters 317 included with the data storage command 315 to a
metadata update queue 325. In an embodiment, the metadata transaction parameters 317 are
atomically committed to the metadata update queue 325 to ensure data integrity.
Conversely, if the file data storage 320 is not successful in executing the data storage

command 315, then the metadata transaction parameters 317 are discarded and an error or

11

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

other response may be returned to the storage front-end 310 and/or the client 305. In an
embodiment, the storage front-end 310 may respond to the command 307 of the client 305
following the completion of the data storage command 315 by file data storage 320, without
waiting for the metadata transaction parameters 317 to be processed by the metadata storage
330. This allows storage commands that affect data and metadata to be processed faster than

with two-phase commit methods.

[0042] The metadata update queue 325 temporarily stores one or more sets of metadata
transaction parameters until these metadata transaction parameters are processed by the
metadata storage 330. In an embodiment, the metadata update queue 325 is persistent and
durable across system reboots to ensure reliability. In an embodiment, the metadata storage
330 retrieves each set of metadata transaction parameters in order of receipt from the
metadata update queue 325. The metadata storage 330 processes ecach set of metadata
transaction parameters to update the file metadata of one or more files. As a result of this
processing by the metadata storage 330, the file metadata becomes synchronized with the
state of the file data. In an embodiment, the file data storage 320 and metadata storage 330
operate in parallel to process incoming data update commands and previously queued

metadata transaction parameters, respectively.

[0043] In an embodiment, the storage front-end 310 maintains the metadata update queue
325 in its memory. As described above, the storage front-end 310 sends the metadata update
operation to the metadata storage 330 after responding to the client data command 307, thus
improving performance as the client data command 307 does not have to wait for metadata
operation to be processed by the metadata storage 330. In a further embodiment, the storage
front-end 310 may recover unprocessed metadata transaction parameters in the metadata
update queue following crashes or restarts. In this embodiment, following a restart, the
storage front-end 310 automatically requests all pending metadata transaction parameters
previously stored in the metadata update queue 325 from the data storage system. These
pending metadata transaction parameters are then processed by the metadata storage system

330.

[0044] As discussed above, changing the structure of a file system, the arrangement of file
data and metadata, and data transformations such as data duplication can improve the

efficiency, performance, scalability, and even the reliability of data storage systems.

12

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

However, applications and users typically expect to interact with more typically structured

file systems and file data.

[0045] Because of this need, a storage front-end interfaces between the file system in its
native format and users and applications. The storage front-end may present the data and
metadata of the file system to clients as a virtual file system, such that the underlying
structure and arrangement of data and metadata is hidden from users and applications.
Instead, the storage front-end presents users and applications with a view of the file system
data and metadata as a local or networked file system, such as an XFS, CIFS, or NFS file
system. Because the storage front-end presents a virtual file system to one or more users or
applications, depending upon the file system protocol, a user or application may believe that
it is managing files and data on a raw volume directly. The storage front-end intercepts and
processes all client commands to the virtual file system, accesses and optionally updates the
data and metadata in the underlying file data and metadata storage in the native file system,

and optionally provides a result back to the users or applications.

[0046] Because of the wide range of data and metadata processing, interfacing, caching,
data transformation and compression, and numerous other operations to translate between the
virtual file system and the underlying format of data, the storage front-end may be
implemented as a stack of virtual file system modules. Figure 5 illustrates a virtual file
system stack 500 suitable for implementing file systems according to embodiments of the

invention.

[0047] In an embodiment, virtual file system stack 500 includes at least one front-end
virtual file system layer 505, a data deduplication layer 510, a direct access layer 515, and at
least one backend layer 520. The virtual file system layer 505 maintains an in-memory state
of the virtual file system, such as files that are open or locked. The virtual file system layer

505 also provides an interface to the virtual file to users and applications.

