
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2017/053277 Al
30 March 2017 (30.03.2017) W I P0 I P CT

(51) International Patent Classification: (72) Inventors: RAMASUBRAMONIAN, Adarsh Krishnan;
H04N19/46 (2014.01) H04N19/80 (2014.01) 5775 Morehouse Drive, San Diego, California 92121-1714
H04N19/36 (2014.01) H04N19/85 (2014.01) (US). RUSANOVSKYY, Dmytro; 5775 Morehouse

(21) International Application Number: Drive, San Diego, California 92121-1714 (US). SOLE

PCT/US2016/052633 ROJALS, Joel; 5775 Morehouse Drive, San Diego, Cali
fornia 92121-1714 (US). LEE, Sungwon; 5775 More

(22) International Filing Date: house Drive, San Diego, California 92121-1714 (US).
20 September 2016 (20.09.2016) BUGDAYCI SANSLI, Done; 5775 Morehouse Drive, San

Diego, California 92121-1714 (US). KARCZEWICZ,
(25) Filing Language: English Marta; 5775 Morehouse Drive, San Diego, California

(26) Publication Language: English 92121-1714 (US).

(30) Priority Data: (74) Agent: EVANS, Matthew J.; Shumaker & Sieffert, P.A.,
62/221,586 21 September 2015 (21.09.2015) US 1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125

62/236,804 2 October 2015 (02.10.2015) US (US).
62/241,063 13 October 2015 (13.10.2015) US (81) Designated States (unless otherwise indicated, for every
15/269,558 19 September 2016 (19.09.2016) US kind of national protection available): AE, AG, AL, AM,

(71) Applicant: QUALCOMM INCORPORATED [US/US]; AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
ATTN: International IP Administration, 5775 Morehouse BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
Drive, San Diego, California 92121-1714 (US). DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,

HN, HR, FU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

[Continued on next page]

(54) Title: FIXED POINT IMPLEMENTATION OF RANGE ADJUSTMENT OF COMPONENTS IN VIDEO CODING

(57) Abstract: Processing high dynamic range and or wide color gamut video

RECEIVE ONE OR MORE SYNTAX data using a fixed-point implementation. A method of processing video data may
ELEMENTS THAT CONTAIN INFORMATION 1300 include receiving one or more supplemental enhancement information (SEI) mes

SPECIFYING HOW TO DETERMINE 10

PARAMETERS FOR PERFORMING AN sages that contain information specifying how to determine parameters for per
INVERSE DYNAMIC RANGE ADJUSTMENT forming an inverse dynamic range adjustment process, receiving decoded video

data, and performing the inverse dynamic range adjustment process on the de
coded video data using fixed-point computing in accordance with the information
in the one or more SEI messages.

1310

RECEIVE DECODED VIDEO DATA IP
DETERMINE THE PARAMETERS FOR THE 1320
INVERSE DYNAMIC RANGE ADJUSTMENT

PROCESS

PERFORM THE INVERSE DYNAMIC RANGE 1
ADJUST PROCESS ON THE DECODED I1330

VIDEO DATA USING FIXED-POINT
COMPUTING IN ACCORDANCE WITH THE

INFORMATION RECEIVED

113110
DISPLAY THE VIDEO DATA

O FIG. 13

W O 20 17/053277 A 1l llll||ll lVlllDllllllll|||||||||||||||||||| DI II l ||||||||||||||||||I| D ID l | I| | | l
KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT,
RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
ZA, ZM, ZW. GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(84) Designated States (unless otherwise indicated, for every Published:
kind of regional protection available): ARIPO (BW, GH' _ with international search report (Art. 21(3))
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

WO 2017/053277 PCT/US2016/052633
1

FIXED POINT IMPLEMENTATION OF RANGE ADJUSTMENT OF
COMPONENTS IN VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Application No.

62/221,586, filed September 21, 2015, U.S. Provisional Application No. 62/236,804,

filed October 2, 2015, and U.S. Provisional Application No. 62/241,063, filed October

13, 2015, the entire content of each of which is incorporated by reference herein.

TECHNICAL FIELD

[0002] This disclosure relates to video processing.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,

including digital televisions, digital direct broadcast systems, wireless broadcast

systems, personal digital assistants (PDAs), laptop or desktop computers, tablet

computers, e-book readers, digital cameras, digital recording devices, digital media

players, video gaming devices, video game consoles, cellular or satellite radio

telephones, so-called "smart phones," video teleconferencing devices, video streaming

devices, and the like. Digital video devices implement video coding techniques, such as

those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T

H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), ITU-T H.265, High

Efficiency Video Coding (HEVC), and extensions of such standards. The video devices

may transmit, receive, encode, decode, and/or store digital video information more

efficiently by implementing such video coding techniques.

[0004] Video coding techniques include spatial (intra-picture) prediction and/or

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video

sequences. For block-based video coding, a video slice (e.g., a video frame or a portion

of a video frame) may be partitioned into video blocks, which may also be referred to as

treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I)

slice of a picture are encoded using spatial prediction with respect to reference samples

in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice

of a picture may use spatial prediction with respect to reference samples in neighboring

blocks in the same picture or temporal prediction with respect to reference samples in

WO 2017/053277 PCT/US2016/052633
2

other reference pictures. Pictures may be referred to as frames, and reference pictures

may be referred to as reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be

coded. Residual data represents pixel differences between the original block to be

coded and the predictive block. An inter-coded block is encoded according to a motion

vector that points to a block of reference samples forming the predictive block, and the

residual data indicating the difference between the coded block and the predictive block.

An intra-coded block is encoded according to an intra-coding mode and the residual

data. For further compression, the residual data may be transformed from the pixel

domain to a transform domain, resulting in residual transform coefficients, which then

may be quantized. The quantized transform coefficients, initially arranged in a two

dimensional array, may be scanned in order to produce a one-dimensional vector of

transform coefficients, and entropy coding may be applied to achieve even more

compression.

[0006] The total number of color values that may be captured, coded, and displayed

may be defined by a color gamut. A color gamut refers to the range of colors that a

device can capture (e.g., a camera) or reproduce (e.g., a display). Often, color gamuts

differ from device to device. For video coding, a predefined color gamut for video data

may be used such that each device in the video coding process may be configured to

process pixel values in the same color gamut. Some color gamuts are defined with a

larger range of colors than color gamuts that have been traditionally used for video

coding. Such color gamuts with a larger range of colors may be referred to as a wide

color gamut (WCG).

[0007] Another aspect of video data is dynamic range. Dynamic range is typically

defined as the ratio between the maximum and minimum brightness (e.g., luminance) of

a video signal. The dynamic range of common video data used in the past is considered

to have a standard dynamic range (SDR). Other example specifications for video data

define color data that has a larger ratio between the maximum and minimum brightness.

Such video data may be described as having a high dynamic range (HDR).

SUMMARY

[0008] This disclosure describes example techniques and devices for implementing the

dynamic range adjustment of components of video data using a fixed-point

implementation. The described techniques are applicable to video coding standards, not

WO 2017/053277 PCT/US2016/052633
3

limited to H.264/AVC, H.265/HEVC, and other standards, that are configured to encode

and decode High Dynamic Range (HDR) content.

[0009] In one example of the disclosure, a method of processing video data comprises

receiving one or more syntax elements that contain information specifying how to

determine parameters for performing an inverse dynamic range adjustment process,

receiving decoded video data, and performing the inverse dynamic range adjustment

process on the decoded video data using fixed-point computing in accordance with the

information received.

[0010] In another example of the disclosure, an apparatus configured to process video

data comprises a memory configured to store decoded video data, and one or more

processors configured to receive one or more syntax elements that contain information

specifying how to determine parameters for performing an inverse dynamic range

adjustment process, receive the decoded video data, and perform the inverse dynamic

range adjustment process on the decoded video data using fixed-point computing in

accordance with the information received.

[0011] In another example of the disclosure, an apparatus configured to process video

data comprises means for receiving one or more syntax elements that contain

information specifying how to determine parameters for performing an inverse dynamic

range adjustment process, means for receiving decoded video data, and means for

performing the inverse dynamic range adjustment process on the decoded video data

using fixed-point computing in accordance with the information received.

[0012] In another example, this disclosure describes a computer-readable storage

medium storing instructions that, when executed, cause one or more processors of a

device configured to process video data to receive one or more syntax elements that

contain information specifying how to determine parameters for performing an inverse

dynamic range adjustment process, receive the decoded video data, and perform the

inverse dynamic range adjustment process on the decoded video data using fixed-point

computing in accordance with the information received.

[0013] In another example of the disclosure, a method of processing video data

comprises performing a dynamic range adjustment process on video data using fixed

point computing, and generating one or more syntax elements that contain information

specifying how to determine parameters for performing an inverse dynamic range

adjustment process, relative to the dynamic range adjustment process, using fixed-point

computing.

WO 2017/053277 PCT/US2016/052633
4

[0014] In another example of the disclosure, an apparatus configured to process video

data comprises a memory configured to store video data, and one or more processors

configured to perform a dynamic range adjustment process on the video data using

fixed-point computing, and generate one or more syntax elements that contain

information specifying how to determine parameters for performing an inverse dynamic

range adjustment process, relative to the dynamic range adjustment process, using fixed

point computing.

[0015] In another example of the disclosure, an apparatus configured to process video

data comprises means for performing a dynamic range adjustment process on video data

using fixed-point computing, and means for generating one or more syntax elements

that contain information specifying how to determine parameters for performing an

inverse dynamic range adjustment process, relative to the dynamic range adjustment

process, using fixed-point computing.

[0016] In another example, this disclosure describes a computer-readable storage

medium storing instructions that, when executed, cause one or more processors of a

device configured to process video data to perform a dynamic range adjustment process

on the video data using fixed-point computing, and generate one or more syntax

elements that contain information specifying how to determine parameters for

performing an inverse dynamic range adjustment process, relative to the dynamic range

adjustment process, using fixed-point computing.

[0017] The details of one or more examples are set forth in the accompanying drawings

and the description below. Other features, objects, and advantages will be apparent

from the description, drawings, and claims.

BRIEF DESCRIPTION OF DRAWINGS

[0018] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system configured to implement the techniques of the disclosure.

[0019] FIG. 2 is a conceptual drawing showing a typical structure of a color remapping

information (CRI) process.

[0020] FIG. 3 is a conceptual drawing illustrating the concepts of HDR data.

[0021] FIG. 4 is a conceptual diagram illustrating example color gamuts.

[0022] FIG. 5 is a flow diagram illustrating an example of HDR/WCG representation

conversion.

WO 2017/053277 PCT/US2016/052633
5

[0023] FIG. 6 is a flow diagram illustrating an example of HDR/WCG inverse

conversion.

[0024] FIG. 7 is conceptual diagram illustrating example of Electro-optical transfer

functions (EOTF) utilized for video data conversion (including SDR and HDR) from

perceptually uniform code levels to linear luminance.

[0025] FIG. 8 is a block diagram illustrating an example HDR/WCG conversion

apparatus operating according to the techniques of this disclosure.

[0026] FIG. 9 is a block diagram illustrating an example HDR/WCG inverse conversion

apparatus according to the techniques of this disclosure.

[0027] FIG. 10 is a block diagram illustrating an example of a video encoder that may

implement techniques of this disclosure.

[0028] FIG. 11 is a block diagram illustrating an example of a video decoder that may

implement techniques of this disclosure.

[0029] FIG. 12 is a flowchart showing one example video processing technique of the

disclosure.

[0030] FIG. 13 is a flowchart showing another example video processing technique of

the disclosure.

DETAILED DESCRIPTION

[0031] This disclosure is related to the processing and/or coding of video data with high

dynamic range (HDR) and wide color gamut (WCG) representations. More specifically,

the techniques of this disclosure include techniques for performing range adjustment of

video data components using fixed point processing operations (e.g., as opposed to

floating point processing operations). The techniques and devices described herein may

improve compression efficiency of hybrid-based video coding systems (e.g.,

H.265/HEVC, H.264/AVC, etc.) utilized for coding video data, including HDR and

WCG video data.

[0032] Video coding standards, including hybrid-based video coding standards, include

ITU-T H.261, ISO/IEC MPEG-i Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual,

ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC

MPEG-4 AVC), including its Scalable Video Coding (SVC) and Multi-view Video

Coding (MVC) extensions. The design of a new video coding standard, namely High

Efficiency Video coding (HEVC, also called H.265), has been finalized by the Joint

Collaboration Team on Video Coding (JCT-VC) of ITU-T Video Coding Experts Group

WO 2017/053277 PCT/US2016/052633
6

(VCEG) and ISO/IEC Motion Picture Experts Group (MPEG). An HEVC draft

specification referred to as HEVC Working Draft 10 (WD 10), Bross et al., "High

efficiency video coding (HEVC) text specification draft 10 (for FDIS & Last Call),"

Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and

ISO/IEC JTC1/SC29/WG11, 12th Meeting: Geneva, CH, 14-23 January 2013, JCTVC

L1003v34, is available from http://phenix.int

evry.fr/ict/doc end user/documents/12 Geneva/wg11/JCTVC-L1003-v34.zip. The

finalized HEVC standard is referred to as HEVC version 1.

[0033] A defect report, Wang et al., "High efficiency video coding (HEVC) Defect

Report," Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3

and ISO/IEC JTC1/SC29/WG1 1, 14th Meeting: Vienna, AT, 25 July-2 August 2013,

JCTVC-N1003v1, is available from http://phenix.int

evry.fr/ict/doc end user/documents/14 Vienna/wg11/JCTVC-N1003-v1.zip. The

finalized HEVC standard document is published as ITU-T H.265, Series H: Audiovisual

and Multimedia Systems, Infrastructure of audiovisual services - Coding of moving

video, High efficiency video coding, Telecommunication Standardization Sector of

International Telecommunication Union (ITU), April 2013, and another version of the

finalized HEVC standard was published in October 2014. A copy of the H.265/HEVC

specification text may be downloaded from http://www.itu.int/rec/T-REC-H.265

201504-Ien.

[0034] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system 10 that may utilize techniques of this disclosure. As shown in FIG. 1, system 10

includes a source device 12 that provides encoded video data to be decoded at a later

time by a destination device 14. In particular, source device 12 provides the video data

to destination device 14 via a computer-readable medium 16. Source device 12 and

destination device 14 may comprise any of a wide range of devices, including desktop

computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone

handsets such as so-called "smart" phones, so-called "smart" pads, televisions, cameras,

display devices, digital media players, video gaming consoles, video streaming devices,

broadcast receiver device, or the like. In some cases, source device 12 and destination

device 14 may be equipped for wireless communication.

[0035] Destination device 14 may receive the encoded video data to be decoded via

computer-readable medium 16. Computer-readable medium 16 may comprise any type

of medium or device capable of moving the encoded video data from source device 12

WO 2017/053277 PCT/US2016/052633
7

to destination device 14. In one example, computer-readable medium 16 may comprise

a communication medium to enable source device 12 to transmit encoded video data

directly to destination device 14 in real-time. The encoded video data may be

modulated according to a communication standard, such as a wired or wireless

communication protocol, and transmitted to destination device 14. The communication

medium may comprise any wireless or wired communication medium, such as a radio

frequency (RF) spectrum or one or more physical transmission lines. The

communication medium may form part of a packet-based network, such as a local area

network, a wide-area network, or a global network such as the Internet. The

communication medium may include routers, switches, base stations, or any other

equipment that may be useful to facilitate communication from source device 12 to

destination device 14.

[0036] In other examples, computer-readable medium 16 may include non-transitory

storage media, such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray

disc, or other computer-readable media. In some examples, a network server (not

shown) may receive encoded video data from source device 12 and provide the encoded

video data to destination device 14, e.g., via network transmission. Similarly, a

computing device of a medium production facility, such as a disc stamping facility, may

receive encoded video data from source device 12 and produce a disc containing the

encoded video data. Therefore, computer-readable medium 16 may be understood to

include one or more computer-readable media of various forms, in various examples.

[0037] In some examples, encoded data may be output from output interface 22 to a

storage device. Similarly, encoded data may be accessed from the storage device by

input interface. The storage device may include any of a variety of distributed or locally

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,

flash memory, volatile or non-volatile memory, or any other suitable digital storage

media for storing encoded video data. In a further example, the storage device may

correspond to a file server or another intermediate storage device that may store the

encoded video generated by source device 12. Destination device 14 may access stored

video data from the storage device via streaming or download. The file server may be

any type of server capable of storing encoded video data and transmitting encoded video

data to the destination device 14. Example file servers include a web server (e.g., for a

website), an FTP server, network attached storage (NAS) devices, or a local disk drive.

Destination device 14 may access the encoded video data through any standard data

WO 2017/053277 PCT/US2016/052633
8

connection, including an Internet connection. This may include a wireless channel (e.g.,

a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a

combination of both that is suitable for accessing encoded video data stored on a file

server. The transmission of encoded video data from the storage device may be a

streaming transmission, a download transmission, or a combination thereof.

[0038] The techniques of this disclosure are not necessarily limited to wireless

applications or settings. The techniques may be applied to video coding in support of

any of a variety of multimedia applications, such as over-the-air television broadcasts,

cable television transmissions, satellite television transmissions, Internet streaming

video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital

video that is encoded onto a data storage medium, decoding of digital video stored on a

data storage medium, or other applications. In some examples, system 10 may be

configured to support one-way or two-way video transmission to support applications

such as video streaming, video playback, video broadcasting, and/or video telephony.

[0039] In the example of FIG. 1, source device 12 includes video source 18, video

encoding unit 21, which includes video pre-processor unit 19 and video encoder 20, and

output interface 22. Destination device 14 includes input interface 28, video decoding

unit 29, which includes video post-processor unit 31 and video decoder 30, and display

device 32. In accordance with this disclosure, video pre-processor unit 19 and/or video

encoder 20 of source device 12 and video post-processor unit 31 and/or video decoder

30 of destination device 14 may be configured to implement the techniques of this

disclosure, including signaling and related operations applied to video data in certain

color spaces to enable more efficient compression of HDR and WCG video data with a

fixed point implementation. In some examples, video pre-processor unit 19 may be

separate from video encoder 20. In other examples, video pre-processor unit 19 may be

part of video encoder 20. Likewise, in some examples, video post-processor unit 31

may be separate from video decoder 30. In other examples, video post-processor unit

31 may be part of video decoder 30. In other examples, a source device and a

destination device may include other components or arrangements. For example, source

device 12 may receive video data from an external video source 18, such as an external

camera. Likewise, destination device 14 may interface with an external display device,

rather than including an integrated display device.

[0040] The illustrated system 10 of FIG. 1 is merely one example. Techniques for

processing HDR and WCG video data may be performed by any digital video encoding

WO 2017/053277 PCT/US2016/052633
9

and/or video decoding device. Moreover, the techniques of this disclosure may also be

performed by a video pre-processor and/or video post-processor (e.g., video pre

processor unit 19 and video post-processor unit 31). In general, a video pre-processor

may be any device configured to process video data before encoding (e.g., before

HEVC encoding). In general, a video post-processor may be any device configured to

process video data after decoding (e.g., after HEVC decoding). Source device 12 and

destination device 14 are merely examples of such coding devices in which source

device 12 generates coded video data for transmission to destination device 14. In some

examples, devices 12, 14 may operate in a substantially symmetrical manner such that

each of devices 12, 14 include video encoding and decoding components, as well as a

video pre-processor and a video post-processor (e.g., video pre-processor unit 19 and

video post-processor unit 31, respectively). Hence, system 10 may support one-way or

two-way video transmission between video devices 12, 14, e.g., for video streaming,

video playback, video broadcasting, or video telephony.

[0041] Video source 18 of source device 12 may include a video capture device, such as

a video camera, a video archive containing previously captured video, and/or a video

feed interface to receive video from a video content provider. As a further alternative,

video source 18 may generate computer graphics-based data as the source video, or a

combination of live video, archived video, and computer-generated video. In some

cases, if video source 18 is a video camera, source device 12 and destination device 14

may form so-called camera phones or video phones. As mentioned above, however, the

techniques described in this disclosure may be applicable to video coding and video

processing, in general, and may be applied to wireless and/or wired applications. In

each case, the captured, pre-captured, or computer-generated video may be encoded by

video encoding unit 21. The encoded video information may then be output by output

interface 22 onto a computer-readable medium 16.

[0042] Input interface 28 of destination device 14 receives information from computer

readable medium 16. The information of computer-readable medium 16 may include

syntax information defined by video encoder 20, which is also used by video decoding

unit 29, that includes syntax elements that describe characteristics and/or processing of

blocks and other coded units, e.g., groups of pictures (GOPs). Display device 32

displays the decoded video data to a user, and may comprise any of a variety of display

devices such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma

WO 2017/053277 PCT/US2016/052633
10

display, an organic light emitting diode (OLED) display, or another type of display

device.

[0043] As illustrated, video pre-processor unit 19 receives the video data from video

source 18. Video pre-processor unit 19 may be configured to process the video data to

convert it into a form that is suitable for encoding with video encoder 20. For example,

video pre-processor unit 19 may perform dynamic range compacting (e.g., using a non

linear transfer function), color conversion to a more compact or robust color space,

and/or floating-to-integer representation conversion. Video encoder 20 may perform

video encoding on the video data outputted by video pre-processor unit 19. Video

decoder 30 may perform the inverse of video encoder 20 to decode video data, and

video post-processor unit 31 may perform the inverse of video pre-processor unit 19 to

convert the video data into a form suitable for display. For instance, video post

processor unit 31 may perform integer-to-floating conversion, color conversion from the

compact or robust color space, and/or the inverse of the dynamic range compacting to

generate video data suitable for display.

[0044] Video encoder 20 and video decoder 30 each may be implemented as any of a

variety of suitable encoder circuitry, such as one or more microprocessors, digital signal

processors (DSPs), application specific integrated circuits (ASICs), field programmable

gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations

thereof. When the techniques are implemented partially in software, a device may store

instructions for the software in a suitable, non-transitory computer-readable medium and

execute the instructions in hardware using one or more processors to perform the

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be

included in one or more encoders or decoders, either of which may be integrated as part

of a combined encoder/decoder (CODEC) in a respective device.

