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AUTOCATALYTIC POLYOL USEFUL FOR POLYURETHANE FOAM MANUFACTURE

FIELD OF THE INVENTION

The present invention pertains to novel tertiary amine compositions, initiators made
therefrom, and polymeric polyol compositions made therefrom useful for making polyurethane
polymers, especially polyurethane foams; said polyurethane polymer foams demonstrating a
good balance of mechanical properties, physical properties, and low volatile organic compounds

emissions.

BACKGROUND OF THE INVENTION

Polyether polyols based on the polymerization of alkylene oxides, and/or polyester
polyols, are the major components of a polyurethane system together with isocyanates. Polyols
can also be filled polyols, such as SAN (styrene/acrylonitrile), PIPA (polyisocyanate
polyaddition) or PHD (polyurea) polyols. These systems generally contain additional
components such as blowing agents, cross-linkers, chain extenders, surfactants, cell regulators,
stabilizers, antioxidants, flame retardant additives, eventually fillers, and typically catalysts such
as tertiary amines and/or organometallic salts.

Tertiary amine catalysts generally have a strong odor and many are highly volatile due
to their low molecular weight. The release of the tertiary amine during foam processing may
present safety and toxicity concerns and the release of residual amine during customer handling
is undesirable. The release of tertiary amine catalysts vapor in polyurethane products is also
reported to be detrimental to vinyl film and polycarbonate sheets exposed thereto. Fugitive
amines are also associated with fogging issues, that is, deposit of solids or liquid film on an
automotive wind-shield.

It is desirable to limit the volatility of this amine component or to lessen the amount of
its use in a polyurethane formulation. In addition to reducing volatile organic compounds
(VOC's), lessening volatility or reducing the level of amine use can reduce worker exposure,
improve safety, and address quality concerns.

Compounds with tertiary amine groups are known to be useful catalysts for urethane
reactions. Certain polyols, sometimes referred to as autocatalytic polyols, contain tertiary amine
groups which can reduce or eliminate the need for typical tertiary amine catalysts in

formulations for polyurethanes while still maintaining the reactivity of the urethane reaction
-1-
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system. Further, the presence of multiple tertiary amine groups in such a polyol compound
allows it to be chemically bound during a polyurethane gel or foam crosslinking reaction, for
example. The resultant product can be substantially free of volatile amine emissions. However,
many such autocatalytic polyols if used alone do not provide an optimal blowing:gelling ratio
such that polyurethane polymers made therefrom may demonstrate inadequate processing,
physical properties and/or mechanical properties. For example, see US Publication No.
2009/0227695 which suggests addition of traditional fugitive type amine catalysts may improve
properties. However, such an approach leads to increased emission products.

Thus, for urethane applications, especially polyurethane foam applications, there
remains a need to be able to produce polymeric polyol compounds from compositions having
multiple tertiary amine groups which provide a good blowing: gelling ratio which provide good
polyurethane processing, physical properties and mechanical properties in a polyurethane
polymer produced therefrom while reducing, or eliminating, both the amount of fugitive tertiary

amine catalyst used and the volatile amine emissions.
SUMMARY OF THE INVENTION

Accordingly, the present invention is directed to such a novel tertiary amine
composition, initiator made therefrom, and polymeric polyol compositions made therefrom.
The present invention is a polymeric amine composition comprising one or more amine

compound represented by the Structure II:

RR'N - (R*-NH),-(R'-NR*), , ~ R’ — NR?R? I

wherein R’ is a branched or linear C; to C¢ alkyl group, R, R', R?, and R® are independently a
hydrogen or a C; to Cg linear or branched alkyl group with the proviso that at least one of R, R',
R?, and R? is not hydrogen, R* is a hydrogen or a C, to Cg linear or branched alkyl group, X is
from 1 to 33, and y is from 0 to 32, with the proviso that that x-y is equal to or greater than 1
and the number of N-H bonds in (II) is greater than 0 and less than 8, preferably the one or more

amine compound is represented by the Structure I'V:
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wherein R, R', R?, and R® are independently a hydrogen or a C; to Cg linear or branched alkyl
group with the proviso that at least one of R, R', R?, and R? is not hydrogen, R” is a hydrogen or
a C; to Cg linear or branched alkyl group, R” is a hydrogen or a C; to Cs linear or branched alkyl
group, x is from 1 to 33, y is from 0 to 32, and z is from 0 to 15, with the proviso that x-y-z is
equal to or greater than 2 and the number of N-H bonds in (IV) is greater than 0 and less than 8,

more preferably the one or more amine compound is represented by the Structure V:

| B | I
/N\é/\/’“\/g(/\/"“%/\/’“a\/\/l\ v
R z y X-y-Z R’

wherein R, R', R?, and R® are independently a hydrogen or a methyl group with the proviso that

CH,

at least one of R, R!, R%, and R? is not hydrogen, x is from 1 to 33, y is from 0 to 32, and z is
from O to 15, with the proviso that that x-y-z is equal to or greater than 2 and the number of N-H
bonds in (V) is greater than 0 and less than 8.

One embodiment of the present invention is a process to make a polymeric polyol
composition comprising the reaction product(s) of: (i) the polymeric amine composition
comprising one or more amine compound represented by the Structure II or Structure I'V or

Structure V described herein above and (ii) at least one epoxide compound having the structure

VI:
O >< VI
| RS

or at least one glycidyl ether compound having the structure VII:

OQ/\ o - R’ VII

[l

or a combination thereof; wherein R® is hydrogen, phenyl, cyclohexyl, or a C;—C;s linear or
branched alkyl and R is hydrogen, phenyl, a C; to Cg linear or branched alkyl-substituted
phenyl, or a C; to C;5 linear or branched alkyl.

-3



10

WO 2016/204981 PCT/US2016/035642

One embodiment of the present invention is a process to make a polyurethane polymer
by reaction of a mixture comprising: (A) a polymeric polyol formulation comprising the
polymeric polyol composition described herein above, (B) at least one organic isocyanate, (C)
optionally a blowing agent, and (D) optionally additives or auxiliary agents known per se for the
production of polyurethane polymers.

Another embodiment of the present invention is the process described herein above
wherein the reaction occurs in the presence of a blowing agent and the polyurethane polymer is

produced in the form of a polyurethane flexible foam.

DETAILED DESCRIPTION OF THE INVENTION

The present invention discloses a novel partially alkylated polyamine initiator
composition, herein after referred to as a tertiary amine composition, for the production of
polyether polyols and polyurethane polymers made therefrom.

Generally, the alkylated polyamine composition of the present invention can be made as
shown in Scheme 1.

Scheme 1

n+2 H,N-R’ - NH,

H;N-R’—(NH -R’),-NH-R’ - NH, I

alkylating agent
H, and catalyst

RRIN - (R’-NH),-(R’-NR#%), , - R’ — NR?R? IT

wherein R’ is a branched or linear C; to Ce alkyl group,

R, R', R? and R’ are independently a hydrogen or a C; to Cg linear or branched alkyl
group with the proviso that at least one of R, R', R?, and R is not hydrogen,

R* is a hydrogen or a C; to C linear or branched alkyl group,

x is from 1 to 33,

and
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y is from 0 to 32,

with the proviso that that x-y is equal to or greater than 1 and the number of N-H bonds

in (II) is greater than 0 and less than 8.

In a preferred embodiment of the present invention, the alkylated polyamine
composition can be made as shown in Schemes 2 and 3. The first step is to polymerize a
polyamine compound such as 1, 3-diamine propane (1, 3-DAP) to form a polyamine represented
by Structure II1.

5 Scheme 2

P e
N

n+l N i,

I

TN ,f»'\:{\ Py \//\lf\ NNy

HoM \ I \} 4 I

H H

The second step is to alkylate the polyamine with an alkylating agent, preferably
10 formaldehyde, to form a mixture of alkylated polyamine products. For example the reaction of
polymeric 1, 3-DAP with an alkylating agent, may yield a mixture of products represented by
Structure IV:

Scheme 3

/\/\
HMT/\/j\N . -
H ! H

l alkylating agent,

H,, and catalyst

| B “ “ i
R S S N
R A y <~ R}
RS y-z
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wherein R, R', R?, and R? are independently a hydrogen or a C; to Cg linear or branched

alkyl group with the proviso that at least one of R, R', R%, and R? is not hydrogen,

R*is a hydrogen or a C; to Cg linear or branched alkyl group,

R’ is a hydrogen or a C; to Cs linear or branched alkyl group,

x is from 1 to 33,

y is from O to 32,

and

z is from O to 15,

with the proviso that that x-y-z is equal to or greater than 2 and the number of N-H

bonds in (IV) is greater than ( and less than 8.

In addition to the reaction product(s) of the polyamine and alkylating agent the mixture
may further comprise some unreacted polyamine.

In one embodiment, the alkylating agent is formaldehyde and the resulting alkylated

polyamine is represented by Structure V:

N\Q/\/N Ng\(/\/l}é/\/“lg\/\/i’ M
R z y X-y-z R?

wherein R, R', R?, and R are independently a hydrogen or a methyl group with the

CHj

proviso that at least one of R, R!, R? and R®is not hydrogen,

x is from 1 to 33,

y is from O to 32,

and

z is from O to 15,

with the proviso that that x-y-z is equal to or greater than 2 and the number of N-H

bonds in (V) is greater than 0 and less than 8.