[0048] In a further embodiment, the virtual file system stack 500 includes one or more
virtual file system layers that support multiple virtual file systems or other data storage
interfaces. This allows for data storage and data transformations such as data deduplication
to be consolidated over multiple file systems and data interfaces. For example, if two copies
of the same file (or a portion thereof) are stored in separate virtual file systems, the
underlying deduplicating data storage will only require one copy of the file data. Other data

interfaces, such as e-mail server or database application interfaces, may be implemented by

13

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

the virtual file system layer, allowing for further storage efficiencies. For example, if a file
stored in a file system is e-mailed by a user, the e-mail server may maintain a copy of the e-
mail message and the attached file. However, if the e-mail server’s storage is implemented

within the deduplicated file system, then no additional copies of the attached file are required.

[0049] Virtual file system stack 500 also includes a data deduplication layer 510. In an
embodiment, data deduplication layer 510 performs data deduplication as described above to
improve storage efficiency and performance. In an additional embodiment, data
deduplication is implemented as described in related application (R000200US, entitled “Log
Structured Content Addressable Deduplicating Storage), which is incorporated by reference

herein for all purposes.

[0050] In addition to data deduplication layer 510, additional data processing and
transformation layers may be included in this portion of the virtual file system stack 500 to
improve performance, efficiency, reliability, or other aspects of the data storage system,

and/or to perform other data processing functions, such as encryption or virus scanning.

[0051] Virtual file system stack 500 also includes direct access layer 515 adapted to cache
the directory hierarchy and metadata. Direct access layer may also include a metadata update

queue as described above for updating file metadata efficiently.

[0052] Virtual file system stack 500 includes at least one backend layer 520 providing an
interface between modules in the virtual file system stack 500 and the underlying file system,
such as a CIFS, NFS, or other network file system; or XFS, VXFS, or other native file system.
Embodiments of virtual file system stack 500 may include one or more backend layers 520
adapted to interface with two or more underlying file systems, allowing two or more separate
storage devices or networks to be considered as a single logical storage device or storage

network.

[0053] One problem with using a file system stack such as virtual file system stack 500 is
that each stack layer module may wish to include additional metadata with file data being
processed. For example, the NTFS file system supports a “creation time” metadata attribute
to indicate the creation time of a file object. However, file systems such as XFS do not
natively support this metadata attribute. If a front-end virtual file system layer 505 provides a
type of virtual file system to users and application, the underlying native file system needs to
be able to support all the virtual file system’s metadata attributes, even if the native file

system is of a different type that does not provide similar metadata attributes.

14

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

[0054] An embodiment of the invention supports arbitrary file metadata attributes in virtual
file systems by storing file metadata attributes using one or more additional data streams of
the file object. Figures 6A-6C illustrate storing virtual file system layer data in additional file

data streams according to embodiments of the invention.

[0055] In one embodiment, a file object includes a single additional data stream adapted to
store metadata attributes from one or more virtual file system stack layers. Figure 6A
illustrates an example file F1 605 including a first data stream 610a adapted to store file data
or a corresponding data layout. A second data stream 610b stores additional file metadata

from one or more virtual file system stack layers.

[0056] Figure 6B illustrates an example file F1 615 including a first data stream 610a
adapted to store file data or a corresponding data layout. In this example file F1 615,
metadata from each virtual file system stack layer is stored in a separate data stream. For
example, data streams 620b, 620c, 620d, and 620¢ store file metadata associated with the
front-end layer 505, data deduplication layer 510, direct access layer 515, and backend layer
520, respectively.

[0057] In another embodiment, additional file metadata is stored using an additional data
stream. However, the contents of this additional data stream remains empty. Instead, the
additional file metadata is stored in the name of the additional data stream. This embodiment
is useful when reading or writing additional data streams is slower or less efficient than
reading or writing the name of an additional data stream. Figure 6C illustrates an example
file F1 630 including a first data stream 635a adapted to store file data or a corresponding
data layout. A second data stream 635b is empty, but has its name set to the additional

metadata attribute values provided by one or more virtual file system stack layers.

[0058] Additionally, data transformations performed by virtual file system stack layers may
alter the metadata attributes of a file. For example, a data deduplication layer reduces the size
of file data. Accordingly, the file size metadata attribute for this file should be reduced.
However, many file system operations require metadata access. If the metadata attributes of
a file have been changed due to a data transformation, such as data deduplication, then the
expected original file metadata attribute values will need to be reconstructed by the storage

front-end.