[0045] Video pre-processor unit 19 and video post-processor unit 31 each may be

implemented as any of a variety of suitable encoder circuitry, such as one or more

microprocessors, digital signal processors (DSPs), application specific integrated

circuits (ASICs), field programmable gate arrays (FPGAs), discrete logic, software,

hardware, firmware or any combinations thereof. When the techniques are implemented

partially in software, a device may store instructions for the software in a suitable, non

transitory computer-readable medium and execute the instructions in hardware using

one or more processors to perform the techniques of this disclosure. As discussed

above video pre-processor unit 19 and video post-processor unit 31 be separate devices

WO 2017/053277 PCT/US2016/052633
11

from video encoder 20 and video decoder 30, respectively. In other examples, video

pre-processor unit 19 may integrate with video encoder 20 in a single device and inverse

video post-processor unit 31 may be integrated with video decoder 30 in a single device.

[0046] In some examples, video encoder 20 and video decoder 30 operate according to

a video compression standard, such as ISO/IEC MPEG-4 Visual and ITU-T H.264 (also

known as ISO/JEC MPEG-4 AVC), including its Scalable Video Coding (SVC)

extension, Multi-view Video Coding (MVC) extension, and MVC-based three

dimensional video (3DV) extension. In some instances, any bitstream conforming to

MVC-based 3DV always contains a sub-bitstream that is compliant to a MVC profile,

e.g., stereo high profile. Furthermore, there is an ongoing effort to generate a 3DV

coding extension to H.264/AVC, namely AVC-based 3DV. Other examples of video

coding standards include ITU-T H.261, ISO/IEC MPEG-i Visual, ITU-T H.262 or

ISO/JEC MPEG-2 Visual, ITU-T H.263, ISO/JEC MPEG-4 Visual, and ITU-T H.264,

ISO/JEC Visual. In other examples, video encoder 20 and video decoder 30 may be

configured to operate according to the HEVC standard.

[0047] In HEVC and other video coding standards, a video sequence typically includes

a series of pictures. Pictures may also be referred to as "frames." A picture may

include three sample arrays, denoted SL, Scb, and SCr. SL is a two-dimensional array

(i.e., a block) of luma samples. Scb is a two-dimensional array of Cb chrominance

samples. SCr is a two-dimensional array of Cr chrominance samples. Chrominance

samples may also be referred to herein as "chroma" samples. In other instances, a

picture may be monochrome and may only include an array of luma samples.

[0048] Video encoder 20 may generate a set of coding tree units (CTUs). Each of the

CTUs may comprise a coding tree block of luma samples, two corresponding coding

tree blocks of chroma samples, and syntax structures used to code the samples of the

coding tree blocks. In a monochrome picture or a picture that has three separate color

planes, a CTU may comprise a single coding tree block and syntax structures used to

code the samples of the coding tree block. A coding tree block may be an NxN block of

samples. A CTU may also be referred to as a "tree block" or a "largest coding unit"

(LCU). The CTUs of HEVC may be broadly analogous to the macroblocks of other

video coding standards, such as H.264/AVC. However, a CTU is not necessarily

limited to a particular size and may include one or more coding units (CUs). A slice

may include an integer number of CTUs ordered consecutively in the raster scan.

WO 2017/053277 PCT/US2016/052633
12

[0049] This disclosure may use the term "video unit" or "video block" to refer to one or

more blocks of samples and syntax structures used to code samples of the one or more

blocks of samples. Example types of video units may include CTUs, CUs, PUs,

transform units (TUs) in HEVC, or macroblocks, macroblock partitions, and so on in

other video coding standards.

[0050] To generate a coded CTU, video encoder 20 may recursively perform quad-tree

partitioning on the coding tree blocks of a CTU to divide the coding tree blocks into

coding blocks, hence the name "coding tree units." A coding block is an NxN block of

samples. A CU may comprise a coding block of luma samples and two corresponding

coding blocks of chroma samples of a picture that has a luma sample array, a Cb sample

array and a Cr sample array, and syntax structures used to code the samples of the

coding blocks. In a monochrome picture or a picture that has three separate color

planes, a CU may comprise a single coding block and syntax structures used to code the

samples of the coding block.

[0051] Video encoder 20 may partition a coding block of a CU into one or more

prediction blocks. A prediction block may be a rectangular (i.e., square or non-square)

block of samples on which the same prediction is applied. A prediction unit (PU) of a

CU may comprise a prediction block of luma samples, two corresponding prediction

blocks of chroma samples of a picture, and syntax structures used to predict the

prediction block samples. In a monochrome picture or a picture that have three separate

color planes, a PU may comprise a single prediction block and syntax structures used to

predict the prediction block samples. Video encoder 20 may generate predictive luma,

Cb and Cr blocks for luma, Cb and Cr prediction blocks of each PU of the CU.

[0052] Video encoder 20 may use intra prediction or inter prediction to generate the

predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the

predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the

PU based on decoded samples of the picture associated with the PU.

[0053] If video encoder 20 uses inter prediction to generate the predictive blocks of a

PU, video encoder 20 may generate the predictive blocks of the PU based on decoded

samples of one or more pictures other than the picture associated with the PU. Inter

prediction may be uni-directional inter prediction (i.e., uni-prediction) or bi-directional

inter prediction (i.e., bi-prediction). To perform uni-prediction or bi-prediction, video

encoder 20 may generate a first reference picture list (RefPicList0) and a second

reference picture list (RefPicListl) for a current slice.

WO 2017/053277 PCT/US2016/052633
13

[0054] Each of the reference picture lists may include one or more reference pictures.

When using uni-prediction, video encoder 20 may search the reference pictures in either

or both RefPicListO and RefPicListl to determine a reference location within a

reference picture. Furthermore, when using uni-prediction, video encoder 20 may

generate, based at least in part on samples corresponding to the reference location, the

predictive sample blocks for the PU. Moreover, when using uni-prediction, video

encoder 20 may generate a single motion vector that indicates a spatial displacement

between a prediction block of the PU and the reference location. To indicate the spatial

displacement between a prediction block of the PU and the reference location, a motion

vector may include a horizontal component specifying a horizontal displacement

between the prediction block of the PU and the reference location and may include a

vertical component specifying a vertical displacement between the prediction block of

the PU and the reference location.

[0055] When using bi-prediction to encode a PU, video encoder 20 may determine a

first reference location in a reference picture in RefPicList0 and a second reference

location in a reference picture in RefPicListl. Video encoder 20 may then generate,

based at least in part on samples corresponding to the first and second reference

locations, the predictive blocks for the PU. Moreover, when using bi-prediction to

encode the PU, video encoder 20 may generate a first motion indicating a spatial

displacement between a sample block of the PU and the first reference location and a

second motion indicating a spatial displacement between the prediction block of the PU

and the second reference location.

[0056] After video encoder 20 generates predictive luma, Cb, and Cr blocks for one or

more PUs of a CU, video encoder 20 may generate a luma residual block for the CU.

Each sample in the CU's luma residual block indicates a difference between a luma

sample in one of the CU's predictive luma blocks and a corresponding sample in the

CU's original luma coding block. In addition, video encoder 20 may generate a Cb

residual block for the CU. Each sample in the CU's Cb residual block may indicate a

difference between a Cb sample in one of the CU's predictive Cb blocks and a

corresponding sample in the CU's original Cb coding block. Video encoder 20 may

also generate a Cr residual block for the CU. Each sample in the CU's Cr residual block

may indicate a difference between a Cr sample in one of the CU's predictive Cr blocks

and a corresponding sample in the CU's original Cr coding block.

WO 2017/053277 PCT/US2016/052633
14

[0057] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the

luma, Cb and, Cr residual blocks of a CU into one or more luma, Cb, and Cr transform

blocks. A transform block may be a rectangular block of samples on which the same

transform is applied. A transform unit (TU) of a CU may comprise a transform block of

luma samples, two corresponding transform blocks of chroma samples, and syntax

structures used to transform the transform block samples. In a monochrome picture or a

picture that has three separate color planes, a TU may comprise a single transform block

and syntax structures used to transform the transform block samples. Thus, each TU of

a CU may be associated with a luma transform block, a Cb transform block, and a Cr

transform block. The luma transform block associated with the TU may be a sub-block

of the CU's luma residual block. The Cb transform block may be a sub-block of the

CU's Cb residual block. The Cr transform block may be a sub-block of the CU's Cr

residual block.

[0058] Video encoder 20 may apply one or more transforms to a luma transform block

of a TU to generate a luma coefficient block for the TU. A coefficient block may be a

two-dimensional array of transform coefficients. A transform coefficient may be a

scalar quantity. Video encoder 20 may apply one or more transforms to a Cb transform

block of a TU to generate a Cb coefficient block for the TU. Video encoder 20 may

apply one or more transforms to a Cr transform block of a TU to generate a Cr

coefficient block for the TU.

[0059] After generating a coefficient block (e.g., a luma coefficient block, a Cb

coefficient block or a Cr coefficient block), video encoder 20 may quantize the

coefficient block. Quantization generally refers to a process in which transform

coefficients are quantized to possibly reduce the amount of data used to represent the

transform coefficients, providing further compression. Furthermore, video encoder 20

may inverse quantize transform coefficients and apply an inverse transform to the

transform coefficients in order to reconstruct transform blocks of TUs of CUs of a

picture. Video encoder 20 may use the reconstructed transform blocks of TUs of a CU

and the predictive blocks of PUs of the CU to reconstruct coding blocks of the CU. By

reconstructing the coding blocks of each CU of a picture, video encoder 20 may

reconstruct the picture. Video encoder 20 may store reconstructed pictures in a decoded

picture buffer (DPB). Video encoder 20 may use reconstructed pictures in the DPB for

inter prediction and intra prediction.

WO 2017/053277 PCT/US2016/052633
15

[0060] After video encoder 20 quantizes a coefficient block, video encoder 20 may

entropy encode syntax elements that indicate the quantized transform coefficients. For

example, video encoder 20 may perform Context-Adaptive Binary Arithmetic Coding

(CABAC) on the syntax elements indicating the quantized transform coefficients.

Video encoder 20 may output the entropy-encoded syntax elements in a bitstream.

[0061] Video encoder 20 may output a bitstream that includes a sequence of bits that

forms a representation of coded pictures and associated data. The bitstream may

comprise a sequence of network abstraction layer (NAL) units. Each of the NAL units

includes a NAL unit header and encapsulates a raw byte sequence payload (RBSP). The

NAL unit header may include a syntax element that indicates a NAL unit type code.

The NAL unit type code specified by the NAL unit header of a NAL unit indicates the

type of the NAL unit. A RBSP may be a syntax structure containing an integer number

of bytes that is encapsulated within a NAL unit. In some instances, an RBSP includes

zero bits.

[0062] Different types of NAL units may encapsulate different types of RBSPs. For

example, a first type of NAL unit may encapsulate a RBSP for a picture parameter set

(PPS), a second type of NAL unit may encapsulate a RBSP for a coded slice, a third

type of NAL unit may encapsulate a RBSP for Supplemental Enhancement Information

(SEI), and so on. A PPS is a syntax structure that may contain syntax elements that

apply to zero or more entire coded pictures. NAL units that encapsulate RBSPs for

video coding data (as opposed to RBSPs for parameter sets and SEI messages) may be

referred to as video coding layer (VCL) NAL units. A NAL unit that encapsulates a

coded slice may be referred to herein as a coded slice NAL unit. A RBSP for a coded

slice may include a slice header and slice data.

[0063] Video decoder 30 may receive a bitstream. In addition, video decoder 30 may

parse the bitstream to decode syntax elements from the bitstream. Video decoder 30

may reconstruct the pictures of the video data based at least in part on the syntax

elements decoded from the bitstream. The process to reconstruct the video data may be

generally reciprocal to the process performed by video encoder 20. For instance, video

decoder 30 may use motion vectors of PUs to determine predictive blocks for the PUs

of a current CU. Video decoder 30 may use a motion vector or motion vectors of PUs

to generate predictive blocks for the PUs.

[0064] In addition, video decoder 30 may inverse quantize coefficient blocks associated

with TUs of the current CU. Video decoder 30 may perform inverse transforms on the

WO 2017/053277 PCT/US2016/052633
16

coefficient blocks to reconstruct transform blocks associated with the TUs of the current

CU. Video decoder 30 may reconstruct the coding blocks of the current CU by adding

the samples of the predictive sample blocks for PUs of the current CU to corresponding

samples of the transform blocks of the TUs of the current CU. By reconstructing the

coding blocks for each CU of a picture, video decoder 30 may reconstruct the picture.

Video decoder 30 may store decoded pictures in a decoded picture buffer for output

and/or for use in decoding other pictures.

[0065] Supplemental Enhancement information (SEI) messages are often included in

video bitstreams, typically to carry information that is not essential in order to decode

the bitstream by the decoder (e.g., video decoder 30). The information contained in an

SEI message may be useful in improving the display or processing of the decoded

output; e.g. such information could be used by decoder-side entities to improve the

viewability of the content. It is also possible that certain application standards could

mandate the presence of such SEI messages in the bitstream so that the improvement in

quality can be brought to all devices that conform to the application standard (e.g., the

carriage of the frame-packing SEI message for frame-compatible plano-stereoscopic

3DTV video format, where the SEI message is carried for every frame of the video, e.g.,

as described in ETSI - TS 101 547-2, Digital Video Broadcasting (DVB) Plano

stereoscopic 3DTV; Part 2: Frame compatible plano-stereoscopic 3DTV, handling of

recovery point SEI message, e.g., as described in 3GPP TS 26.114 v13.0.0, 3rd

Generation Partnership Project; Technical Specification Group Services and System

Aspects; IP Multimedia Subsystem (IMS); Multimedia Telephony; Media handling and

interaction (Release 13), or use of pan-scan scan rectangle SEI message in DVB, e.g., as

described in ETSI - TS 101 154, Digital Video Broadcasting (DVB); Specification for

the use of Video and Audio Coding in Broadcasting Applications based on the MPEG-2

Transport Stream).

[0066] A tone-mapping information SEI message is used to map luma samples, or each

of RGB component samples. Different values of tone mapid are used to define

different purposes, and the syntax of the tone-map SEI message is also modified

accordingly. A value of 1 for the tonemap id allows the SEI message to clip the RGB

samples to a minimum and a maximum value. A value of 3 for the tone map id allows

the signaling of a look up table in the form of pivot points. However, when applied, the

same values are applied to all RGB components, or only applied to the luma component.

WO 2017/053277 PCT/US2016/052633
17

[0067] A knee function SEI message is used to indicate the mapping of the RGB

components of the decoded pictures in the normalized linear domain. The input and

output maximum luminance values are also indicated, and a look-up table maps the

input luminance values to the output luminance values. The same look-up table is

applied to all the three color components.

[0068] A color remapping information (CRI) SEI message defined in the HEVC

standard is used to convey information that is used to map pictures in one color space to

another. In one example, the syntax of the CRI SEI message includes three parts - first

look-up table (Pre-LUT), followed by a 3x3 matrix indicating color remapping

coefficients, followed by a second look-up table (Post-LUT). For each color

component, e.g., R,G,B or Y,Cb,Cr, independent LUT is defined for both, Pre-LUT and

Post-LUT. The CRI SEI message also includes syntax element called colourremap id,

different values of which may be used to indicate different purposes of the SEI message.

FIG. 2 shows a typical structure of the color remapping information process specified

by a CRI SEI message.

[0069] Dynamic range adjustment (DRA) SEI message. The dynamic range adjustment

SEI message, e.g., as described in D. Bugdayci Sansli, A. K. Ramasubramonian, D.

Rusanovskyy, S. Lee, J. Sole, M. Karczewicz, Dynamic range adjustment SEI message,

m36330, MPEG meeting, Warsaw, Poland, 22 - 26 June, 2015, has not been adopted as

part of any video coding standard; however, the SEI message includes signaling of one

set of scale and offset numbers to map the input samples. The SEI message also allows

the signaling of different look-up tables for different components, and also allows for

signaling optimization when the same scale and offset are to be used for more than one

component. The scale and offset numbers are signaled in fixed length accuracy.

[0070] Next generation video applications are anticipated to operate with video data

representing captured scenery with HDR and a WCG. Parameters of the utilized

dynamic range and color gamut are two independent attributes of video content, and

their specification for purposes of digital television and multimedia services are defined

by several international standards. For example, ITU-R Rec. BT.709, "Parameter values

for the HDTV standards for production and international programme exchange," and

ITU-R Rec. BT.2020, "Parameter values for ultra-high definition television systems for

production and international programme exchange," defines parameters for HDTV

(high definition television) and UHDTV (ultra-high definition television), respectively,

such as standard dynamic range (SDR) and color primaries that extend beyond the

WO 2017/053277 PCT/US2016/052633
18

standard color gamut. Rec. BT.2100, "Image parameter values for high dynamic range

television for use in production and international programme exchange" defines transfer

functions and representations for HDR television use, including primaries that support

wide color gamut representations. There are also other standards developing

organization (SDOs) documents that specify dynamic range and color gamut attributes

in other systems, e.g., DCI-P3 color gamut is defined in SMPTE-231-2 (Society of

Motion Picture and Television Engineers) and some parameters of HDR are defined in

SMPTE-2084. A brief description of dynamic range and color gamut for video data is

provided below.

[0071] Dynamic range is typically defined as the ratio between the maximum and

minimum brightness (e.g., luminance) of the video signal. Dynamic range may also be

measured in terms of 'f-stop,' where one f-stop corresponds to a doubling of a signal's

dynamic range. In MPEG's definition, content that features brightness variation with

more than 16 f-stops is referred as HDR content. In some terms, levels between 10 and

16 f-stops are considered as intermediate dynamic range, but it is considered HDR in

other definitions. In some examples of this disclosure, HDR video content may be any

video content that has a higher dynamic range than traditionally used video content with

a standard dynamic range (e.g., video content as specified by ITU-R Rec. BT.709).

[0072] The human visual system (HVS) is capable for perceiving much larger dynamic

ranges than SDR content and HDR content. However, the HVS includes an adaptation

mechanism to narrow the dynamic range of the HVS to a so-called simultaneous range.

The width of the simultaneous range may be dependent on current lighting conditions

(e.g., current brightness). Visualization of dynamic range provided by SDR of HDTV,

expected HDR of UHDTV and HVS dynamic range is shown in FIG. 3, although the

exact range may vary based on each individual and display.

[0073] Current video application and services are regulated by ITU Rec.709 and

provide SDR, typically supporting a range of brightness (e.g., luminance) of around 0.1

to 100 candelas (cd) per m2 (often referred to as "nits"), leading to less than 10 f-stops.

Some example next generation video services are expected to provide dynamic range of

up to 16 f-stops. Although detailed specifications for such content are currently under

development, some initial parameters have been specified in SMPTE-2084 and ITU-R

Rec. 2020.

[0074] Another aspect for a more realistic video experience, besides HDR, is the color

dimension. Color dimension is typically defined by the color gamut. FIG. 4 is a

WO 2017/053277 PCT/US2016/052633
19

conceptual diagram showing an SDR color gamut (triangle 100 based on the BT.709

color primaries), and the wider color gamut that for UHDTV (triangle 102 based on the

BT.2020 color primaries). FIG. 4 also depicts the so-called spectrum locus (delimited

by the tongue-shaped area 104), representing the limits of the natural colors. As

illustrated by FIG. 3, moving from BT.709 (triangle 100) to BT.2020 (triangle 102)

color primaries aims to provide UHDTV services with about 70% more colors. D65

specifies an example white color for the BT.709 and/or BT.2020 specifications.

[0075] Examples of color gamut specifications for the DCI-P3, BT.709, and BT.2020

color spaces are shown in Table 1.

Table 1 - Color gamut parameters

RGB color space parameters

White point Primary colors
Color space

XXw yyw XXR yyR XXG yyG XXB yyB

DCI-P3 0.314 0.351 0.680 0.320 0.265 0.690 0.150 0.060

ITU-R
0.3127 0.3290 0.64 0.33 0.30 0.60 0.15 0.06

BT.709

ITU-R
0.3127 0.3290 0.708 0.292 0.170 0.797 0.131 0.046

BT.2020

[0076] As can be seen in Table 1, a color gamut may be defined by the X and Y values

of a white point, and by the x and y values of the primary colors (e.g., red (R), green

(G), and blue (B). The x and y values represent normalized values that are derived from

the chromaticity (X and Z) and the brightness (Y) of the colors, as is defined by the CIE

1931 color space. The CIE 1931 color space defines the links between pure colors (e.g.,

in terms of wavelengths) and how the human eye perceives such colors.

[0077] HDR/WCG video data is typically acquired and stored at a very high precision

per component (even floating point), with the 4:4:4 chroma format and a very wide

color space (e.g., CIE XYZ). This representation targets high precision and is almost

mathematically lossless. However, such a format for storing HDR/WCG video data

may include a lot of redundancies and may not be optimal for compression purposes. A

lower precision format with HVS-based assumptions is typically utilized for state-of

the-art video applications.

WO 2017/053277 PCT/US2016/052633
20

[0078] One example of a video data format conversion process for purposes of

compression includes three major processes, as shown in FIG. 5. The techniques of

FIG. 5 may be performed by source device 12. Linear RGB data 110 may be

HDR/WCG video data and may be stored in a floating point representation. Linear

RGB data 110 may be compacted using a non-linear transfer function (TF) 112 for

dynamic range compacting. Transfer function 112 may compact linear RGB data 110

using any number of non-linear transfer functions, e.g., the PQ TF as defined in

SMPTE-2084. In some examples, color conversion process 114 converts the compacted

data into a more compact or robust color space (e.g., a YUV or YCrCb color space) that

is more suitable for compression by a hybrid video encoder. This data is then quantized

using a floating-to-integer representation quantization unit 116 to produce converted

HDR' data 118. In this example HDR' data 118 is in an integer representation. The

HDR' data is now in a format more suitable for compression by a hybrid video encoder

(e.g., video encoder 20 applying HEVC techniques). The order of the processes

depicted in FIG. 5 is given as an example, and may vary in other applications. For

example, color conversion may precede the TF process. In addition, additional

processing, e.g. spatial subsampling, may be applied to color components.