Methods to make polyamines are known, for example see USP 9,000,217 and US
Publication No. 2013/0231476, each is incorporated herein by reference in its entirety. The
polyamine of the present invention is made by subjecting a diamine compound that has at least
two non-tertiary amine groups that are separated from one another by a ternary or greater carbon
spacing (Cs or greater spacing) to a transamination reaction in the presence of a
hydrogen/dehydrogenation catalyst to obtain a mixture of linear high molecular weight
polyamine compounds having one or more nitrogen atoms (Scheme 1). To a minor extent,
branched and/or cyclic high molecular weight polyamine compounds may be produced as well.

Examples of suitable diamine compounds include 1,3-diaminopropane (1,3-DAP), 1,3-
-6-
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pentanediamine; 1,3-butanediamine; 2,2-dimethyl-1,3-propanediamine; 2,2-diethyl-1,3-
propanediamine; 1,3-diamino-2-phenylpropane; 2-(aminomethyl)-2-methyl-1,3-
propanediamine; combinations of these, and the like, 1,3-DAP is most preferred. Adjustment of
reaction conditions can customize the product mixture. Examples of other reaction conditions
that can be used to customize product compositions include the nature of the catalyst, the
concentration of catalyst on its catrier in the case of heterogencous catalysts, the physical form
of the catalyst, the pressure of the reaction, the concentration of H, during the reaction,
conversion, temperature, combinations of these, and/or the like.

Transamination may be carried out in a variety of ways. In accordance with a preferred
mode of practice, the reactants are combined and caused to react in a suitable reactor volume in
the presence of a suitable catalyst under temperature and pressure conditions effective to cause
the transamination reaction.

The methods of the invention can be practiced in any suitable reactor. These include batch
reactors, continuous fixed bed reactors, slurry bed reactors, fluidized bed reactors, catalytic
distillation reactors, combinations of these, and the like.

The catalyst material employed in the present invention comprises
hydrogenation/dehydrogenation catalysts. Useful catalysts are those based upon nickel (such as
Raney nickel and Urushibara nickel), rhenium, cobalt, copper, and mixtures thereof.
Particularly useful catalysts comprise nickel/rhenium and nickel/cobalt. A most preferred
catalyst comprises nickel (Ni) and rhenium (Re). In preferred embodiments in which a
heterogeneous catalyst incorporates nickel and rhenium, useful supports are comprised of
alumina-silica particles. Such catalysts and methods of making such heterogeneous catalysts on
such supports are further described in USP 8,293,676; 8,187,997; and 6,534,441, each is
incorporated herein by reference in its entirety.

The catalysts can be heterogeneous, homogeneous, or a combination of these may be
used. Heterogeneous catalysts are preferred. Often, heterogeneous catalysts comprise one or
more catalytic materials supported upon a suitable substrate. The substrate may be used in
various shapes or combinations such as, for example, powder, particle, pellet, granule,
extrudate, fiber, shell, honeycomb, plate, or the like. The particles can be regular in shape,
irregular, dendritic, dendrite-free, or the like. Preferred supports are particulate in nature or
powders. Suitable supports in the practice of the present invention include carbonaceous
materials, silicaceous materials (such as silica), metal compounds such as metal oxides,
combinations of these, and the like. Representative metal oxides include oxides of one or more
of magnesium, aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel,

coppet, zinc, gallium, germanium, strontium, yttrium, zirconium, niobium, molybdenum,
-7 -
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technetium, ruthenium, rhodium, palladium, silver, cadmium, indium, iron, tin, antimony,
barium, lanthanum, hafnium, thallium, tungsten, rhenium, osmium, iridium, and platinum.

The amount of catalyst used in forming a high molecular weight polyamine using
transamination is any amount which is effective in producing the desired acyclic polyamine.
For batch conditions, the quantity of catalyst may be in the range from about 0.1 to about 20
weight percent, preferably 1 to 15 weight percent, of catalyst per 100 parts by weight of
reactant(s) to form the desired triamine. In a continuous process, a typical strategy might
involve causing a flow of reactants to contact a bed of heterogeneous catalyst particles. In such
a case, the space velocity (usually expressed in units of gmol/ (kg catalyst/hr) can be adjusted to
balance factors such as production and selectivity.

The reaction mixture for transamination can be contacted with catalyst at any suitable
temperature(s) that produce the desired acyclic polyamine. Typically, the temperature is
maintained below about 350°C, preferably below 300°C. Preferred temperatures are in the
range from about 130°C to about 200°C for transamination. Below the preferred temperature
ranges, the conversion to acyclic polyamine may be too slow to be practical for commercial
scale production. Above the preferred temperature ranges, selectivity may be reduced to an
undue degree, increasing the yield of by-products. In some instances, such by-products may
have commercial value and be desirable as a consequence. In other instances, by-products
constitute impurities as a practical matter.

Similarly, the reaction mixture for transamination can be contacted with catalyst at any
suitable pressure(s) that promotes the reaction to produce the desired high molecular weight
polyamine. Preferably, the pressure is sufficient to maintain the reactor contents in a liquid state
as the reaction proceeds. In many instances, the pressure will vary as the reaction proceeds. For
instance, ammonia is a by-product of a typical transamination process. The production of
ammonia causes the pressure generally to increase as the reaction proceeds in pressure sealed
reactors. Ammonia and/or other pressure-increasing products can be removed from the reactor
in order to keep the pressure below a desired threshold. Typically, the pressure is at least 200
psi, preferably at least 1000 psi, and preferably less than 1500 psi. Within these guidelines, the
pressure is typically in the range from about 100 psi to 1500 psi, preferably 200 psi to 1500 psi,
more preferably 300 psi to 1000 psi. For transamination, pressures in the range of 400 psi to
about 1000 psi are preferred.

Catalytic reductive N-alkylation of amines to produce tertiary amines is well known, for
example see Underwood, Richard P. and Carr, Richard V. C., Reaction Pathways in the
Catalytic Reductive N-Methylation of Polyamines, Chemical Industries (Dekker), 82, (Catalysis

of Organic Reactions), 267 (2001); GB 1,305,258; and USP 5,105,013 which is incorporated
-8-



WO 2016/204981 PCT/US2016/035642

herein by reference in its entirety. Catalytic reductive N-alkylation is typically carried out by
reacting a primary or secondary amine with a C; to Cg linear or branched alkyl aldehyde,
preferably the alkyl aldehyde is C; or formaldehyde, and hydrogen in the presence of a metal
catalyst, preferably Pd, Pt, or Ni (Scheme 3).

The term formaldehyde as used herein is intended to include within its scope both
formaldehyde itself, and substances capable of decomposing to provide formaldehyde under the
reaction conditions employed, for example trioxane and para-formaldehyde. The formaldehyde
may be aqueous formalin or a formaldehyde solution in methanol. The formaldehyde
concentration may be from about 30 to about 60 percent. Preferably, about 35 to about 37
percent aqueous formalin is used. The quantity of formaldehyde that is used is less than
equimolar quantity as compared to the amount of reactive hydrogens on the amines. In order to
prepare the Structure V it is critical to leave unreacted NH or NH, functionality that are
available for the next step of alkoxylation with the oxides (i.e. propylene oxide) and subsequent
growth of the polyether to produce the desired polyamine centroid active polyols, preferably the
number of residual N-H bonds in (V) is greater than 0 and less than 8. The amount of
formaldehyde is determined by the total number of moles of NH groups in Structure I and then
adding only enough formaldehyde to react less than 100% of them.

The reaction is carried out in the presence of a reductive methylation catalyst, many of
which are known. Such catalysts generally comprise Ni, Pd, Co, Pt, or Cu. In the process of this
invention, the preferred catalysts are those comprising nickel, cobalt or copper, and most
preferred are nickel catalysts such as Raney Nickel. They may be employed as fixed bed
catalysts or used in powdered form, whichever is convenient for the reactor and equipment
available. In one embodiment, nickel catalysts are those which are activated by relatively low
temperatures, for example 25°C to 120°C.

The ratio of catalyst to amine will generally depend on the nature of the amine, its
molecular weight and the catalyst employed, but is preferably within the range of about 0.1 to
about 30 g, more preferably about 4.0 to about 8.0 g of catalyst/mole of amine. A lower catalyst
concentration tends to reduce the hydrogenation rate to unacceptable levels, and thus lower the
conversion. Higher catalyst concentrations increase the rate of hydrogenolysis, but tend to
result in an increase in temperature, which results in unwanted side-reactions being favored, and
thus an increased production of by-products.

The reaction is typically carried out at a temperature equal to or greater than 25°C,
preferably equal to or greater than 50°C, and more preferably equal to or greater than 75°C. The
reaction is typically carried out at a temperature equal to or less than 150°C, preferably equal to

or less than 120°C, and more preferably equal to or less than 100°C.
-9.
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The reaction is typically carried out at a pressure of equal to or greater than 1 bar,
preferably equal to or greater than 2 bar, and more preferably equal to or greater than 5 bar. The
reaction is typically carried out at a pressure of equal to or less than 50 bar, preferably equal to
or less than 20 bar, and more preferably equal to or less than 10 bar.

