(11) Application No. Al 2003228754 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Providing a useable version of the data item
(51)2 International Patent Classification(s)

GO6F 12,00 (2006.01) 9746
GO6F 9,46 (2006.01) 20060101ALI2005100

GO6F 1730 (2006.01) 8BMEP GO6F
GOeF 1200 17730
20060101AFI2006031 20060101ALTI 2005100
0BMJP GO6F 8BMEP
PCTAUS03-13326
(21) Application No: 2003228754 (22) Application Date: 2003 .04 29

(87) WIPO No: won3-096226

(30) Priority Data

(31 Number (32) Date (33) Country
60,379,899 2002 .05 .10 s
10-263,493 2002 .10 .02 us

(43) Publication Date : 2003 .11 24

(43) Publication Journal Date © 5gg4 p1 15

(1) Applicant(s)
Oracle Internaticnal Corporation

(72) Inventor(s)

Ganesh ., Amit, Bamford, Roger J.. Vemuri, Srinivas S.

(74) Agent/Attorney
PIZZEYS, GPO Box 1374, Brisbane, QLD, 4001

(56) Related Art
US 6192377 (A)
US 5806076 (A)
US 5873098 (A)

0 O OO

Al
«
o
N
&l
&
=
S
S~
52
e
g

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
Internalional Bureau

(43) International Publication Date
20 November 2003 (20.11.2003)

PCT

00 OO

{10) International Publication Number

WO 03/096226 Al

(51) International Patent Classification”: GOGF 17/30, 9/46

(21) International Application Number: PCT/US03/13326

(22) International Filing Date: 29 April 2003 (29.04.2003)

{(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/379,899
10/263,493

10 May 2002 (10.05.2002)
2 October 2002 (02.10.2002)

us
us

(71) Applicant: ORACLE INTERNATIONAL CORPORA-
TION [TIS/TIS]; 500 Oracle Parkway, Redwood Shores,

CA 94065 (US).

(72) Inventors: GANESH, Amit; 1426 Brookglen Drive, San
Jose, CA 95129 (US). YEMURI, Srinivas, S.; 635 Cata-
maran Street#3, Foster City, CA 94404 (US). BAMFORD,

Roger, J.; 555 Munzanila Way, Woodsidc, CA 94062 (US).

(74) Agents:

(81

&4

)

=

HICKMAN, Bryan, D.; Hickman Palermo
Truong & Becker LLP, 1600 Willow Streel, Sun Francisco,
CA 95125 et al. (US).

Designated States (national): Ali, AG. AL, AM, AT, AU,
A7, BA, BB, B, BR, BY, BZ, CA, CII CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, BE, 1, GB, GD, GE, Gll,
GM. 1R, ITU, D, I, IN, 18, JP, KL:, KG., KP. KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PIL, PL, P1, RO, RU, 8C. SD, SE,
SG, SK, SL T TM, TN, TR, UL 17, UA, UG, U7, YC,
VN, YU, ZA, ZM, 7ZW.

Designated States (regional): ARTPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM),
Turopean patent (AT, BT, BG, CH, CY, CZ, DT, DK, T,
ES, FI, FR, GB, GR, HU. IE, IT, LU, MC, NL, PT, RO,
SE, 81, SK, TR), OAPI patent (BE, BI, CF, CG, CL, CM,
GA, GN, GQ, GW, ML, MR, NL, SN, TD, TG).

[Continued on next page]

(54) Title: PROVIDING A USEABLE VERSION OF TIIE DATA 1TEM

18 THE EXCLLTE TIME.
OF THE DATA BLOCK.

LESS THAN THE
SNAISIOT TINE?

1S THE.
TRANSACTION
ACLVEY

1S THE ROW
LOCKED?

DETERMINE THE COMMIT TIMF. OF THE
LAT=ST TRANSACTION THAT MODIFIED
THERCOW

1

DONTATNS
1S THE SRESHNESS YES
TIMF LRSK THAN DR N WOT:;‘“ON "
EQUALTOTHE | TRANSACTION
SNAPSZIOT TIME? N afe
-
USE THIS VERSION OF THE ROW 7214
202
3 —=
i USE ANOTHER
UBDATE SNAPSHOT 1) REFLECT THE PARTICULAR. ¢ VERSION OF
VERSION OF THE DATA BLOCK JUST READ T*B*igg]zﬁ

(57) Abstract: Techniques are provided for provid-
ing a data item to a transaction in a multi-versioning
system in which the data item may cxist on multi-
ple versions of a data block, and were versioning is
performed at the granularity of the data block. Ac-
cording to one aspect of the invention, the technique
involves locating, within volatile memory, a first ver-
sion of a data block that includes a first version of
the data item. It is then determined whether the first
version of the data item is usable by the transaction
without respect to whether the first version of the data
block is generally usable by the transaction. If the
first version of the data item is usable by the transac-
tion, then the data item is established as a candidate
that can be provided to the transaction. Thus, the data
item within a block may be considered a candidate to
be provided to a transaction even when the version of
the data block on which the dara item resides would
otherwise disqualify the data block from being seen
by that transaction. If the first version of the data
ilem is not usable by the transaction, then a version
of the data item that is usable by the transaction is
obtained from a second version of the data block that
is dilfcrent from the first version.

WO 03/096226 AT | NI 0RO 00RO A

Published:
— with international search veport

— hefore the expiration of the time limit for amending the
claims and to be republished in the event of veceipt of

amendments

For two-leiter codes and other abbreviations, refer to the "Guid-
ance Noies on Codes and Abbreviations"” appearing at the hegin-
ning of each vegular issue of the PCT (razette.