[0059] For example, if an application requests the file size of a file that has been reduced in

size using data deduplication, the storage front-end should provide the size of the original file

15

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

to the application, not the actual size of the deduplicated file on disk. Otherwise, the
application may not function correctly. In this case, the storage front-end would have to
reconstruct the original file from its data layout and the data segment storage to determine the
original file size. This operation is inefficient and may be time-consuming, especially if the

application does not actually require access to the original file data.

[0060] To improve efficiency in accessing metadata attributes, an embodiment of the
invention sets the file size attribute or other metadata attributes of a transformed data file to
the attribute values of the untransformed file. For example, the file size attribute of a
deduplicated file may be set to the file size of the original uncompressed file. Many file
systems, such as NTFS and XFS, allow for the creation of sparse files. A sparse file may
have a file size attribute set independently of the actual size of the data in the file. In a sparse

file, the file system allocates space for the file as needed.

[0061] Because the metadata attributes of transformed files are set to the values of their
untransformed files, a storage front-end may determine the metadata attributes of
untransformed files simply by accessing the metadata of their corresponding transformed

files. Little or no intermediate processing or data transformation is required.

[0062] Embodiments of the invention may be implemented in a variety of forms. For
example, an embodiment of the invention may include a storage front-end software and/or
hardware adapted to provide one or more virtual file systems and associated interfaces to
third-party users and applications, and to interface with one or more third-party data storage
devices or storage arca networks. In a further embodiment, storage front-end and/or a virtual
file system stack may be integrated with one or more data storage devices or storage arca

networks.

[0063] Another embodiment of the invention may be implemented as portions of the
above-described virtual file system stack, such as a data deduplication layer module, a direct
access layer module, or other data transformation layer modules. In this embodiment, the
modules including embodiments of the invention are adapted to interface with other third-

party modules to form a complete virtual file system stack.

[0064] In still further embodiments, the data segmentation and deduplication may be
integrated with wide-area network (WAN) acceleration, such as that described in co-pending
patent application “Hybrid Segment-Oriented File Server and WAN Accelerator, U.S. Patent.
Application No. 12/117,269, filed May 8, 2008. In these embodiments, the data deduplication

16

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

storage and WAN acceleration systems use the same type of segmentation scheme to
minimize data redundancy. The data deduplicating storage and the WAN acceleration
systems communicate using a segment-oriented file system (SFS) protocol adapted to specify
data in the form of segments. This allows more efficient storage and communication of data,

especially over wide-area networks.

[0065] Figure 7 illustrates an example hybrid WAN acceleration and deduplicating data
storage system 1000 suitable for use with embodiments of the invention. Figure 7 depicts
one configuration including two segment-orientated file server (SFS) gateways and an SFS
server situated at two different sites in a network along with WAN accelerators configured at
cach site. In this configuration, clients in groups 1090 and 1091 access files ultimately stored
on file servers 1040, 1041, and 1042. Local areca networks 1010, 1011, 1012, and 1013
provide data communications between clients, SFS gateways, SFS servers, file servers, WAN
accelerators, wide-area networks, and other devices. Local area networks 1010, 1011, 1012,
and 1013 may include switches, hubs, routers, wireless access points, and other local area
networking devices. Local area networks are connected via routers 1020, 1021, 1022, and

1023 with a wide-area network (WAN).

[0066] The clients may access files and data directly using native file server protocols, like
CIFS and NFS, or using data interfaces, such as database protocols. In the case of file server
protocols, local or remote clients access file and data by mounting a file system or “file
share.” Each file system may be a real file system provided by a file server such as file
servers 1040, 1041, and 1042, or a virtual file system provided by a SFS gateway or storage
front-end, such as SFS gateways 1072 and 1073. Once a file system is mounted via a
transport connection, files can be accessed and manipulated over that connection by
applications or file system tools invoked by the user. Traditionally, these protocols have
performed poorly over the WAN but are accelerated by the WAN accelerators present in the

network.