In one embodiment the reaction is carried out in two steps, in the first step the
formaldehyde is added at a lower temperature and pressure, for example10°C to 50°C and 1 to 2
bar, and in the second step the hydrogenation is done at a higher temperature and pressure, for
example 100°C to 150°C and 30 to 70 bar.

It is particularly preferred in the method of the invention that the reaction is carried out
in the presence of a volatile organic solvent. The volatile organic solvent should be one in which
all the reactants are soluble and one which can readily be removed from the mixture at the end
of the reductive methylation reaction. Suitable solvents are those having a boiling point of
about 120°C or less and include aliphatic alcohols. Especially preferred are the aliphatic
primary alcohols which include, for example, methanol, ethanol, propan-1-ol, n-butanol, or
mixtures thereof. Such solvents are preferred, because of the relatively high solubility of
hydrogen in them, as compared with water.

The ratio of the volatile organic solvent to the amine is preferably 0.75:1 to 1.5:1 by
weight, more preferably from 1.0:1 to 1.4:1 by weight, most preferably about 1.2:1. The use of a
volatile solvent enables the solvent to be readily removed by volatilization, to enable the
product to be recovered.

The partially alkylated amine compounds prepared comprise a mixture of primary and
secondary and tertiary amines and linear and cyclic alkylated polyamines. For example, when

polymeric 1, 3-DAP is alkylated the product is represented by Structure IV:

l A~ I
R/ W Y z Y . \R3

wherein R, R!, R%, and R? are independently a hydrogen or a C; to Cg linear or branched
alkyl group, preferably C,, with the proviso that at least one of R, R', R*, and R* is not
hydrogen,

R*is a hydrogen or a C, to Cg linear or branched alkyl group, preferably C,,

R is a hydrogen or a C, to Cs linear or branched alkyl group, preferably H,

-10 -
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x is from 1 to 33,

y is from O to 32,

and

z is from O to 15,

with the proviso that x-y-z is equal to or greater than 2 and the number of N-H bonds in

(IV) is greater than Q and less than 8.

The resulting partially alkylated polyamine compound is suitable for use as a partially
alkylated polyamine initiator composition of the present invention. Said partially alkylated
polyamine initiator composition may be used to prepare polymeric polyol compositions
comprising polyol compounds. The partially alkylated polyamine initiator composition may be
used as produced to prepare a polymeric polyol composition, in other words, without any
purification or isolation of specific reaction products and/or recovery of unreacted starting
materials (e.g., polyamine and/or alkylating agent). Alternatively, unreacted starting materials
may be removed from the partially alkylated polyamine initiator composition, and/or specific
reaction products may be isolated from the reaction product mixture. If specific reaction
products are desired, they may be isolated and/or further purified, for example by distillation or
extraction.

The partially alkylated polyamine initiator composition of the present invention
preferably has an average weight average molecular weight (Mw) equal to or less than 5,000,
preferably equal to or less than 2,500, more preferably equal to or less than 1,000, and even
more preferably equal to or less than 500. The above initiator composition preferably has a Mw
equal to or greater than 100, preferably equal to or greater than 200, and more preferably equal
to or greater than 300. The Mw data in accordance with this disclosure can be determined by
Gel Permeation Chromatography.

The above initiator composition preferably has an average hydroxyl number (reported as
mg KOH /g) equal to or greater than 30, preferably equal to or greater than 40, more preferably
equal to or greater than 50, and even more preferably equal to or greater than 60. The above
initiator composition preferably has an average hydroxyl number equal to or less than 90,
preferably equal to or less than 80, and more preferably equal to or less than 70. The hydroxyl
number is measured by ASTM D4274 D.

The partially alkylated polyamine initiator composition is useful to produce a novel
polymeric polyol composition comprising polymeric polyol compounds. A first polymeric
polymer composition is the reaction product(s) of an initiator composition as described herein

above with at least one epoxide compound having the structure VI:

- 11 -
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>< VI
| RS

at least one glycidyl ether compound having the structure VII:

OQ/\ o - R7 VII

[l

or

or a combination thereof;

wherein R® is hydrogen, phenyl, cyclohexyl, or a C,—C g linear or branched alkyl

and

R’ is hydrogen, phenyl, a C; to Cg linear or branched alkyl-substituted phenyl, or a C; to Cyg
linear or branched alkyl.

In structure VI, R® can be hydrogen, phenyl, cyclohexyl, or a C;-C;3 linear or branched
alkyl. In accordance with one aspect of the present invention, R® is methyl, ethyl, propyl, butyl,
pentyl, hexyl, heptyl, 2-ethylhexyl, octyl, decyl, dodecyl, tetradecyl, hexadecyl, or octadecyl. In
another aspect, R® can be hydrogen, phenyl, or cyclohexyl. In yet another aspect, R® is
hydrogen, methyl, or phenyl. In this aspect, where R® is hydrogen, methyl, butyl, or phenyl, the
epoxide compounds of structure VI are, respectively, ethylene oxide, propylene oxide, butylene
oxide, or styrene oxide.

In structure VII, R can be hydrogen, phenyl, a C; to Cg linear or branched alkyl-
substituted phenyl, or a C; to Cyg linear or branched alkyl. For instance, R’ can be hydrogen,
phenyl, or a C, to Cg linear or branched alkyl-substituted phenyl, in one aspect of this invention.
R’ is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, 2-ethylhexyl, octyl, decyl, dodecyl,
tetradecyl, hexadecyl, or octadecyl, in another aspect of this invention. Yet, R’ can be phenyl or
butyl-substituted phenyl in still another aspect of this invention.

The above resulting polymeric polyol composition preferably has a Mw equal to or less
than 10,000, preferably equal to or less than 8,000, and even more preferably equal to or less
than 6,000. The above resulting polymeric polyol composition preferably have a Mw equal to
or greater than 500, preferably equal to or greater than 2,500, and more preferably equal to or
greater than 5,000.

According to one aspect of the present invention, the polymeric polyol composition

disclosed herein above has a hydroxyl number of equal to or less than 90 mg KOH/g, preferably
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equal to or less than 80, more preferably equal to or less than 70, more preferably equal to or
less than 60, and even more preferably equal to or less than 50 mg KOH/g. The resulting
polymeric polyol composition disclosed herein above have a hydroxyl number equal to or
greater than 20 mg KOH/g, preferably equal to or greater than 30, more preferably equal to or
greater than 40 mg KOH/g. Hydroxyl number is determined according to ASTM D 4274.

In another aspect of the present invention, the herein above polymeric polyol
composition has an average functionality (F) equal to or less than 12, preferably equal to or less
than 10, more preferably equal to or less than 8, more preferably equal to or less than 6, and
even more preferably equal to or less than 4. Preferably, the above polymeric polyol
composition has an average functionality equal to or greater than 1, and more preferably equal
to or greater than 3.

The polymeric polyol compositions of this invention also can be characterized by
nitrogen content. For instance, amine values of polymeric polyol compositions disclosed herein
above are equal to or less than 3 mg/g KOH/g, preferably equal to or less than 2, more
preferably equal to or less than 1, more preferably equal to or less than (0.5 mg KOH/g.
Nitrogen content is determined according to ASTM D 6979 and reported as percent Nitrogen.

Making polymeric polyol compositions is well known in the art; any suitable process to
make polymeric polyol compositions from initiator II above is acceptable. For instance,
initiator II can be mixed with a catalyst and this mixture is subsequently reacted with ethylene
oxide or propylene oxide at a temperature in a range from about 100°C to 160°C. A traditional
catalyst used in this reaction, and known to those of skill in the art, is KOH. Other alkaline
hydroxide or hydroxide hydrate catalysts based on Ba (barium) or Sr (strontium) can be
employed as the alkoxylation catalyst; producing products with less unsaturation than those
produced using the traditional KOH catalyst. Processes for producing polyols using Ba or Sr
catalysts are described in USP 5,070,125; 5,010,187; and 5,114,619, the disclosures of which
are incorporated by reference in their entirety. High levels of unsaturation, especially with
polyols of high equivalent weight, act as chain terminators in polyurethane foam production,
giving rise to, for example, foams with poor compressive strength, poor tensile strength,
reduced reactivity, and reduced aging performance under humid conditions. The Ba and Sr
catalysts also provide improved primary hydroxyl capping efficiency for the same weight
percentage of ethylene oxide used. When using Ba or Sr catalysts, water can be added during
the reaction of the ethylene oxide or propylene oxide with the initiator. This water addition can
reduce the amount of unsaturation in the final polyol product. Another catalyst that can be used
to produce polyols is a double metal cyanide (DMC) catalyst, which may provide a different

molecular weight distribution of the polymeric polyol composition from that achieved using
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KOH. Examples of double metal cyanide catalysts are provided in USP 5,470,813; 5,589,431;
and 6,008,263, the disclosures of which are incorporated herein by reference in their entirety.

We have found that a polymeric polyol composition comprising one or more polymeric
polyol composition based on the partially alkylated polyamine initiator composition of the
present invention is particularly useful for making polyurethane polymers, especially
polyurethane foam polymers having good processing, good mechanical properties, good
physical properties, and having low emission products. Further, we have found that a polymeric
polyol formulation comprising one or more first polymeric polyol composition based on the
partially alkylated polyamine initiator composition of the present invention and one or more
additional polymeric polyol composition based on a second initiator, different from the first
polyol composition based on the partially alkylated polyamine initiator composition of the
present invention, is particularly useful for making polyurethane polymers, especially
polyurethane foam polymers having good mechanical properties, good physical properties, and
having low emission products.