[0079] The inverse conversion at the decoder side is depicted in FIG 6. The techniques

of FIG. 6 may be performed by destination device 14. Converted HDR' data 120 may

be obtained at destination device 14 through decoding video data using a hybrid video

decoder (e.g., video decoder 30 applying HEVC techniques). HDR' data 120 may then

be inverse quantized by inverse quantization unit 122. Then an inverse color conversion

process 124 may be applied to the inverse quantized HDR' data. The inverse color

conversion process 124 may be the inverse of color conversion process 114. For

example, the inverse color conversion process 124 may convert the HDR' data from a

YCrCb format back to an RGB format. Next, inverse transfer function 126 may be

applied to the data to add back the dynamic range that was compacted by transfer

function 112 to recreate the linear RGB data 128.

[0080] The techniques depicted in FIG. 5 will now be discussed in more detail. In

general, a transfer function is applied to data (e.g., HDR/WCG video data) to compact

the dynamic range of the data such that errors due to quantization are perceptually

uniform (approximately) across the range of luminance values. Such compaction allows

the data to be represented with fewer bits. In one example, the transfer function may be

a one-dimensional (ID) non-linear function and may reflect the inverse of an electro-

WO 2017/053277 PCT/US2016/052633
21

optical transfer function (EOTF) of the end-user display, e.g., as specified for SDR in

Rec. 709. In another example, the transfer function may approximate the HVS

perception to brightness changes, e.g., the PQ transfer function specified in SMPTE

2084 for HDR. The inverse process of the OETF is the EOTF (electro-optical transfer

function), which maps the code levels back to luminance. FIG. 7 shows several

examples of non-linear transfer function used as EOTFs. The transfer functions may

also be applied to each R, G and B component separately.

[0081] In the context of this disclosure, the terms "signal value" or "color value" may

be used to describe a luminance level corresponding to the value of a specific color

component (such as R, G, B, or Y) for an image element. The signal value is typically

representative of a linear light level (luminance value). The terms "code level" or

"digital code value" may refer to a digital representation of an image signal value.

Typically, such a digital representation is representative of a nonlinear signal value. An

EOTF represents the relationship between the nonlinear signal values provided to a

display device (e.g., display device 32) and the linear color values produced by the

display device.

[0082] RGB data is typically utilized as the input color space, since RGB is the type of

data that is typically produced by image-capturing sensors. However, the RGB color

space has high redundancy among its components and is not optimal for compact

representation. To achieve more compact and a more robust representation, RGB

components are typically converted (e.g., a color transform is performed) to a more

uncorrelated color space that is more suitable for compression, e.g., YCbCr. A YCbCr

color space separates the brightness in the form of luminance (Y) and color information

(CrCb) in different less correlated components. In this context, a robust representation

may refer to a color space featuring higher levels of error resilience when compressed at

a constrained bitrate.

[0083] Following the color transform, input data in a target color space may be still

represented at high bit-depth (e.g. floating point accuracy). The high bit-depth data may

be converted to a target bit-depth, for example, using a quantization process. Certain

studies show that 10-12 bits accuracy in combination with the PQ transfer is sufficient

to provide HDR data of 16 f-stops with distortion below the Just-Noticeable Difference

(JND). In general, a JND is the amount of something (e.g., video data) must be change

in order for a difference to be noticeable (e.g., by the HVS). Data represented with 10

bit accuracy can be further coded with most of the state-of-the-art video coding

WO 2017/053277 PCT/US2016/052633
22

solutions. This quantization is an element of lossy coding and is a source of inaccuracy

introduced to converted data.

[0084] It is anticipated that next generation HDR/WCG video applications will operate

with video data captured at different parameters of HDR and CG. Examples of different

configuration can be the capture of HDR video content with peak brightness up-to 1000

nits, or up-to 10,000 nits. Examples of different color gamuts may include BT.709,

BT.2020 as well SMPTE specified-P3, or others.

[0085] It is also anticipated that a single color space, e.g., a target color container, that

incorporates (or nearly incorporates) all other currently used color gamuts to be utilized

in future. One example of such a target color container is BT.2020. Support of a single

target color container would significantly simplify standardization, implementation and

deployment of HDR/WCG systems, since a reduced number of operational points (e.g.,

number of color containers, color spaces, color conversion algorithms, etc.) and/or a

reduced number of required algorithms should be supported by a decoder (e.g., video

decoder 30).

[0086] In one example of such a system, content captured with a native color gamut

(e.g. P3 or BT.709) different from the target color container (e.g. BT.2020) may be

converted to the target container prior to processing (e.g., prior to video encoding).

Below are several examples of such conversion:

RGB conversion from BT.709 to BT.2020 color container:

o R2020 = 0.627404078626 * Ros + 0.329282097415 * G709 + 0.043313797587 * B709

o G2020 = 0.069097233123 * Ros + 0.919541035593 * G7o9 + 0.011361189924 * B709

o B2020 = 0.016391587664 * Ros + 0.088013255546 * G7o9 + 0.895595009604 * B709

(1)

RGB conversion from P3 to BT.2020 color container:

o R2020 = 0.753832826496 * RP3 + 0.198597635641 * GP3 + 0.047569409186 * B3

o G2020 = 0.045744636411 * RP3 + 0.941777687331 * GP3 + 0.012478735611 * B3

o B2020 = -0.001210377285 * RP3 + 0.017601107390 * GP3 + 0.983608137835 * B3

(2)

[0087] During this conversion, the value range occupied by each component (e.g.,

RGB, YUV, YCrCb, etc.) of a signal captured in P3 or BT.709 color gamut may be

reduced in a BT.2020 representation. Since the data is represented in floating point

accuracy, there is no loss; however, when combined with color conversion (e.g., a

conversion from RGB to YCrCB shown in equation 3 below) and quantization (example

WO 2017/053277 PCT/US2016/052633
23

in equation 4 below), the shrinking of the value range leads to increased quantization

error for input data.

o Y' = 0.2627 * R' + 0.6780 * G' + 0.0593 * B'; Cb = B'-Y C R'-Y'

1.8814 1.4746

(3)

o Dyr (Round ((1 < (BitDepthy - 8)) * (219 * Y' + 16)

o Dcb (Round ((1 < (BitDepthcr - 8)) * (224 * Cb + 128)

o Dcr (Round ((1 < (BitDepthCb - 8)) * (224 * Cr + 128)

(4)

In equation (4) Dy' is the quantized Y' component, Dcb is the quantized Cb and

DCr is the quantized Cr component. The term << represents a bit-wise right shift.

BitDepthy, BitDepthcr, and BitDepthcb are the desired bit depths of the quantized

components, respectively.

[0088] In addition, in a real-world coding system, coding a signal with reduced dynamic

range may lead to significant loss of accuracy for coded chroma components and would

be observed by a viewer as coding artifacts, e.g., color mismatch and/or color bleeding.

[0089] To address the problems described above, the following techniques may be

considered. One example technique involves HDR coding at the native color space. In

such a technique an HDR video coding system would support various types of currently

known color gamuts, and allow extensions of a video coding standard to support future

color gamuts. This support would not be only limited to support different color

conversion transforms, e.g. RGB to YCbCr, and their inverse transforms, but also would

specify transform functions that are adjusted to each of the color gamuts. Support of

such variety of tools would complex and expensive.

[0090] Another example technique includes a color gamut aware video codec. In such a

technique, a hypothetical video encoder is configured to estimate the native color gamut

of the input signal and adjust coding parameters (e.g., quantization parameters for coded

chroma components) to reduce any distortion resulting from the reduced dynamic range.

However, such a technique would not be able to recover loss of accuracy, which may

happen due to the quantization conducted in equation (4) above, since all input data is

provided to a typical codec in integer point accuracy.

WO 2017/053277 PCT/US2016/052633
24

[0091] This disclosure describes techniques, methods, and apparatuses to perform a

dynamic range adjustment (DRA) to compensate dynamic range changes introduced to

HDR signal representations by a color gamut conversion. The dynamic range

adjustment may help to prevent and/or lessen any distortion caused by a color gamut

conversion, including color mismatch, color bleeding, etc. In one or more examples of

the disclosure, DRA is conducted on the values of each color component of the target

color space, e.g., YCbCr, prior to quantization at the encoder side (e.g., by source

device 12) and after the inverse quantization at the decoder side (e.g., by destination

device 14).

[0092] FIG. 8 is a block diagram illustrating an example HDR/WCG conversion

apparatus operating according to the techniques of this disclosure. In FIG. 8, solid lines

specify the data flow and dashed lines specify control signals. The techniques of this

disclosure may be performed by video pre-processor unit 19 of source device 12. As

discussed above, video pre-processor unit 19 may be a separate device from video

encoder 20. In other examples, video pre-processor unit 19 may be incorporated into

the same device as video encoder 20.

[0093] As shown in FIG. 8, RGB native CG video data 200 is input to video pre

processor unit 19. In the context of video preprocessing by video pre-processor unit 19,

RGB native CG video data 200 is defined by an input color container. The input color

container specifies set of color primaries used to represent video data 200 (e.g., BT. 709,

BT. 2020, P3, etc.). In one example of the disclosure, video pre-processor unit 19 may

be configured to convert both the color container and the color space of RGB native CB

video data 200 to a target color container and target color space for HDR' data 216.

Like the input color container, the target color container may specify a set or color

primaries used to represent the HDR' data 216. In one example of the disclosure, RGB

native CB video data 200 may be HDR/WCG video, and may have a BT.2020 or P3

color container (or any WCG), and be in an RGB color space. In another example,

RGB native CB video data 200 may be SDR video, and may have a BT.709 color

container. In one example, the target color container for HDR' data 216 may have been

configured for HDR/WCG video (e.g., BT.2020 color container) and may use a color

space more optimal for video encoding (e.g., YCrCb).

[0094] In one example of the disclosure, CG converter 202 may be configured to

convert the color container of RGB native CG video data 200 from the input color

container (e.g., first color container) to the target color container (e.g., second color

WO 2017/053277 PCT/US2016/052633
25

container). As one example, CG converter 202 may convert RGB native CG video data

200 from a BT.709 color representation to a BT.2020 color representation, example of

which is shown below.

[0095] The process to convert RGB BT.709 samples (R7os, G7o9, B70 9) to RGB BT.2020

samples (R2o2o, G2020, B2 0 2 0) can be implemented with a two-step conversion that

involves converting first to the XYZ representation, followed by a conversion from

XYZ to RGB BT.2020 using the appropriate conversion matrices.

X = 0.412391 *R7o + 0.357584 * G7o9 + 0.180481 *B709

Y = 0.212639* R7o + 0.715169* G7o9 + 0.072192 *B709 (5)

Z = 0.019331 * R709 + 0.119195 * G709 + 0.950532 * B709

[0096] Conversion from XYZ to R202oG202oB2020 (BT.2020)

R2020 = clipRGB(1.716651 * X - 0.355671 * Y - 0.253366 * Z)

G2020 = clipRGB(-0.666684 * X + 1.616481 * Y + 0.015768 * Z) (6)

B2020 = clipRGB(0.017640 * X - 0.042771 * Y + 0.942103 * Z)

Similarly, the single step and recommended method is as follows:

R2020 = clipRGB(0.627404078626 * Ros + 0.329282097415 * G7os +

0.043313797587 * B 70 9)

G2020 = clipRGB(0.069097233123 * R709 + 0.919541035593 * G709 +
0.011361189924 * B709) (7)

B2020 = clipRGB(0.016391587664 * Ros + 0.088013255546 * Gos +
0.895595009604 * B 70 9)

[0097] The resulting video data after CG conversion is shown as RGB target CG video

data 204 in FIG. 8. In other examples of the disclosure, the color container for the input

data and the output HDR' data may be the same. In such an example, CG converter 202

need not perform any conversion on RGB native CG video data 200.

[0098] Next, transfer function unit 206 compacts the dynamic range of RGB target CG

video data 204. Transfer function unit 206 may be configured to apply a transfer

function to compact the dynamic range in the same manner as discussed above with

reference to FIG. 5. The color conversion unit 208 converts RGB target CG color data

204 from the color space of the input color container (e.g., RGB) to the color space of

the target color container (e.g., YCrCb). As explained above with reference to FIG. 5,

color conversion unit 208 converts the compacted data into a more compact or robust

color space (e.g., a YUV or YCrCb color space) that is more suitable for compression

by a hybrid video encoder (e.g., video encoder 20).

WO 2017/053277 PCT/US2016/052633
26

[0099] Adjustment unit 210 is configured to perform a dynamic range adjustment

(DRA) of the color converted video data in accordance with DRA parameters derived

by DRA parameters estimation unit 212. In general, after CG conversion by CG

converter 202 and dynamic range compaction by transfer function unit 206, the actual

color values of the resulting video data may not use all available codewords (e.g.,

unique bit sequences that represent each color) allocated for the color gamut of a

particular target color container. That is, in some circumstances, the conversion of RGB

native CG video data 200 from an input color container to an output color container may

overly compact the color values (e.g., Cr and Cb) of the video data such that the

resultant compacted video data does not make efficient use of all possible color

representations. As explained above, coding a signal with a reduced range of values for

the colors may lead to a significant loss of accuracy for coded chroma components and

would be observed by a viewer as coding artifacts, e.g., color mismatch and/or color

bleeding.

[0100] Adjustment unit 210 may be configured to apply DRA parameters to the color

components (e.g., YCrCb) of the video data, e.g., RGB target CG video data 204 after

dynamic range compaction and color conversion to make full use of the codewords

available for a particular target color container. Adjustment unit 210 may apply the

DRA parameter to the video data at a pixel level. In general, the DRA parameters

define a function that expands the codewords used to represent the actual video data to

as many of the codewords available for the target color container as possible.

[0101] In one example of the disclosure, the DRA parameters include a scale and offset

value that is applied to the components of the video data. In general, the lower the value

range of the color components of the video data, the larger a scaling factor may be used.

The offset parameter may be used to center the values of the color components to the

center of the available codewords for a target color container. For example, if a target

color container includes 1024 codewords per color component, an offset value may be

chosen such that the center codeword is moved to codeword 512 (e.g., the middle most

codeword). In other examples, the offset parameter may be used to provide better

mapping of input codewords to output codewords such that overall representation in the

target color container is more efficient in combating coding artefacts.

[0102] In one example, adjustment unit 210 applies DRA parameters to video data in

the target color space (e.g., YCrCb) as follows:

- Y" = scale *Y' + offset

WO 2017/053277 PCT/US2016/052633
27

- Cb" = scale2 *Cb' + offset2 (8)

- Cr" = scale3 *Cr' + offset3

where signal components Y', Cb' and Cr' is a signal produced from RGB to YCbCr

conversion (example in equation 3). Note that Y', Cr' and Cr' may also be a video

signal decoded by video decoder 30. Y", Cb", and Cr" are the color components of the

video signal after the DRA parameters have been applied to each color component. As

can be seen in the example above, each color component is related to different scale and

offset parameters. For example, scale and offset are used for the Y' component,

scale2 and offset2 are used for the Cb' component, and scale3 and offset3 are used for

the Cr' component. It should be understood that this is just an example. In other

examples, the same scale and offset values may be used for every color component.

[0103] In other examples, each color component may be associated with multiple scale

and offset parameters. For example, the actual distribution of chroma values for the Cr

or Cb color components may differ for different partitions or ranges of codewords. As

one example, there may be more unique codewords used above the center codeword

(e.g., codeword 512) than there are below the center codeword. In such an example,

adjustment unit 210 may be configured to apply one set of scale and offset parameters

for chroma values above the center codeword (e.g., having values greater than the center

codeword) and apply a different set of scale and offset parameters for chroma values

below the center codeword (e.g., having values less than the center codeword).

[0104] As can be seen in the above example, adjustment unit 210 applies the scale and

offset DRA parameters as a linear function. As such, it is not necessary for adjustment

unit 210 to apply the DRA parameters in the target color space after color conversion by

color conversion unit 208. This is because color conversion is itself a linear process.

As such, in other examples, adjustment unit 210 may apply the DRA parameters to the

video data in the native color space (e.g., RGB) before any color conversion process. In

this example, color conversion unit 208 would apply color conversion after adjustment

unit 210 applies the DRA parameters.

[0105] In another example of the disclosure, adjustment unit 210 may apply the DRA

parameters in either the target color space or the native color space as follows:

- Y" = (scalel *(Y' - offsetY) + offset) + offsetY;

- Cb" = scale2 *Cb' + offset2 (9)

- Cr" = scale3 *Cr' + offset3

WO 2017/053277 PCT/US2016/052633
28

In this example, the parameter scale, scale2, scale3, offset, offset2, and offset3 have

the same meaning as described above. The parameter offsetY is a parameter reflecting

brightness of the signal, and can be equal to the mean value of Y'. In other examples,

an offset parameter similar to offsetY may be applied for the Cb' and Cr' components to

better preserve the mapping of the center value in the input and the output

representations.

[0106] In another example of the disclosure, adjustment unit 210 may be configured to

apply the DRA parameters in a color space other than the native color space or the

target color space. In general, adjustment unit 210 may be configured to apply the DRA

parameters as follows:

- A' = scale *A + offset;

- B' = scale2 *Bl + offset2 (10)

- C' = scale3 *C + offset3

where signal components A, B and C are signal components in a color space which is

different from target color space, e.g., RGB or an intermediate color space.

[0107] In other examples of the disclosure, adjustment unit 210 is configured to apply a

linear transfer function to the video to perform DRA. Such a transfer function is

different from the transfer function used by transfer function unit 206 to compact the

dynamic range. Similar to the scale and offset terms defined above, the transfer

function applied by adjustment unit 210 may be used to expand and center the color

values to the available codewords in a target color container. An example of applying a

transfer function to perform DRA is shown below:

- Y" = TF2 (Y')

- Cb" = TF2 (Cb')

- Cr" = TF2 (Cr')

Term TF2 specifies the transfer function applied by adjustment unit 210. In some

examples, adjustment unit 210 may be configured to apply different transfer functions to

each of the components.

[0108] In another example of the disclosure, adjustment unit 210 may be configured to

apply the DRA parameters jointly with the color conversion of color conversion unit

208 in a single process. That is, the linear functions of adjustment unit 210 and color

conversion unit 208 may be combined. An example of a combined application, where

fl and f2 are a combination of the RGB to YCbCr matrix and the DRA scaling factors,

is shown below:

WO 2017/053277 PCT/US2016/052633
29

B'1 - Y' R' - Y'
Cb= ; Cr= f2

fi f

[0109] In another example of the disclosure, after applying the DRA parameters,

adjustment unit 210 may be configured to perform a clipping process to prevent the

video data from having values outside the range of codewords specified for a certain

target color container. In some circumstances, the scale and offset parameters applied

by adjustment unit 210 may cause some color component values to exceed the range of

allowable codewords. In this case, adjustment unit 210 may be configured to clip the

values of the components that exceed the range to the maximum value in the range.

[0110] The DRA parameters applied by adjustment unit 210 may be determined by

DRA parameters estimation unit 212. The frequency and the time instances at which

the DRA parameters estimation unit 212 updates the DRA parameters are flexible. For

example, DRA parameters estimation unit 212 may update the DRA parameters on a

temporal level. That is, new DRA parameters may be determined for a group of

pictures (GOP), or a single picture (frame). In this example, the RGB native CG video

data 200 may be a GOP or a single picture. In other examples, DRA parameters

estimation unit 212 may update the DRA parameters on a spatial level, e.g., at the slice

tile, or block level. In this context, a block of video data may be a macroblock, coding

tree unit (CTU), coding unit, or any other size and shape of block. A block may be

square, rectangular, or any other shape. Accordingly, the DRA parameters may be used

for more efficient temporal and spatial prediction and coding.

[0111] In one example of the disclosure, DRA parameters estimation unit 212 may

derive the DRA parameters based on the correspondence of the native color gamut of

RGB native CG video data 200 and the color gamut of the target color container. For

example, DRA parameters estimation unit 212 may use a set of predefined rules to

determine scale and offset values given a certain native color gamut (e.g., BT.709) and

the color gamut of a target color container (e.g., BT.2020).

[0112] For example, assume that native color gamut and target color container are

defined in the form of color primaries coordinates in xy space and white point

coordinates. One example of such information for BT.709 and BT.2020 is shown in

Table 2 below.

WO 2017/053277 PCT/US2016/052633
30

Table 2- RGB color space parameters

RGB color space parameters

White point Primary colors
Color space

XXW YYW XXR YYR XXG YYG XXB YYB

DCI-P3 0.314 0.351 0.680 0.320 0.265 0.690 0.150 0.060

ITU-R BT.709 0.3127 0.3290 0.64 0.33 0.30 0.60 0.15 0.06

ITU-R BT.2020 0.3127 0.3290 0.708 0.292 0.170 0.797 0.131 0.046

[0113] In one example, BT.2020 is the color gamut of the target color container and

BT.709 is the color gamut of the native color container. In this example, adjustment

unit 210 applies the DRA parameters to the YCbCr target color space. DRA parameters

estimation unit 212 may be configured to estimate and forward the DRA parameters to

adjustment unit 210 as follows:

scale = 1; offset = 0;

scale2 = 1.0698; offset2 = 0;

scale3 = 2.1735; offset3 = 0;

[0114] As another example, with BT.2020 being a target color gamut and P3 being a

native color gamut, and DRA being applied in YCbCr target color space, DRA

parameters estimation unit 212 may be configured to estimate the DRA parameters as:

scale = 1; offset = 0;

scale2 = 1.0068; offset2 = 0;

scale3 = 1.7913; offset3 = 0;

[0115] In the examples above, DRA parameters estimation unit 212 may be configured

to determine the above-listed scale and offset values by consulting a lookup table that

indicates the DRA parameters to use, given a certain native color gamut and a certain

target color gamut. In other examples, DRA parameters estimation unit 212 may be

configured to calculate the DRA parameters from the primary and white space values of

the native color gamut and target color gamut, e.g., as shown in Table 2.