[0067] For example, a client in group 1091 might access file server 1040 and WAN
accelerators 1030 and 1032 would optimize that file server connection, typically providing
“LAN-like” performance over the WAN using techniques as those described in U.S. Patent
7,120,666 entitled “Transaction Accelerator for Client-Server Communication Systems”;
U.S. Patent 6,667,700 entitled “Content-Based Segmentation Scheme for Data Compression

in Storage and Transmission Including Hierarchical Segment Representation”; and U.S.

17

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

Patent Publication 2004/0215746, published October 28, 2004 entitled “Transparent Client-

Server Transaction Accelerator”, which are incorporated by reference herein for all purposes.

[0068] If a client, for example, from group 1091, mounts one of the exported file systems
located on SFS gateway 1073 via a transport connection including WAN 1065, WAN
accelerators 1031 and 1033 will optimize network traffic for passage through WAN 1065. In
an embodiment, each of the WAN accelerators 1031 and 1033 will partition network traffic
into data segments, similar to those described above. WAN accelerators 1031 and 1033 will

cache frequently used data segments.

[0069] In an example of prior systems, when one of the clients 1090 requests a file, WAN
accelerator 1032 reads the requested file from a file system and partitions the file into data
segments. WAN accelerator 1032 determines the data layout or set of data segments
comprising the requested file. WAN accelerator 1032 communicates the data layout of the
requested file to WAN accelerator 1030, which in turn attempts to reconstruct the file using
the data layout provided by WAN accelerator 1032 and its cached data segments. Any data
segments required by a data layout and not cached by WAN accelerator 1030 may be
communicated via WAN 165 to WAN accelerator 1030.

[0070] Further benefits are achieved, however, by arranging for clients to access the files
stored on file servers 1040, 1041 and 1042 via the SFS gateways 1072 and 1073 or SFS
server 1050. In this scenario, SFS gateways 1072 and 1073 export one or more virtual file
systems. The SFS gateways 1072 and 1073 may implement data deduplicated storage using
the file servers 1040 and/or 1041 to store data segments, data layouts, and file or other

metadata.

[0071] To improve performance, an embodiment of system 1000 allows WAN accelerators
to access data segments and data layouts directly in deduplicating data storage using a SFS
protocol. In this embodiment, when one of the clients 1090 requests a file, WAN accelerator
1032 accesses a SFS gateway, such as SFS gateways 1072 and 1073, or a SFS server, such as
SES server 1050, to retrieve the data layout of the requested file directly. WAN accelerator
1032 then communicates this data layout to WAN accelerator 1030 to reconstruct the
requested file from its cached data segments. The advantage to this approach is that WAN
accelerator 1030 does not have to read the entire requested file and partition it into data
segments; instead, the WAN accelerators leverage the segmentation and data layout

determinations already employed by the data deduplicating storage.

18

10

15

20

25

30

WO 2010/033961 PCT/US2009/057772

[0072] Furthermore, if WAN accelerator 1030 requires data segments that are not locally
cached to reconstruct some or all of the requested file, WAN accelerator 1032 can retrieve
these additional data segments from an SFS gateway or SFS server using a SFS protocol. In
this example, WAN accelerator 1032 may retrieve one or more data segments from a file
system or SFS server using their associated labels or other identifiers, without requiring any

reference to any data layouts or files.

[0073] The benefits of the SFS architecture can accrue to an SFS file server as depicted in
Figure 7, whereby SFS server 1050 is interconnected to disk array 1060. In an embodiment,
the SFS server acts as a combination of a SFS gateway and an associated file server or data
storage system. For example, SFS server 1050 manages its own file system on a raw volume
directly, e.g., located on a disk array and accessed via iSCSI or Fibre channel over a storage-
arca network (SAN). In this scenario, there is no need for backend file servers, because the
SES server 1050 implements or interfaces with its own data storage system. The SFS server
1050 may include an external disk array as depicted, such as a storage area network, and/or

include internal disk-based storage.

[0074] The SFS server 1050 is configured by an administrator to export one or more virtual
file systems or other data interfaces, such as database or e-mail server APIs. Then, a client,
for example, from group 1090 mounts one of the exported virtual file systems or interfaces
located on SFS server 1050 via a transport connection. This transport connection is then
optimized by WAN accelerators 1030 and 1033. Furthermore, because these WAN
accelerators are SFS-aware, they intercommunicate with SFS server 1050 using SFS rather
than a legacy file protocol like CIFS or NFS. In turn, the SFS server stores all of the data

associated with the file system on its internal disks or external storage volume over a SAN.