2003228754 21 Feb 2007

PROVIDING A USEABLE VERSION OF A DATA ITEM

CLAIM OF PRIORITY

[0001] This application claims priority from US Provisional Patent Application Serial
No. 60/379,899, filed May 10, 2002, entitled "Providing a Useable Version of a Data
Item", and naming as inventors AMIT GANESH, SRINIVAS S. VEMURI and ROGER
J. BAMFORD and from US Utility Patent Application Serial No. 10/263,493 filed
October 2, 2002, now US Patent No. 6,957,236 issued on October 18, 2005.

FIELD OF THE INVENTION

[0002] The present invention relates to database systems, and more specifically, to a
method for determining whether a transaction in a database system can use a version of a
data item.

BACKGROUND OF THE INVENTION

[0003] In typical database systems, users store, update and retrieve information by
submitting commands to a database server. To be correctly processed by the database
server, the commands must comply with the database language that is supported by the
database server. One popular database language is known as Structured Query Language
(SQL).

[0004] The term "data item" is used herein to refer to any value or set of values
associated with any logical data type or structure. Within a relational database system,
typical data items include tables, rows, fields within rows, indexes, index entries, disk
blocks, etc.

[0005} In multi-versioning database systems, several versions of the same data item
may exist. Typically, one version of the data item is "current” (i.e. reflects all of the
changes that have been made to that data item) and other versions are non-current. The
non-current versions typically reflect what the current version looked like at previous
points in time.

[0006] There are various types of multi-versioning database systems. Some multi-
versioning database systems durably store multiple versions of a data item. Other multi-
versioning database systems durably store one version of the data item, and recreate other
versions as needed by applying undo or redo records to remove or add changes. The
techniques described herein are not limited to any particular type of multi-versioning

system.

WO 03/096226 PCT/US03/13326

[0007] Multi-versioning database systems typically perform versioning at a particular
level of granularity. Thus, rather than keep (or generate) separate copies of an entire
table, multi-versioning systems typically keep (or generatc) separate copies of relatively
small chunks of a table. For the purpose of explanation, the chunks that represent the
granularity level at which a system manages versioning shall be referred to herein as "data
blocks".

[0008] In contcmporary database systems, copies of data blocks contained in the
database are often stored in a volatile memory, which requires less time to access than
non-volatile memory, to improve transaction processing performance. In multi-
versioning database systems, multiple copies of the same data block may be maintained in
volatile memory so that concurrently executing transactions can simultaneously access
different versions of the data items contained therein.

[0009] In the context of database systems, a transaction is a logical unit of work that
is comprised of one or more database language statcmonts. When a databasc system
executes a transaction, the transaction may read or update a data item that was written or
updated in response to the execution of previous transactions. Consequently, the results
returned by the database system in response o executing any given transaction are
typically dictated by changes made by a set of previously executed transactions.

[0010] Because each transaction must see a database in a consistent state, not all
versions of 4 data ilem can necessarily be used by a transaction. For exémple, fora
transaction to see a consistent view of that data item, the transaction may need to see
certain updates that were made to the data item. However, some versions of the data
block that contains the data item may not contain the updates that must be seen by a
transaction. On the other hand, other versions of the data block that contains the data
item may contain updates that cannot be seen by the transaction. Hence, in situations
where multiple versions of a data block are available to transactions, access to the
versions of a data item by transactions must be managed so that database consistency is
maintained.

[0011] For the purpose of explanation, the term “iransaction” shall be used herein to
more generally refer to any entity that, for any reason, is allowed to use some but not all
of the possible versions of a data item.

[0012] ‘When a system includes multiple nodes, each of which has its own cache, it is
even more critical to use efficient techniques for providing a "useable version" of a data
item to a transaction. For example, assume that a transaction running on a particular node

requires a particular version of a data item. If the required version of the data item isin a

2-

18 Aug 2008

2003228754

data block within the cache of that particular node, then the desired version of the data
item can be supplied from that data block to the transaction with minimal overhead.
However, the act of providing the required version can be extremely inefficient if the data
block that contains the required version of the data item resides (1) only on disk, (2) in
the cache of a different node; or (3) must be reconstructed based on information that is on
disk or in the cache of a different node.

[0013] Based on the foregoing, it is desirable to provide efficient techniques for
providing useable versions of data items to transactions. The reference to any prior art in
this specification is not, and should not be taken as an acknowledgement or any form of
suggestion that the referenced prior art forms part of the common general knowledge in

Australia.

SUMMARY OF THE INVENTION

[0014] Techniques are provided for providing a data item to a transaction in a
multi-versioning system in which the data item may exist on multiple versions of a data
block. According to one aspect of the invention, the technique involves locating, within
volatile memory, a first version of a data block that includes a first version of the data
item. It is then determined whether the first version of the data item is useable by the
transaction without respect to whether the first version of the data block is useable by the
transaction even though the first version of the data block is otherwise not usable by said
transaction, If the first version of the data item is usable by the transaction, then the data
item is established as a candidate that can be provided to the transaction. Thus, the data
item within a block may be considered a candidate to be provided to a transaction even
when the version of the data block on which the data item resides is otherwise not useable
by that transaction. If the first version of the data item is not usable by the transaction,
then a version of the data item that is usable by the transaction is obtained from a second
version of the data block that is different from the first version.

