wo 2013/169554 A 1[I 0F V000000 0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/169554 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Filing Date:
2 May 2013 (02.05.2013)

Filing Language: English
Publication Language: English
Priority Data:

61/643,826 7 May 2012 (07.05.2012) US
13/783,024 1 March 2013 (01.03.2013) US

Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, M/S Sop7, Redwood
Shores, CA 94065 (US).

Inventor: OLIVER, Brian; 11 Minot Avenue, Acton, MA
01720 (US).

Agents: MEYER, Sheldon, R. et al.; Fliesler Meyer LLP,
650 California Street, Fourteenth Floor, San Francisco, CA
94108 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

14 November 2013 (14.11.2013) WIPO I PCT
International Patent Classification:
GO6F 9/44 (2006.01)
International Application Number:
PCT/US2013/039256

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: SYSTEM AND METHOD FOR SUPPORTING A DEFERRED REFERENCE TO AN OBJECT IN AN OBIJEC-
TED-ORIENTED PROGRAMMING LANGUAGE ENVIRONMENT

Deferred Referene

FIGURE 1

Calling
Thread
104

1
H

H
[—
g
H

H

H

1

(57) Abstract: A system and method can support a deferred reference in an object-oriented programming language environment.
The object-oriented programming language environment can include an interface that can provide a deferred reference to an object
that will be available at a future time. Furthermore, after receiving a request from a caller to get the object based on the deferred ref -
erence, the interface can return the object to the caller when the object is available or can indicate to the caller when the object is not
currently available and/or when the object will never become available.

10

15

20

25

30

35

WO 2013/169554 PCT/US2013/039256

SYSTEM AND METHOD FOR SUPPORTING A DEFERRED REFERENCE TO AN OBJECT
IN AN OBJECTED-ORIENTED PROGRAMMING LANGUAGE ENVIRONMENT

Copyright Notice:
[0001] A portion of the disclosure of this patent document contains material which is subject to

copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone
of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office

patent file or records, but otherwise reserves all copyright rights whatsoever.

Field of Invention:

[0002] The present invention is generally related to computer systems and software, and is

particularly related to supporting an object-oriented programming language environment.

Background:
[0003] Object-oriented programming (OOP) can be used to design applications and computer

programs based on objects, which are usually instances of a class. The OOP techniques can
include features such as data abstraction, encapsulation, messaging, modularity, polymorphism,
and inheritance. Each object, which can have a distinct role or responsibility, is capable of receiving
messages, processing data, and sending messages to other objects. Additionally, these objects can
be closely associated with various actions, or methods. This is the general area that embodiments

of the invention are intended to address.

Summary:
[0004] Described herein are systems and methods that can support a deferred reference in an

object-oriented programming language environment. The object-oriented programming language
environment can include an interface that can provide a deferred reference to an object that will be
available at a future time. Furthermore, after receiving a request from a caller to get the object
based on the deferred reference, the interface can return the object to the caller when the object is
available or can indcate to the caller when the object is not currently available and/or when the
object will never become available.

[0005] Also described herein is a system for supporting a deferred reference in an object-
oriented programming language environment operating on one or more microprocessors. The
system comprises means for providing a deferred reference to an object that will be available at a
future time, and means for performing, after receiving a request from a caller to get the object based
on the deferred reference, one of: returning the object to the caller when the object is available, and
indicating to the caller at least one of when the object is not currently available and when the object
will never become available.

[0006] Furthermore, described herein is a system for supporting a deferred reference in an

-1-

10

15

20

25

30

35

WO 2013/169554 PCT/US2013/039256

object-oriented programming language environment. The system comprises an interface configured
to provide a deferred reference to an object that will be available at a future time and a caller
configured to send a request to the interface to get the object based on the deferred reference. The
interface, after receiving the request from the caller, is further configured to perform one of:
returning the object to the caller when the object is available, and indicating to the caller at least one

of when the object is not currently available and when the object will never become available.