[0075] In a further embodiment, the data deduplication storage system may leverage the
use of WAN accelerators to partition incoming data into data segments and determine data
layouts. For example, if one of the clients 1090 attempts to write a new file to the storage
system, WAN accelerator 1030 will receive the entire file from the client. WAN accelerator
1030 will partition the received file into data segments and a corresponding data layout.
WAN accelerator 1030 will send the data layout of this new file to WAN accelerator 1032.
WAN accelerator 1030 may also send any new data segments to WAN accelerator 1032 if
copies of these data segments are not already in the data storage. Upon receiving the data

layout of the new file, WAN accelerator 1032 stores the data layout and optionally file

19

10

15

20

WO 2010/033961 PCT/US2009/057772

metadata in the data deduplicating file system. Additionally, WAN accelerator 1032, a SFS
gateway, and/or a SFS server issues one or more segment operations to store new data
segments and to update reference counts and other label metadata for all of the data segments
referenced by the new file’s data layout. By using WAN accelerator 1030 to partition data,
the processing workload of the SFS gateways or SFS server in a data deduplicating storage

system is substantially reduced.

[0076] Similarly, if a client is directly connected with local area network 1012, rather than
connecting through LAN 165, an embodiment of a SFS gateway or SFS server redirects all
incoming data from the local client to a local WAN accelerator, such as WAN accelerator

1032, for partitioning into data segments and for determining the data layout.

[0077] Further embodiments can be envisioned to one of ordinary skill in the art. In other
embodiments, combinations or sub-combinations of the above disclosed invention can be
advantageously made. The block diagrams of the architecture and flow charts are grouped
for ease of understanding. However it should be understood that combinations of blocks,
additions of new blocks, re-arrangement of blocks, and the like are contemplated in

alternative embodiments of the present invention.

[0078] The specification and drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense. It will, however, be evident that various modifications and
changes may be made thereunto without departing from the broader spirit and scope of the

invention as set forth in the claims.

20

O 0 N N W R W

—_
- O

AW NN =

WO 2010/033961 PCT/US2009/057772

WHAT IS CLAIMED I8S:

1. A method of storing data in a data storage system, the method comprising:

receiving a file including file metadata and file data in a first file data format to be
stored in the data storage system;

transforming the file data into transformed file data and a data transformation
layout, wherein the data transformation layout specifies an arrangement of the transformed file
data that replicates the file data in the first file data format;

storing the file metadata in a first data storage in the first file data format;

storing the data transformation layout in the first data storage in the first file data
format; and

storing at least a portion of the transformed file data in a second data storage.

2. The method of claim 1, wherein the first data storage includes a file

system adapted to store file metadata and file data in the file data format.

3. The method of claim 2, wherein storing the data transformation layout

comprises storing the data transformation layout in a file data stream.

4. The method of claim 3, wherein the file data stream is associated with a

main data stream of a file.

5. The method of claim 3, wherein the file data stream is associated with an

alternate data stream of a file.

6. The method of claim 1, wherein the second data storage is adapted to store

the transformed file data.

7. The method of claim 1, wherein the data transformation layout includes at

least one data segment label based on at least one hash of at least a portion of the file data.

8. A method of accessing data from a data storage system, the method
comprising:
receiving a storage command;

determining if the storage command is associated with a metadata request;

21

O 0 1 N W

10

~ SN B WD =

WO 2010/033961 PCT/US2009/057772

in response to the determination that the storage command is associated with the
metadata request, retrieving file system metadata included in a file system;

determining if the storage command is associated with a file data access;

in response to the determination that the storage command is associated with the
file data access, retrieving a data transformation layout from the file system; and

retrieving transformed file data referenced by the data transformation layout from

a second data storage.

9. The method of claim &, comprising:
arranging the transformed file data according to the data transformation layout to

replicate file data associated with the file system.

10. The method of claim 8, wherein the file system metadata includes a path

in the file system.