[0116] For example, consider a target (T) color container specified by primary

coordinates (xXt, yXt), where X stated for R,G,B color components:

xRt yRt
primeT = xGt yGt

xBt yBt.

WO 2017/053277 PCT/US2016/052633
31

and native (N) color gamut specified by primaries coordinates (xXn, yXn), where X

stated for R,G,B color components:

xRn yRn
primeN = xGn yGn

xBn yBn.

The white point coordinate for both gamuts equals whiteP = (xW,yW). DRA

parameters estimation unit 212 may derive the scale2 and scale3 parameters for DRA as

a function of the distances between primaries coordinates to the white point. One

example of such an estimation is given below:

rdT = sqrt((primeT(1,1) - whiteP(1,1))A2 + (primeN(1,2) - whiteP(1,2))A2)

gdT = sqrt((primeT(2,1) - whiteP(1,1))A2 + (primeN(2,2) - whiteP(1,2))A2)

bdT = sqrt((primeT(3,1) - whiteP(1,1))A2 + (primeN(3,2) - whiteP(1,2))A2)

rdN = sqrt((primeN(1,1) - whiteP(1,1))A2 + (primeN(1,2) - whiteP(1,2))A2)

gdN = sqrt((primeN(2, 1) - whiteP(1, 1))A2 + (primeN(2,2) - whiteP(1,2))A2)

bdN = sqrt((primeN(3, 1) - whiteP(1, 1))A2 + (primeN(3,2) - whiteP(1,2))A2)

scale2 = bdT/bdN

scale3 = sqrt ((rdT/rdN)A2 + (gdT/gdN)A 2)

[0117] In some examples, DRA parameters estimation unit 212 may be configured to

estimate the DRA parameters by determining the primaries coordinates in primeN from

the actual distribution of color values in RGB native CG video data 200, and not from

the pre-defined primary values of the native color gamut. That is, DRA parameters

estimation unit 212 may be configured to analyze the actual colors present in RGB

native CG video data 200, and use the primary color values and white point determined

from such an analysis in the function described above to calculate DRA parameters.

Approximation of some parameters defined above might be used as DRA to facilitate

the computation. For instance, scale3 = 2.1735 can be approximated to scale3 = 2,

which allows for easier implementation in some architectures.

[0118] In other examples of the disclosure, DRA parameters estimation unit 212 may be

configured to determine the DRA parameters based not only on the color gamut of the

target color container, but also on the target color space. The actual distributions of

values of component values may differ from color space to color space. For example,

the chroma value distributions may be different for YCbCr color spaces having a

constant luminance as compared to YCbCr color spaces having a non-constant

WO 2017/053277 PCT/US2016/052633
32

luminance. DRA parameters estimation unit 212 may use the color distributions of

different color spaces to determine the DRA parameters.

[0119] In other examples of the disclosure, DRA parameters estimation unit 212 may be

configured to derive values for DRA parameters so as to minimize certain cost functions

associated with pre-processing and/or encoding video data. As one example, DRA

parameters estimation unit 212 may be configured to estimate DRA parameters that

minimized quantization errors introduced by quantization unit 214 (e.g., see equation

(4)) above. DRA parameters estimation unit 212 may minimize such an error by

performing quantization error tests on video data that has had different sets of DRA

parameters applied. In another example, DRA parameters estimation unit 212 may be

configured to estimate DRA parameters that minimize the quantization errors

introduced by quantization unit 214 in a perceptual manner. DRA parameters estimation

unit 212 may minimize such an error based on perceptual error tests on video data that

has had different sets of DRA parameters applied. DRA parameters estimation unit 212

may then select the DRA parameters that produced the lowest quantization error.

[0120] In another example, DRA parameters estimation unit 212 may select DRA

parameters that minimize a cost function associated with both the DRA performed by

adjustment unit 210 and the video encoding performed by video encoder 20. For

example, DRA parameters estimation unit 212 may perform DRA and encode the video

data with multiple different sets of DRA parameters. DRA parameters estimation unit

212 may then calculate a cost function for each set of DRA parameters by forming a

weighted sum of the bitrate resulting from DRA and video encoding, as well as the

distortion introduced by these two lossy process. DRA parameters estimation unit 212

may then select the set of DRA parameters that minimizes the cost function.

[0121] In each of the above techniques for DRA parameter estimation, DRA parameters

estimation unit 212 may determine the DRA parameters separately for each component

using information regarding that component. In other examples, DRA parameters

estimation unit 212 may determine the DRA parameters using cross-component

information. For example, the DRA parameters derived for a Cr component may be

used to derive DRA parameters for a Cb component.

[0122] In addition to deriving DRA parameters, DRA parameters estimation unit 212

may be configured to signal the DRA parameters in an encoded bitstream. DRA

parameters estimation unit 212 may signal one or more syntax elements that indicate the

DRA parameters directly, or may be configured to provide the one or more syntax

WO 2017/053277 PCT/US2016/052633
33

elements to video encoder 20 for signaling. Such syntax elements of the parameters

may be signaled in the bitstream such that video decoder 30 and/or video post-processor

unit 31 may perform the inverse of the process of video pre-processor unit 19 to

reconstruct the video data in its native color container. Example techniques for

signaling the DRA parameters are discussed below.

[0123] In one example, DRA parameters estimation unit 212 may signal one or more

syntax elements that in an encoded video bitstream as metadata, in a supplemental

enhancement information (SEI) message, in video usability information (VUI), in a

video parameter set (VPS), in a sequence parameter set (SPS), in a picture parameter

set, in a slice header, in a CTU header, or in any other syntax structure suitable for

indicating the DRA parameters for the size of the video data (e.g., GOP, pictures,

blocks, macroblock, CTUs, etc.).

[0124] In some examples, the one or more syntax elements indicate the DRA

parameters explicitly. For example, the one or more syntax elements may be the

various scale and offset values for DRA. In other examples, the one or more syntax

elements may be one or more indices into a lookup table that includes the scale and

offset values for DRA. In still another example, the one or more syntax elements may

be indices into a lookup table that specifies the linear transfer function to use for DRA.

[0125] In other examples, the DRA parameters are not signaled explicitly, but rather,

both video pre-processor unit 19 and video post-processor unit 31 are configured to

derive the DRA parameters using the same pre-defined process using the same

information and/or characteristics of the video data that are discernible form the

bitstream. As one example, video post-processor unit 31 may be configured to indicate

the native color container of the video data as well as the target color container of the

encoded video data in the encoded bitstream. Video post-processor unit 31 may then be

configured to derive the DRA parameters from such information using the same process

as defined above. In some examples, one or more syntax elements that identify the

native and target color containers are supplied in a syntax structure. Such syntax

elements may indicate the color containers explicitly, or may be indices to a lookup

table. In another example, video pre-processor unit 19 may be configured to signal one

or more syntax elements that indicate the XY values of the color primaries and the white

point for a particular color container. In another example, video pre-processor unit 19

may be configured to signal one or more syntax elements that indicate the XY values of

the color primaries and the white point of the actual color values (content primaries and

WO 2017/053277 PCT/US2016/052633
34

content white point) in the video data based on an analysis performed by DRA

parameters estimation unit 212.

[0126] As one example, the color primaries of the smallest color gamut containing the

color in the content might be signaled, and at video decoder 30 and/or video post

processor unit 31, the DRA parameters are derived using both the container primaries

and the content primaries. In one example, the content primaries can be signaled using

the x and y components for R, G and B, as described above. In another example, the

content primaries can be signaled as the ratio between two known primary sets. For

example, the content primaries can be signaled as the linear position between the

BT.709 primaries and the BT.2020 primaries: xr content = alfar * xr bt709 + (1-alfar) *

xr t2o2o (with similar equation with alfag and alfab for the G and B components), where

parameter alfar specifies a ratio between two known primary sets. In some examples,

the signaled and/or derived DRA parameters may be used by video encoder 20 and/or

video decoder 30 to facilitate weighted prediction based techniques utilized for coding

of HDR/WCG video data.

[0127] In video coding schemes utilizing weighted prediction, a sample of currently

coded picture Sc are predicted from a sample (for single directional prediction) of the

reference picture Sr taken with a weight (Wwp) and an offset (Owp) which results in

predicted sample Sp:

Sp= Sr * Wwp + Owp.

[0128] In some examples utilizing DRA, samples of the reference and currently coded

picture can be processed with DRA employing different parameters, namely { scale cur,

offsetlcur } for a current picture and { scalere, offset ref } for a reference picture. In

such embodiments, parameters of weighted prediction can be derived from DRA, e.g.:

Wwp = scalelcur / scaleIref

Owp = offsetlcur - offset1ref

[0129] After adjustment unit 210 applies the DRA parameters, video pre-processor unit

19 may then quantize the video data using quantization unit 214. Quantization unit 214

may operate in the same manner as described above with reference to FIG. 4. After

quantization, the video data is now adjusted in the target color space and target color

gamut of the target primaries of HDR' data 216. HDR' data 216 may then be sent to

video encoder 20 for compression.

[0130] FIG. 9 is a block diagram illustrating an example HDR/WCG inverse conversion

apparatus according to the techniques of this disclosure. As shown in FIG. 9, video

WO 2017/053277 PCT/US2016/052633
35

post-processor unit 31 may be configured to apply the inverse of the techniques

performed by video pre-processor unit 19 of FIG. 8. In other examples, the techniques

of video post-processor unit 31 may be incorporated in, and performed by, video

decoder 30.

[0131] In one example, video decoder 30 may be configured to decode the video data

encoded by video encoder 20. The decoded video data (HDR' data 316 in the target

color container) is then forwarded to video post-processor unit 31. Inverse quantization

unit 314 performs an inverse quantization process on HDR' data 316 to reverse the

quantization process performed by quantization unit 214 of FIG. 8.

[0132] Video decoder 30 may also be configured to decode and send any of the one or

more syntax elements produced by DRA parameters estimation unit 212 of FIG. 8 to

DRA parameters derivation unit 312 of video post-processor unit 31. DRA parameters

derivation unit 312 may be configured to determine the DRA parameters based on the

one or more syntax elements, as described above. In some examples, the one or more

syntax elements indicate the DRA parameters explicitly. In other examples, DRA

parameters derivation unit 312 is configured to derive the DRA parameters using the

same techniques used by DRA parameters estimation unit 212 of FIG. 8.

[0133] The parameters derived by DRA parameters derivation unit 312 are sent to

inverse adjustment unit 310. Inverse adjustment unit 310 uses the DRA parameters to

perform the inverse of the linear DRA adjustment performed by adjustment unit 210.

Inverse adjustment unit 310 may apply the inverse of any of the adjustment techniques

described above for adjustment unit 210. In addition, as with adjustment unit 210,

inverse adjustment unit 310 may apply the inverse DRA before or after any inverse

color conversion. As such, inverse adjustment unit 310 may apply the DRA parameter

on the video data in the target color container or the native color container. In some

examples, inverse adjustment unit 310 may be positioned to apply inverse adjustment

before inverse quantization unit 314.

[0134] Inverse color conversion unit 308 converts the video data from the target color

space (e.g., YCbCr) to the native color space (e.g., RGB). Inverse transfer function 306

then applies an inverse of the transfer function applied by transfer function 206 to

uncompact the dynamic range of the video data. In some examples, he resulting video

data (RGB target CG 304) is still in the target color gamut, but is now in the native

dynamic range and native color space. Next, inverse CG converter 302 converts RGB

target CG 304 to the native color gamut to reconstruct RGB native CG 300.

WO 2017/053277 PCT/US2016/052633
36

[0135] In some examples, additional post-processing techniques may be employed by

video post-processor unit 31. Applying the DRA may put the video outside its actual

native color gamut. The quantization steps performed by quantization unit 214 and

inverse quantization unit 314, as well as the up and down-sampling techniques

performed by adjustment unit 210 and inverse adjustment unit 310, may contribute to

the resultant color values in the native color container being outside the native color

gamut. When the native color gamut is known (or the actual smallest content primaries,

if signaled, as described above), then additional process can be applied to RGB native

CG video data 304 to transform color values (e.g., RGB or Cb and Cr) back into the

intended gamut as post-processing for DRA. In other examples, such post-processing

may be applied after the quantization or after DRA application.

[0136] As mentioned above, several SEI messages may be used to convey the

information regarding dynamic range adjustment information for the various color

components of the video data. The component scaling SEI message, such as described

above and in more detail below, may convey a set of scale factors, offsets, and ranges

(e.g., partitions of codeword values) that can be used to indicate the mapping

information for the various color components of the video data. The mapping

information may be used to indicate to video decoder 30 and/or video post-processor

unit 31 how to expand or shrink the different ranges of sample values in such a way that

the overall quality of the reconstructed HDR video data, or also quality of reconstructed

SDR video data in some cases where backward compatibility is desired, is improved, or

to make the reconstructed output more suitable for display capabilities.

[0137] Table 3 below provides one variation of the syntax structure of a component

scaling SEI message. Note that although the names of the syntax elements below

contain the prefix "hdrrecon_" that is different from that described in the examples

below, where the names of the syntax elements are prefixed as componentscaling, the

syntax table is otherwise the same.

WO 2017/053277 PCT/US2016/052633
37

[0138] Table 3 - Example Range Adjustment SEI syntax

hdrreconstruction info(payloadSize) { Descriptor

hdrrecon id ue(v)

hdrreconcancelflag u(1)

if(!hdrrecon cancel flag) {

hdrrecon persistence flag u(1)

hdrrecontransfer characteristics u(8)

hdrrecondefault flag u(1)

if(!hdrrecon defaultflag) {

hdr recon scale bit depth u(4)

hdrreconoffset bit depth u(4)

hdrreconscale frac bit depth u(4)

hdr recon offset frac bit depth u(4)

hdrreconnum compsminusl ue(v)

}
for(c = 0; c <= hdrreconnumcomps minus 1; c++) {

hdr-reconnumranges[c] ue(v)

hdrreconequalrangesflag[c] u(1)

hdrrecon_globaloffset-val[c] u(v)

for(i = 0; i <= hdr reconnum ranges[c]; i++)

hdrrecon scale val[c][i] u(v)

if(!hdr recon equal ranges[c])

for(i = 0; i <= hdr recon num ranges[c]; i++)

hdrreconrange val [c][i u(v)

}

}

}

WO 2017/053277 PCT/US2016/052633
38

[0139] The semantics of the SEI syntax of Table 3 is presented below.

[0140] The mapping process is based on piece-wise linear functions map[c](), for

c = O..hdrreconnumcompsminus1, that map a value x in[0,1] to a value

y = map[c](x) as follows:

- For i in the range of 0 to hdrrecon-num ranges[c] - 1, inclusive, the

following applies:

- The value ScaleValue[c][i] is derived as described in semantics of syntax

element hdrrecon_scaleval[c][i].

- The value RangeValue[c][i] is derived as described in semantics of syntax

element hdrreconrange val[c][i].

- The values InputRanges[c][i] and OutputRanges[c][i], for i in the range of

0 to hdrreconnum ranges[c] - 1, inclusive, are derived as follows:

- If i is equal to 0, the following applies:

OutputRanges[c][i] = - hdr reconglobaloffset val[c] * ScaleValue[c][i - 1] (D

xx)

InputRanges[c][i] = 0 (D-xx)

- Otherwise (i is not equal to 0), the following applies:

InputRanges[c][i] = InputRanges[c][i - 1] + RangeValue[c][i - 1] (D-xx)

OutputRanges[c][i]= OutputRanges[c][i - 1] +

RangeValue[c][i - 1] * ScaleValue[c][i - 1] (D-xx)

- The values OffsetValue[c][i], for i in the range of 0 to

hdrreconnumranges[c] - 1, inclusive, are derived as follows:

OffsetValue[c][i] = InputRanges[c][i + 1] - OutputRanges[c][i + 1] E

ScaleValue[c][i - 1] (D-xx)

- The parameter y = map[c](x) is derived as follows:

- If x is lower than or equal to OutputRanges[c][0], the following applies:

y = InputRanges[c][0] (D-xx)

- Otherwise if x is larger than OutputRanges[c][hdrrecon num ranges[c]],

the following applies:

y = InputRanges[c][hdr recon num ranges[c]] (D-xx)

- Otherwise, the following applies:

for(i = 1; i < = hdrreconnum ranges[c]; i++)

if(OutputRanges[i - 1] < x && x <= OutputRanges[i])

y = x + ScaleValue[c][i - 1] + OffsetValue[c][i - 1] (D-xx)

WO 2017/053277 PCT/US2016/052633
39

[0141] Several problems have been identified that are associated with the component

scaling information SEI messages, and other parameters that are applicable to adjust the

dynamic range of components. In particular, problems have been identified related to

the use of floating point numbers to derive scale and offset values, as well as the ranges

of codewords for sample values (e.g., RGB values, YCrCb values, YUV values, XYZ

values, etc.). For example, the scale values that are signalled in the bitstream are used at

the decoder side, for example, by video post-processor 31, to perform an inverse

dynamic range adjustment process. However, in order to use the scale values for

computing the ranges of sample values, and for computing the mapping process, a

reciprocal operation is performed at video post-processor 31. Previous example

semantics for a component scaling SEI message specify the use of the reciprocal (e.g.,

the reciprocal of a scale value, or reciprocal of a scale value and an added offset value)

to be multiplied with sample values. Errors introduced in such a reciprocal operation

would be more significant than potential errors in a forward operation, as the reciprocal

is applied to every sample value generated.

[0142] The semantics of the component scaling SEI message indicates the derivation

process of the ranges of sample values, and the mapping process (e.g., the application of

scale and offset values) to each range of codewords of color components (e.g., sample

values) in terms of floating point operations. This could lead to differences in the

reconstructed HDR output based on the various floating point arithmetic

implementations in different computing systems.

[0143] This application describes several techniques to improve the communication of

component scaling information using SEI signaling and processing, or other similar

signaling techniques which may be specified in video coding standards, such as

H.265/HEVC, H.264/AVC, BDA, MPEG or others. It is to be recognized that one or

more of the following aspects may be applied independently, or in suitable combination

with others of these aspects in any particular example.

[0144] In general, this disclosure describes techniques wherein video encoder 20 and/or

video pre-processor unit 19 may be configured to signal a scale value for one or more

sample value ranges of a component sample values (e.g., color component values). The

scale value is specified such that video decoder 30 and video post-processor unit 31 may

be configured to perform a mapping process to obtain an output sample value from the

input sample value of the component by multiplying the scale value specified for a

specific sample value range containing the input sample value with the input sample

WO 2017/053277 PCT/US2016/052633
40

value and adding an offset computed based on the parameters as part of the component

scaling information.

[0145] In another example of the disclosure, rather than using a floating point

implementation to compute the size and number of ranges of codewords of a color

component, video encoder 20 and/or video pre-processor unit 19 may be configured to

derive the size and number of ranges of codewords of the color component using a

fixed-point computing implementation. For example, video encoder 20 and/or video

pre-processor unit 19 may be configured to use a predetermined number of fractional

bits for determining and applying the parameters of the dynamic range adjustment

mapping process. Note that the number of fractional bits may be different for each

parameter (e.g., range of values for each color component (codeword), scale value, and

offset value) of the dynamic range adjustment process.

[0146] For example, video pre-processor unit 19 may be configured to perform integer

operations on any parameters or syntax element (e.g. hdr recon num ranges[c]) used

to communicate the size and number of ranges of codewords for a color component.

Video pre-processor unit 19 may be configured to keep track of the number of bits used

by the fractional part of any calculation of the size and number of ranges in the fixed

point implementation used. Video pre-processor unit 19 and/or video encoder 20 may

be configured to signal the number of bits used in the fractional part in an SEI message

(e.g., hdrreconoffsetfracbit depth, hdrreconscalefracbitdepth), or the number

of bits used in the fractional part may be a pre-determined value. Video decoder 30 may

be configured to decode the syntax elements in the SEI message indicating the number

of bits in the fractional part and video post-processor unit 31 may be configured to

perform an inverse dynamic range adjustment using the same number of bits in the

fractional part for one or more of the parameters of the inverse dynamic range

adjustment process.

[0147] In one example of the disclosure, when determining the ranges and/or other

parameters for the mapping process, video decoder 30 and/or video post-processor unit

31 may be configured to determine such parameters so that, when the signaled fractional

bit depths of different parameters are different, the accuracy of the computations

performed for the parameters are retained as far as possible. For example, video

decoder 30 and/or video post-processor unit 31 may be configured to retain any errors

introduced due to rounding to a minimum by accumulating the number of fractional bits

in any intermediate calculation steps used to determine a particular parameter. Video

WO 2017/053277 PCT/US2016/052633
41

decoder 30 and/or video post-processor unit 31 may then perform a clipping process to

bring the final value of a particular parameter to the desired fractional accuracy at the

last step of determining and/or calculating a particular parameter. In another example,

when the signaled fractional bit depths of the parameters are the same, video decoder 30

and/or video post-processor unit 31 may be configured to accumulate the number of

fractional bits in the intermediate steps, and perform clipping to bring the final value of

a parameter to the desired accuracy at the last step(s).

[0148] In another example, video decoder 30 and/or video post-processor unit 31 may

be configured to clip and/or truncate the value of a parameter at one or more

intermediate steps of a calculation process or the parameter such that the fractional parts

of values obtained for the parameter are reduced to a pre-determined value. That is,

rather than waiting until determining a final value for the parameter to perform any

clipping, video decoder 30 and/or video post-processor unit 31 may clip intermediate

values of calculations performed to determine the parameter. Such clipping or

truncation may be based on the number of fractional bits indicated in the SEI message.

In another example, video decoder 30 and/or video post-processor unit 31 may be

configured to clip and/or truncate intermediate values used when calculating a particular

parameter before a particular operation/step when it is determined that, if the

operation/step is performed without clipping, the accumulated number of fractional bits

would exceed a certain pre-determined value, e.g. the bit depth of the registers used to

store the intermediate values.