Brief Description of the Figures:

[0007] Figure 1 shows an illustration of supporting a deferred reference in an object-oriented
programming (OOP) environment in accordance with various embodiments of the invention.
[0008] Figure 2 shows an illustration of an exemplary interface for defining a deferred type in
an OOP environment in accordance with an embodiment of the invention.

[0009] Figure 3 shows an illustration of an exemplary software pseudo code for acquiring
management bean information from a server, in accordance with an embodiment of the invention.
[00010] Figure 4 illustrates an exemplary flow chart for supporting a deferred reference in an
OOP environment in accordance with an embodiment of the invention.

[00011] Figure 5illustrates an exemplary system for supporting a deferred reference in an OOP
environment in accordance with an embodiment of the invention.

[00012] Figure 6 illstrates a functional block diagram to show features in accordance with an

embodiment of the invention.

Detailed Description:

[00013] Described herein are systems and methods that can support a deferred reference in an
object-oriented programming (OOP) environment.

[00014] A reference object can encapsulate a reference to another object, or a referent, so that
the reference itself can be examined and manipulated like the referent object. A deferred reference
represents a referent that may not exist yet, may not be available or will only become available at
some point in the future.

[00015] Figure 1 shows an illustration of supporting a deferred reference in an OOP
environment in accordance with various embodiments of the invention. As shown in Figure 1, an
OOP environment 100, e.g. a JAVA programming environment, can provide a differed reference 101
to a future object 103. The differed reference 101 can be based on an interface 110, which can
define a deferred type in the OOP environment 100. The future object 103 can be an object, e.g. a
Server, a Member, a Connection, an Mbean, a Value, and a Condition, that will be available at a
future time.

[00016] In the OOP environment 100, a caller 102 can send a request, e.g. a get method, to

10

15

20

25

30

35

WO 2013/169554 PCT/US2013/039256

obtain the future object 103 based on the deferred reference 101. The computation to resolve the
referent, or the future object 102, may not start until the get method is called. On the other hand, the
return of the deferred reference 101 to the caller 102 happens immediately.

[00017] In accordance with the various embodiments of the invention, the caller 102 can be
implemented on a general purpose computer which includes well-known hardware elements such
as a processor, a memory and a communication interface. The caller 102 is realized when
instructions of a software program are executed by the processor.

[00018] Afterreceiving the request from the caller 102, the OOP environment 100 can provide an
indication to the caller 102 that the future object 103 is not currently available. Alternatively, the
OOP environment can return the future object 103 to the caller 102 as soon as it becomes
available.

[00019] In accordance with various embodiments of the invention, the OOP environment can
avoid blocking a calling thread 104 that the caller 102 uses to request for the future object 102,
while waiting for the future object 102 to become available. Such an asynchronized model can be
beneficial, since the calling thread 104 can be responsible for other important tasks.

[00020] Furthermore, the OOP environment 100 can use one or more helpers 120 to extend the
functionalities of a deferred reference 101. Also, the OOP environment 100 allows for nesting
another deferred reference into the deferred reference 101.

[00021] In accordance with various embodiments of the invention, the OOP environment can
provide a future class definition, e.g. a JAVA Future class, which can represent the result of an
asynchronous operation that has been requested.

[00022] Usingthe deferred reference 101 of a future object 102, the OOP environment can avoid
various problems associated with the JAVA Future class. For example, the computation to resolve
the value may start when the future class is created. Furthermore, the future classes may force the
calling threads to wait. For example, the JAVA Future classes can provide a Future.get() method that
must block the calling thread to wait forever until a value is produced, or a Future.get(time) method
that blocks calling thread for a specified amount of time. Both methods force developers to write
blocking algorithms, which are not asynchronous.

[00023] In accordance with various embodiments of the invention, the deferred reference 102
can be enabled as part of a software package, such as part of a com.oracle.tools.deferred package
in Oracle Coherence Incubator Common, or be enabled in a separate jar for wider uses.

[00024] Additionally, the OOP environment 100 can provide a mechanism for an application to
be notified when a deferred object becomes available. This allows developers to define one or more
deferred references together with callbacks to be notified when the underlying objects become
available. Thus, the underlying object-oriented programming language can inform the application

developer when objects are no longer "deferred".