11. The method of claim 8, wherein the file system metadata includes an

attribute of a file included the file system.

12. The method of claim 8, wherein the storage command is associated with a

file included in the file system.

13. The method of claim 12, wherein the data transformation layout is

retrieved from an additional data stream associated with the file.

14. The method of claim 12, wherein the data transformation layout is

retrieved from the file.

15. A computer-readable storage medium including instructions adapted to
direct a computer to perform an operation, the operation comprising:

receiving a file including file metadata and file data in a first file data format to be
stored in the data storage system;

transforming the file data into transformed file data and a data transformation
layout, wherein the data transformation layout specifies an arrangement of the transformed file

data that replicates the file data in the first file data format;

22

10
11

O 0 1 SN U R WD

—_
—_ O

WO 2010/033961 PCT/US2009/057772

storing the file metadata in a first data storage in the first file data format;
storing the data transformation layout in the first data storage in the first file data
format; and

storing at least a portion of the transformed file data in a second data storage.

16. The computer-readable storage medium of claim 15, wherein the first data

storage includes a file system adapted to store file metadata and file data in the file data format.

17. The computer-readable storage medium of claim 16, wherein storing the

data transformation layout comprises storing the data transformation layout in a file data stream.

18. The computer-readable storage medium of claim 15, wherein the second

data storage is adapted to store the transformed file data.

19. The computer-readable storage medium of claim 15, wherein the data
transformation layout includes at least one data segment label based on at least one hash of at

least a portion of the file data.

20. A computer-readable storage medium including instructions adapted to
direct a computer to perform an operation, the operation comprising:

receiving a storage command;

determining if the storage command is associated with a metadata request;

in response to the determination that the storage command is associated with the
metadata request, retrieving file system metadata included in a file system;

determining if the storage command is associated with a file data access;

in response to the determination that the storage command is associated with the
file data access, retrieving a data transformation layout from the file system; and

retrieving transformed file data referenced by the data transformation layout from

a second data storage.

21. The computer-readable storage medium of claim 20, comprising:
arranging the transformed file data according to the data transformation layout to

replicate file data associated with the file system.

23

WO 2010/033961 PCT/US2009/057772
22. The computer-readable storage medium of claim 20, wherein the file
system metadata includes a path in the file system.

23. The computer-readable storage medium of claim 20, wherein the storage

command is associated with a file included in the file system.

24. The computer-readable storage medium of claim 23, wherein the data

transformation layout is retrieved from an additional data stream associated with the file.

25. The computer-readable storage medium of claim 23, wherein the data

transformation layout is retrieved from the file.

24

WO 2010/033961 PCT/US2009/057772

1/9
FILE SYSTEM 100
105
ROOT
DIRECTORY
110 115 120
DIRECTORY DIRECTORY FILE A
A B
125 130
DIRECTORY FILE B
C
FILE C
135
FILE C METADATA
145
FILE TYPE
SIZE
MODIFICATION DATE
ACCESS CONTROL
FILE C
DATA
140