In a polyol formulation, wherein more than one polymeric polyol composition is used,
the weight ratio of the first polymeric polyol composition to the at least one second polyol can
range from 50:1 to 1:5,000. In other aspects, the weight ratio of the first polymeric polyol
composition to the at least one second polyol in the polyol formulation can range from 10:1 to
1:1,000, from 5:1 to 1:500, or from 4:1 to 1:250. Yet, in other aspect, the weight ratio of the
first polymeric polyol composition to the at least one second polyol is in a range from 3:1 to
1:100, or from 2:1 to 1:50.

While compositions and methods are described in terms of "comprising" various
components or steps, the compositions and methods can also "consist essentially of" or "consist
of" the various components or steps.

Generally, polyurethane foam catalyst systems comprise compounds which accelerate
both the blowing (water-isocyanate) and gelling (polyol-isocyanate) reactions. It is beneficial to
balance these reactions in order to produce quality foams with acceptable properties.
Compositions and formulations of the present invention can comprise a single compound which
accelerates, but keeps in balance, both the blowing and gelling reactions. Alternatively, the
compositions can comprise at least one catalyst that predominantly accelerates the blowing
reaction (a blowing catalyst), or at least one catalyst that predominantly accelerates the gelling
reaction (a gelling catalyst), or a combination thereof. As described herein, a blowing catalyst
is a catalyst that predominantly accelerates the blowing reaction, but can also, in certain
circumstances, accelerate the gelling reaction, albeit to a lesser degree. Similarly, a gelling

catalyst is a catalyst that predominantly accelerates the gelling reaction, but can also, in certain
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circumstances, accelerate the blowing reaction, albeit to a lesser degree. Surprisingly, we have
found that a polymeric polyol formulation comprising one or more polymeric polyol
composition based on the partially alkylated polyamine initiator composition of the present
invention provides a good blowing:gelling ratio such that polyurethane polymers made form
said mixture of polymeric polyols, especially polyurethane foam polymers, have very good
mechanical properties and physical properties and demonstrate low levels of emission products.

The presence of multiple tertiary amine groups in the polymeric polyol compositions of
the present invention can either reduce or eliminate the need to include a conventional fugitive
urethane catalyst when formulating a polyurethane polymer or polyurethane polymer foam.
However, in other aspects of the present invention, conventional urethane catalysts can be
employed in compositions or formulations along with such polymeric polyol compositions.

In addition to the polymeric polyol compositions disclosed herein above, one or more
additional polyol may be used in the polymeric polyol formulation for use in making a
polyurethane polymer of the invention. As used herein the term polyols are those materials
having at least one group containing an active hydrogen atom capable of undergoing reaction
with an isocyanate. Preferred among such compounds are materials having at least two
hydroxyls, primary or secondary, or at least two amines, primary or secondary, carboxylic acid,
or thiol groups per molecule. Compounds having at least two hydroxyl groups or at least two
amine groups per molecule are especially preferred due to their desirable reactivity with
polyisocyanates.

Suitable polyols that may be used to produce polyurethane foams of the present
invention are well known in the art and include those described herein and any other
commercially available polyol and/or SAN, PIPA or PHD copolymer polyols. Such polyols are
described in “Polyurethane Handbook”, by G. Oertel, Hanser publishers. Mixtures of one or
more polyols and/or one or more copolymer polyols may also be used to produce polyurethane
products according to the present invention.

Representative polyols include polyether polyols, polyester polyols, polyhydroxy-
terminated acetal resins, hydroxyl-terminated amines and polyamines. Natural oil based polyols
can also be used. Examples of these and other suitable isocyanate-reactive materials are
described more fully in USP 4,394,491. Alternative polyols that may be used include
polyalkylene carbonate-based polyols and polyphosphate-based polyols. Preferred are polyols
prepared by adding an alkylene oxide, such as ethylene oxide, propylene oxide, butylene oxide
or a combination thereof, to an initiator or blend of initiators to give a final polyol a nominal
functionality having from 2 to 8, preferably 2 to 6 active more preferably 2.1 to 4 active

hydrogen atoms. Catalysis for this polymerization can be either anionic or cationic, with
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catalysts such as KOH, CsOH, boron trifluoride, or a double metal cyanide complex (DMC)
catalyst such as zinc hexacyanocobaltate, or quaternary phosphazenium compounds. In the case
of alkaline catalysts, these are eliminated from the polyol at the end of production by a proper
finishing step, such as coalescence, magnesium silicate (magsil) separation, ion exchange or less
preferably by acid neutralization. In the case of DMC catalyst produced polyols, the finishing
step can be avoided.

The polyols or blends thereof employed depend upon the end use of the polyurethane
foam to be produced. The hydroxyl number and molecular weight of the polyol or polyols
employed can vary accordingly over a wide range. In general, the hydroxyl number of the
polyols employed for use in producing a flexible or visco-elastic foam may range from 15 to
300.

In the production of a flexible polyurethane foam, the polyol is preferably a polyether
polyol and/or a polyester polyol or a polyetherester polyol. The polyol generally has an average
functionality ranging from 2 to 5, preferably 2 to 4, and an average hydroxyl number ranging
from 15 to 300 mg KOH/g, preferably from 20 to 200, and more preferably from 20 to 70mg
KOH/g. As a further refinement, the specific foam application will likewise influence the
choice of base polyol. As an example, for molded foam, the hydroxyl number of the base
polyol may be on the order of 20 to 60 with ethylene oxide (EO) capping, and for slabstock
foams the hydroxyl number may be on the order of 25 to 75 and is either mixed feed EO/PO
(propylene oxide) or is only slightly capped with EO or is 100 percent PO based.

In the production of a visco-elastic foam, polyols having a functionality as for flexible
foam can be used, however; the polyol or polyol blend will preferably contain polyols having a
hydroxyl number from 150 to 300 mg KOH/g. For the production of semi-rigid foams or
microcellular elastomers, it is preferred to use a trifunctional polyol with a hydroxyl number of
30 to 80.

The isocyanates which may be used in the present invention include aliphatic,
cycloaliphatic, arylaliphatic and aromatic isocyanates. For the production of slabstock foam,
aromatic isocyanates are preferred.

Examples of suitable aromatic isocyanates include the 4,4'-, 2,4 and 2,2'-isomers of
diphenylmethane diisocyante (MDI), blends thereof and polymeric and monomeric MDI
blends toluene-2,4- and 2,6-diisocyanates (TDI), m- and p-phenylenediisocyanate,
chlorophenylene-2,4-diisocyanate, diphenylene-4,4'-diisocyanate, 4,4'-diisocyanate-3,3'-
dimehtyldiphenyl,
3-methyldiphenyl-methane-4,4'-diisocyanate and diphenyletherdiisocyanate and

2,4,6-triisocyanatotoluene and 2,4,4'-triisocyanatodiphenylether.
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Mixtures of isocyanates may be used, such as the commercially available mixtures of
2,4- and 2,6-isomers of toluene diisocyantes. A crude polyisocyanate may also be used in the
practice of this invention, such as crude toluene diisocyanate obtained by the phosgenation of a
mixture of toluene diamine or the crude diphenylmethane diisocyanate obtained by the
phosgenation of crude methylene diphenylamine. TDI/MDI blends may also be used. MDI or
TDI based prepolymers can also be used, made either with a polymeric polyol composition
comprising initiator (I) and/or , a polymeric polyol composition comprising initiator (XII) or
any other polyol as described heretofore. Isocyanate-terminated prepolymers are prepared by
reacting an excess of polyisocyanate with polyols, including aminated polyols or
imines/enamines thereof, or polyamines.

Examples of aliphatic polyisocyanates include ethylene diisocyanate, 1,6-
hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), cyclohexane 1,4-
diisocyanate,
4,4'-dicyclohexylmethane diisocyanate (H;;MDI), saturated analogues of the above mentioned
aromatic isocyanates and mixtures thereof.

For the production of flexible foams, the preferred polyisocyanates are the toluene-2.4-
and 2,6-diisocyanates or MDI or combinations of TDI/MDI or prepolymers made therefrom.

For producing a polyurethane-based foam, a blowing agent is generally required. In the
production of flexible polyurethane foams, water is preferred as the blowing agent. The amount
of water is preferably in the range of from 0.5 to 10 parts by weight, more preferably from 2 to
7 parts by weight based on 100 parts by weight of the polyol and even more preferably the
water is between 2 and 5 parts per hundred parts polyol. In some applications the water is
preferably present in 3 parts by weight of the polyol. In some preferred embodiment, the water
is present at of 6 parts or less by weight of the polyol. When water is present at less than 3
parts, a small conventional amine catalyst can be used to enhance the reactivity of the system.
The amount of conventional amine catalyst included in such formulations is generally from 0.01
to 0.1 weight percent of the polyol. To further reduce the level of volatile amine, such a catalyst
is used as less than 0.05 weight percent of the polyol. Although not preferred, other blowing
agents can be liquid or gaseous carbon dioxide, methylene chloride, acetone, pentane,
isopentane, cyclopentane, methylal or dimethoxymethane, dimethylcarbonate. Use of
artificially reduced, or increased, atmospheric pressure, such as disclosed in US 5,194,453, or
frothing, can also be contemplated with the present invention.