[0015} Embodiments are described in which the information used to determine
whether a version of the row is useable includes a snapshot time associated with the
transaction. Embodiments are also described in which the information used to determine
whether a version of a row is useable includes a MUST-SEE time and a CANNOT-SEE
time. Various approaches for selecting among multiple useable candidates are also
described.

[0015A] In the specification the term “comprising™ shall be understood to have a broad

meaning similar to the term “including” and will be understood to imply the inclusion of

_3.

18 Aug 2008

2003228754

a stated integer or step or group of integers or steps but not the exclusion of any other
integer or step or group of integers or steps. This definition also applies to variations on

the term “comprising” such as “comprise” and “comprises.”

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0016] In the following description, for the purposes of explanation, specific details
are set forth in order to provide a thorough understanding of the invention. However, it

will be apparent that the invention may be practiced without these specific details. In

S3A-

WO 03/096226 PCT/US03/13326

other instances, well-known structures and devices are depicted in block diagram form in

order to avoid unnecessarily obscuring the invention.

FUNCTIONAL OVERVIEW

[0017] Anapproach is provided for determining whether a transaction can usc a
particular version of a data item. In contrast to prior approaches, the determination of
whether the particular version of the data item is useable is made even though the version
of the data block that contains that particular version of the data item is not generally
usable by the transaction. Specifically, even though a particular version of a data block
may include changes that are too recent to be seen by the transaction, the specific data
item in which the transaction is interested may not contain any such changes, and may
therefore still be useable by the transaction.

[0018] ' According to one embodiment, determining whether a particular version of the
data item is useable involves determining whether the data item within the data block is
locked. f the data block is not locked, then the last transaction to update that version of
the data item has already committed, and would therefore have been assigned a commit
time. For the purpose of explanation, the commit time of the latest transaction that
updated a particular version of a data item within a data block shall be referred to herein
as the "freshness time" of that version of the data item.

[0019] It should be noted that the latest transaction that updated a particular version
of a data item within the block might not be the latest transaction to update the data block
itself. In fact, it is possible for that same data block to have other data items that are
locked by active transactions, and yet for the particular data item to have a freshness time
that is old enough for the interested transaction to use.

[0020] Ifthe data item is not locked, then the freshness time of the data item is
comparcd with snapshot information associated with the transaction. As shall be
described in greater detail hereafter, the snapshot information associated with a
transaction indicates which versions of data the transaction can and cannot see. The
comparison between the snapshot information and the freshness time indicates whether
that particular version of the data item is useable by the transaction. If that version of the
data item is useable by the transaction, then the particular version of the data item may
then be provided to the transaction, or added to a pool of candidaie versions from which
the version that will actually be provided to the transaction is sclected.

[0021] In many systems, data blocks that that have been updated by a committed

transaction are not immediately updated to show that the transaction has committed.

A-

WO 03/096226 PCT/US03/13326

Therefore, even if the information in the data block indicates that the data item is locked,
the lock may actually be held by a committed transaction. Thus, if, according to the
information in the data block, the data item is locked, then it is determined whether the
lock is actually held by an active transaction.

[0022] If the transaction holding the lock is actually comumitted, the commit time of
the transaction holding the lock is used as the freshness time, and the comparison
described above is performed to determine whether the data item is usable.

[0623] If the transaction holding the lock in active, then it is determined whether the
transaction holding the lock is the same transaction as the transaction that is attempting to
use the data item. If the active transaction holding the lock is not the transaction that is
attempting to use the data item, then the version of the data item in that block is not
useable. On the other hand, il the active transaction holding the lock is the same
transaction as the transaction that is attempting to use the data item, then it is determined
whether the data item has any changes that are too recent for the transaction to see. If the
data item does not have any changes that are too recent for the transaction to see, then the
data item is useable by the transaction.

[0024] Insituations in which there are many versions of a data item that are useable
by a transaction, efficiency may be affected by which of the versions are actually
provided to the transaction. Various techniques are described herein for determining
which version of a data item, within a pool of useable candidates, should be provided to a

particular fransaction.

BLOCK-LEVEL VERSION INFORMATION
[0025] Fora multi-versioning system to provide the correct version of information to
transactions, the system must maintain information that indicates the version of
information. Typically, database systems maintain such versioning information at the
data block level of granularity, since that is the level of granularity at which versioning is
performed. For example, some database systems maintain an INCLUDE TIME and an
EXCLUDE TIME for each version of a data block. The INCLUDE TIME specifies the
commit time of the most recently committed transaction whose changes are included in
the version of the data block. The EXCLUDE TIME specifies the time at which the
contents of the data block were "current".
[0026] For exumple, the EXCLUDE TIME of a data block that was created by rolling
back changes would typically be the commit time of the oldest transaction whose changes

have been removed from the version of the data block. If a particular version of a data

5

WO 03/096226 PCT/US03/13326

block is the most recent version of the data block, then the EXCLUDE TIME for that
version is infinity, since no changes have been removed.

[0027]. For example, suppose a first transaction causes a copy of a data block to be
loaded into a volatile memory, updates the copy of the data block to create a new version
(the "first version") of the data block, and then commits at time T10. The INCLUDE
TIME for this first version is set to time T10 and the EXCLUDE TIME is set to infinity.
Then a second transaction updates the same copy of the data block to create a second
version of the data block and conmits at time T30. The INCLUDE TIME of the second
version of the data block is changed to time T30 to reflect that the second version of the
data block includes changes made by a transaction that committed at time T30, while the
BXCLUDE TIME rcmains at infinity, since no changes have been removed from the
second version of the data block.