[0149] In another example of the disclosure, video pre-processor unit 19 and/or video

post-processor unit 31 may be configured to derive scale, offset and range values

according to predetermined sample value ranges based on a defined minimum and

maximum values defined for the fixed representation of the color components. For

example, a fixed representation of color components may have a plurality of ranges of

values defined, e.g., a "standard" range of values, a "full" range of values, and a

"restricted" range values. The "full" range of values may have a larger span between

the minimum and maximum value of a particular component (e.g., for an 8-bit full

range representation of YCbCr color space, the Y, Cb, and Cr components can take

values in the rage of 0 to 255, inclusive) as compared to the "standard" range of values

(e.g., an 8-bit standard range representation of YCbCr color space, the Y component

may take values in the range of 16 to 235, inclusive, and the Cb and Cr components

may take values between 16 and 240, inclusive). The "restricted" range of values may

WO 2017/053277 PCT/US2016/052633
42

have a smaller span between the minimum and maximum value of a particular

component (e.g., for a 10-bit restricted-range representation of YCbCr color space, the

Y, Cb, and Cr components may take values in the range of 4 to 1019, inclusive) as

compared to the "standard" range of values.

[0150] In one example, video encoder 20 and/or video pre-processor unit 19 may be

configured to signal a syntax element (e.g., in an SEI message) to indicate to video

decoder 30 and/or video post-processor unit 31 the minimum and maximum permitted

values of the samples (e.g., color component values) based on what sample range is

used (e.g. full, restricted, standard, or others). In another example, video encoder 20

and/or video pre-processor unit 19 may be configured to signal one or more syntax

values (e.g., in an SEI message) that indicate the minimum and maximum permitted

values of the samples to video decoder based on what sample range is used (e.g. full,

restricted, standard). Video decoder 30 and/or video post-processor unit 31 may then

determine the range of component values allowed for the inverse dynamic range

adjustment process based on the received minimum value and the received maximum

value.

[0151] In another example, video encoder 20 and/or video pre-processor unit 19 may be

configured to signal a flag (e.g., in an SEI message) to indicate whether the scale values

are signed or unsigned. In this example, the parsing process of any SEI messages is the

same regardless the value of the flag.

[0152] The following section includes several examples of embodiments that use

example techniques disclosed in the previous section. In this embodiment, the

component scaling function is signaled as a lookup table and the number of bits used to

signal the points defining the lookup table are also signaled. In one example, the lookup

defines a piece-wise linear mapping function. The points for the lookup table

correspond to the (x,y) coordinates that define the piece-wise linear mapping. For

sample values that do not have explicit points signaled, the value is interpolated based

on the neighboring pivot points.

[0153] The derivation process of the ranges and the output sample values are defined as

below.

[0154] The mapping of sample x from component c to sample y = map[c](x) is

specified as follows:

WO 2017/053277 PCT/US2016/052633
43

- Set the value of DefaultPrecShift equal to 9

- Let the variables minSampleVal and maxSampleVal denote the minimum and the

maximum sample values as defined by the sample range of the content.

- The variable ScaleValue[c][i], for i in the range of 0 to

hdrreconnum ranges[c] - 1, inclusive, is derived as follows:

SignValue[c][i] = 0 // 0 for positive, 1 for negative

hdrReconScaleBitDepth = hdrreconscalebitdepth

(hdr negativescalespresent flag ? 1 : 0)

if(hdr negative scalespresent flag)

ScaleValue[c][i] = hdr recon scale val[c][i] & ((1 <<

hdrReconScaleBitDepth) - 1) (D-xx)

SignValue[c][i] = hdrreconscale val[c][i] & (1 <<

hdrReconScaleBitDepth)

else

ScaleValue[c][i]= hdr recon scale val[c][i] (D-xx)

shiftInvScale = 1 << hdrReconScaleBitDepth

InvScaleValue[c][i]= (<1 < (DefaultPrecShift + hdrReconScaleBitDepth)

+ shiftInvScale) /

ScaleValue[c][i]

- The variable RangeValue[c][i], for i in the range of 0 to

hdrreconnum ranges[c] - 1, inclusive, is derived as follows:

- If hdrrecon equal ranges flag[c] is equal to 0, the following applies:

RangeValue[c][i] = hdr recon range val[c][i] (D-xx)

- Otherwise (hdrrecon equal ranges flag[c] is equal to 1), the following

applies:

RangeValue[c][i] = ((InputDynamicRangeValue <<

hdrreconoffsetfracbitdepth) +

((hdr reconnum ranges[c + 1) > 1)) /

hdrrecon num ranges[c] (D-xx)

WO 2017/053277 PCT/US2016/052633
44

where InputDynamicRangeValue is equal to 1 when the sample range is normalized

from 0 to 1.

- The variables InputRanges[c][i] and OutputRanges[c][i], for i in the range of 0

to hdrreconnum ranges[c], inclusive, are derived as follows:

- If i is equal to 0, the following applies:

OutputRanges[c][i] = - hdr reconglobaloffset val[c] *

InvScaleValue[c][i - 1] (D-xx)

InputRanges[c][i] = 0 (D-xx)

- Otherwise (i is not equal to 0), the following applies:

InputRanges[c][i] = InputRanges[c][i - 1] + RangeValue[c][i - 1] (D

xx)

OutputRanges[c][i]= OutputRanges[c][i - 1] +

RangeValue[c][i - 1] * InvScaleValue[c][i - 1]

(D-xx)

- The parameters OffsetValue[c][i], for i in the range of 0 to

hdrreconnum ranges[c] - 1, inclusive, are derived as follows:

precOffsetDeltaBits = DefaultPrecShift + hdrreconscalefracbitdepth

OffsetValue[c][i]= InputRanges[c][i + 1] * (1 << precOffsetDeltaBits)

OutputRanges[c][i + 1] * ScaleValue[c][i - 1] (D

xx)

OffsetValue[c][i]= ((OffsetValue[c][i] + (1 << (BitDepth - 1))) >>

BitDepth) *

(maxSampleVal - minSampleVal)

WO 2017/053277 PCT/US2016/052633
45

- The parameter y = map[c](x) is derived as follows:

- Variable bitDepthDelta is set equal to DefaultPrecShift +

hdrreconoffsetfrac bit depth - BitDepth

- If (x << bitDepthDelta) is lower than or equal to OutputRanges[c][0], the

following applies:

y = InputRanges[c][0] (D-xx)

fracBitDepth = hdrreconoffsetfracbit depth

- Otherwise if (x << bitDepthDelta) is larger than

OutputRanges[c][hdrreconnum ranges[c]], the following applies:

y = InputRanges[c][hdr recon num ranges[c]](D-xx)

fracBitDepth = hdrreconoffsetfracbit depth

- Otherwise, the following applies:

fracBitDepth = DefaultPrecShift + hdrreconscalefrac bit depth +

hdrreconoffsetfracbitdepth - BitDepth

for(i = 1; i < = hdrreconnum ranges[c]; i++)

if(OutputRanges[i - 1] < (x << bitDepthDelta) &&

(x << bitDepthDelta) < = OutputRanges[i]) {

rangeBitShift = DefaultPrecShift +

hdrreconoffsetfracbitdepth - BitDepth

y =(x - minSampleVal) * ScaleValue[c]i - 1] * (<1 <

rangeBitDepth) +

OffsetValue[c][i - 1] +

minSampleVal * (<1 < fracBitDepth) (D-xx)

}

- fracShiftOffset = 1 << (fracBitDepth - 1)

y = (y + fracShiftOffset) >> fracBitDepth

Alterantively, the adjustment of the sample range based on minSampleVal and

maxSampleVal are not performed on the OffsetValue, but rather on the InputRanges

and OutputRanges as follows:

deltaSampleVal = maxSampleval - minSampleVal

WO 2017/053277 PCT/US2016/052633
46

deltaBitShift = DefaultPrecShift + hdrreconoffsetfracbitdepth

sampleShift = 1 << (BitDepth - 1)) + (minSampleVal << deltaBitShift))

OutputRanges[c][i]= ((OutputRanges[c][i] * deltaSampleVal) +

sampleShift) >>

BitDepth

deltaBitShift = DefaultPrecShift + hdrreconoffsetfracbitdepth

sampleShift = 1 << (BitDepth - 1)) + (minSampleVal << deltaBitShift))

InputRanges[c][i] = ((InputRanges[c][i] * deltaSampleVal) + sampleShift)

BitDepth

[0155] This disclosure provides several techniques to improve carriage of component

scaling information using SEI signaling and processing or other means which is

specified or to be specified in video coding standards, such as H.265/HEVC,

H.264/AVC, BDA, MPEG or others. One or more of these techniques may be applied

independently, or in combination with others. In addition, the techniques described

above for signaling and/or using information in SEI messages for performing a fixed

point implementation of a dynamic range process may utilize one or more of the syntax

structures described below for signaling/receiving the information.

[0156] In some examples, video encoder 20 may signal one or more SEI messages that

include global offset values, including, for each component, a first offset value that

determines a first unadjusted component value below which all component values are

clipped to the first component value before applying dynamic range adjustment as

described in this disclosure. Decoder 30 may receive one or more of such SEI

messages, parse and/or decode the information in the SEI messages, and pass the

information to the video post-processor 31.

[0157] In some examples, for each component, video encoder 20 may signal one or

more SEI messages that include a second offset value that specifies the adjusted value to

which the first offset value maps to after dynamic range adjustment. Video decoder 30

may receive such SEI messages, parse and/or decode the information, and pass that

information to video post-processor 31.

[0158] In another example, neither the first global offset value nor the second global

offset value is signaled in a SEI message. Instead, decoder 30 assumes that the values

WO 2017/053277 PCT/US2016/052633
47

of the first global offset and the second global offset is a constant, predetermined, or

signaled value that the decoder 30 either determines per sequence or receives by

external means. In another example, video encoder 20 signals the first global offset

value in an SEI message, but the second global offset value is not signaled in a SEI

message. Instead, video decoder 30 infers that its value is a constant, predetermined, or

signaled value that decoder 30 either determines per sequence or received by external

means. In a still further example, video encoder 20 signals the second global offset

value in an SEI message, but the first global offset value is not signaled in a SEI

message. Instead, video decoder 30 infers that the first global offset value is a constant,

predetermined, or signaled value that decoder 30 either determines per sequence or

received by external means.

[0159] In some examples, video encoder 20 may signal offset values that are received

by decoder 30, and are used by decoder 30 to derive other global or local parameters,

including both global and local scale and offset values, as well as partitions of a range of

unadjusted values, and partitions of a range of adjusted values.

[0160] In some examples, video encoder 20 may signal one or more SEI messages that

include the number of partitions that the range of input representation values (i.e.,

component values) was divided into during dynamic range adjustment. In one example,

the number of partitions may be constrained to be a power of 2 (i.e. 1, 2, 4, 8, 16, etc.)

and the number of partitions is signaled as logarithm (e.g. 8 partitions is signaled as 3 =

log2 8). Video decoder 30 may receive such SEI messages, parse and/or decode the

information, and pass that information to video post-processor 31.

[0161] In some examples, the number of partitions for the chroma components may be

different from the number of partitions for the luma component. The number of

partitions may be constrained to be a power of 2 + 1 and signaled as logarithm and

rounding towards minus 0. In this way, pixels with neutral chroma can have their own

values and the size of that partition can be smaller than the other partitions. In such an

example, neutral chroma may refer to values of chroma around the mid-value (e.g., 0

when the chroma values range between -0.5 and 0.5, or between -512 and 511 in a 10

bit representation). Constraining the number of partitions as a power of 2 may enable

the encoder 20 to save bits, because encoder 20 may be able to represent the log of a

value with fewer bits than the actual value for integer values. Constraining the number

of partitions to a power of 2 + 1 may ensure that at least one partition may be dedicated

to the neutral chroma values, and in some examples, the width of the partition

WO 2017/053277 PCT/US2016/052633
48

corresponding to the neutral chroma values may be smaller than the rest. In other

examples, such a partition may be larger than one or more of the other partitions.

[0162] In some examples, decoder 30 may use the signaled number of partitions to

derive other global or local parameters, including both global and local scale and offset

values, as well as the actual size of the partitions of a range of unadjusted component

values and/or the size of the partitions of a range of adjusted component values.

[0163] In some examples, encoder 20 may signal one or more SEI messages that may

include, for each partition, a local scale and local offset value specifying a range of the

input component values and the corresponding mapped output component values. In

some examples, encoder 20 may signal an SEI message that includes the number of bits

used by the syntax elements to signal the scale and offsets. In other examples, encoder

20 may signal an SEI message that indicates the number of bits that are used to

represent the fractional part of the scale and offsets in the syntax elements. In other

examples, encoder 20 may signal one or more SEI messages or syntax elements that

indicate that the integer part of the scale parameters is signaled in a signed

representation. In some examples, the signed representation is two's complement. In

other examples, the signed representation is signed magnitude representation. Video

decoder 30 may receive such SEI messages and/or syntax elements, parse and/or decode

the information, and pass that information to video post-processor 31.

[0164] In other examples, encoder 20 may use each offset value successively to first

compute the range of adjusted component or representation values, and then using the

scale value, compute the corresponding range in the unadjusted representation. For

example, one offset value may be used to compute the range of a first partition in the

adjusted component using the value of a global offset value derived or signalled for the

adjusted component, followed by using the scale value and the range of a first partition

of the adjusted representation to derive the range in the corresponding partition of the

unadjusted representation and with the respective ranges of the first partition of the

adjusted and the corresponding partition of the unadjusted representations, derive a

respective value derived for the first partition of the adjusted range and the

corresponding partition of unadjusted representations that indicate a boundary of the

partitions. Following this, another offset value may be used to compute the range of a

second partition in the adjusted component using the boundary value of the first

partition in the adjusted component derived in the previous step, followed by using the

scale value and the range of a second partition of the adjusted representation to derive

WO 2017/053277 PCT/US2016/052633
49

the range of the unadjusted representation, and with the respective ranges of the second

partitions of the adjusted representation and corresponding partition of the unadjusted

representations, a respective value is derived for the partitions in the adjusted and

unadjusted representations that indicate a boundary of the respective representations.

This method is repeated until all the ranges and boundaries are derived for all the

partitions in the adjusted and unadjusted representations. In another example, encoder

20 may use each offset value successively to first compute the range of unadjusted

component or representation values, and then using the scale value, compute the

corresponding range in the adjusted representation. In other words, the component or

representation to which the scale and offset values are applied could be swapped

between unadjusted and adjusted representations.

[0165] In some examples, the number of bits used by the syntax elements to signal scale

and offset values may depend on the component. In other examples, a default number

of bits is defined and used when these numbers are not explicitly signaled.

[0166] In some examples, encoder 20 may signal a syntax element indicating whether

the length of the partitions of the output representations (i.e., output components) are

equal. In such an example, encoder 20 might not signal the offset value for one or more

partitions. Decoder 30 may infer the offset values to be equal in some examples. In

another example, decoder 30 may assume the partitions are of equal length and may not

receive a syntax element so indicating. In some examples, decoder 30 may derive the

size of each partition from signaled syntax elements and predefined total dynamical

range of the representation.

[0167] In other examples, rather than signaling pivot points for each partition as well as

scale and offset values for each partition, video encoder 20 may signal one or more SEI

messages that indicate derivative or scale value for each partition along with the size of

one or more or all partitions. This approach may allow encoder 20 to avoid signaling

local offset values for each partition. Instead, in some examples, encoder 20 may be

able to signal, in one or more SEI messages, the partition size and scale value (or

derivative) for one or more partitions. The local offset value for each partition or

partitioning (which may require higher accuracy) may be determined or derived by

decoder 30.

[0168] In some examples, encoder 20 may signal one or more SEI messages that

indicate a mode value that specifies several default values for offset and scale values for

WO 2017/053277 PCT/US2016/052633
50

certain partitions. Video decoder 30 may receive such SEI messages, parse and/or

decode the information, and pass that information to video post-processor 31.

[0169] In some examples, encoder 20 may signal one or more SEI messages that

indicate a value defining the persistence of the SEI message such that the persistence of

a subset of the components may be defined and component scale values of a subset of

the components may be updated. The persistence of an SEI message indicates the

pictures to which the values signalled in the instance of the SEI may apply. In some

examples, the persistence of the SEI message is defined such that the values signalled in

one instance of SEI messages may apply correspondingly to the all components of the

pictures to which the SEI message applies. In other examples, the persistence of the SEI

message is defined such that the values signalled in one instance of the SEI may be

indicated to apply correspondingly to a subset of the components wherein the

components to which the values in the instance of the SEI does not apply may either

have no values applicable or may have values applicable that are signalled in another

instance of the SEI message. Video decoder 30 may receive such SEI messages, parse

and/or decode the information, and pass that information to video post-processor 31.

[0170] In some examples, encoder 20 may signal one or more SEI messages that

include syntax elements indicating the post-processing steps to be performed to the

decoded output. Each syntax element may be associated with a particular process (e.g.

scaling components, color transforms, up-sampling/down-sampling filters, etc.) and

each value of the syntax element may specify that a particular set of parameters

associated with the process be used. In some examples, the parameters associated with

the process are signaled by video encoder 20 using SEI messages that are part of the

bitstream or as metadata that may be transmitted through other means. Video decoder

30 may receive such SEI messages, parse and/or decode the information, and pass that

information to video post-processor 31.

[0171] In some examples, encoder 20 may signal syntax elements or one or more SEI

messages that may be used for describing and/or constructing a piece-wise linear model

function for mapping input representations (i.e., input component values) to output

representations (i.e., output component values). Video decoder 30 may receive such

SEI messages, parse and/or decode the information, and pass that information to video

post-processor 31. In other examples, predefined assumptions may be used for

describing and/or constructing a piece-wise linear model function for mapping input

representations to the output representation.

WO 2017/053277 PCT/US2016/052633
51

[0172] In some examples, encoder 20 may signal one or more SEI messages that may

include one or more syntax elements indicating that the scale and offset parameters

signaled in the SEI message represent the variation of the scale to be applied to a first

component as a function of different values of a second component.

[0173] In some examples, encoder 20 may signal one or more SEI messages indicating

offset parameters that are to be or may be applied along with the scale on a first

component as a function of different values of a second component. In some examples,

encoder 20 may signal one or more SEI messages that may include one or more

additional syntax elements that indicating offset parameters that are to be or may be

applied along with the scale on a first component as a function of different values of a

second component. Video decoder 30 may receive such SEI messages, parse and/or

decode the information, and pass that information to video post-processor 31.

[0174] In some examples, encoder 20 may signal one or more SEI messages including a

first syntax element that indicates a first set of electro-optical transfer function

characteristics such that the signaled scale, offset and other dynamic range adjustment

parameters the SEI message are applied when the electro-optical transfer function

characteristics used on the decoder-side are similar to that first set of electro-optical

transfer function characteristics.

[0175] In another example, encoder 20 may signal one or more SEI messages indicating

that the signaled offset, scale and other dynamic range parameters in the SEI message(s)

are to be applied for best reconstruction of the HDR output when the first set of electro

optical transfer function characteristics, or those with similar characteristics, are used by

the decoder 30. Video decoder 30 may receive such SEI messages, parse and/or decode

the information, and pass that information to video post-processor 31.

[0176] In another example, encoder 20 may signal one or more SEI messages indicating

that a first set of opto-electronic transfer function characteristics, and the signaled scale,

offset and other dynamic range adjustment parameters are applied on by decoder 30

when the corresponding inverse electro-optical transfer function characteristics are

applied at the decoder side. Video decoder 30 may receive such SEI messages, parse

and/or decode the information, and pass that information to video post-processor 31.

[0177] In other examples, encoder 20 may signal a condition such that when more than

one SEI message is present indicating different set of electro-optical/opto-electronic

characteristics and applicable the current picture, only one SEI message is applied. The

encoder may signal different set of electro-optical/opto-electronic characteristics to

WO 2017/053277 PCT/US2016/052633
52

satisfy different types of decoders, or decoders with different capabilities. For example,

some displays at the decoder side may apply the PT EOTF to convert the coded

component values in appropriate domain to linear light, whereas other displays, e.g.

legacy displays, may apply the gamma EOTF to convert to linear light. Each SEI with a

particular characteristic that the encoder sends may be appropriate or beneficial for

certain types of displays and not for other types of displays, e.g. an SEI message with

PQ EOTF characteristics may be suitable for displays that apply PQ EOTF to convert

the coded video to linear light. The decoder 30 determines which SEI message is to be

applied, and makes such a choice based on the application standard, based on the end

user device, based on a signal received, or based on another indication received through

external means. For example, decoder 30 may determine that the first syntax element in

a first SEI message that applies to a current picture indicates that the SEI message is to

be applied with the inverse of PQ OETF and the first syntax element in a second SEI

message that applies to a current picture indicates that the SEI message is to be applied

with another transfer function (such as BBC, or PH), the decoder 30 or end-user device

may choose to apply the parameters in the first SEI message because the device uses PQ

EOTF. In some examples, an application standard to which the decoder conforms to

may specify that an SEI message with a particular set of characteristics is to be used.

[0178] In other examples, encoder 20 may signal an SEI message that carries the

parameters corresponding to multiple sets of transfer characteristics. In other examples,

encoder 20 may signal different SEI messages for that purpose. Video decoder 30 may

receive such SEI messages, parse and/or decode the information, and pass that

information to video post-processor 31

[0179] In some examples, encoder 20 may signal one or more SEI messages that

include a syntax element indicating the applicability of the SEI message. The

applicability of the SEI message may include, but is not limited to (1) the components to

which the scales and offsets apply, (2) the position at which the component scaling is

applied, and/or (3) whether additional scaling parameters are signaled.