In addition to the foregoing critical components, it is often desirable to employ certain

other ingredients in preparing polyurethane polymers. Among these additional ingredients are
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catalysts, surfactants, preservatives, flame retardants, colorants, antioxidants, reinforcing agents,
stabilizers and fillers, recycled polyurethane powder.

One or more catalysts for the reaction of the polyol with the polyisocyanate can be used.
Any suitable urethane catalyst may be used, including tertiary amine compounds, amines with
isocyanate reactive groups and organometallic compounds. Preferably the reaction is carried
out in the absence of an amine or an organometallic catalyst or a reduced amount as described
above. Exemplary tertiary amine catalysts include triethylenediamine; N-methylmorpholine;
N,N-dimethylcyclohexylamine; pentamethyldicthylenetriamine; tetramethylethylenediamine;
bis (dimethylaminoethyl)ether; N-ethylmorpholine; dimethylethanolamine; N-cocomorpholine;
1-methyl-4-dimethylaminoethyl-piperazine; 3-methoxy-N-dimethylpropylamine;
N,N-dimethyl-N',N'-dimethyl isopropylpropylenediamine; N,N-diethyl-3-diethylamino-
propylamine and dimethylbenzylamine. Exemplary organometallic catalysts include
organomercury, organolead, organoferric and organotin catalysts, with organotin catalysts being
preferred among these. Suitable tin catalysts include stannous chloride, tin salts of carboxylic
acids such as dibutyltin di-laurate, and stannous octoate, as well as other organometallic
compounds such as are disclosed in U.S. Patent 2,846,408. A catalyst for the trimerization of
polyisocyanates, resulting in a polyisocyanurate, such as an alkali metal alkoxide may also
optionally be employed herein. The amount of amine catalysts can vary from 0.02 to 5 percent
in the formulation or organometallic catalysts from 0.001 to 1 percent in the formulation can be
used.

In one preferred embodiment of the present invention, the foams are produced with a
catalyst package that includes a tin catalyst. Preferably such formulations do not contain a
conventional amine catalyst.

In making polyurethane foam, it is generally preferred to employ an amount of a
surfactant to stabilize the foaming reaction mixture until it cures. Such surfactants
advantageously comprise a liquid or solid organosilicone surfactant. Other surfactants include
polyethylene glycol ethers of long-chain alcohols, tertiary amine or alkanolamine salts of long-
chain alkyl acid sulfate esters, alkyl sulfonic esters and alkyl arylsulfonic acids. Such
surfactants are employed in amounts sufficient to stabilize the foaming reaction mixture against
collapse and the formation of large, uneven cells. Typically, 0.2 to 3 parts of the surfactant per
100 parts by weight total polyol (b) are sufficient for this purpose.

A crosslinking agent or a chain extender may be added, if necessary. The crosslinking
agent or the chain extender includes low-molecular weight polyhydric alcohols such as ethylene
glycol, diethylene glycol, 1,4-butanediol, and glycerin; low-molecular weight amine polyol such

as diethanolamine and tricthanolamine; polyamines such as ethylenediamine, xlylenediamine,
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and methylene-bis(o-chloroaniline). The use of such crosslinking agents or chain extenders is
known in the art as disclosed in U.S. Patents 4,863,979, 4,883,825 and 4,963,399 and EP
549,120.

When preparing foams for use in transportation, a flame retardant is sometimes included
as an additive. Any known liquid or solid flame retardant can be used with the autocatalytic
polyols of the present invention. Generally such flame retardant agents are halogen-substituted
phosphates and inorganic flame proofing agents. Common halogen-substituted phosphates are
tricresyl phosphate, tris(1,3-dichloropropyl phosphate, tris(2,3-dibromopropyl) phosphate and
tetrakis (2-chloroethyl)ethylene diphosphate. Inorganic flame retardants include red
phosphorous, aluminum oxide hydrate, antimony trioxide, ammonium sulfate, expandable
graphite, urea or melamine cyanurate or mixtures of at least two flame retardants. In general,
when present, flame retardants are added at a level of from 5 to 50 parts by weight, preferable
from 5 to 25 parts by weight of the flame retardant per 100 parts per weight of the total polyol
present.

The particular polyol, polyol mixture, and polyol amount used in the polyurethane foam
forming composition can be chosen based on the factors such as the desired polyurethane foam
properties and/or the particular end use of the foam product. Properties of the polyol such as
molecular weight or hydroxyl number can be chosen to provide foam characteristics selected
from: low density, high density foam, conventional, high resilient, hot molding, cold molding,
flexible, and rigid, and desired combinations thereof. For many applications or foam properties,
the hydroxyl number of the polyol is in the range of about 15 to about 800.

Compositions for the production of flexible polyurethane foams typically include a
polyether polyol and/or a polyester polyol. The polyol generally has an average functionality
ranging from 2 to 5, preferably 2 to 4, and an average hydroxyl number ranging from 20 to 100
mg KOH/g, preferably from 20 to 75 mgKOH/g (see, for example, USP 7,361,695 which is
incorporated herein by reference in its entirety).

For molded foam, the hydroxyl number of the base polyol can be in the range of about
20 to about 60 with ethylene oxide (EO) capping, and for slabstock foams the hydroxyl number
can be in the range of about 25 to about 75 (see, for example, USP 7,361,695 which is
incorporated herein by reference in its entirety).

Processes for producing polyurethane foam products are well known in the art. In
general components of the polyurethane-forming reaction mixture can be mixed together in any
convenient manner, for example by using any of the mixing equipment described in the prior art

such as in Polyurethane Handbook, by G. Oertel, Hanser publisher.
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The polyurethane products can be produced continuously or discontinuously, by
injection, pouring, spraying, casting, calendering, etc. Foams can be made under free rise or
molded conditions, at atmospheric pressure, reduced or increased air pressure, with or without
release agents, in-mold coating, or with any inserts or skin put in the mold. Flexible molded
foams can be mono- or dual-hardness.

For example, a polyurethane polymer of the present invention may be made by the
reaction of a mixture comprising: a polymeric polyol formulation comprising: a polymeric
polyol composition comprising initiator II; at least one organic isocyanate; optionally a blowing
agent; and optionally additives or auxiliary agents known per se for the production of
polyurethane polymers for example, catalysts, surfactants, preservatives, flame retardants,

colorants, antioxidants, reinforcing agents, stabilizers, fillers, and recycled polyurethane powder

Slabstock foam is conveniently prepared by mixing the foam ingredients and dispensing
them into a trough or other region where the reaction mixture reacts, rises freely against the
atmosphere (sometimes under a film or other flexible covering) and cures. In common
commercial scale slabstock foam production, the foam ingredients (or various mixtures thereof)
are pumped independently to a mixing head where they are mixed and dispensed onto a
conveyor that is lined with paper or plastic. Foaming and curing occurs on the conveyor to
form a foam bun. The resulting foams are typically from about from 10 kg/m’ to a maximum of
80 kg/m’. A preferred range is from 10 kg/m’ to 70 kg/m’ and more preferably from 10 kg/m’
to 60 kg/m® in density. In an even more preferred embodiment the slabstock foam has a
density of 40 kg/m’ or less.

A preferred slabstock foam formulation contains from 3 to 6, preferably 4 to 5 parts by
weight water are used per 100 parts by weight high equivalent weight polyol at atmospheric
pressure. At reduced or increased pressure these levels are adjusted accordingly to obtain
targeted densities, i.e., reduced pressure will generally decrease the density.

Polyurethane foams produced using polymeric polyol compositions of the invention can
be used in applications known in the industry. For example, flexible, semi-flexible foams and
find use in applications such as vehicle applications such as seats, sun visors, armrests, door
panels, noise and heat insulation parts, dashboards, or instrument panels. Exemplary placement
of the foams includes locations such as under the carpet or in other parts of the car interior or in
the engine compartment. Foam of the invention can also be used in many domestic applications
such as shoe soles, cloth interliners, appliance, furniture, and bedding.

The polyurethane foams of the present invention may optionally be characterized by one

or more foam properties, including, but not limited to density, indentation force deflection
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(IFD), sag factor, recovery ratio, guide factor, compression load deflection (CLD), percent
compression set, tensile strength, elongation, aging tests, and tear strength.

Density is weight per unit volume (weight/volume) and typically expressed as 1bs/ft3
(pcf) or g/L. Exemplary densities are in the range of about 20 g/L to about 80 g/L, or more
specifically in the range of about 25 g/L to about 32 g/L..

Compression force deflection (CFD), such as measured by the ISO 3386/1 standard, is a
testing standard designed to measure the compression stress/strain (load divided by specimen
surface area at a certain compression percentage) characteristic of foam. CFD is also a measure
of firmness and is expressed in pounds per square inch (psi), at a given percentage deflection.
Exemplary densities are in the range of about 20 g/L to about 80 g/L, or more specifically in the
range of about 25 g/L to about 32 g/L..