[0028] Now suppose that a third fransaction requires access to the data block as of
time T20. The second version of the data block cannot be used in its current state because
it contains an update made by the second transaction that committed at time T30.
Therefore, the first version of the data block is reconstructed by removing the change
made by the second transaction. Once the reconsiruction operation is completed, the
INCLUDE TIME of the new copy is changed to time T10, and the EXCLUDE TIME is
changed to time T30, to reflect that this version of the data block contains the changes
made by the first transaction that committed at time T10, and that the changes made by
the second transaction, that committed at time T30, have been removed. Thus, any
transaction that requires access to the data block as it existed from time T10 up to, but not

including time T30, can use this reconstructed first version of the data block.

ROW-LEVEL VERSION INFORMATION
[0029] In atypical system, version information is maintained at the granularity of
data blocks, since it is at the granularity of data blocks that the system manages versions.
However, according to an aspect of the present invention, version information is
maintained at the data item granularity, where a single data block may contain multiple
data items. The data item version information may be maintained in addition to and/or
instead of the data block version information.
[0030] Embodiments of the invention are described herein in the context of a
transaction, within a database system, that is attempting to access a particular a row of a
table. The data for the row of the table will typically reside on a data block that includes

data for several other rows. Thus, examples will be given in which the data item is a row.

-6-

-10-

WO 03/096226 PCT/US03/13326

Consequently, versioning information is maintained on a row-level granularity.

However, rows are merely one example of data items that may reside on data blocks
within a multi-versioning system. The present approach is not limited to any particular
data items, nor to any particular type of multi-versioning system.

[0031] Figure 1isablock diagram of a database system 100 that maintains row-level
version information for determining whether a transaction can use a particular version of
a data item, according to an embodiment of the invention.

[0032] Referring to FIG. 1, database system 100 includes a volatile memory 102 and
non-volatile memory 104. Non-volatile memory 104 generally represents one or more
storage devices, such as magnetic or optical drives, on which a database is stored. A data
block 106 is stored on non-volatile memory 104 and contains one or more data items 107.
In the illustrated embodiment, data items 107 are identified individually as D1, D2, D3
and D4.

[0033] Data block 106 also contains information about transactions that have recently
operated on data items 107. Specifically, the transactions listed in entries 110 include the
most recent transactions to update each of the data items in data block 106, Such
{ransactions may either be active (in which case the data block will typically indicate that
they are holding a lock on the data item), or committed. For example, entries 110 indicate
that transactions TX1 and TX2 committed af times 10 and 5, respectively, while
transaction TX3 has not yet committed.

[0034] When the transaction that last updated a data item is committed, the commit
time of the transaction can be considered the version number of the row. Thus, if TX1 is
the last transaction to update data item 1 in data block 106, then the version of data item 1
within data block 106 can be considered "10" (the commit time of TX1). Thus, entries
110 convey version information for the data items within data block 106 at the data item
lovel of granularity. As shall be described in greater detail hercafter, having data item
level version information allows data items to be provided to transactions even when the
data blocks that contain the data items may not be generally useable by the transactions.
[0035] In some systems, it is possible for the information within the data block to
indicate that a transaction is active when the transaction has actually committed, This
phenomenon is due to delays that can occur between the time a transaction commits, and
the time the data blocks that were modified by the transaction are updated Lo indicale that
the transaction committed. As shall be described in greater detail hereafter, this
phenomenon may be accounted for by determining whether a transaction that is active

according to the information in the data block, has actually committed.

-7-

-11-

WO 03/096226 PCT/US03/13326

[0036] The structures shown in system 100 are merely one example of how a multi-
versioning system may maintain versioning information at the data item level of
granularity. The specific versioning information, and the techniques for maintaining the
information, may vary from implementation to implementation. The present invention is
not limited to any particular structure or technique for maintaining versioning information

at the data item level of granularity.

SNAPSHOT INFORMATION
[0037] One approach for managing the execution of transactions to maintain database
consistency involves making sure that a transaction sees only (1) changes that were
committed to the database by a particular set of committed transactions and (2) changes
made by prior statements of the transaction itself. The set of transactions whose changes
are visible to a statement is referred to as the statement’s “snapshot set.” Thus, the
transaction must see a “snapshot” of the database. A transaction's snapshot includes all
changes made by the transactions in its snapshot set, and none of the changes made by
any transactions that are not in its snapshot set ("excluded transactions").
[0038] According to one technique, a multi-versioning database systerm can ensure
that transactions see a consistent snapshot of the database by assigning to each transaction
a snapshot time that corresponds to the state of a database at the time the transaction
began executing. For consistent read, a transaction must see all changes made to a
database by transactions that committed on or before the snapshot time of the transaction,
and camnot see any changes made by transactions that committed after the assigned
snapshot time. ‘
[0039] The concept of consistent read is described in more detail in U.S. Patent
Application No. 08/842,169, entitled “SHARING SNAPSHOTS FOR CONSISTENT
READS,” filed on April 23, 1997, U'S. Patent Application No. 08/838, 967, entitled
“TECHNIQUES FOR REDUCING THE NUMBER OF SNAPSHOTS OF A
DATABASE,” filed on April 23, 1997, and U.S. Paterit Application No. 08/841,541,
entitled “DYNAMIC SNAPSHOT SET ADJUSTMENT,” filed on April 23, 1997, the
contents of each of which are incorporated herein by reference.
00401 As a simple example, suppose a transaction requires access to a version of a
data block as it existed at time T15 (i.e. the snapshot time of the transaction is T15). The
transaction must be supplied a version of the data item that contains all changes made by
transactions that committed on or before time T15, but no changes made by transactions

that committed after time T15. Versions of the data item that include updates made by

-8-

-12-

WO 03/096226 PCT/US03/13326

transactions that have not yet committed (except for the requesting transaction itself), or

committed after time T15, cannot be used.