[0180] As described, encoder 20 may signal one or more SEI messages that include a

syntax element indicating the components to which the scales and offsets apply. The

following lists several examples of such an application. For example, one value of the

syntax element could indicate that signaled parameters for the first component index are

to be applied to the RGB components. Another value may indicate that the signaled

parameters for the first component index is to be applied to luma component, and those

WO 2017/053277 PCT/US2016/052633
53

for the second and third indices are to be applied to the Cb and Cr components. Another

value may indicate that the signaled parameters for the first component index is to be

applied to R, G and B components, and those for the second and third indices are to be

applied to the Cb and Cr components. Another value may indicate that signaled

parameters for first three indices are applied to luma, Cb and Cr components, and that

corresponding to the remaining indices are applied for color correction. Video decoder

30 may receive such SEI messages, parse and/or decode the information, and pass that

information to video post-processor 31.

[0181] Also as described, encoder 20 may signal one or more SEI messages including a

syntax element indicating the position at which the component scaling is applied.

Several processes occur on the decoder-side, after decoding of the video, and in the

video post-processor 31. Signaling of syntax element indicating the position at which

the process associated with the SEI is to be applied, in other words indication of any

subset of the preceding or succeeding operations of the process associated with using

the information in the SEI, would be helpful to the video decoder 30 or the video post

processor 31 to process the video. For example, such a syntax element could indicate

the position at which the component scaling is applied, for example to YCbCr

components before or after upsampling. In another example, the syntax element could

indicate that the component scaling is applied before the quantization no the decoder

side. Video decoder 30 may receive such SEI messages, parse and/or decode the

information, and pass that information to video post-processor 31.

[0182] Also as described, encoder 20 may signal one or more SEI messages that include

a syntax element indicating whether an additional set of scaling and parameters, e.g. for

color correction, are signaled. The additional set of parameters could be used for color

correction to map the color components to fit a particular color gamut, or for correction

of component values when a different transfer function is applied than that indicated by

the transfercharacteristics syntax element in the VUI.

[0183] In other examples, encoder 20 may signal different syntax elements to indicate

the above aspects; e.g. one syntax element to indicate which component(s) the SEI

applies to, one syntax element to indicate whether it applies to HDR-compatible of

SDR-compatible content, and one syntax element to indicate the position(s) where the

component scaling SEI message is to be applied.

[0184] When the number of components to which the component scaling SEI message

parameters are applied is more than one, encoder 20 may signal one or more SEI

WO 2017/053277 PCT/US2016/052633
54

messages that include a syntax element indicating that application of scale and offset

parameters may be done sequentially based on the index of the component. For

example, the mapping based on the scale and offset parameters of the first component

may be applied, and then the mapping of the second component, which for example

uses scale and offset signaled for the second component, may depend on the values of

the first component. In some examples, this is indicated by, for example, by syntax

element specifying that the mapped values of the first component should be used.

Video decoder 30 may receive such SEI messages, parse and/or decode the information,

and pass that information to video post-processor 31.

[0185] In another example, video encoder 20 may constrain the values signaled in one

or more SEI messages, or in the bitstream, in such a way that an HDR10 receiver can

decode and show a viewable HDR video even if the SEI post-processing is not applied.

The SEI message(s) may include a syntax element to indicate that this is the case (e.g.,

that the bitstream is an HDR1O backward compatible bitstream).

[0186] This section includes several examples that use techniques disclosed in

accordance with one or more aspects of the present disclosure.

Example 1

[0187] In this example 1, the component scaling function is signaled as a look-up table

and the number of bits used to signal the points defining the look up table are also

signaled. For sample values that do not have explicit points signaled, the value is

interpolated based on the neighboring pivot points.

WO 2017/053277 PCT/US2016/052633
55

Syntax of the component scaling SEI message

component scaleinfo(payloadSize) { Descriptor

compscale id ue(v)

compscale cancelflag u(1)

if(!compscale_cancel flag) {

compscale persistence_flag u(1)

compscale numcomps-minusl ue(v)

compscale input bitdepth ue(v)

compscale output bit depth ue(v)

for(c = 0; c <= compscalenum_comps minus; c++) {

compscalenumpointsminusl[c] ue(v)

for(i = 0; i <= compscalenumpoints minus[c]; i++) {

compscale input point[c][i] u(v)

compscale output point[c][i] u(v)

}
}

}
}

Semantics of the component scaling SEI message

The component scaling SEI message provides information to perform scaling operations

on the various components of the decoded pictures. The colour space and the

components on which the scaling operations should be performed are determined by the

value of the syntax elements signalled in the SEI message.

compscale_id contains an identifying number that may be used to identify the purpose

of the component scaling SEI message. The value of comp_scaleid shall be in the

range of 0 to 232 - 2, inclusive. The value of compscale id may be used to specify the

colour space at which the component scaling SEI message, or whether the component

scaling SEI message is applied in the linear or the non-linear domain.

Values of compscaleid from 0 to 255, inclusive, and from 512 to 231 - 1, inclusive,

may be used as determined by the application. Values of compscaleid from 256 to

511, inclusive, and from 231 to 232 - 2, inclusive, are reserved for future use by ITU-T

ISO/JEC. Decoders shall ignore all component scale information SEI messages

WO 2017/053277 PCT/US2016/052633
56

containing a value of compscaleid in the range of 256 to 511, inclusive, or in the

range of 231 to 232 - 2, inclusive, and bitstreams shall not contain such values.

NOTE 1 - The compscale-id can be used to support component scaling processes that

are suitable for different display scenarios. For example, different values of

compscale id may correspond to different display bit depths or different colour spaces

in which the scaling is applied.

Alternatively, the compscale id may also be used to identify whether the scaling is

performed for compatibility to certain types of displays or decoder, e.g. HDR, SDR.

compscalecancelflag equal to 1 indicates that the component scaling information

SEI message cancels the persistence of any previous component information SEI

messages in output order that applies to the current layer. compscalecancelflag equal

to 0 indicates that component scaling information follows.

compscale persistence_flag specifies the persistence of the component scaling

information SEI message for the current layer.

compscalepersistence flag equal to 0 specifies that the component scaling

information applies to the current decoded picture only.

Let picA be the current picture. compscalepersistenceflag equal to 1 specifies that

the component scaling information persists for the current layer in output order until any

of the following conditions are true:

- A new CLVS of the current layer begins.

- The bitstream ends.

- A picture picB in the current layer in an access unit containing a component

scaling information SEI message with the same value of compscale id and applicable

to the current layer is output for which PicOrderCnt(picB) is greater than

PicOrderCnt(picA), where PicOrderCnt(picB) and PicOrderCnt(picA) are the

PicOrderCntVal values of picB and picA, respectively, immediately after the invocation

of the decoding process for picture order count for picB.

compscale_num_compsminus1 plus 1 specifies the number of components for

which the component scaling function is specified. compscalenumcomps-minusl

shall be in the range of 0 to 2, inclusive.

When compscale num_comps minus is less than 2 and the component scaling

parameters of the c-th component is not signalled, are inferred to be equal to those of the

(c - 1)-th component.

WO 2017/053277 PCT/US2016/052633
57

Alternatively, when compscalenumcomps minus 1 is less than 2, and the component

scaling parameters of the c-th component is not signalled, the component scaling

parameters of the c-th component are inferred to be equal to default values such that

effectively there is no scaling of that component.

Alternatively, the inference of the component scaling parameters may be specified

based on the colour space on which the SEI message is applied.

- When the colour space is YCbCr, and compscale numcomps minus is

equal to 1, the component scaling parameters apply to both Cb and Cr components.

- When the colour space is YCbCr, and compscale numcomps minus is

equal to 2, the first and second component scaling parameters apply to Cb and Cr

components.

In one alternative, the different inference is specified based on the value of

compscaleid or on the basis of an explicit syntax element.

Alternatively, a constraint is added as follows:

It is constraint for bitstream conformance that the value of

compscalenum_compsminus 1 shall be the same for all the component scaling SEI

message with a given value of compscaleid within a CLVS.

compscale input bit depthminus8 plus 8 specifies the number of bits used to

signal the syntax element compscale inputpoint[c][i]. The value of

compscale input bit depthminus8 shall be in the range of 0 to 8, inclusive.

When component scaling SEI message is applied to an input that is in a normalized

floating point representation in the range 0.0 to 1.0, the SEI message refers to the

hypothetical result of a quantization operation performed to convert the input video to a

converted video representation with bit depth equal to

colourremap input bit depthminus8 + 8.

When component scaling SEI message is applied to a input that has a bit depth not equal

to the compscale input bit depth minus8 + 8, the SEI message refers to the

hypothetical result of a transcoding operation performed to convert the input video

representation to a converted video representation with bit depth equal to

colourremap input bit depth minus8 + 8.

compscale output bit depth_minus8 plus 8 specifies the number of bits used to

signal the syntax element compscaleoutputpoint[c][i]. The value of

compscaleoutput bit depth minus8 shall be in the range of 0 to 8, inclusive.

WO 2017/053277 PCT/US2016/052633
58

When component scaling SEI message is applied to an input that is in floating point

representation, the SEI message refers to the hypothetical result of an inverse

quantization operation performed to convert the video representation with a bit depth

equal to colourremapoutput bit depthminus8 + 8 that is obtained after processing of

the component scaling SEI message to a floating point representation in the range 0.0 to

1.0.

Alternatively, the number of bits used to signal compscale input-point[c][i] and

compscaleoutput_point[c][i] are signalled as compscale input bit depth and

compscaleoutput bit depth, respectively, or in other words without subtracting 8.

compscale_num_pointsminus1[c] plus 1 specifies the number of pivot points used

to define the component scaling function. comp_scalenum_points minus[c] shall be

in the range of 0 to (1 << Min(compscale inputbitdepth minus8 + 8,

compscaleoutput bit depthminus8 + 8)) - 1, inclusive.

compscale input point[c][i] specifies the i-th pivot point of the c-th component of

the input picture. The value of compscale input_point[c][i] shall be in the range of

0 to (1 << compscale inputbitdepth minus8[c] + 8) - 1, inclusive. The value of

compscale input_point[c][i] shall be greater than or equal to the value of

compscale input_point[c][i - 1], for i in the range of 1 to

compscale_points minus [c], inclusive.

compscale output point[c][i] specifies the i-th pivot point of the c-th component

of the output picture. The value of compscaleoutput_point[c][i] shall be in the

range of I to (1 << compscaleoutputbitdepth minus8[c] + 8) - 1, inclusive.

The value of comp_scale_output_point[c][i] shall be greater than or equal to the value

of compscale_output_point[c][i - 1], for i in the range of I to

compscale_points minus [c], inclusive.

The process of mapping an input signal representation x and an output signal

representation y, where the sample values for both input and output are in the range of 0

to (1 << compscale input bit depth minus8[c] + 8) - 1, inclusive, and 0 to

(1 << compscaleoutput bit depth minus8[c] + 8) - 1, inclusive, respectively, is

specified as follows:

if(x <= compscale input_point[c][0])

y = compscaleoutput_point[c][0]

else if(x > compscale input_point[c][compscale inputpoint minus[c]])

y = compscaleoutput_point[c][compscale_output_point minus 1[c]]

WO 2017/053277 PCT/US2016/052633
59

else

for(i = 1; i <= comp_scale_outputpoint minus[c]; i++)

if(compscale inputpoint[i - 1] < x && x <=

compscale inputpoint[i])

y = ((comp_scale_outputpoint[c][i] - compscaleoutputpoint[c][i - 1]

(compscale inputpoint[c][i] - comp_scaleinputpoint[c][i - 1])) *

(x - compscale inputpoint[c][i - 1]) +

(compscaleoutputpoint[c][i - 1])

[0188] In one alternative, input and output pivot points compscale input-point[c][i]
and comp_scale_outputpoint[c][i] are coded as difference of adjacent values; e.g.,

deltacompscale inputpoint[][] and deltacompscaleoutput-point[][], and the

syntax elements are coded using exponential Golomb codes.

In another alternative, the process of mapping an input and output representation value

is specified by other interpolation methods including, but not limited to, splines and

cubic interpolation.

Example 2

[0189] This Example 2 shows a different syntax structure compared to the SEI syntax

structure described in Example 1. In this syntax structure, the mapping function is

described in terms of scales and offsets instead of pivot points.

WO 2017/053277 PCT/US2016/052633
60

Syntax of the component scaling SEI message

component scaleinfo(payloadSize) { Descriptor

compscale id ue(v)

compscalecancelflag u(1)

if(!compscale_cancel flag) {

compscale persistenceflag u(1)

compscale num-comps ue(v)

compscale input bitdepth ue(v)

compscale output bit depth ue(v)

compscale bit depth scaleval ue(v)

compscale log2_denomscaleval ue(v)

for(c = 0; c < compscalenumcomps; c++) {

compscale numpoints_minusl[c] ue(v)

compscale global_offset input val[c] u(v)

compscale global_offset output val[c] u(v)

for(i = 0; i < compscale numpoints minus[c]; i++) {

compscale offsetval[c][i] u(v)

compscale val[c][i] u(v)

}
}

}
}

compscalebitdepthscale val specifies the number of bits used to signal the syntax

element compscale val[c][i]. The value of compscale bit depth_scaleval shall

be in the range of 0 to 24, inclusive.

compscale-log2_denom_scaleval specifies the base 2 denominator of the scale

value. The value of compscale log2_denomscaleval shall be in the range of 0 to 16,

inclusive.

compscale global_offsetinput val[c] plus 1 specifies the input sample value below

which all the input representation values are clipped to

CompScaleOffsetOutputVal[c][0]. used to define the component scaling function.

compscale numpointsminus1[c] shall be in the range of 0 to

WO 2017/053277 PCT/US2016/052633
61

(1 << compscale input bit depth) - 1, inclusive. The number of bits used to

represent compscaleglobal_offsetinput val[c] is compscale input bit depth.

compscale global_offsetoutput val[c] plus 1 specifies the output sample value to

which all the input representation values below

compscaleglobaloffsetinput val[c] are to be clipped.

compscale numpointsminus1[c] shall be in the range of 0 to

(1 << compscaleoutput bit depth) - 1, inclusive. The number of bits used to

represent compscaleglobal_offsetoutput val[c] is compscale_output bit depth.

compscale_num_pointsminus1[c] plus 1 specifies the number of pivot points used

to define the component scaling function. comp_scalenumpoints minus[c] shall be

in the range of 0 to (1 << Min(compscale inputbitdepth,

compscaleoutput bit depth) - 1, inclusive.

The process of mapping an input signal representation x and an output signal

representation y, where the sample values for both input representation is in the range of

0 to (1 << compscale input bit depth) - 1, inclusive, and output representation is in

the range of and 0 to (1 << compscaleoutput bit depth) - 1, inclusive, is specified

as follows:

if(x <= CompScaleOffsetInputVal[c][0])

y = CompScaleOffsetOutputVal[c][0]

else if(x > CompScaleOffsetInputVal[c][comp_scale_output-point minus])

y = CompScaleOffsetOutputVal[c][compscaleoutputpoint minus]

else

for(i = 1; i <= comp_scale_outputpointminusI; i++)

if(CompScaleOffsetlnputVal[i - 1] < x && x <=

CompScaleOffsetInputVal[i])

y=(x

CompScaleOffsetInputVal[i - 1] * (compscale val[c][i] +

CompScaleOffsetOutputVal[c][i]

compscale_offset val[c][i] specifies the offset value of the i-th sample value region

of the c-th component. The number of bits used to represent compscale_offset val[c]

is equal to compscale input bit depth.

compscale val[c][i] specifies the scale value of the i-th sample value region point

of the c-th component. The number of bits used to represent compscale val[c] is

equal to compscale bit depthscaleval.

WO 2017/053277 PCT/US2016/052633
62

The variables CompScaleOffsetOutputVal[c][i] and

CompScaleOffsetInputVal[c][i] for i in the range of 0 to

compscale numpointsminus1[c], inclusive, is derived as follows:

roundingOffset = (compscale log2_denomscaleval = = 0) ? 0 : (1 <<

compscale log2denomscaleval - 1)

for(i = 0; i <= compscale numpoints minus[c]; i++)

if(i == 0)

CompScaleOffsetOutputVal[c][i]=

compscaleglobaloffsetoutput val[c]

CompScaleOffsetInputVal[c][i] =

compscaleglobaloffsetinput val[c]

else

CompScaleOffsetOutputVal[c][i]= CompScaleOffsetOutputVal[c][i

1I +

(comp_scaleoffset val[c][i - 1] E compscale val[c][i - 1]

+ roundingOffset) >>

compscale log2_denomscaleval

CompScaleOffsetInputVal[c][i]= CompScaleOffsetInputVal[c][i - 1]

comp scaleoffsetval[c][i - 1]

In one alternative, compscaleoffsetval[c][i] is used to directly calculate

CompScaleOffsetOutputVal[][i] and indirectly calculate

CompScaleOffsetInputVal[][i] for i in the range of 0 to

compscalenum_points minus [c] as follows:

for(i = 0; i < comp_scalenumpoints minus[c]; i++)

if(i == 0)

CompScaleOffsetOutputVal[c][i]=

compscaleglobaloffsetoutput val[c]

CompScaleOffsetInputVal[c][i] =

compscaleglobaloffsetinput val[c]

else

CompScaleOffsetInputVal[c][i]= CompScaleOffsetInputVal[c][i - 1]

WO 2017/053277 PCT/US2016/052633
63

(compscale_offset val[c][i - 1] *

compscale val[c][i - 1]

+ roundingOffset) >>

compscale log2_denomscale val)

CompScaleOffsetOutputVal[c][i]= CompScaleOffsetOutputVal[c][i

1]+

comp scaleoffset_val[c][i - 1]

In one alternative, compscaleoffsetval[c][i] for i in the range of 0 to

compscale numpointsminus1 [c], inclusive, are not signaled, and the values of

compscale_offset val[c][i] are derived based on

compscale numpointsminus1 [c] equally spaced intervals for which the scale is

specified. The value of comp_scale_offset val[c][i] for i in the range of 0 to

compscalenum_points minus[c] - 1, inclusive, is derived as follows:

compscale_offset val[c][i]= ((1 << compscaleoutput bit depth)

compscaleglobaloffset output val[c]) +

(compscalenumpoints minus 1[c])

In another alternative, comp scaleoffset val[c][i] for i in the range of 0 to

compscale numpointsminus1[c] is calculated as follows:

compscale_offset val[c][i] = (1 << compscaleoutput bit depth) +

(compscalenumpoints minus 1[c])

In one alternative, instead of signaling compscale numpointsminus 1[c], the

number of pivot points is signaled using log2_compscale num-points[c], where

(1 << log2_comp_scalenumpoints[c]) specifies the number of pivot points for the

c-th component.

Alternatively, each of compscaleoffset val[c][] and compscale val[c][] is

signaled as floating point numbers, or as two syntax elements with exponent and

mantissa.

WO 2017/053277 PCT/US2016/052633
64

In another alternative, signaling of compscale val[c][i] is replaced by

compscaleoutput_point[c][i].

The semantics of rest of the syntax elements are similar to those described in Example

1.

Example 3

[0190] This method described in Example 3 is similar to one of the alternatives

described in Example 2, with the exception that the component scaling functions are

allowed to be updated independently.

WO 2017/053277 PCT/US2016/052633
65

Syntax of the component scaling SEI message

component scaleinfo(payloadSize) { Descriptor

compscale id ue(v)

compscale cancelflag u(1)

if(!compscale_cancel flag) {

compscale persistence_flag u(1)

compscale numcomps ue(v)

compscale input bitdepth ue(v)

compscale output bit depth ue(v)

for(c = 0; c < compscale num_comps; c++) {

compscalepersistcomponent flag[c] u(1)

if(!compscalepersist component flag[c])

compscale numscaleregions[c] ue(v)

compscale globaloffset input val[c] u(v)

compscale globaloffset output val[c] u(v)

for(i = 0; i < compscalenum scale regions[c]; i++) {

compscaleoffsetval[c][i] u(v)

compscale val[c][i] u(v)

}
}

}
}

}
Semantics of the component scaling SEI message

The semantics is similar to Example 2, except for the following syntax elements.

compscalenumscale regions[c] specifies the number of regions for which the

syntax element compscale val[c][i] is signalled for the c-the component.

compscalenum_scale regions[c] shall be in the range of 0 to (1 <<

compscale input bit depth) - 1, inclusive.

compscalepersist component flag[c] equal to 0 specifies that component scaling

parameters for the c-th component are explicitly signalled in the SEI message.

compscalepersist component flag[c] equal to 1 specifies that component scaling

parameters for the c-th component are not explicitly signalled in the SEI message, and it

WO 2017/053277 PCT/US2016/052633
66

persists from the component scaling parameters of the c-th component of the component

scaling SEI message that applies to previous picture, in output order.

It is a requirement of bitstream conformance that when the component scaling SEI

message is present in an IRAP access unit, the value of

compscalepersist component flag[c], when present, shall be equal to 0.

Alternatively, the following condition is added:

It is a requirement of bitstream conformance that when the component scaling SEI

message is present in an access unit that is not an IRAP access unit and

compscalepersist component flag[c] is equal to 1, then there is at least one picture

that precedes the current picture in output order and succeeds, in output order, the

previous IRAP picture in decoding order, inclusive, such that the one picture is

associated with a component scaling SEI message with comp scale-persistence flag

equal to 1.

compscale persistence_flag specifies the persistence of the component scaling

information SEI message for the current layer.

compscalepersistence flag equal to 0 specifies that the component scaling

information applies to the current decoded picture only.

Let picA be the current picture compscalepersistenceflag equal to 1 specifies that the

component scaling information of the c-th component persists for the current layer in

output order until any of the following conditions are true:

- A new CLVS of the current layer begins.

- The bitstream ends.

- A picture picB in the current layer in an access unit containing a component

scaling information SEI message with the same value of compscale-id and

compscalepersist component flag[c] equal to 0, and applicable to the current layer

is output for which PicOrderCnt(picB) is greater than PicOrderCnt(picA), where

PicOrderCnt(picB) and PicOrderCnt(picA) are the PicOrderCntVal values of picB

and picA, respectively, immediately after the invocation of the decoding process for

picture order count for picB.