10

15

20

25

30

35

WO 2013/169554 PCT/US2013/039256

[00025] Figure 2 shows an illustration of an exemplary interface for defining a deferred type in
an OOP environment in accordance with an embodiment of the invention. As shown in Figure 2, an
interface Deferred can be used, or implemented, to provide a deferred reference to an object that
will be available at a future time (Line 1). The interface Deferred includes a get() method that can
returns the deferred reference (Line 3), and a getDeferredclass() method that can determine the class
of the referent without actually existing (Line 5).

[00026] When the get() method is invoked by a caller, the object-oriented programming language
environment can avoid blocking the calling thread, while waiting for the future object to become
available. Unlike the JAVA Future classes, which waits for the result value to be produced, the get()
method in the interface Deferred returns a reference to the future object imediately.

[00027] Furthermore, the OOP environment can return a NULL value or throw a runtime
exception if the object is not currently available. Also, the object-oriented programming language
environment can throw an object not available exception (e.g. an ObjectNotAvailableException) if
the object may never become available.

[00028] In accordance with various embodiments of the invention, the OOP environment can
provide different types of deferred helpers for extending the functionalities of a deferred reference.
[00029] For example, a deferred helper, which is shown in the following, can ensure that the
caller waits a certain period of time for the object to become available, or retries after a certain

period of time.

Deferred<T> deferred = ...

Deferred<T> ensured = new Ensured(deferred, timeout);

[00030] Inthe OOP environment, an ensured Deferred type can use a deferred implementation
(wrapper) that waits a certain amount of time for an object in a Deferred type to become available.
Here, any Deferred type can be ensured. The ensured Deferred type allows the nested Deferred
types without a need of nested timeouts.

[00031] Furthermore, the Deferred types do not implement blocking semantics, while only Ensured
types do. The ensured Deferred allows “waiting” with customizable semantics, while the Deferred
types may never block the calling thread. For example, the Deferred types can throw an (runtime)
ObjectNotAvailableExceptions when the referents are assumed never to become available.
[00032] Asshown in the following, the OOP environment can resolve a deferred value by waiting

a maximum (default) period of time, or retrying after a default period of time.

public <T>T ensure(Deferred<T> deferred);

10

15

20

25

30

35

WO 2013/169554 PCT/US2013/039256

[00033] Additionally, the object-oriented programming language environment allows the caller to

specify an explicit maximum time out.

public <T>T ensure(Deferred<T> deferred, long duration, TimeUnit unit);
[00034] Inaccordance with an embodiment of the invention, the OOP environment ¢can support
deferred method invocation based on the concept of deferred helpers.
[00035] Forexample, as shown in the following, a recording dynamic proxy of an interface and/or
object can be created.

public <T> T invoking(T t);

[00036] Thus, the OOP environment can obtain a “recording” dynamic proxy of a Deferred type,

deferred.

public <T> T invoking(Deferred<T> deferred);

[00037] Additionally, the OOP environment can obtain a Deferred type representing the last

recorded invoking call as shown in the following.

public <T> Deferred<T> eventually(T t);

[00038] Finally, the OOP environment can obtain a deferred type, Deferred<integer>, that

represents the last recorded invoking call to list.size.

Deferred<Integer> defSize = eventually(invoking(list).size());

[00039] Thus, a value concerning the last recorded dynamic proxy of the object can be returned
to a caller as a deferred value, e.g. a deferred integer can represent the size of a list at a future
time. Additionally, a deferred reference can be nested into another deferred reference.

[00040] Additionally, as shown in the following, the OOP environment can support method

chaining.

Deferred<Boolean> defHasElements = eventually(invoking(list).getEnumeration().hasElements());

[00041] Also, the object-oriented programming language environment can support deferred

-5-

10

15

20

25

30

35

WO 2013/169554 PCT/US2013/039256

method invocation on a deferred type.