DETERMINING WHETHER A VERSION OF A DATA ITEM IS USEABLE
[0041] A method for determining whether a transaction can use a version of a data
item, according to an embodiment of the invention, is now described with reference to the
flowchart of Figure 2. The steps identified in FIG. 2 refer to an embodiment in which the
data item that is required by the transaction is a row located in a data block within a
database system.

[0042] In general, the determination of whether the version of the row may be used
by the transaction is made by comparing the version information associated with the row
to the snapshot information associated with the transaction that requires the row.
However, the version information of the row must be determined before it can be
compared to the snapshot information of the transaction. Therefore, several of the steps
illustrated in FIG. 2 correspond to the act of determining the freshness time of a version
of arow.

[0043] Referring to FIG. 2, in step 200 it is determined whether the EXCLUDE time
associated with the data block is less than the snapshot time associated with the
transaction. Tf the EXCLUDE time associated with the data block is less than the
snapshot time associated with the transaction, then the version of the row that is contained
in the data block may be missing changes that must be seen by the transaction. Therefore,
control passes to step 202 where the system obtains a correct version of the row from
another version of the data block.

[0044] If the EXCLUDE time associated with the data block is not less than the
snapshot time associated with the transaction, then control passes to step 204. At step
204, a determination is made as to whether the information in the data block indicates that
the row is locked. If the row is locked, then control proceeds to step 205. Otherwise,
control passes to step 210.

[0045] Instep 210, the commit time of the latest transaction that modified the version
of the row that is within that data block is determined. The commit time may be
determined, for example, by inspecting the entry, within entries 110 (FIG. 1), that
contains the information for the lulest transaction to update the row. The commit time
thus determined constitutes the FRESHNESS titme of that version of the row.

[0046] Instep 212, a determination is made as to whether the freshness time is less

than or equal to the snapshot time. If not, then the transaction cannot use this version of

-9-

-13-

WO 03/096226 PCT/US03/13326

data block 106 because the version of the row includcs a modification that is too new to
be seen by the transaction. Under these conditions, control proceeds to step 202 and
another version of the data block is used. In some systerns, the other version of the block
may be generated by applying undo records to the data block in order to remove the
changes that are too recent for the transaction to see.

[0047] If the freshness time is less than or equal to the snapshot time, then control
passes from step 212 to step 214. In step 214, the version of the row is provided to the
transaction for the transaction to use. In an alternative embodiment, the version of the
row may not be immediately provided to the transaction simply because it is determined
that the version is useable by the transaction. Rather, the system may proceed to identify
several or all versions of the row that are useable by the transaction. Once the pool of
useable candidates is determined, the system may use various criteria for selecting which
version of the row is actually provided to the transaction. Various selection criteria may
be used, as shall be described in greater detail hereafter.

[0048] At step 218, the snapshot information associated with the transaction is
updated to reflect the particular version of the row that was supplied to the transaction.
This step is performed, for example, in embodiments where the snapshot information
identifies a snapshot range. Such embodiments, and the specifics of how the snapshot
information is updated, shall be described in greater details hereafter.

[0049] If, at step 204, the information contained in the data block indicates that the
row is locked, then at step 205 it is determined whether the transaction that holds the lock
is truly active. This step is performed because, even though the information in the data
block indicates that the row is locked, the transaction that holds the lock may actually
have committed, vet the data block had not yet been updated with the commit information
of the transaction.

[0050] If the transaction that holds the lock is not active, then control passes to step
210 to determine the commit time of the transaction that held the lock (which is the latest
transaction to modify the version of the row that is in that version of the data block).
[0051] If the transaction that holds the lock is active, then at step 206 it is determined
whether the transaction that holds the lock is the same transaction as the transaction that
is attempting to read the row. If the transaction that holds the lock is not the same
transaction as the transaction that is attempting to read the row, then thé version of the
row that is in the data block potentially contains information that cannot be seen by the

transaction, and control passes to step 202.

-10-

-14-

WO 03/096226 PCT/US03/13326

[0052] If the transaction that holds the lock is the same transaction as the transaction
that is atfempting to read the row, then at step 208 it is determined whether that version of
the row contains information that is too new for the transaction to see. This test is
performed because, in some database systems, a transaction is allowed to see changes that
it itself has made up to a particular point in time, but no changes that it has made after that
particular point in time,

[0053] If the version of the row contains information that is too new for the

transaction to see, then control passes to step 202. Otherwise, control passes to step 214.