FIG. 1

WO 2010/033961

METADATA STORAGE
205

2/9

FILE SYSTEM 200

FILE A METADATA
207A

FILE TYPE
SIZE
MODIFICATION DATE
ACCESS CONTROL

FILE B METADATA
207B

FILE TYPE
SIZE
MODIFICATION DATE
ACCESS CONTROL

PCT/US2009/057772

PHYSICAL

FILE C METADATA
207C

FILE TYPE
SIZE
MODIFICATION DATE
ACCESS CONTROL

DATA
STORA
DEVICES
225

STORAGE

ETWORK
215

STORAGE FRONTEND
220

FILE N METADATA
207D

FILE TYPE
SIZE
MODIFICATION DATE
ACCESS CONTROL

DATA NETWORK

CLIENTS 230

FIG. 2

FILE DATA STORAGE
210

FILE A
DATA
212A

FILE B
DATA
212B

FILE C
DATA
212C

FILE C
DATA
212D

WO 2010/033961

METADATA STORAGE
330

FILE A METADATA

FILE TYPE
SIZE
MODIFICATION DATE
ACCESS CONTROL

FILE B METADATA

FILE TYPE
SIZE
MODIFICATION DATE
ACCESS CONTROL

FILE C METADATA

FILE TYPE
SIZE
MODIFICATION DATE
ACCESS CONTROL

FILE N METADATA

FILE TYPE
SIZE
MODIFICATION DATE
ACCESS CONTROL

PCT/US2009/057772

3/9

FILE SYSTEM 300

METADATA UPDATE QUEUE
325

METADATA TRANSACTION
PARAMETERS

METADATA TRANSACTION |
PARAMETERS

FILE DATA STORAGE
320

UPDATE:
DATA
PARAMETERS
315

METADATA TRANSACTION
PARAMETERS
317

T;

STORAGE

FRONTEND
COMMAND: / 310
DATA

307

CLIENT 305

FIG. 3

WO 2010/033961 PCT/US2009/057772

4/9
400
FILE F1 405
DATA 406 D1, D2, D3, D2
F1 METADATA 407
SEGMENTED FILE F1 408
DATA | DATA | DATA | DATA
D1 D2 D3 D2
409A | 4008 | 409c | 409D
F1 METADATA 407
DEDUPLICATED FILE F1 410 DATA SEGMENT STORAGE 415
DATA LAYOUT F1 412 L1 Lo: L3
LABEL | LABEL | LABEL | LABEL DATA | DATA | DATA
L1 L2 L3 L2 T~ 45)71A 45)725 45)730
413
F1 METADATA 407

FIG. 4A

WO 2010/033961 PCT/US2009/057772
5/9
DEDUPLICATED FILE F1 410 DATA SEGMENT STORAGE 415
DATA LAYOUT F1
L1: L2: L3:
LABEL | LABEL | LABEL | LABEL DATA | DATA | DATA
L1 L2 L3 L2 / D1 D2 D3
417/
F1 METADATA
FILE F2 444
DATA | DATA | DATA | DATA 440
D1 D2 D3 D4
a46A | aa6B | a46Cc | 446D

F2 METADATA 448

DEDUPLICATED FILE F1 410’

DATA LAYOUT F1 412

LABEL | LABEL
L5 L2
454A 454B

F1 METADATA

DEDUPLICATED FILE F2 450

DATA LAYOUT F2 452
LABEL | LABEL
LS L4
454C 454D

DATA SEGMENT STORAGE 415'

L1:
DATA
D1
417B

L2:
DATA
D2
417C

L3:
DATA
D3
417D

L4:
DATA
D4
417E

L5:
L1,L2,L3
417A

F2 METADATA 448

FIG. 4B

WO 2010/033961 PCT/US2009/057772
6/9
460
465
ROOT
DIRECTORY
470 475 FILE A 480
DIRECTORY DIRECTORY
A 5 FILE A
METADATA
482
FILE A
DIRECTORY FILE B LAYOUT
C METADATA 484
492
FILE B
FILE C 495 DATA
METADATA 494
497
FILE C
DATA
LAYOUT
499
DATA SEGMENT STORAGE
465 462

FIG. 4C

WO 2010/033961

500

7/9

PCT/US2009/057772

FRONTEND VIRTUAL FILE SYSTEM LAYER 505

VNODE CACHE,
NAMESPACE,

FILE / DIRECTORY

FILE BOUNCING,

OPEN/CLOSE FILE STATE, DE"L%GCAJS'ON’ LAYOUT DELEGATION
SHARE RESERVATIONS
_ J
4 DATA DE-DUPLICATION LAYER 510
DATA CONTEXT
SEGMENT PZORE::SI'II_'EE’T ADDRESSABLE METADATA
CACHES, OBJECT DE- OPERATIONS
READ/WRITE S ORE DUPLICATING BYPASS
BUFFERS STORAGE
4 DIRECT ACCESS LAYER 515)
INTENT LOGGING OF
DIRECTORY CACHE, METADATA OPERATIONS,
NAME LOOKUP, SNAPSHOT
DIRECTORY SEARCH, PAGE CACHE
COORDINATION,
IN-MEMORY METADATA
PERATIONS LOG REPLAY AND
RECOVERY
4 BACKEND LAYER 520 N\
/' NETWORKFILE SYSTEMS) /" NATIVEFILE SYSTEMS
OTHER OTHER
NETWORK NATIVE
NFS CIFS FILE XFS VXFS oL
SYSTEMS SYSTEMS
N\ /) O /)
_ J