Deferred<Integer> defSize = eventually(invoking(defClusterMBean).getSize());

[00042] The deferred reference can be beneficial in a distributed data environment. For example,
instead of using multiple try blocks, a simple test can ensure that a cluster reaches a certain size by
simply calling the following to ensure that the virtual machine and Mbean server in the distributed

data environment are available.

assertthat(eventually(invoking(defClusterMbean).getSize()), is (4))

[00043] Furthermore, the OOP environment can provide various other deferred helpers. For

example, there can be a deferred helper that can cache a result of a successful get() request.

public <T> Deferred<T> cached(Deferred<T> deferred);

[00044] Also, a deferred helper can convert a value T into a Deferred<T>.

public <T> Deferred<T> deferred(T t);

[00045] Additionally, the OOP environment can obtain Java Future representation of a deferred

type.

public <T> Future<T> future(Deferred<T> deferred);

Examples

[00046] Figure 3 shows an illustration of an exemplary software pseudo code for acquiring
management bean information from a server, in accordance with an embodiment of the invention.
As shown in Figure 3, a caller can establish a connection to a server, e.g. a JMX MBeanServer
instance (Line 5) before retrieving related management bean information, e.g. an MBeaninfo
instance, based on the name of an object, objectName (Line 6).

[00047] The OOP environment may need to ensure that various conditions are satisfied before
acquiring the management bean information from the server. For example, a virtual machine, e.g. a
JAVA virtual machine (JVM), on which the JMX MBeanServer instance is running, may need to be
started before the JMX MBeanServer can be created. Furthermore, a server connection, e.g. the

MbeanServerConnection may need to be available with the MBean registered. In addition, the object-

-6-

10

15

20

25

30

35

WO 2013/169554 PCT/US2013/039256

oriented programming language environment may also need to handle various other exceptions,
such as the IOException, InstanceNotFoundException, ClassCastException.

[00048] In accordance with various embodiments of the invention, the object-oriented
programming language environment can use try blocks, as shown in the following, to ensure that

these conditions can be satisfied.

while(true) {
... try to get reference ...
if (failed) Thread.sleep(10000);

if (succeeded) break;

}

[00049] The above approach of using try blocks may cause different problems, e.g., how long
should the thread sleep, and how to allow the try block to fail or succeed earlier. Additionally, the
code can become overly complicated and difficult to understand when there are too many retry
loops.

[00050] Using the ensuring deferred types as defined in Figure 2, a DeferredJMXConnector

instance can be created in the following.

Deferred<JMXConnector> defJMXConnector = new Deferred)MXConnector(jmxConnectionURL, env)

[00051] Then, a deferred MBeaninfo can be created.

Deferred<MBeaninfo> defMBeanInfo = new DeferredMBeanInfo(defJIMXConnector, objectName)

[00052] Thus, the code for acquiring management bean information from a server can be simply

implemented as:

MBeaninfo info = ensure(defMbeaninfo);
or

MBeanlinfo info = ensure(defMbeaninfo, 2, TimeUnit. MINUTES).

[00053] As shown in the above, using the ensuring deferred types, the ensuring deferred types
can isolate “waiting” logic into the ensuring method that takes a deferred type as a parameter.
Furthermore, the ensuring deferred types allow nested deferred types without nested timeouts.

[00054] In the examples as shown in the following, the OOP environment can assert that a

-7-

10

15

20

25

30

35

WO 2013/169554 PCT/US2013/039256

service is running.

assertThat(eventually(invoking(CacheFactory.getService(“some-service”).isRunning()), is(true));

[00055] Also, the OOP environment can assert that two named cache, cacheA and cacheB are

equal.

NamedCache cacheA=...;
NamedCache cacheB =...;

assertThat(eventually(cacheA), is(equalTo(cacheB)));

[00056] Figure 4 illustrates an exemplary flow chart for supporting a deferred reference in an
OOP environment in accordance with an embodiment of the invention. As shown in Figure 4, at
step 401, the OOP environment can provide a deferred reference to an object that will be available
at a future time. Furthermore, at step 402, after receiving a request from a caller to get the object
based on the deferred reference, the OOP environment can return the object to the caller when the
object is available or can indicate to the caller when the object is not currently available and/or
when the object will never become available.