SNAPSHOT RANGES
[0054] Instead of a single snapshot time for a transaction, some database systems use
MUST-SEE and CANNOT-SEE times to define a dependency range for each transaction,
which can provide more flexibility in selecting a convenient version to read. According
to this approach, a transaction must see changes made by any transaction that has a
commit time at or earlier than the MUST-SEE time. In addition, the transaction cannot
see changes made by any transaction having a commit time at or later than the CANNOT-
SEE time. The concept of MUST-SEE and CANNOT-SEE time is described in more
detail in the applications incorporated by reference as described above.
[0055] When used in conjunction with the FRESHNESS time of the version of the
data item and the EXCLUDE time for a version of a data block, two conditions must be
satisfied for a given transaction to be able to use a version of a data block. First, the
CANNOT-SEE time of the given transaction must be greater than the FRESHNESS
TIME of the version of the data item. In other words, the most recent transaction whose
changes are reflected in the version of the data item must have committed before the
CANNOT-SEE time of the given transaction. Second, the MUST-SEE time of the given
transaction must be less than the EXCLUDE TIME of the version of the data block. In
other words, changes that must be seen by the given transaction cannot have been
removed from the version of the data block.
[0056] For example, suppose a particular version of a row has a FRESHNESS TIME
of T33 and the data block in which that version of the row resides has an EXCLUDE
TIME of T39. A transaction having a MUST-SEE time of T30 and a CANNOT-SEE
time of T40 requests access to the data block. Since the FRESHNESS TIME is less than
the CANNOT-SEE time and the EXCLUDE TIME is greater than the MUST-SEE time,
the particular version of the data block can be supplied to this transaction.

11-

-15-

WO 03/096226 PCT/US03/13326

UPDATING SNAPSHOT RANGE AFTER A READ
[0057] Inembodiments that use a snapshot range, the range may have to be adjusted
after a version of a data item is supplied to the transaction. For example, if the
transaction is provided a version of a data item with a freshness time of T13, then the
transaction must thereafter see all data committed as of time T13. Consequently, if the
MUST-SEE time of a transaction is T12 prior to reading the version of the data item, then
the MUST-SEE time of the transaction must be adjusted to time T13 after reading the
data item. Accordingly, the MUST-SEE time for the transaction is changed to the greater
of the current MUST-SEE time in the FRESHNESS TIME.
[0058] In addition, if a transaction reads data from which changes had been removed
by a particular transaction that has committed, then reading transaction cannot thereafter
see any changes made to any data by transactions that committed on or after that
particular transaction. Accordingly, the CANNOT-SEE time for the reading transaction
is changed to the lesser of the current CANNOT-SEE time of the transaction and the
EXCLUDE TIME of the data block that contains the data item that was read.

SELECTING AMONG AVAILABLE CANDIDATES
[0059] As mentioned above, when a version of a data item is provided to a
transaction, the CANNOT-SEE time and the MUST-SEE time are adjusted. The effect of
this adjustment is to narrow the range of snapshots that the transaction may see in future
reads. Different useable versions of a data item may affect the range in different ways.
Consequently, where several useable versions of a data item are present, the efficiency of
the system may be affected based on which uscable version is selected as the version to
be provided to the transaction.
[0060] According to one embodiment, the selection of the candidate from the pool of
candidates is based on the effect that using the candidate will have on the snapshot range
of the reading transaction. For the purpose of illustration, assume that the pool of

candidate versions includes the following:

12-

-16-

WO 03/096226 PCT/US03/13326

Version FRESHNESS EXCLUDE TIME
V1 T10 T30
V2 T15 T33
V3 T9 T20

[0061] Assume that the transaction that requires the data item has a MUST-SEE time
of T11, and a CANNOT-SEE time of T32. In this scenario, versions V1, V2 and V3 are
all useable candidates because, for all three versions, the FRESHNESS time is less than
the CANNOT-SEE time, and the MUST-SEE time is less than the EXCLUDE TIME.
[0062] The [MUST-SEE, CANNOT SEE] range that would result from providing V1
is [T11, T30]. The [MUST-SEE, CANNOT SEE] range that would result from providing
V2is[T15, T32]. The [MUST-SEE, CANNOT SEE] range that would result from
providing V3is [T11, T20].

[0063] According to one embodiment, the version to provide to the transaction is
selected from the useable candidates based on the size of the [MUST-SEE, CANNOT
SEE] range that will remain after the version is provided to the transaction. The such an
embodiment, V1 would be provided to the transaction because the range [T11, T30] is
larger than the other ranges.

[0064] According to an alternative embodiment, the version to provide to the
transaction is selected from the useable candidates based on the candidate that would
result in the latest CANNOT SEE time. In such an embodiment, V2 would be provided
to the transaction because T32 is later than the CANNOT-SEE times that would result
from using any of the other candidates. This embodiment is useful, for example, because
it attempts to allow the transaction to see newer versions of data.

[0065] The above embodiments merely illustrate two examples of criteria that may be
used to select which candidate, from a pool of candidates, will actually be provided to a
transaction. In alternative embodiments, different criteria may be considered instead of,
or in addition to, the criteria specified in these examples. Further, some embodiments
may simply provide the first useable candidate that is identified, rather than identify a
pool of useable candidates.