Percent compression set (CS), such as measured by the ISO 1856 standard, is a measure
of the permanent deformation of a foam after it has been compressed between two metal plates
for a controlled time period and temperature condition. The standard conditions are 22 hours at
70°C (158°F). Exemplary compression set values are in the range of about 1 to about 20, or
more specifically in the range of about 5 to about 7.

Tensile properties is a measure according to ISO 1798 and tensile strength is the amount
of force required to break an area of foam as it is pulled apart, and is generally expressed in
pounds per square inch (psi). Foam compositions can be prepared to provide foam with a
desired tensile strength, or a tensile strength within a desired range.

Elongation, such as measured by the ISO 1798 standard, is a measure of the extent to
which the foam can be stretched before it breaks and is expressed as a percentage of its original
length. Elongation is measured at the same time, as tensile strength is determined; therefore, the
sample size is the same. Exemplary elongation values are in the range of about 50 to about 200,
or more specifically in the range of about 110 to about 130.

Tear strength, such as measured by the ASTM D3574 standard, is a measure of the force
required to continue a tear in foam after a split has been started and is expressed in pounds per
linear inch (pli). Exemplary tear strengths are in the range of about 50 to about 350, or more
specifically in the range of about 195 to about 230.

Emissions Measurements are done following VDA 278 (Thermal Desorption Analysis
of Organic Emissions for the Characterization of Non-Metallic Materials for Automobiles)
official protocol: - VOC value: volatile organic compounds (90°C, 30 min); Emission limits
depend on car manufacturer, e.g., Daimler VOC < 100 pg/g following VDA 278 testing

protocol.
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The following examples are given to illustrate the invention and should not be
interpreted as limiting in anyway. Unless stated otherwise, all parts and percentages are given

by weight.

EXPERIMENTAL

Preparation of Oligomeric Diaminopropane (DAPO).

1,3-diaminopropane (DAP, available from BASF Corp.) is reacted over a heterogeneous
catalyst in a continuous packed bed reactor to form higher molecular weight oligomers of DAP.
Examples of higher molecular weight oligomers include 1,7-diamino-4-azaheptane hereafter
referred to as dipropylenetriamine (DPTA or Structure [ where x is 0) and 1,11-diamino-4,8-
diazaundecane hereafter referred to as tripropylenetetramine (TPTA or Structure I where x is 1).
Structure I where x is 2 to 4 and higher is herein after referred to as higher molecular weight
(Mw) oligomers.

The catalyst used is a Ni/Re 6.8/1.8 weight percent on an Al,O4/Si0,, 80:20, 1/16 inch
extrudate, surface area about 153 my/g. The reaction is run in a 1 inch (O.D.) by 8 foot packed
bed reactor. The reactor bed is made of 1 inch seamless tubing (1 inch outside diameter, 0.095
in wall thickness). The length of the reactor tube filled with 400g catalyst is approximately 8
feet. The reactor tube is incased in a 1.5 inch diameter Swagelok tubing through which heat
transfer fluid is pumped via a standard laboratory heating bath. This allows for nearly
isothermal operation of the reactor tube. A multipoint thermocouple inside the tube reactor bed
is used for temperature monitoring. Reaction pressure is monitored at the inlet and outlet of the
reactor tube. The DAP (~99% pure) feed material is pumped via a 500 ml syringe pump
through a flow meter and into the bottom of the reactor. Just prior to the reactor tube inlet
(bottom), the hydrogen gas is introduced to the liquid DAP stream. Reaction pressure is varied
from 200 to 1000 psig with a typical pressure ranging from 600 to 800 psig. At the reactor
outlet, the pressure is let down to approximately 150 to 200 psi before sending the product mix
to an intermediate tank. There is a sampling system that allows for a timed sample to be taken
of the product stream. The sample time is dependent on the feed flow rate, but routinely
samples are taken in the range of 15 to 30 minutes to collect 40 to 60 g liquid product sample.
The sampling system consists of a stainless reservoir to collect DAP reaction mixture, followed
by a small scrubber, and a wet test meter. This allows for quantification of the feed flow,
ammonia generation, and hydrogen flow during sampling. The liquid product mixture (NH3 and
H, free) is analyzed by gas chromatography & liquid chromatography for quantification of the

DAP oligomers. The reaction is run at various operating conditions to achieve selectivity to
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higher DAP oligomers. Error! Reference source not found. includes four different operating
conditions and the corresponding GC analysis of the product mix collected from the continuous

reactor.

Table 1
Example 1 2 3 4
Temp (°C) 129 140 128.6 126.6
Pressure (psig) 746 800 190 812
DAP Flow (ml/min) 2.4 5 5 15
H, Flow (SLPH) 9.8 9.6 9.6 10.2
Product wt%
DAP 6.93 10.18 17.85 78.23
DPTA 16.6 18.93 32.88 19.88
TPTA 17.13 18.8 22.62 3.06
Higher Mw Oligomers 59.7 52.08 26.64 0
DAP Conversion (%) 93.06 89.8 82.11 21.62

The product mix from the reactor is further refined to remove un-reacted DAP. A
distillation column (2 inch by 6 foot) is used for the refining of the 1,3-diaminopropane
oligomers. 0.25” inch ceramic INTALOX™ saddles are used as column packing. The 11 liter
reboiler still pot is heated by a heating bath that is capable of delivering 250°C. The system had
a vacuum capability of 0.1 to 760 mmHg. The overheads are condensed by a double coil
condenser capable of heating or cooling (-25 to 150°C). The distillation unit is equipped with a
process control system for data collection and/or control. A typical distillation feed
composition is shown in Error! Reference source not found..

High temperature (>250°C), low pressure (full vacuum to 10 mmHg) distillation conditions
are required to remove the light boilers (1,3-DAP and x is O and higher) from the higher

molecular weight amines.
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Table 2
Min wt% Max wt%
DAP 12 29
DPTA 21 31
TPTA 18 20
Higher Oligomers 20 46

Error! Reference source not found. shows distillation results for a typical distillation

batch with reboiler temperature up to 250°C and vacuum of about 1 mmHg (~ 10 mmHg

pressure drops).

Table 3
Min wt% Max wt%
DAP 0.0 0.01
DPTA 0.04 0.05
TPTA 8.2 12.4
Higher Oligomers 88 92

Preparation of Partially Methylated Diaminopropane Oligomer (PMDAPO).

Oligomeric Diaminopropanes are characterized by electrospray ionization (ESI) in

combination with liquid chromatography and mass spectroscopy (LC-MS). This is known as

ESI/LC/MS and is a standard means of characterizing materials such as this and is well know to
anyone skilled in this type of analytical procedure. LC-MS methodologies are mainly used for
semi-volatile and non-volatile compounds and generally couple a gradient reversed-phase
separation with MS detection using electrospray ionization (ESI) in both positive and negative
ion modes.

Twenty five grams of water wet Raney Ni 5887-200 is transferred into a Robinson-
Mahoney (RM) catalyst basket and quickly assembled into the 1 liter reactor. The reactor is
pressurized and then vented three times to 500 psia with nitrogen and then another three times

with hydrogen and drained any water out of the reactor with house nitrogen. The catalyst is
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washed with 300g of n-butanol four times at 80°C and 1000 rpm. The catalyst is heated to
180°C under 500 psia of hydrogen pressure overnight prior to using in the methylation reaction.

225g of DAPO is pre-mixed with 125g of n-butanol. One hundred grams of n-butanol
is used to flush the lines out prior to the addition of formaldehyde. Three hydrogen
pressurization and venting cycles are completed prior to addition of formaldehyde. An
operational objective is to maintain the temperature below 25°C during the addition of
formaldehyde. Hydrogen flow is set to 100 scem through the shot tube and the reactor set in
pressure control mode at 15 psia. The 217g of 37 wt % formaldehyde in water is pumped
through the 500 mL shot tube. The feed addition pump and transfer lines are flushed with 25¢g
of n-butanol. An additional 75g of n-butanol is added to the process for a total of 325g of n-
butanol after the formaldehyde is added. Time zero is established at the time the aldehyde
addition commenced. The mixture is heated to 125°C at 750 psia hydrogen pressure and held
for 24 hours. The temperature is then increased to 150°C and held for another 24 hours at
which time no additional hydrogen uptake is observed. The mixture is distilled to 200°C and
approximately 3 mmHg to remove water / n-butanol completely and yield the desired product
(PMDAPO Example 5). The product is analyzed via standard NMR known in the art.
Preparation of a Polyol from PMDAPO.

Example 6. In a5 liter stainless steel reactor, 148 g of Example 5 PMDAPO is charged
and vacuum is applied. 87 g of propylene oxide is gradually fed inside the reactor at 140°C
within 30 minutes. Reactor pressure is reaching 3 bar. After 2 hours of reaction of the free
propylene oxide, the pressure is coming back to vacuum (0 bar) and temperature is reduced to
120°C, before the addition of 12.7 g of a 45% water solution of KOH. The water is stripped out
during 1 hour and 1218 g of propylene oxide are fed over a period of 6 hours at 3.5 bar. After 4
hours reaction, the temperature is increased to 135°C, before the addition of 534 g ethylene
oxide during 2hours at 2 bar. The digested product is treated with a magnesium silicate

adsorbent to remove the KOH. The product characterizations are described in Table 4.
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Table 4
Example 6
Initiator Functionality 43
Initiator MW 427
Target MW 5160
Temperature autocatalytic (°C) 140
Temperature propoxylation with KOH (°C) 120
Temperature ethoxylation (°C) 135
KOH end batch (ppm) 2900
EO capping (%) 27
OH value (mg KOH/g) 71.6
Calculated MW 3369
Water (wt%) 0.043
Viscosity at 25°C (cSt) 1280
Potassium (ppm) 2.6
Sodium (ppm) 2.7
Basicity total (meq./g) 1.17
Preparation of Polyurethane Foam

A description of the raw materials used in the examples is as follows.