[00057] Figure 5illustrates an exemplary system for supporting a deferred reference in an OOP
environment in accordance with an embodiment of the invention. As shown in Figure 5, the system
500 is shown as comprising an interface 510 and a caller 502. The caller 502 caller can send a
request to the interface 510 to get an object based on the deferred reference. The interface 510 can
provide a deferred reference to the object that will be available at a future time, and, after receiving
the request from the caller, can perform one of: returning the object to the caller when the object is
available, and indicating to the caller at least one of when the object is not currently available and
when the object will never become available.

[00058] The interface 510 is capable of avoiding blocking a calling thread that the caller 502
uses to request the object based on the deferred reference while waiting for the object to become
available. The interface 510 is also capable of informing the caller 502 about which class the object
is associated with before the object becomes available. The interface 510 is further capable of
throwing a runtime exception or returning a NULL value, when the object is not currently available.
The interface 510 is further capable of throwing an object not available exception, if the object will
never become available. The interface 510 can allow for nesting a deferred reference into another
deferred reference.

[00059] The system 510 can further comprises a helper 520. The helper 520 is capable of

ensuring that the caller 502 waits a maximum period of time for the object to become available. The

10

15

20

25

30

35

WO 2013/169554 PCT/US2013/039256

helper 520 is also capable of creating a deferred reference to an object based on a class definition
associated with the object. The helper 520 is further capable of obtaining a recording dynamic proxy
of the object, and providing a deferred representation of a last recorded call by the recording
dynamic proxy of the object.

[00060] According to one embodiment, there disclosed a system for supporting a deferred
reference in an object-oriented programming language environment operating on one or more
microprocessors. The system comprises means for providing a deferred reference to an object that
will be available at a future time, and means for performing, after receiving a request from a caller to
get the object based on the deferred reference, one of: returning the object to the caller when the
object is available, and indicating to the caller at least one of when the object is not currently
available and when the object will never become available.

[00061] Preferably, the system further comprises means for avoiding blocking a calling thread
that the caller uses to request the object based on the deferred reference while waiting for the
object to become available.

[00062] Preferably, the system further comprises means for informing the caller about which
class the object is associated with before the object becomes available.

[00063] Preferably, the system further comprises means for throwing a runtime exception or
returning a NULL value, when the object is not currently available.

[00064] Preferably, the system further comprises means for throwing an object not available
exception, if the object will never become available.

[00065] Preferably, the system further comprises means for ensuring that the caller waits a
maximum period of time for the object to become available.

[00066] Preferably, the system further comprises means for creating a deferred reference to an
object based on a class definition associated with the object.

[00067] Preferably, the system further comprises means for nesting a deferred reference into
another deferred reference.

[00068] Preferably, the system further comprises means for obtaining a recording dynamic proxy
of the object, and means for providing a deferred representation of a last recorded call by the
recording dynamic proxy of the object.

[00069] Preferably, the system further comprises meas for providing a mechanism for an
application to be notified when the deferred object becomes available.

[00070] According to one embodiment, there disclosed a system for supporting a deferred
reference in an object-oriented programming language environment. The system comprises an
interface configured to provide a deferred reference to an object that will be available at a future
time and a caller configured to send a request to the interface to get the object based on the
deferred reference. The interface, after receiving the request from the caller, is further configured to

perform one of: returning the object to the caller when the object is available, and indicating to the

-9-

10

15

20

25

30

35

WO 2013/169554 PCT/US2013/039256

caller at least one of when the object is not currently available and when the object will never
become available.

[00071] Preferably, the interface is capable of avoiding blocking a calling thread that the caller
uses to request the object based on the deferred reference while waiting for the object to become
available.

[00072] Preferably, the interface is capable of informing the caller about which class the object is
associated with before the object becomes available.

[00073] Preferably, the interface is capable of throwing a runtime exception or returninga NULL
value, when the object is not currently available.

[00074] Preferably, the interface is capable of throwing an object not available exception, if the
object will never become available.