Example 4

[0191] In this Example 4, a different method to signal the scale regions is disclosed.

WO 2017/053277 PCT/US2016/052633
67

Changes to component scaling SEI message syntax

component scaleinfo(payloadSize) { Descriptor

compscale id ue(v)

compscalecancelflag u(1)

if(!compscale_cancel flag) {

compscale persistenceflag u(1)

compscale num-comps ue(v)

compscale input bitdepth ue(v)

compscale output bit depth ue(v)

for(c = 0; c < compscalenumcomps; c++) {

compscale persistcomponent flag[c] u(1)

if(!compscalepersist component flag[c])

compscale globaloffset input val[c] u(v)

compscale globaloffsetoutput val[c] u(v)

compscale num scale regions[c] ue(v)

for(i = 0; i < compscalenumscale regions[c]; i++) {

compscaleoffset begin val[c][i] u(v)

compscale offset end val[c][i] u(v)

compscale val[c][i] u(v)

}
}

}
}

}

Changes to component scaling SEI message semantics

The semantics of the syntax elements are similar to those described in previous

examples, except for the following:

compscaleoffset begin val[c][i] specifies the beginning of the sample value range

for which the scale value compscale val[c][i] is applicable. The number of bits

used to represent compscale_offsetbegin val[c] is equal to

compscale input bit depth.

WO 2017/053277 PCT/US2016/052633
68

compscale_offset_end_val[c][i] specifies the end of the sample value range for

which the scale value compscale val[c][i] is applicable. The number of bits used to

represent compscaleoffsetend val[c] is equal to compscale inputbitdepth.

For regions that are not explicitly specified by compscale offsetbegin val and

compscale_offsetendval, the compscalevalue[c][i] for those regions is inferred

to be equal to 0.

[0192] Alternatively, compscaleoffsetendval[c][i] is not signaled and instead the

difference between compscaleoffsetend val[c][i] and

compscale_offset begin val[c][i] is signaled, and the value of

compscale_offset end val[c][i] derived at the decoder-side.

[0193] In another alternative, the total number of regions in to which the output sample

range is split is specified, and the number of regions is signaled for which the scale

regions are explicitly signaled.

... u(v)

compscale global_offsetoutput val[c] u(v)

compscaletot_scaleregions[c] ue(v)

compscalenum_scaleregions[c] ue(v)

for(i = 0; i < comp scale numscale regions[c]; i++) {

compscaleregionidx[c][i] u(v)

compscaleval[c][i] u(v)

}

compscale_tot_scaleregions[c] specifies the total number of equal length sample

value ranges in to which the sample values are split. The number of bits used to

represent compscaletotscale regions[c] is equal to compscale input bit depth.

In one alternative, the comp scaletotscale regions[c] sample value ranges may not

be exactly equal in length but very nearly equal to account for the integer accuracy of

the region lengths.

compscaleregionidx[c][i] specifies the index of the sample value range for which

the scale value compscale val[c][i] is applied. The length of the syntax element

compscale region idx[c] is Ceil(Log2(comp_scaletot scale regions[c])) bits.

WO 2017/053277 PCT/US2016/052633
69

Alternatives

Alternatively, region around the chroma neutral (511 for 10-bit data) have smaller size,

p.e., half the size of the other regions.

Example 5

Syntax of the component scale SEI message

component scaleinfo(payloadSize) { Descriptor

compscale id ue(v)

compscalecancelflag u(1)

if(!compscale_cancel flag) {

compscale persistenceflag u(1)

compscale scale bitdepth u(4)

compscale offset bit depth u(4)

compscale scalefracbit depth u(4)

compscale offsetfracbit depth u(4)

compscale num comps_minus1 ue(v)

for(c = 0; c <= compscale numcomps minus 1; c++) {

compscale-numranges[c] ue(v)

compscale equalrangesflag[c] u(1)

compscale global_offset-val[c] u(v)

for(i = 0; i <= compscalenumranges[c]; i++)

compscale scaleval[c][i] u(v)

if(compscaleequal ranges[c]) u(v)

for(i = 0; i <= compscalenum ranges[c]; i++)

compscaleoffsetval[c][i] u(v)

}
}

Semantics of the component scale SEI message

The component scaling SEI message provides information to perform scaling operations

on the various components of the decoded pictures. The colour space and the

components on which the scaling operations should be performed are determined by the

value of the syntax elements signalled in the SEI message.

WO 2017/053277 PCT/US2016/052633
70

compscale_id contains an identifying number that may be used to identify the purpose

of the component scaling SEI message. The value of compscale id shall be in the

range of 0 to 232 - 2, inclusive. The value of compscale id may be used to specify the

colour space at which the component scaling SEI message, or whether the component

scaling SEI message is applied in the linear or the non-linear domain.

In some examples, compscale id can specify the configuration of the HDR

reconstruction process. In some examples, particular value of compscaleid may be

associated with signaling of scaling parameters for 3 components. The scaling of the

first components to be applied to samples of R',G', B' color space, and parameters of

following 2 components are applied for scaling of Cr and Cb.

For yet another compscale id value, hdr reconstruction process can utilize parameters

for 3 components, and scaling is aplied to samples of Luma, Cr and Cb color

components.

In yet another compscale id value, hdr reconstruction process can utilize signaling for

4 components, 3 of which to be applied to Luma, Cr and Cb scaling, and 4th component

to bring parameters of color correction.

In some examples, certain range of comp scale-id values may be associated with HDR

reconstruction conducted in SDR-backward compatible configuration, whereas another

range of compscaleid values may be associated with HDR reconstruction conducted

to non-backward compatible configuration.

Values of compscaleid from 0 to 255, inclusive, and from 512 to 231 - 1, inclusive,

may be used as determined by the application. Values of compscale-id from 256 to

511, inclusive, and from 231 to 232 - 2, inclusive, are reserved for future use by ITU-T

ISO/JEC. Decoders shall ignore all component scale information SEI messages

containing a value of compscaleid in the range of 256 to 511, inclusive, or in the

range of 231 to 232 - 2, inclusive, and bitstreams shall not contain such values.

NOTE 1 - The compscale-id can be used to support component scaling processes that

are suitable for different display scenarios. For example, different values of

compscale id may correspond to different display bit depths or different colour spaces

in which the scaling is applied.

Alternatively, the compscale id may also be used to identify whether the scaling is

performed for compatibility to certain types of displays or decoder, e.g. HDR, SDR.

compscale_cancelflag equal to 1 indicates that the component scaling information

SEI message cancels the persistence of any previous component information SEI

WO 2017/053277 PCT/US2016/052633
71

messages in output order that applies to the current layer. compscalecancelflag equal

to 0 indicates that component scaling information follows.

compscale persistence_flag specifies the persistence of the component scaling

information SEI message for the current layer.

compscalepersistence flag equal to 0 specifies that the component scaling

information applies to the current decoded picture only.

Let picA be the current picture. compscalepersistenceflag equal to 1 specifies that

the component scaling information persists for the current layer in output order until any

of the following conditions are true:

- A new CLVS of the current layer begins.

- The bitstream ends.

- A picture picB in the current layer in an access unit containing a component

scaling information SEI message with the same value of compscale id and applicable

to the current layer is output for which PicOrderCnt(picB) is greater than

PicOrderCnt(picA), where PicOrderCnt(picB) and PicOrderCnt(picA) are the

PicOrderCntVal values of picB and picA, respectively, immediately after the invocation

of the decoding process for picture order count for picB.

compscale_scalebit depth specifies the number of bits used to signal the syntax

element compscalescaleval[c][i]. The value of comp_scalescalebitdepth shall

be in the range of 0 to 15, inclusive.

compscaleoffset bit depth specifies the number of bits used to signal the syntax

elements compscaleglobal_offsetval[c] and comp scaleoffsetval[c][i]. The

value of compscaleoffsetbit depth shall be in the range of 0 to 15, inclusive.

compscalescalefracbitdepth specifies the number of LSBs used to indicate the

fractional part of the scale parameter of the i-th partition of the c-th component. The

value of compscalescalefracbitdepth shall be in the range of 0 to 15, inclusive.

The value of comp_scale_scalefracbit depth shall be less than or equal to the value of

compscale_scalebit depth.

compscaleoffsetfracbit depth specifies the number of LSBs used to indicate the

fractional part of the offset parameter of the i-th partition of the c-th component and

global offset of the c-th component. The value of compscale_offsetfracbitdepth

shall be in the range of 0 to 15, inclusive. The value of

compscale_offsetfracbitdepth shall be less than or equal to the value of

compscale_offset bit depth.

WO 2017/053277 PCT/US2016/052633
72

compscale_num_compsminus1 plus 1 specifies the number of components for

which the component scaling function is specified. compscalenumcomps-minusl

shall be in the range of 0 to 2, inclusive.

compscale_num_ranges[c] specifies the number of ranges in to which the output

sample range is partitioned in to. The value of comp scale num ranges[c] shall be in

the range of 0 to 63, inclusive..

compscaleequalrangesflag[c] equal to 1 indicates that that output sample range

is partitioned into compscalenumranges[c] nearly equal partitions, and the partition

widths are not explicitly signalled. compscaleequal ranges flag[c] equal to 0

indicates that that output sample range may be partitioned into

compscalenumranges[c] partitions not all of which are of the same size, and the

partitions widths are explicitly signalled.

compscaleglobal_offset_val[c] is used to derive the offset value that is used to map

the smallest value of the valid input data range for the c-th component. The length of

compscaleglobaloffsetval[c] is compscale_offsetbit depth bits.

compscalescaleval[c][i] is used to derive the offset value that is used to derive the

width of the of the i-th partition of the c-th component. The length of

compscaleglobaloffsetval[c] is compscale_offsetbit depth bits.

The variable CompScaleScaleVal[c][i] is derived as follows .

CompScaleScaleVal[c][i] = (compscalescale val[c][i] >>

compscale_scalefracbitdepth) +

(compscale_scaleval[c][i] &

((1 << compscalescalefrac bit depth) - 1)

)
(1 << compscale scalefracbit depth)

compscale_offset-val[c][i] is used to derive the offset value that is used to derive

the width of the of the i-th partition of the c-th component. The length of

compscaleglobaloffsetval[c] is compscale_offsetbit depth bits.

When compscaleoffsetval[c][i] is signalled, the value of

CompScaleOffsetVal[c][i] is derived as follows:

CompScaleOffsetVal[c][i] = (comp_scaleoffset val[c][i] >>

compscale_offset frac bit depth) +

(compscale_offsetval[c][i] &

((1 << compscaleoffsetfrac bit depth) - 1)

WO 2017/053277 PCT/US2016/052633
73

))+

(1 << compscale offsetfrac bit depth)

Alternatively, the variable CompScaleScaleVal[c][i] and

CompScaleOffsetVal[c][i] are derived as follows :

CompScaleScaleVal[c][i]= compscale_scale val[c][i] &

(1 << compscale scalefracbit depth)

CompScaleOffsetVal[c][i] = compscale_offset val[c][i] +

(1 << compscale offsetfrac bit depth)

When compscaleequal ranges flag[c] is equal to 1, compscale offsetval[c][i]

is not signalled, and the value of CompScaleOffsetVal[c][i] is derived as follows:

CompScaleOffsetVal[c][i] = 1 + compscale num ranges[c]

The variable CompScaleOutputRanges[c][i] and CompScaleOutputRanges[c][i] for

i in the range of 0 to compscalenumranges[c] is derived as follows:

for(i = 0; i <= compscale num ranges[c]; i++)

if(i == 0)

CompScaleOutputRanges[c][i] = compscaleglobal offsetval[c

(1 << comp scaleoffsetfracbit depth)

CompScaleInputRanges[c][i] = 0

else

CompScaleInputRanges[c][i] = CompScaleOffsetInputRanges[c][i

1I +

(CompScaleOffsetVal[c][i - 1] *

CompScaleScaleVal[c][i - 1]

CompScaleOutputRanges[c][i] = CompScaleOutputRanges[c][i - 1] +

CompScaleOffsetVal[c][i - 1]

In one alternative, the values of CompScaleOutputRanges[][] and

CompScaleOutputRanges[][] are derived as follows:

for(i = 0; i <= compscale num ranges[c]; i++)

if(i == 0)

CompScaleInputRanges[c][i] = compscaleglobal offset val[c

(1 << comp scaleoffsetfracbit depth)

CompScaleOutputRanges[c][i] = 0

else

CompScaleInputRanges[c][i] = CompScaleOffsetInputRanges[c][i -

WO 2017/053277 PCT/US2016/052633
74

1]+

(CompScaleOffsetVal[c][i - 1] *

CompScaleScaleVal[c][i - 1]

CompScaleOutputRanges[c][i] = CompScaleOutputRanges[c][i - 1] +

CompScaleOffsetVal[c][i - 1]

The process of mapping an input signal representation (which may be used to cover

both integer as well as floating point) x and an output signal representation y, where the

sample values for both input representation is normalized in the range of 0 to 1, and

output representation is in the range of and 0 to 1, is specified as follows:

if(x <= CompScalelnputRanges[c][0])

y = CompScaleOutputRanges[c][0]

else if(x > CompScaleInputRanges[c][compscalenumranges[c]])

y = CompScaleOutputRanges[c][compscalenum ranges[c];]

else

for(i = 1; i <= compscalenum ranges[c]; i++)

if(CompScalelnputRanges[i - 1] < x && x <=

CompScalelnputRanges[i])

y=(x

CompScalelnputRanges[i - 1]) E compscale val[c][i] +

CompScaleOutputRanges[c][i - 1]

In one alternative, the value of CompScaleOutputRanges[c][0] is set based on the

permitted sample value range.

Alternatively, the process of mapping an input value valln to output value valOut is

defined as follows:

m_pAtfRangeln[0]= 0;

m_pAtfRangeOut[0]= -moffset2 *m_pAtfScale2[c][0];

for (int j = 1; j < matfNumberRanges + 1; j++)

{

m_pAtfRangeln[j]= mpAtfRangeInj - 1] + mpAtfDeltaj - 1];

m_pAtfRangeOut[j]= mpAtfRangeOutj - 1] + mpAtfScale2[c][j

m_pAtfDelta[j - 1];

}

WO 2017/053277 PCT/US2016/052633
75

for (int j = 0; j < numRanges && skip = = 0;j++)

{
if (valln <= pAtfRangeln[j + 1])

{
valOut = (valIn - pOffset[comp jj])*

pScale[copnn][j;

skip = 1;

}
]

In one alternative, m_offset2 is equal to

compscale global_offset_val[c]+(1 << comp_scaleoffsetfracbit depth),

m_pAtfScale[c][i] is equal to CompScaleScaleVal[c][i] and mpAtfDelta[i] is

equal to CompScaleOffsetVal[c][i] for the c-th component, and pScale and pOffset

are scale and offset parameter derived from mAtfScale and mpAtfDelta.

An inverse operation would be defined accordingly.

Example 6

In some examples, some of signaling methods described above, e.g. in example 5, can

be utilized as shown in following pseudo code.

m_atfNumberRanges is a term for syntax elements compscalenum ranges[c] for a

given c, that specifies number of dynamic range partitioning for mapped data.

m_pAtfRangeIn is a term for CompScaleInputRanges, is an arrays size of

m_atfNumberRanges+1 that includes input sample value specifying the border between

two concatenated partitions, e.g., i and i+1.

m_pAtfRangeOut is a term for CompScaleOutputRanges, is an arrays size of

m_atfNumberRanges+1 that includes output sample value specifying the border

between two concatenated partitions, e.g. i and i+1.

m_pAtfScale2 is a term for variable CompScaleScaleVal [c] is an arrays size of

m_atfNumberRanges that includes scale values for each partitions.

m_pAtfOffset2 is an array arrays size of matfNumberRanges that includes offset

values for each partition.

m_offset2 is a term for compscaleglobaloffsetval.

In this example, parameters of piece-wise linear model can be determined form syntax

elements as in Algorithm 1:

WO 2017/053277 PCT/US2016/052633
76

Algorithm 1:

m_pAtfRangeIn[0] = 0;

m_pAtfRangeOut[O] = -moffset2 *m_pAtfScale2[c][0];

for (int j = 1; j < matfNumberRanges + 1; j++)

{
m_pAtfRangeInj] = mpAtfRangeInj - 1] + mpAtfDeltaj - 1];

m_pAtfRangeOutj] = mpAtfRangeOutj - 1] + mpAtfScale2[c]U - 1]

* mpAtfDeltaj - 1];

}

for (int j = 0; j < matfNumberRanges; j++)

{

temp = mpAtfRangeInj + 1] - mpAtfRangeOutj + 1] /

m_pAtfScale2[c][];

m_pAtfOffset2[c][] = temp;

}

Once determined, piece-wise linear model can be applied to input samples value

inValue to determine output sample value outValue as in Algorithm 2:

Algorithm 2:

for (int j = 0; j < matfNumberRanges && skip == 0; j++)

{
if (inValue <= mpAtfRangeInj + 1])

{
outValue = (inValue - mpAtfOffset2 U]) *

m_pAtfScale2 U];

skip = 1;

}
}

Inverse process to be conducted as in Algorithm 3:

Algorithm 3:

for (int j = 0; j < matfNumberRanges && skip == 0; j++)

{

WO 2017/053277 PCT/US2016/052633
77

if (inValue <= mpAtfRangeOut[j + 1])

{
outValue = inValue / mpAtfScale2 [j] + mpAtfOffset2

[j];
skip = 1;

}
}

[0194] In some examples, border sample value (an entry of mpAtfRangeIn or

m_pAtfRangeOut) between two concatenated partitions i and i+1 can be interpreted

differently, as belonging to i+1, instead of belonging to i partition as it is shown in

Algorithm 2 and 3.

[0195] In some examples, inverse process shown in Algorithm 3, can be implemented

with a multiplication by mpAtflnverseScale2 value, instead of division by

m_pAtfScale2[j]. In such examples, a value of mpAtfScale2[j] is determined from

m_pAtfScale2 [j] in advance.

[0196] In some examples, mpAtfinverseScale2 [j] is determined at the decoder side as

1/m pAtfScale2[j].

[0197] In some examples, mpAtfinverseScale2 [j] can be computed at the encoder

side, and signalled through bitstream. In such examples, operation given in Algorithms

1, 2 and 3 will be adjusted accordingly.

[0198] Various examples

[0199] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be utilized to enable dynamical range adjustment for samples of

input signal, e.g. to improve compression efficiency of video coding systems.

[0200] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to codewords (non-linear representation of R,G,B

samples) produced by an OETF, e.g. by PQ TF of ST.2084, or others.

[0201] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to samples of YCbCr color representation.

[0202] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be utilized to HDR/WCG solutions with SDR compatibility.

[0203] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to samples in floating point representation. In yet

WO 2017/053277 PCT/US2016/052633
78

another example, proposed signaling mechanism and resulting function can be applied

to samples in integer representation, e.g. 10 bits.

[0204] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to samples in a form of Look Up Tables. In yet

another examples, proposed signaling can be used to model function that can be applied

to a sample in a form of multiplier.

Combinations and Extensions

[0205] In the examples above, a linear model is assumed for each region (i.e., scale plus

offset); the techniques of this disclosure also may be applicable for higher-order

polynomial models, for example, with a polynomial of 2nd degree requiring three

parameters instead of two. The signaling and syntax would be properly extended for

this scenario.

[0206] Combinations of aspects described above are possible and part of the techniques

of this disclosure.

[0207] Toolbox combination: there are several HDR methods that can target somewhat

similar goals to those of the SEIs described in this disclosure. In order to accommodate

more than one of them but, at the same time, limiting the number of applicable SEI

processing per frame, it is proposed to combine (one or more of) these methods in a

single SEI. A proposed syntax element would indicate the specific method to apply in

each instance. For example, if there are two possible methods in the SEI, the syntax

element would be a flag indicating the one to be used.

Example 7

[0208] In this example, the signaling of scale parameters is modified such that negative

scales can be transmitted, and the signaled scale parameters indicate the variation of

scale to be applied for different ranges of the various components. The changes with

respect to example 5 are below.

WO 2017/053277 PCT/US2016/052633
79

Changes to syntax of the SEI message

component scaleinfo(payloadSize) { Descriptor

compscale id ue(v)

compscalecancelflag u(1)

if(!compscale_cancel flag) {

compscale persistenceflag u(1)

compscale scale bitdepth u(4)

compscale offset-bit-depth u(4)

compscale scalefracbit depth u(4)

compscale offsetfracbit depth u(4)

compscale negative_scalespresent flag u(1)

compscale depcomponentid ue(v)

compscale num comps_minus1 ue(v)

for(c = 0; c <= compscalenum_comps minus 1; c++) {

compscale-numranges[c] ue(v)

compscale equalrangesflag[c] u(1)

compscale global_offset val[c] u(v)

for(i = 0; i <= compscalenumranges[c]; i++)

compscale scaleval[c][i] u(v)

if(compscaleequal ranges[c]) u(v)

for(i = 0; i <= compscalenum ranges[c]; i++)

compscale offset_val[c][i] u(v)

}
}

Changes to semantics of the SEI message

compscale negativescalespresent flag equal to 1 specifies that the integer part of

the scale parameters derived from compscale scale val[c][i] is represented as a

signed integer. compscale negative scalespresent flag equal to 0 specifies that the

integer part scale parameters derived from compscale_scale val[c][i] is represented

as an unsigned integer.

WO 2017/053277 PCT/US2016/052633
80

[0209] In one alternative, another set of offset parameters are signaled along with

compscale_scaleval that are used to define the offset that is applied along with the

scale on a first component as a function of the value of a second component.

[0210] The signed-integer representation includes, but is not limited to, twos

complement notation and signed magnitude representation (one bit for sign and the

remaining bits in the integer-part). The derivation below is given for the signed

magnitude representation. The derivation can be similarly defined for other forms of

signed representations.