FIG. 5

WO 2010/033961 PCT/US2009/057772

8/9
STREAM 1: FILE DATA OR DATA LAYOUT 610A
FILE
F1
605
STREAM 2: ADDITIONAL VFS STACK FILE METADATA 610B
STREAM 1: FILE DATA OR DATA LAYOUT 620A
STREAM 2: VFS FRONTEND LAYER METADATA 620B
FILE
F1 STREAM 2: VFS DE-DUPLICATING LAYER METADATA 620C
615
STREAM 2: VFS DIRECT ACCESS LAYER METADATA 620D
STREAM 2: VFS BACKEND LAYER METADATA 620E
STREAM 1: FILE DATA OR DATA LAYOUT 635A
FILE STREAM 2: EMPTY 635B
F1)
630 STREAM NAME:

“VFS FRONTEND LAYER METADATA”,

“VFS DE-DUPLICATING LAYER METADATA”,
“VFS DIRECT ACCESS LAYER METADATA”,
“VFS BACKEND LAYER METADATA”

FIG. 6C

PCT/US2009/057772

WO 2010/033961

/L 9ld

0001 g Aepe |
HEID | woams

0001

e
k&,
w0

A
£ “.s«@
0L TN 248

Ry

MY T b2 ‘ plostaat-Tai
N Ny

TEnl \

ZE TS

P
HE H
LA

™

o

=
=
{5\

GI0l
REH

SOV EHEODY
PFAA

bt
I
&

PP TNs 764 //
.\\

£
] ICELUBERTDY ¥ LD
MY O

¢

N
&=
[
b
b
Il
-
")
]
P
&
¥ s‘i\. N Q:

0¥ 0}

o
o

6/6

INTERNATIONAL SEARCH REPORT International application No.

PCT/US 09/57772

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 12/00 (2009.01)
USPC - 707/204

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC: 707/204

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 707/100-101, 200-204; 711/100, 170, 206

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Electronic Databases Searched: pubWEST(PGPB,USPT,USOC,EPAB,JPAB); GoogleScholar

Search Terms Used: deduplication, metadata, non-deduplicated, native, storage, cloud, virtualization, storage, partition, snapshot,
hierarchy, hash, directory, appliance

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X AGGARWAL, G., "Metadata services for the Parallax storage system,” Thesis, The University | 1-25
Of British Columbia, July 2008 (07.2008) {retrieved 26 October 2009 (26.10.2009)] Retrieved
from the Internet. <URL:
https://circle.ubc.ca/bitstream/2429/5586/1/ubc_2008_fall_aggarwal_gitika.pdf>
Entire document, especially: pg 3, para 2; pg 4, para 2; pg 5, para 2; pg 6, para 5; pg 8, para
2,3,4; pg 13, parail; pg 14, para 2, pg 16, para 1, 2; pg 17, para 1, 6 and Fig. 2.11; pg 19,
para 1; pg 40, para 1; pg 41, para 3, 5; pg 42, para 3; pg 45, para 4
A US 2008/0005201 A1 (TING et al.) 03 January 2008 (03.01.2008) 1-25
A US 2008/0005141 A1 (ZHENG et al.) 03 January 2008 (03.01.2008) 1-25
A US 6,374,266 B1 (SHNELVARY) 16 April 2002 (16.04.2002) 1-25

[l

D Further documents are listed in the continuation of Box C.

the priority date claimed

* Special categories of cited documents: “T” later document published after the international filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
“E” earlier application or patent but published on or afler the international “X document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone
glteg;lor::;gzlg; ;he c‘l’fl-::g)c ation date of another citation or other “Y” document of particular relevance; the claimed invention cannot be
pe S Spe . L considered to involve an inventive step when the document is
“O” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the an
“P” document published prior to the international filing date but later than «g= 4ocument member of the same patent family

Date of the actual completion of the international search

26 October 2009 (26.10.2009)

Date of mailing of the international search report

05 NOV 2009

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report