HARDWARE OVERVIEW

[0066] Figure 3 is a block diagram that illustrates a computer system 300 upon which
an embodiment of the nvention may be implemented. Computer system 300 includes a
bus 302 or other communication mechanism for communicating information, and a
processor 304 coupled with bus 302 for processing information. Computer system 300

also includes a main memory 306, such as a random access memory (RAM) or other

-13-

17-

WO 03/096226 PCT/US03/13326

dynamic storage device, coupled to bus 302 for storing information and instructions to be
exccuted by processor 304, Main memory 306 also may be used for storing tempotary
variables or other intermediate information during execution of instructions to be
executed by processor 304. Computer system 300 further includes a read only memory
(ROM) 308 or other static storage device coupled to bus 302 for storing static information
and instructions for processor 304, A storage device 310, such as a magnetic disk or
optical disk, is provided and coupled to bus 302 for storing information and instructions.
[0067] Computer system 300 may be coupled via bus 302 to a display 312, suchas a
cathode ray tube (CRT), for displaying information to a computer user. An input device
314, including alphanumeric and other keys, is coupled to bus 302 for communicating
information and conimand selections to processor 304. Another type of user input device
is cursor control 316, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 304 and for
controlling cursor movement on display 312. This input device typically has two degrees
of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0068] The invention is related to the use of computer system 300 for determining
whether a transaction can use a version of a data item. According o one embodiment of
the invention, determining whether a transaction can use a version of a data item is
provided by computer system 300 in response to processor 304 executing sequences of
instructions contained in main memory 306. Such instructions may be read into main
memory 306 from another computer-readable medium, such as storage device 310.
Execution of the sequences of instructions contained in main memory 306 causes
processor 304 to perform the process steps described herein. Multi-processing
arrangements may be used in place of processor 304 to perform the process steps.

[0069] In alternative embodiments, hard-wired circuitry may be used in place of or in
combination with software instructions to implement the invention. Thus, embodiments
of the invention are not limited to any specific combination of hardware circuitry and
software. In addition, multi-processor systems may be employed in place of processor
304,

[0070] The term “computer-readable medium” as used herein refers to any medium
that participates in providing instructions to processor 304 for execution. Such a medium
may take many forms, including but not limited to non-volatile media, volatile media, and
transmission media. Non-volatile media includes, for example, optical or magnetic disks,

such as storage device 310. Volatile media includes dynamic memory, such as main

-14-

-18-

WO 03/096226 PCT/US03/13326

memory 306. Transmission media includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 302. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

[0071] Common forms of computer-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-
ROM, amy other optical medium, punch cards, paper tape, any other physical medium
with paiterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other
memory chip or cartridge, a carrier wave as described hereinafter, or any other medium
from which a computer can read.

[0072] Various forms of computer readable media may be involved in carrying
sequences of instructions to processor 304 for execution. For example, the instructions
may initially be carried on a magnetic disk of a remote computer. The remote computer
can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 300 can receive the
data on the telephone line and vse an infra~red transmitter to convert the data to an infra-
red signal. An infra-red detector coupled to bus 302 can receive the data carried in the
infra-red signal and place the data on bus 302. Bus 302 carries the data to main memory
3006, from which processor 304 retrieves and executes the instructions. The instructions
received by main memory 306 may optionally be stored on storage device 310 either
before or after execution by processor 304.

[0073] Computer system 300 also includes a communication interface 318 coupled to
bus 302. Communication interface 318 provides a two-way data communication coupling
to a network link 320 that is connected to a local network 322. For example,
communication interface 318 may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 318 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 318 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

[0074] Network link 320 typically provides data communication through one or more
networks to other data devices. For example, network link 320 may provide a connection
through local network 322 to a host computer 324 or to data equipment operated by an
Internet Service Provider (ISP) 326. ISP 326 in turn provides data communication

-15-

-19-

WO 03/096226 PCT/US03/13326

services through the world wide packet data communication network now commonly
referred to as the “Internet” 328. Local network 322 and Internet 328 both use electrical,
electromagnetic or oplical signals that carry digital data streams. The signals through the
various networks and the signals on network link 320 and through communication
interface 318, which carry the digital data to and from computer system 300, are
exemplary forms of carrier waves transporting the information.

[0075] Computer system 300 can sond messages and receive data, including program
code, through the network(s), network link 320 and communication interface 318. In the
Internet example, a server 330 might transmit a requested code for an application program
through Internet 328, ISP 326, local network 322 and communication interface 318. In
accordance with the invention, one such downloaded application provides for determining
whether a transaction can use a version of a data item.

[0076] The received code may be executed by processor 304 as it is received, and/or
stored in storage device 310, or other non-volatile storage for later execution. In this
manner, computer system 300 may obtain application code in the form of a carrier wave.
[0077] In the foregoing specification, the invention has been described with reference
to specific embodiments thereof. It will, however, be evident that various modifications
and changes may be made thereto without departing from the broader spirit and scope of
the invention. The specification and drawings are, accordingly, to be regarded in an

illustrative rather than a restrictive sense.

-16-

-20-

18 Aug 2008

2003228754

The claims defining the invention are as follows:

A computer-implemented method for providing a data item to a transaction, the

method comprising the steps of:

locating, within volatile memory, a first version of a data block that includes a
first version of the data item;

determining whether the first version of the data item is useable by the
transaction without respect to whether the first version of the data block
is useable by the transaction;

if the first version of the data item is usable by the transaction, then establishing
said data item as a candidate that can be provided to said transaction
even though the first version of the data block is otherwise not usable
by said transaction; and

if the first version of the data item is not usable by the transaction, then obtaining
a version of the data item that is usable by the transaction from a second
version of the data block that is different from said first version.

The method of Claim 1 further comprising the step of generating the second
version of the data block by modifying the first version of the data block.

The method of Claim 1 wherein the step of obtaining a version of the data item
that is usable by the transaction from a second version of the data block is
performed by obtaining the version of the data item that is useable from a
version of the data block that is maintained separate from the first version of the
data block.

The method of Claim 1 wherein the step of determining whether the first version
of the data item is useable by the transaction includes the step of comparing
version information associated with the data item with snapshot information

associated with the transaction,

The method of Claim 4 wherein the step of comparing version information
associated with the data item with snapshot information associated with the
transaction includes comparing version information associated with the data item

with a snapshot time associated with the transaction.