[00075] Preferably, the system further comprises a helper that is capable of ensuring that the
caller waits a maximum period of time for the object to become available.

[00076] Preferably, the system further comprises a helper that is capable of creating a deferred
reference to an object based on a class definition associated with the object.

[00077] Preferably, the interface allows for nesting a deferred reference into another deferred
reference.

[00078] Preferably, the system further comprises a helper that is capable of obtaining a
recording dynamic proxy of the object, and providing a deferred representation of a last recorded
call by the recording dynamic proxy of the object.

[00079] Figure 6 illustrates a functional block diagram to show the present feature. The present
feature may be implemented as a system 600 for supporting a deferred reference in an object-
oriented programming language environment. The system 600 includes one or more
microprocessors 610 and an interface 110 running on the one or more microprocessors 610. The
one or more microprocessors 610 includes: a providing unit 620 configured to provide a deferred
reference to an object that will be available at a future time; and a performing unit 630 configured to
perform, after receiving a request from a caller to get the object based on the deferred reference,
one of: returning the object to the caller when the object is available, and indicating to the caller at
least one of when the object is not currently available and when the object will never become
available. Performing unit 630 includes returning unit 631 and indicating unit 632. Returning unit
631 is configured to return the object to the caller when the object is available. Indicating unit 632 is
configured to indicate to the caller at least one of when the object is not currently available and
when the object will never become available.

[00080] The presentinvention may be conveniently implemented using one or more conventional
general purpose or specialized digital computer, computing device, machine, or microprocessor,
including one or more processors, memory and/or computer readable storage media programmed

according to the teachings of the present disclosure. Appropriate software coding can readily be

-10-

10

15

WO 2013/169554 PCT/US2013/039256

prepared by skilled programmers based on the teachings of the present disclosure, as will be
apparent to those skilled in the software art.

[00081] In some embodiments, the present invention includes a computer program product
which is a storage medium or computer readable medium (media) having instructions stored
thereon/in which can be used to program a computer to perform any of the processes of the present
invention. The storage medium can include, but is not limited to, any type of disk including floppy
disks, optical discs, DVD, CD-ROMs, microdrive, and magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMs, DRAMs, VRAMSs, flash memory devices, magnetic or optical cards,
nanosystems (including molecular memory ICs), or any type of media or device suitable for storing
instructions and/or data.

[00082] The foregoing description of the present invention has been provided for the purposes of
illustration and description. It is notintended to be exhaustive or to limit the invention to the precise
forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the
art. The embodiments were chosen and described in order to best explain the principles of the
invention and its practical application, thereby enabling others skilled in the art to understand the
invention for various embodiments and with various modifications that are suited to the particular
use contemplated. Itis intended that the scope of the invention be defined by the following claims

and their equivalence.

-11-

10

15

20

25

30

35

WO 2013/169554 PCT/US2013/039256

Claims:

What is claimed is:

1. A method for supporting a deferred reference in an object-oriented programming language
environment operating on one or more microprocessors, comprising:
providing a deferred reference to an object that will be available at a future time; and
after receiving a request from a caller to get the object based on the deferred reference,
performing one of:
returning the object to the caller when the object is available, and
indicating to the caller at least one of when the object is not currently available and

when the object will never become available.

2. The method according to Claim 1, further comprising:
avoiding blocking a calling thread that the caller uses to request the object based on the

deferred reference while waiting for the object to become available.

3. The method according to Claim 1 or 2, further comprising:
informing the caller about which class the object is associated with before the object

becomes available.

4. The method according to any preceding Claim, further comprising:
throwing a runtime exception or returning a NULL value, when the object is not currently

available.

5. The method according to any preceding Claim, further comprising:

throwing an object not available exception, if the object will never become available.

6. The method according to any preceding Claim, further comprising:

ensuring that the caller waits a maximum period of time for the object to become available.
7. The method according to any preceding Claim, further comprising:
creating a deferred reference to an object based on a class definition associated with the

object.

8. The method according to any preceding Claim, further comprising:

nesting a deferred reference into another deferred reference.