CP 1421

NC 632

NC 138

DEOA
NE 1070

is a 1675 equivalent weight, trifunctional PO/EO polyol for cell opening
available as VORANOL™ CP 1421 from The Dow Chemical Company;

is a 1,700 equivalent eight polyoxypropylene polyoxyethylene polyol
initiated with a blend of glycerol and sorbitol available as SPECFLEX™ NC
632 from The Dow Chemical Company;

is a 2040 equivalent weight, 15 % EO capped trifunctional PO/EO polyol
available as VORANOL NC 138 from The Dow Chemical Company;

is diethanol amine, available from Aldrich Chemical;

is an amine gel catalyst non-emissive available as DABCO™ NE 1070

from Air Products;
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DMEE is (N,N-dimethylaminoethoxy) ethanol available as NIAX™ A-1 from
Momentive Performance Materials;

B 8715 LF2 Surfactant for foam stability available from Evonik;

B 8736 LF2 Surfactant for foam stability available from Evonik;

NE 396 is a 30% NCO content MDI based isocyanate formulation available as
SPECFLEX NE 396 from The Dow Chemical Company;

NC 700 is a 49% solids content, having an OH number of 20 mg/g, copolymer
polyol (CPP) for TDI and MDI formulations available as SPECFLEX NC
700 from The Dow Chemical Company

Glycerin is available from Aldrich Chemical;

NE1090 is an amine gel catalyst non-emissive available as DABCO NE 1090 from
Air Products;

BA 305 is an additive product for improved humid aging available as DABCO BA
305 from Air Products;

NE 300 is a reactive non-emissive amine blowing catalysis available as DABCO NE
300 from Air Products;

and

T-80 is an 80:20 TDI mixture of 2,4 to 2,6 isomers available as VORANATE™

T-80 from The Dow Chemical Company.

The polyurethane foams are processed by dispensing the polyurethane reactive mixture
by hand-mixing (Herrington & et.al., 1997). Fully formulated polyol and isocyanate
components are conditioned separately at 25°C temperature for 30 min before foaming tests.
The two components are mixed together in a metal cup at the required ratio reported in Table 5
and Table 6 using a mechanical overhead stirrer with a propeller blade at 1200 rpm speed for 12
sec.

The compositions for Comparative Example A and Examples 7 to 9 using MDI are
given in Table 5, components are in parts per hundred (pph) unless otherwise noted. The liquid
mixture is then immediately poured into a 0.5 liter paper cup, reactivity and growing profile has
been measured by cream, gelling, and rise time and are reported in Table 5.

The compositions for Comparative Example B and Examples 10 to 12 using TDI are
given in Table 6, components are in parts per hundred (pph) unless otherwise noted. The liquid
mixture is then immediately poured into a 0.5 liter paper cup, reactivity and growing profile has
been measured by cream, gelling, and rise time and are reported in Table 6.

The following physical properties for Comparative Examples A and B and Examples 7
to 12 are given in Tables 5 and 6:
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Density is determined according to standard techniques of dividing foam weight by
foam volume and reporting as Ibs/ft” or Kg/m?;

CLD is compression load deflection at 40 % stress and is determined according to
ISO 3386/1 before and after the following autoclave humid aging
conditions: first day: sample in the steam autoclave (120°C to 100% RH)
for 5 h, then 3 h in oven at 70°C, second day: sample in the steam autoclave
(120°C to 100% RH) for 5 h, then 3 h in oven at 70°C, third day: sample in
the steam autoclave (120°C- 100% RH) for 5 h, then 3 h in oven at 70°C,
and then the test is performed 16h after the last cycle in oven, during those
16h the specimen is kept at 23°C and 50% RH;

and

Tear Strength is determined according to ASTM D3574 before and after autoclave humid
aging as described above.

The compositions for Comparative Examples C and D and Examples 13 and 14 are
given in Table 7, components are in weight percent unless otherwise noted. The liquid mixture
is then immediately poured into a (.5 liter paper cup. Volatile Emissions VOC and FOG
Testing
per VDA 278 Testing Standard and the results are listed in Table 6. The VDA-278 (Verband
der Automobilindustrie (VDA 278), 2011) guidelines are as follows:

General VDA-278 guidelines

All analyses are performed according to the standard method VDA-278 ‘“Thermal
Desorption Analysis of Organic Emissions for the Characterization of Non-Metallic Materials
for Automobiles, updated October 2011. The YOC value according to VDA-278 is a measure
for the total of readily volatile to medium volatile substances, and is calculated as the toluene
equivalent of the total peak area of the GC-MS chromatogram up to n-pentacosane (C25 —in
our case up to 49.4 min) obtained under VOC prescribed conditions (cf. below). The FOG value
is the total of substances with low volatility, and is calculated as the hexadecane equivalent of
the total GC-MS peak area of compounds eluting from the retention time of n-tetradecane (C14)
up to n-dotriacontane (C32) (in our case 11.7 min up to 44.5 min) under FOG prescribed
conditions. A separate table shows at least all substances with an emission value > 1 pg/g.

Sample preparation

The foam samples are conditioned at room temperature for 7 days (RH about 50 %). A
piece of foam with skin was cut of about 1 cm length, with a width of a few mm, and weighing
15.0 mg £ 2 mg. The exact weight is recorded with an analytical balance, and is mentioned in

the tables. For each sample, two pieces of foam are cut and each was put in a thermal
-8 -
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desorption tube, which is closed immediately and analyzed as soon as possible. For the first
tube, only the VOC measurement is performed, while for the second tube the FOG
measurement is performed as well, immediately following the VOC analysis. The analytical
parameters of the thermal desorption and GC-MS analysis, are gathered.
Calibration

Calibration is performed by means of a calibration solution of toluene in methanol (0.5
mg/ml) for the VOC analysis, and a hexadecane solution in methanol (0.5 mg/ml) for the FOG
analysis. For this purpose, 4 ul of these solutions are loaded on a conditioned Tenax tube and
analyzed. These standards are analyzed in triplicate to obtain representative average values.
All the results are quantified as toluene and hexadecane equivalents for the VOC and FOG
analyses, respectively. A control solution consisting of 18 different compounds is analyzed

regularly to check the performance of the system.
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Table 5
(¥§2§232Y2> Example 7 | Example 8 | Example 9

A Side

CP 1421 1.5 1.5 1.5 1.5

NC 632 30.2 30.2 30.2 30.2

NC 138 63.2 52.2 44.2 48.2

Example 7 12 20 16

Water 33 33 33 3.3

DEOA 0.35 0.35 0.35 0.35

NE 1070 0.9

DMEE 0.1

B 8715 LF2 0.45 0.45 0.45 0.45

Total pph 100 100 100 100
B Side

NE 396 (MDI) 50 50 50 50
PROPERTIES

Cream Time (s) 18 22 17 19

Gel Time (s) 95 139 79 115

Rise Time (s) 140 176 107 127

Density (g/L) 60 60 60 60

CLD 40% stress (K Pa) 10.6 14.4 13.7 15.5

CLD 40% stress after 5.1 6.1 5.7 6.6

autoclave humid aging

(KPa)

Compression Set 4.7 6.4 9.6 7.2

Tear Strength (N/m) 0.23 0.22 0.14 0.34

Tear Strength after 0.19 0.29 0.21 0.26

autoclave humid aging

(N/m)
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Table 6
Comparative | Example | Example Example
Example B 10 11 12

A Side

CP 1421 38.97 27.55 19.55 23.55

NC 632 55 55 55 55

NC 138 12 20 16

Example 7 0.6 0.6 0.6 0.6

Water 0.5 0.5 0.5 0.5

DEOA 0.6 0.6 0.6 0.6

NE 1070 3.25 3.25 3.25 3.25

DMEE 0.3

B 8715 LF2 0.5 0.5 0.5 0.5

VORANATE T-80 0.28

Total pph 100 100 100 100
B Side

NE 396 (MDI) 40 40 40 40
PROPERTIES

Cream Time (s) 12 12 11 11

Gel Time (s) 63 87 57 74

Rise Time (s) 98 103 71 84

Density (g/L) 50 50 50 50

CLD 40% stress (K Pa) 14.8 19.7 19.5 20.1

CLD 40% stress after 12.3 12.3 10.4 11.6

autoclave humid aging

(KPa)

Compression Set 57 13.4 24.6 19.9

Tear Strength (N/m) 0.23 0.22 0.14 0.34

Tear Strength after 0.19 0.29 0.21 0.26

autoclave humid aging

(N/m)
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Table 7
Comparative | Comparative Example 13 Example 14
Example C Example D
A Side
CP 1421 1.5 1.5
NC 632 30.2 39.4 30.2 23.55
NC 138 63.2 48.2
WATER 33 3.25 3.3 3.25
DEOA 0.35 0.6 0.35 0.6
B 8715 LF2 0.45 0.45
DMEE 0.1
DABCO NE 1070 0.9
Example 7 16 16
NC 700 55 55
B 8736 LF2 0.6 0.6
Glycerin 0.5 0.5
DABCO BA 305 0.5
DABCO 33 LV 0.5
DABCO Al 0.15
TOTAL % 100 100 100 100
B Side
Dow NE 396 50 50
Voranate T-80 50 50

Table 8 shows the results for VOC emissions and FOG values for Comparative

Examples C and D and Examples 13 and 14.
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Table 8
Amount (mg) | VOC Emission (LLg/g) FOG Value (ug/g)
Comparative Example C 16.7 88 -
Comparative Example C 16.9 ]2 391
Comparative Example D 13.3 235 -
Comparative Example D 15.8 225 148
Example 13 16.7 129 -
Example 13 12.7 119 122
Example 14 16.2 67 -
Example 14 12.8 62 143

Table 9 shows the breakdown of the compounds detected that make up the VOC

emission of the foam samples, grouped according to chemical functionality, expressed as

toluene equivalent in pg /g.