-17-

-21-

WO 03/096226 PCT/US03/13326

6. The method of Claim 4 wherein the step of comparing version information
associated with the data item with snapshot information associated with the
transaction includes comparing version information associated with the data item
with a MUST-SEE time and a CANNOT-SEE time associated with the

transaction.

7. The method of Claim 4 wherein:

the step of comparing version information associated with the data item with
snapshot information associated with the transaction includes comparing a
freshness time associated with the data item with snapshot information
associated with the transaction; and

the freshness time indicates a commit time of a committed transaction that most
recently updated the first version of the data item within the first version of
the data block.

8. The method of Claim 7 further comprising the step of identifying the freshness

time by performing the steps of:

determining whether the first version of the data item is locked,

if the first version of the data item is locked, then determining whether the
transaction that holds a lock on the first version of the data item has
actually committed; and

if the transaction that holds the lock on the first data item has actually committed,
then using a commit time of said transaction that holds the lock as the

freshness time of said data item.

9. The method of Claim 7 further comprising the step of identifying the freshness

time by performing the steps of:

determining whether the first version of the data item is locked;

if the first version of the data item is locked, then determining whether the
transaction that holds a lock on the first version of the data item has
actually committed; and

if the transaction that holds the lock on the first data item has not actually
committed, then determining whether the transaction that holds the lock on

the first data item is the transaction that requires the data item; and

-18-

22-

18 Aug 2008

2003228754

14.

13.

if the transaction that holds the lock on the first data item is not the transaction
that requires the data item, then determining that the first version of the

data item is not useable by the transaction.

The method of Claim | wherein:

the first version of the data item is established as one candidate of & plurality of
candidates that are versions of the data item that are useable by the
transaction; and

the method includes the step of selecting which candidate of the plurality of

candidates to provide to said transaction.

The method of Claim | wherein:
the transaction is a transaction performed within a multi-versioning database
system; and

the data item is a row of a table within said database system.

The method of Claim 10 wherein the step of selecting which candidate of the
plurality of candidates to provide to said transaction is performed based on how
the candidate affects a range associated with the transaction, wherein said range
is bounded by a MUST-SEE time and a CANNOT-SEE time.

The method of Claim 12 wherein the step of selecting which candidate of the
plurality of candidates to provide is based on which candidate would result in the

widest range for the transaction.

The method of Claim 12 wherein the step of selecting which candidate of the
plurality of candidates to provide is based on which candidate would result in the
highest CANNOT-SEE time.

The method of Claim 1 wherein the step of establishing said data item as a
candidate that can be provided to said transaction even though the first version of
the data block is otherwise not usable by said transaction comprises establishing
said data item as a candidate that can be provided to said transaction even though

the first version of the data block is otherwise not usable by said transaction

-19-

-23-

18 Aug 2008

2003228754

17.

because the first version of the data block contains updates that said transaction

cannot be allowed to see.

A computer-readable medium carrying instructions for providing a data item to a
transaction, the instructions comprising instructions for performing the steps of
the method defined in any one of claims 1 to 15.

A computer-implemented method for providing a data item to a transaction,

substantially as hereinbefore described with reference to the accompanying

drawings.

-20-

-24-

WO 03/096226

FIG. 1

173

PCT/US03/13326

VOLATILE MEMORY 102

DATA BUFFER

™~114

CACHE 116

h\

J

NON-VOLATILE MEMORY

\

110

DATA BLOCK 106
INDEX TXID STATUS | COMMIT TIME | UNDOCPTR
1 TX1 C 10 PTR1
2 X2 C 5 PTR2
3 TX3 A - PTR3

DATA! || DATA2 ” DATA3 || DATA4 |

S

¥
N
107

-25-

WO 03/096226 PCT/US03/13326

23

FIG. 2

18 THE EXCLUDE TIME
OF THE DATA BLOCK
LESS THAN THE
SNAPSHOT TIME?

YES

ISTHE
TRANSACTION
ACTIVE?

IS THEROW
LOCKED?

SAME
TRANSACTION?

DETERMINE THE COMMIT TIME OF THE
LATEST TRANSACTION THAT MODIFIED [«
THE ROW

212

IS THE FRESHNESS:
TIME LESS THAN OR
EQUAL TO THE
SNAPSHOT TIME?

CONTAINS
INFORMATION
THE

NO

TRANSACTION
CANNOT SEE?

ves [
>
USE THIS VERSION OF THEROW 17214 "
2
A
Y USE ANOTHER
UPDATE SNAPSHOT TO REFLECT THE PARTICULAR [218 VERSION OF

VERSION OF THE DATA BLOCK JUST READ 0 TEIEODé;A

-26-

PCT/US03/13326

373

l

<+
[
32

LSOH
e oy - 0T I
o , 006 —— ‘
o S v FOV4YIINI voe _ e
SRIOMLIN
MIOMLN! O
1001 : NOILYDINNWWOD HOS5300ud i | ——4 10uNoD
i | HOS¥ND
_ |
| !
1 |
1 1
9ce “ 708 H 7ie
I sna T y 30IA3Q LNaNI
I !
I 1
| |
| [
| |
! e 80T 90¢ ! 7Ie
g2¢ — _ Fo13a AHOWIN I
33 _ | AV1dSIa
JOVHOLS Woy v
¥IANIS | | ki !

27-

WO 03/096226

£ OId

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