-12-

10

15

20

25

30

35

WO 2013/169554 PCT/US2013/039256

9. The method according to any preceding Claim, further comprising:

obtaining a recording dynamic proxy of the object, and

providing a deferred representation of a last recorded call by the recording dynamic proxy of
the object.

10. The method according to any preceding Claim, further comprising:
providing a mechanism for an application to be notified when the deferred object becomes

available.

11. A computer program comprising program instructions for running on one or more

microprocessors to perform all the steps of the method of any preceeding claim.

12. A computer program product comprising the computer program of claim 11 provided on a

machine-readable medium.

13. A system for supporting a deferred reference in an object-oriented programming language
environment, comprising:
one or more mMicroprocessors;
an interface running on the one or more microprocessors, wherein the interface operates to
perform steps of:
providing a deferred reference to an object that will be available at a future time; and
after receiving a request from a caller to get the object based on the deferred
reference, performing one of:
returning the object to the caller when the object is available, and
indicating to the caller at least one of when the object is not currently

available and when the object will never become available.

14. The system according to Claim 13, wherein:
the interface is capable of avoiding blocking a calling thread that the caller uses to request

the object based on the deferred reference while waiting for the object to become available.

15. The system according to Claim 13 or 14, wherein:
the interface is capable of informing the caller about which class the object is associated

with before the object becomes available.

16. The system according to any of Claims 13 to 15, wherein:

the interface is capable of throwing a runtime exception or returning a NULL value, when the

-13-

10

15

20

25

30

WO 2013/169554 PCT/US2013/039256

object is not currently available.

17. The system according to any of Claims 13 to 16, wherein:
the interface is capable of throwing an object not available exception, if the object will never

become available.

18. The system according to any of Claims 13 to 17, further comprising:
a helper that is capable of ensuring that the caller waits a maximum period of time for the

object to become available.

19. The system according to any of Claims 13 to 18, further comprising:
a helper that is capable of creating a deferred reference to an object based on a class

definition associated with the object.

20. The system according to any of Claims 13 to 19, wherein:

the interface allows for nesting a deferred reference into another deferred reference.

21. The system according to any of Claims 13 to 20, further comprising:
a helper that is capable of
obtaining a recording dynamic proxy of the object, and
providing a deferred representation of a last recorded call by the recording dynamic

proxy of the object.

22. A non-transitory machine readable storage medium having instructions stored thereon that
when executed cause a system to perform the steps comprising:
providing a deferred reference to an object that will be available at a future time; and
after receiving a request from a caller to get the object based on the deferred reference,
performing one of:
returning the object to the caller when the object is available, and
indicating to the caller at least one of when the object is not currently available and

when the object will never become available.

23. A computer program for causing a computer to implement the method recited in any one of

claims 1 to 10.

-14-

PCT/US2013/039256

WO 2013/169554

1/6

volL

pesaiyL
Buiied

€0l
108[qO a1nin4

L 34N9OI4

0clL
Jad|oH

LOL
sualalay pallaleq

col
191D

PCT/US2013/039256

WO 2013/169554

2/6

¢ 34N9i4

{

3unsixa A][en3doe 31 INOYIM JUDIDD4 3] JO SSB|D dY3 dUIWIDIDp ued am 0s// {()sse|Dpa.ltafadiasd <1 >Ssed

uondanxa swnuni gf/ ‘uondadsxisiqe|ieayioNIda[qo smoayy (198 1

}

<1>pa.i2}2Q ddepdU

N O < 1 ©

~

PCT/US2013/039256

WO 2013/169554

3/6

€ 34N9id

{(weN123[qo)osujueagiNIDs uoI1dAUUOD = O4U] OJU[UBIGIA

{)u01323UU0DIBAIISURIGINIDB101I9UUOD = UO}IUUOD UOIIIUUODIIAIRSURIGIN

{(ruzdew “TYNUOIIBUUOIXIN S)I0IIFUUOIXIN (MIUAI03IBJI0IIDUUODIXIN(= J0IIDUUOD J0IIIUUOIXIN(
++* =aweN13[qo sweNIdI[qo

¢+++ = augdew <322[q0 ‘Buiis>depy

£*°* = TYNUOIIBUUODIXIN S BUllS

N O < 1 ©

PCT/US2013/039256

WO 2013/169554

4/6

v 34N9id4

Nov\/.\

9|ge|IBAR 8029 JOABU [|IM 109[qo ay) usym pue
a|gejieAe Ajjualind 10U si 199[qo ay) usym o BUOo 1Se9| 1. 19||ed ay1 01 Buniesipul
‘D|ge|ieAe si 198lqo ay) usym Ja||eo ay1 01 109lqo sy buiuinial