Table 9
Comp. Ex. C Comp. Ex. D Example 13 Example 14

COMPOUNDS % nel/g % nel/g % nel/g % ug/g

glycol ether isomers 1.2 1.1 0.9 2.2 11.0 14.1 2.5 1.7

siloxanes 66.8 | 58.6 135 31.8 64.6 83.2 429 | 28.9

amine catalysts 1.7 1.5 68.1 160.3 ND ND ND ND

3111;1ylleny1ammes 16 | 14 | 07 18 | L1 | 14 | 25 | 17

CPP compounds 2.1 1.9 9.9 233 ND ND 312 | 211

unknown/other 9.8 8.6 1.1 2.6 9.0 11.6 2.2 1.5

Table 10 shows the breakdown of the compounds detected that make up the FOG value

of the foam samples, grouped according to chemical functionality, expressed in hexadecane

equivalent in pg/g.
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Table 10

Comp. Ex. C Comp. Ex. D Example 13 Example 14

COMPOUNDS % nel/g % nel/g % nel/g % ng/g

glycoletherisomers | 13 | 5 0.9 1.1 | 122 | 194 | ND | ND

amine catalysts 588 | 227.0 | ND ND 0.6 1.0 ND | ND
alkyl

diphenylamines 168 | 649 | 436 | 544 | 385 | 61.3 | 341 | 53.8

CPP compounds ND | ND 9.4 117 | ND ND 78 | 124

unknown/other 183 | 706 | 339 | 423 | 408 | 650 | 477 | 753

It is clearly shown that the inventive Examples 13 and 14 have low to non-detectable

levels of amines releasing from the foam per the VDA 278 test protocol compared to the

emissive amine catalysts of the Comparative Examples C and D. The Comparative Example C

shows that the non-emissive amine catalyst such as Air Products NE 1070 used in MDI PU

foams has low amine emissions in the VOC test it shows 200 times more amine release in the

FOG test than Example. The standard TEDA with NIAX A1 catalyst combination used
commonly in the industry for TDI foams is shown in Comparative Example D compared to

inventive Example 14. The data in the VOC test at 160 times greater for the Comparative

Example D than the inventive Example 14 showing non-detectable levels of amine for both the

VOC and FOG parts of the VDA 278 test protocol.
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‘What is claimed is:

1.

A polymeric amine composition comprising one or more amine compound

represented by the Structure I1:

RRIN - (R’-NH),-(R’-NR%), , - R” - NR?R3 II

wherein R’ is a branched or linear C; to C¢ alkyl group,

R, R',R? and R? are independently a hydrogen or a C; to Cg linear or branched alkyl
group with the proviso that at least one of R, R', R, and R? is not hydrogen,

R*is a hydrogen or a C, to Cg linear or branched alkyl group,

x is from 1 to 33,

and

y is from 0 to 32,

with the proviso that that x-y is equal to or greater than 1 and the number of N-H bonds in (II) is

greater than 0 and less than 8.

2.

The polymeric amine composition of Claim 1 wherein R’ is a C; alkyl group and the

one or more amine compound represented by the Structure I'V:

3.

m y . .
Y

WY%/V%/V' PN,

wherein R, R!, R%, and R? are independently a hydrogen or a C; to Cg linear or branched
alkyl group with the proviso that at least one of R, R', R%, and R? is not hydrogen,

R*is a hydrogen or a C, to Cg linear or branched alkyl group,

R is a hydrogen or a C; to Cs linear or branched alkyl group,

x is from 1 to 33,

y is from 0 to 32,

and

z 18 from O to 15,

with the proviso that that x-y-z is equal to or greater than 2 and the number of N-H
bonds in (IV) is greater than ( and less than 8.

The polymeric amine composition of Claim 1 wherein the one or more amine

compound is represented by the Structure V:
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N\é/\/N N9~</\/IL></\/N§\/\/IL v
R z y X-y-Z R’

wherein R, R', R?, and R® are independently a hydrogen or a methyl group with the

CH,

proviso that at least one of R, RY, R? and R? is not hydrogen,

x 1s from 1 to 33,

y is from O to 32,

and

z 18 from O to 15,

with the proviso that that x-y-z is equal to or greater than 2 and the number of N-H
bonds in (V) is greater than 0 and less than 8.

4. A polymeric polyol composition comprising the reaction product(s) of:

(i) apolymeric amine composition comprising one or more amine compound

represented by the Structure II:
RRIN - (R’ —NH)y—(R’—NR4)X_y— R’ — NRZ2R3 I

wherein R’ is a branched or linear C, to C¢ alkyl group,

R, R!, R? and R? are independently a hydrogen or a C; to Cg linear or branched alkyl
group with the proviso that at least one of R, R', R?, and R? is not hydrogen,

R*is a hydrogen or a C; to Cg linear or branched alkyl group,

x is from 1 to 33,

and

y is from O to 32,

with the proviso that that x-y is equal to or greater than 1 and the number of N-H
bonds in (II) is greater than O and less than 8.

and

(i) at least one epoxide compound having the structure I'V:

>< VI
| RS

or
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at least one glycidyl ether compound having the structure VII:

O/\ o - R7 VII

[l

or a combination thereof’
wherein R® is hydrogen, phenyl, cyclohexyl, or a C; to C)g linear or branched
alkyl
and
R’ is hydrogen, phenyl, a C; to Cg linear or branched alkyl-substituted phenyl, or
a C;—Cyg linear or branched alkyl.

5. The polymeric polyol composition of Claim 4 wherein the one or more amine

compound is represented by the Structure I'V:

R/ l\é/\/NYN;(/\/’L}Q/\/TL%/\/FL\
- z y XYz R
RS
wherein R, R!, R% and R? are independently a hydrogen or a C, to C¢ linear or
branched alkyl group with the proviso that at least one of R, R', R?, and R? is not
hydrogen,
R*is a hydrogen or a C, to Cg linear or branched alkyl group,
R is a hydrogen or a C, to Cs linear or branched alkyl group
x is from 1 to 33,
y is from O to 32,
and
zis from O to 15,
with the proviso that that x-y-z is equal to or greater than 2 and the number of N-H
bonds in (IV) is greater than O and less than 8.
6. The polymeric polyol of Claim 4 wherein the one or more amine compound is

represented by the Structure V:

N\é/\/N N;(/\/IL}Q/\/Na\/\/’L v
R z y X-y-z R?
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7.

8.

wherein R, R', R?, and R? are independently a hydrogen or a methyl group with the
proviso that at least one of R, R!, R? and R®is not hydrogen,
x is from 1 to 33,
y is from O to 32,
and
z is from O to 15,
with the proviso that that x-y-z is equal to or greater than 2 and the number of N-H
bonds in (V) is greater than 0 and less than 8.
A process to make a polyurethane polymer by reaction of a mixture comprising:
(A) apolymeric polyol formulation comprising the polymeric polyol composition of
Claim 4;
(B) at least one organic isocyanate;
(C) optionally a blowing agent;
and
(D) optionally additives or auxiliary agents known per se for the production of
polyurethane polymers.

The process of Claim 7 wherein the reaction occurs in the presence of a blowing agent

and the polyurethane polymer is produced in the form of a polyurethane flexible foam.

9.

10.

A process to make a polyurethane polymer by reaction of a mixture comprising:

(A) apolymeric polyol formulation comprising the polymeric polyol composition of
Claim 5;

(B) at least one organic isocyanate;

(C) optionally a blowing agent;

and

(D) optionally additives or auxiliary agents known per se for the production of
polyurethane polymers.

The process of Claim 9 wherein the reaction occurs in the presence of a blowing agent

and the polyurethane polymer is produced in the form of a polyurethane flexible foam.

11.

A process to make a polyurethane polymer by reaction of a mixture comprising:

(A) apolymeric polyol formulation comprising the polymeric polyol composition of
Claim 6;

(B) at least one organic isocyanate;

(C) optionally a blowing agent;

and
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(D) optionally additives or auxiliary agents known per se for the production of
polyurethane polymers.
12. The process of Claim 11 wherein the reaction occurs in the presence of a blowing

agent and the polyurethane polymer is produced in the form of a polyurethane flexible foam.
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