:JO 9uo BulwJiopad ‘@ousialal

paJlalop 9yl uo paseq 109lqo ay) 106 03 J9||ed B WOl 1S9nbal e BulAigdal Joyy

Sv\/\

awil] 8Jninj B 18 9|ge|ieAR 8 |IM 1Y) 198[go ue 0] sousiaal palialep e Bulpiroid

PCT/US2013/039256

WO 2013/169554

5/6

S J4NOI4

oom\/\

026G d3d13H

P

¢0G 43T1vO

01G 30V4d3LNI

PCT/US2013/039256

WO 2013/169554

6/6

oom\/\

9 34N9I4

SHOSS3IO00Hd FHON HO INO

1INN
ONILVOIANI

0eg "

1INN
ONINANL3S

JOV443LNI

4

1INN
ONINHO443d

0eg "

1INN ONIAINOHd

J

029

J

oLl

019

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/039256

A. CLASSIFICATION OF SUBJECT MATTER

INV.
ADD.

GO6F9/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

unknown: "Deferred Reference",

Retrieved from the Internet:

1.0/core/howto/defer.html
[retrieved on 2013-08-02]

the whole document

Deferreds, Callbacks;

page 1

Multiple callbacks;

page 2

Visual Explanation, Errbacks;
page 3

Errbacks (continued), Unhandled
page 4

Handling either synchronous or

Twisted Matrix Labs documentation
é December 2010 (2010-12-06), XP002711637,

URL:http://web.archive.org/web/20101206085
523/http://twistedmatrix.com/documents/10.

1-23

Errors;

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

npn

U=

'K

"Qr

"pn

* Special categories of cited documents :

document defining the general state of the art which is not considered
to be of particular relevance

earlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

26 August 2013

Date of mailing of the international search report

11/09/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Eftimescu, Nicolae

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/039256
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
asynchronous results;
page 5
DeferredList;
page 6 - page 7
Class Overview, Basic Callback Functions,
Chaining Deferreds;
page 7 - page 8
-& Unknown: "Generating Deferreds",
Twisted Matrix Labs documentation
6 December 2010 (2010-12-06), XP002711798,
Retrieved from the Internet:
URL:http://web.archive.org/web/20101206085
527/http://twistedmatrix.com/documents/10.
1.0/core/howto/gendefer.html
[retrieved on 2001-08-02]
the whole document
Class overview; What Deferreds don't do:
make your code asynchronous;
page 1 - page 2
Advanced Processing Chain Control;
page 2
Returning Deferreds from synchronous
functions; Integrating blocking code with
Twisted;
page 3 - page 4
Possible sources of error; Synchronous
callback execution;
page 4
A The jQuery Project: "Deferred Object", 1-23
jQuery API
24 November 2011 (2011-11-24),
XP002711799,
Retrieved from the Internet:
URL:http://web.archive.org/web/20111206101
237/http://api.jquery.com/category/deferre
d-object/
[retrieved on 2013-08-07]
the whole document
A EP 1 235 149 A2 (SUN MICROSYSTEMS INC 1-23
[US]) 28 August 2002 (2002-08-28)
abstract
paragraph [0001] - paragraph [0024]
paragraph [0026] - paragraph [0030]
paragraph [0037] - paragraph [0075]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2013/039256
Patent document Publication Patent family Publication
cited in search report date member(s) date

EP 1235149 A2 28-08-2002 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - wo-search-report
	Page 23 - wo-search-report
	Page 24 - wo-search-report