The variable CompScaleScaleVal[c][i] is derived as follows

compScaleScaleFracPart = (compscale_scale_val[c][i] &

((1 << compscalescalefrac bit depth) - 1)

)
(1 << compscale scalefracbit depth)

if(compscale negativescalespresent flag) {

compScaleSignPart = compscale_scale_val[c][i] >>

(compscale_scale bit depth - 1)

compScaleIntegerPart = compscalescale val[c][i] - (compScaleSignPart

<< (comp scalescalebit depth - 1))

compScaleIntegerVal = ((compScaleSignPart = = 1): -1 : 1) *

compScaleIntegerPart

} else

compScaleIntegerVal = compscale_scale val[c][i] >

compscale_scalefracbitdepth

CompScaleScaleVal[c][i] = compScaleIntegerVal + compScaleScaleFracPart

It is a requirement of bitstream conformance that when

compscale negative scalepresentflag is equal to 1, the value of

compscale_scalebit depth shall be greater than or equal to

compscale_scalefracbitdepth

compscale dependentcomponent id specifies the application of scale and offset

parameters to the various components of the video. When

compscaledependentcomponent id is equal to 0, the syntax elements

compscaleglobaloffsetval[c], comp scale scale val[c][i] and

compscale_offset val[c][i] are used to identify mapping of input and output values

of the c-th component. When compscaledependentcomponent id is greater than 0,

WO 2017/053277 PCT/US2016/052633
81

compscaledependentcomponent id - 1 specifies the index of the component such

that the syntax elements compscaleglobaloffset val[c],

compscale_scale_val[c][i] and compscale offset val[c][i] specify the mapping

of a scale parameter to be applied to the c-th component of a sample as a function of the

value of (compscaledependentcomponent id - 1)-th component of the sample.

The rest of the semantics are similar to those described in Example 5.

Example 8

[0211] In this example, the bit depth of the ATF parameters depend on the component.

For each component, the bit depth of the syntax elements is explicitly signal. In

addition, there are default bit-depth for those syntax elements. The default value is

assigned when the bit depth is not explicitly signaled. A flag might indicate whether the

default values are applied or they are explicitly signaled.

[0212] The table below shows an example of these concepts. Syntax elements of the

ATF parameters are the scale hdrreconscale_val[][] and range

hdrrecon range val[][]. The syntax elements indicating the corresponding bit depth

(integer and fractional part) are the following ones:

* hdrreconscalebitdepth[c],

* hdrreconoffsetbit depth[c],

* hdrreconscalefrac bit depth[c],

* hdrreconoffsetfrac bit depth[c],

where c is the component index. The default bit-depths for scale and offset (range) can

be set to:

* hdrreconscalebitdepth[c]= 8,

* hdrreconoffsetbit depth[c]= 8,

* hdrreconscalefrac bit depth[c]= 6,

* hdrreconoffsetfrac bit depth[c = 8.

[0213] The accuracy of the parameters might also be different for the ATF parameters

and the color adjustment parameters. Also, the default might be different per

component and for the color adjustment parameters. In this example, the defaults are

assumed to be the same.

WO 2017/053277 PCT/US2016/052633
82

hdrreconstruction info(payloadSize) { Descriptor

hdrrecon id ue(v)

hdrrecon cancel_flag u(1)

if(!hdr reconcancel flag) {

hdr reconpersistenceflag u(1)

if (hdr recon id = = 1) {

hdroutput fullrangeflag

hdroutput colour primaries

hdroutput transfercharacteristics

hdroutput matrixcoeffs

}
SYNTAX FOR THE MAPPING LUTs

hdr-recon-num_comps-minusl ue(v)

for(c = 0; c <= hdrreconnumcomps minus;

c++) {

hdrrecon defaultbit depth [c] u(1)

if (hdr recondefault bit depth [c] == 0) {

hdr recon scalebit depth[c] u(4)

hdr recon offsetbit depth[c] u(4)

hdr recon scalefracbitdepth[c] u(4)

hdrrecon offsetfracbit-depth[c] u(4)

}
hdr recon-numranges[c] ue(v)

hdrreconequalrangesflag[c] u(1)

hdrreconglobaloffset-val[c] u(v)

for(i = 0; i <= hdrreconnum ranges[c]; i++

)
hdrrecon-scaleval[c][i] u(v)

if(!hdr recon equal ranges[c]) u(v)

for(i = 0; i <= hdrreconnum ranges[c]; i++

)
hdr reconrange val [c l[i u(v)

} u(v)

WO 2017/053277 PCT/US2016/052633
83

SYNTAX FOR THE COLOR CORRECTION PART

if (hdrrecon id = = 1) { Params related to Colour

correction

hdr_ colorcorrectiontype 0: on U,V - 1: on R,G,B

hdrcoloraccuracyflag Syntax for coding the

colour

if(! hdr reconcoloraccuracy flag) { correction LUT

hdr color _scalebit depth u(4)

hdrcolor _offsetbit depth u(4)

hdrcolor _scalefrac bit depth u(4)

hdrcolor _offsetfracbitdepth u(4)

}

color correctionnum ranges

color correction equallenranges flag

color correctionzerooffsetval

for(i = 0; i < colorcorrectionnum ranges;

i++)

color-correctionscale val[i]

if(! colorcorrectionequal len ranges flag)

for(i = 0; i < colorcorrectionnum ranges;

i++)

color-correctionrange val[i]

}
}

}
}

Example 9

[0214] A desirable property of a new HDR solution is that it is backward compatible to

previous HDR solutions, like HDR1O. A syntax element may indicate that this is the

case. This indicates a characteristic of the bitstream, and an HDR decoder might decide

not to spend computational resources on the inverse ATF processing under some

circumstances if the non ATF version is already viewable.

WO 2017/053277 PCT/US2016/052633
84

[0215] In one example, some values of the hdrrecon id syntax element are reserved to

indicate HDR10 backward compatibility, or to what degree there is backward

compatibility.

[0216] In another example, a flag (hdr reconhdrl0_bc) indicates this situation.

[0217] In one example, the signaled HDR1O backward compatibility indicates that the

bitstream is viewable. Alternatively, it might indicate some specific properties of the

signaled values: for example, that they are a range of values that guarantees this

property. For instance, a constraint could be that the scale is between 0.9 and 1.1.

[0218] FIG. 10 is a block diagram illustrating an example of video encoder 20 that may

implement the techniques of this disclosure. Video encoder 20 may perform intra- and

inter-coding of video blocks within video slices in a target color container that have

been processed by video pre-processor unit 19. Intra-coding relies on spatial prediction

to reduce or remove spatial redundancy in video within a given video frame or picture.

Inter-coding relies on temporal prediction to reduce or remove temporal redundancy in

video within adjacent frames or pictures of a video sequence. Intra-mode (I mode) may

refer to any of several spatial based coding modes. Inter-modes, such as uni-directional

prediction (P mode) or bi-prediction (B mode), may refer to any of several temporal

based coding modes.

[0219] As shown in FIG. 10, video encoder 20 receives a current video block within a

video frame to be encoded. In the example of FIG. 10, video encoder 20 includes mode

select unit 40, a video data memory 41, decoded picture buffer 64, summer 50,

transform processing unit 52, quantization unit 54, and entropy encoding unit 56. Mode

select unit 40, in turn, includes motion compensation unit 44, motion estimation unit 42,

intra prediction processing unit 46, and partition unit 48. For video block

reconstruction, video encoder 20 also includes inverse quantization unit 58, inverse

transform processing unit 60, and summer 62. A deblocking filter (not shown in FIG.

10) may also be included to filter block boundaries to remove blockiness artifacts from

reconstructed video. If desired, the deblocking filter would typically filter the output of

summer 62. Additional filters (in loop or post loop) may also be used in addition to the

deblocking filter. Such filters are not shown for brevity, but if desired, may filter the

output of summer 50 (as an in-loop filter).

[0220] Video data memory 41 may store video data to be encoded by the components of

video encoder 20. The video data stored in video data memory 41 may be obtained, for

example, from video source 18. Decoded picture buffer 64 may be a reference picture

WO 2017/053277 PCT/US2016/052633
85

memory that stores reference video data for use in encoding video data by video

encoder 20, e.g., in intra- or inter-coding modes. Video data memory 41 and decoded

picture buffer 64 may be formed by any of a variety of memory devices, such as

dynamic random access memory (DRAM), including synchronous DRAM (SDRAM),

magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory

devices. Video data memory 41 and decoded picture buffer 64 may be provided by the

same memory device or separate memory devices. In various examples, video data

memory 41 may be on-chip with other components of video encoder 20, or off-chip

relative to those components.

[0221] During the encoding process, video encoder 20 receives a video frame or slice to

be coded. The frame or slice may be divided into multiple video blocks. Motion

estimation unit 42 and motion compensation unit 44 perform inter-predictive coding of

the received video block relative to one or more blocks in one or more reference frames

to provide temporal prediction. Intra prediction processing unit 46 may alternatively

perform intra-predictive coding of the received video block relative to one or more

neighboring blocks in the same frame or slice as the block to be coded to provide spatial

prediction. Video encoder 20 may perform multiple coding passes, e.g., to select an

appropriate coding mode for each block of video data.

[0222] Moreover, partition unit 48 may partition blocks of video data into sub-blocks,

based on evaluation of previous partitioning schemes in previous coding passes. For

example, partition unit 48 may initially partition a frame or slice into LCUs, and

partition each of the LCUs into sub-CUs based on rate-distortion analysis (e.g., rate

distortion optimization). Mode select unit 40 may further produce a quadtree data

structure indicative of partitioning of an LCU into sub-CUs. Leaf-node CUs of the

quadtree may include one or more PUs and one or more TUs.

[0223] Mode select unit 40 may select one of the coding modes, intra or inter, e.g.,

based on error results, and provides the resulting intra- or inter-coded block to summer

50 to generate residual block data and to summer 62 to reconstruct the encoded block

for use as a reference frame. Mode select unit 40 also provides syntax elements, such as

motion vectors, intra-mode indicators, partition information, and other such syntax

information, to entropy encoding unit 56.

[0224] Motion estimation unit 42 and motion compensation unit 44 may be highly

integrated, but are illustrated separately for conceptual purposes. Motion estimation,

performed by motion estimation unit 42, is the process of generating motion vectors,

WO 2017/053277 PCT/US2016/052633
86

which estimate motion for video blocks. A motion vector, for example, may indicate

the displacement of a PU of a video block within a current video frame or picture

relative to a predictive block within a reference picture (or other coded unit) relative to

the current block being coded within the current picture (or other coded unit). A

predictive block is a block that is found to closely match the block to be coded, in terms

of pixel difference, which may be determined by sum of absolute difference (SAD), sum

of square difference (SSD), or other difference metrics. In some examples, video

encoder 20 may calculate values for sub-integer pixel positions of reference pictures

stored in decoded picture buffer 64. For example, video encoder 20 may interpolate

values of one-quarter pixel positions, one-eighth pixel positions, or other fractional

pixel positions of the reference picture. Therefore, motion estimation unit 42 may

perform a motion search relative to the full pixel positions and fractional pixel positions

and output a motion vector with fractional pixel precision.

[0225] Motion estimation unit 42 calculates a motion vector for a PU of a video block

in an inter-coded slice by comparing the position of the PU to the position of a

predictive block of a reference picture. The reference picture may be selected from a

first reference picture list (List 0) or a second reference picture list (List 1), each of

which identify one or more reference pictures stored in decoded picture buffer 64.

Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit

56 and motion compensation unit 44.

[0226] Motion compensation, performed by motion compensation unit 44, may involve

fetching or generating the predictive block based on the motion vector determined by

motion estimation unit 42. Again, motion estimation unit 42 and motion compensation

unit 44 may be functionally integrated, in some examples. Upon receiving the motion

vector for the PU of the current video block, motion compensation unit 44 may locate

the predictive block to which the motion vector points in one of the reference picture

lists. Summer 50 forms a residual video block by subtracting pixel values of the

predictive block from the pixel values of the current video block being coded, forming

pixel difference values, as discussed below. In general, motion estimation unit 42

performs motion estimation relative to luma components, and motion compensation unit

44 uses motion vectors calculated based on the luma components for both chroma

components and luma components. Mode select unit 40 may also generate syntax

elements associated with the video blocks and the video slice for use by video decoder

30 in decoding the video blocks of the video slice.

WO 2017/053277 PCT/US2016/052633
87

[0227] Intra prediction processing unit 46 may intra-predict a current block, as an

alternative to the inter-prediction performed by motion estimation unit 42 and motion

compensation unit 44, as described above. In particular, intra prediction processing unit

46 may determine an intra-prediction mode to use to encode a current block. In some

examples, intra prediction processing unit 46 may encode a current block using various

intra-prediction modes, e.g., during separate encoding passes, and intra prediction

processing unit 46 (or mode select unit 40, in some examples) may select an appropriate

intra-prediction mode to use from the tested modes.

[0228] For example, intra prediction processing unit 46 may calculate rate-distortion

values using a rate-distortion analysis for the various tested intra-prediction modes, and

select the intra-prediction mode having the best rate-distortion characteristics among the

tested modes. Rate-distortion analysis generally determines an amount of distortion (or

error) between an encoded block and an original, unencoded block that was encoded to

produce the encoded block, as well as a bit rate (that is, a number of bits) used to

produce the encoded block. Intra prediction processing unit 46 may calculate ratios

from the distortions and rates for the various encoded blocks to determine which intra

prediction mode exhibits the best rate-distortion value for the block.

[0229] After selecting an intra-prediction mode for a block, intra prediction processing

unit 46 may provide information indicative of the selected intra-prediction mode for the

block to entropy encoding unit 56. Entropy encoding unit 56 may encode the

information indicating the selected intra-prediction mode. Video encoder 20 may

include in the transmitted bitstream configuration data, which may include a plurality of

intra-prediction mode index tables and a plurality of modified intra-prediction mode

index tables (also referred to as codeword mapping tables), definitions of encoding

contexts for various blocks, and indications of a most probable intra-prediction mode,

an intra-prediction mode index table, and a modified intra-prediction mode index table

to use for each of the contexts.

[0230] Video encoder 20 forms a residual video block by subtracting the prediction data

from mode select unit 40 from the original video block being coded. Summer 50

represents the component or components that perform this subtraction operation.

Transform processing unit 52 applies a transform, such as a discrete cosine transform

(DCT) or a conceptually similar transform, to the residual block, producing a video

block comprising residual transform coefficient values. Transform processing unit 52

may perform other transforms which are conceptually similar to DCT. Wavelet

WO 2017/053277 PCT/US2016/052633
88

transforms, integer transforms, sub-band transforms or other types of transforms could

also be used. In any case, transform processing unit 52 applies the transform to the

residual block, producing a block of residual transform coefficients. The transform may

convert the residual information from a pixel value domain to a transform domain, such

as a frequency domain. Transform processing unit 52 may send the resulting transform

coefficients to quantization unit 54.

[0231] Quantization unit 54 quantizes the transform coefficients to further reduce bit

rate. The quantization process may reduce the bit depth associated with some or all of

the coefficients. The degree of quantization may be modified by adjusting a

quantization parameter. In some examples, quantization unit 54 may then perform a

scan of the matrix including the quantized transform coefficients. Alternatively, entropy

encoding unit 56 may perform the scan.

[0232] Following quantization, entropy encoding unit 56 entropy codes the quantized

transform coefficients. For example, entropy encoding unit 56 may perform context

adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding

(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability

interval partitioning entropy (PIPE) coding or another entropy coding technique. In the

case of context-based entropy coding, context may be based on neighboring blocks.

Following the entropy coding by entropy encoding unit 56, the encoded bitstream may

be transmitted to another device (e.g., video decoder 30) or archived for later

transmission or retrieval.

[0233] Inverse quantization unit 58 and inverse transform processing unit 60 apply

inverse quantization and inverse transformation, respectively, to reconstruct the residual

block in the pixel domain, e.g., for later use as a reference block. Motion compensation

unit 44 may calculate a reference block by adding the residual block to a predictive

block of one of the frames of decoded picture buffer 64. Motion compensation unit 44

may also apply one or more interpolation filters to the reconstructed residual block to

calculate sub-integer pixel values for use in motion estimation. Summer 62 adds the

reconstructed residual block to the motion compensated prediction block produced by

motion compensation unit 44 to produce a reconstructed video block for storage in

decoded picture buffer 64. The reconstructed video block may be used by motion

estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a

block in a subsequent video frame.

WO 2017/053277 PCT/US2016/052633
89

[0234] FIG. 11 is a block diagram illustrating an example of video decoder 30 that may

implement the techniques of this disclosure. In particular, video decoder 30 may decode

video data into a target color container that may then be processed by video post

processor unit 31, as described above. In the example of FIG. 11, video decoder 30

includes an entropy decoding unit 70, a video data memory 71, motion compensation

unit 72, intra prediction processing unit 74, inverse quantization unit 76, inverse

transform processing unit 78, decoded picture buffer 82 and summer 80. Video decoder

30 may, in some examples, perform a decoding pass generally reciprocal to the

encoding pass described with respect to video encoder 20 (FIG. 10). Motion

compensation unit 72 may generate prediction data based on motion vectors received

from entropy decoding unit 70, while intra prediction processing unit 74 may generate

prediction data based on intra-prediction mode indicators received from entropy

decoding unit 70.

[0235] Video data memory 71 may store video data, such as an encoded video

bitstream, to be decoded by the components of video decoder 30. The video data stored

in video data memory 71 may be obtained, for example, from computer-readable

medium 16, e.g., from a local video source, such as a camera, via wired or wireless

network communication of video data, or by accessing physical data storage

media. Video data memory 71 may form a coded picture buffer (CPB) that stores

encoded video data from an encoded video bitstream. Decoded picture buffer 82 may

be a reference picture memory that stores reference video data for use in decoding video

data by video decoder 30, e.g., in intra- or inter-coding modes. Video data memory 71

and decoded picture buffer 82 may be formed by any of a variety of memory devices,

such as dynamic random access memory (DRAM), including synchronous DRAM

(SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of

memory devices. Video data memory 71 and decoded picture buffer 82 may be

provided by the same memory device or separate memory devices. In various

examples, video data memory 71 may be on-chip with other components of video

decoder 30, or off-chip relative to those components.

[0236] During the decoding process, video decoder 30 receives an encoded video

bitstream that represents video blocks of an encoded video slice and associated syntax

elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy

decodes the bitstream to generate quantized coefficients, motion vectors or intra

prediction mode indicators, and other syntax elements. Entropy decoding unit 70

WO 2017/053277 PCT/US2016/052633
90

forwards the motion vectors to and other syntax elements to motion compensation unit

72. Video decoder 30 may receive the syntax elements at the video slice level and/or

the video block level.

[0237] When the video slice is coded as an intra-coded (I) slice, intra prediction

processing unit 74 may generate prediction data for a video block of the current video

slice based on a signaled intra prediction mode and data from previously decoded blocks

of the current frame or picture. When the video frame is coded as an inter-coded (i.e., B

or P) slice, motion compensation unit 72 produces predictive blocks for a video block of

the current video slice based on the motion vectors and other syntax elements received

from entropy decoding unit 70. The predictive blocks may be produced from one of the

reference pictures within one of the reference picture lists. Video decoder 30 may

construct the reference picture lists, List 0 and List 1, using default construction

techniques based on reference pictures stored in decoded picture buffer 82. Motion

compensation unit 72 determines prediction information for a video block of the current

video slice by parsing the motion vectors and other syntax elements, and uses the

prediction information to produce the predictive blocks for the current video block

being decoded. For example, motion compensation unit 72 uses some of the received

syntax elements to determine a prediction mode (e.g., intra- or inter-prediction) used to

code the video blocks of the video slice, an inter-prediction slice type (e.g., B slice or P

slice), construction information for one or more of the reference picture lists for the

slice, motion vectors for each inter-encoded video block of the slice, inter-prediction

status for each inter-coded video block of the slice, and other information to decode the

video blocks in the current video slice.

[0238] Motion compensation unit 72 may also perform interpolation based on

interpolation filters. Motion compensation unit 72 may use interpolation filters as used

by video encoder 20 during encoding of the video blocks to calculate interpolated values

for sub-integer pixels of reference blocks. In this case, motion compensation unit 72

may determine the interpolation filters used by video encoder 20 from the received

syntax elements and use the interpolation filters to produce predictive blocks.

[0239] Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized

transform coefficients provided in the bitstream and decoded by entropy decoding unit

70. The inverse quantization process may include use of a quantization parameter QPy

calculated by video decoder 30 for each video block in the video slice to determine a

degree of quantization and, likewise, a degree of inverse quantization that should be

WO 2017/053277 PCT/US2016/052633
91

applied. Inverse transform processing unit 78 applies an inverse transform, e.g., an

inverse DCT, an inverse integer transform, or a conceptually similar inverse transform

process, to the transform coefficients in order to produce residual blocks in the pixel

domain.

[0240] After motion compensation unit 72 generates the predictive block for the current

video block based on the motion vectors and other syntax elements, video decoder 30

forms a decoded video block by summing the residual blocks from inverse transform

processing unit 78 with the corresponding predictive blocks generated by motion

compensation unit 72. Summer 80 represents the component or components that

perform this summation operation. If desired, a deblocking filter may also be applied to

filter the decoded blocks in order to remove blockiness artifacts. Other loop filters

(either in the coding loop or after the coding loop) may also be used to smooth pixel

transitions, or otherwise improve the video quality. The decoded video blocks in a

given frame or picture are then stored in decoded picture buffer 82, which stores

reference pictures used for subsequent motion compensation. Decoded picture buffer

82 also stores decoded video for later presentation on a display device, such as display

device 32 of FIG. 1.

[0241] FIG. 12 is a flowchart showing one example video processing technique of the

disclosure. The techniques of FIG. 12 may be performed by video encoder 20 and/or

video pre-processor unit 19. In the example of FIG. 12, source device 12 may be

configured to capture video data using a camera (1200). Video encoder 20 and/or video

pre-processor unit 19 may be configured to perform a dynamic range adjustment

process on video data using fixed-point computing (1210). Video encoder 20 and/or

video pre-processor unit 19 may be further configured to generate one or more syntax

elements that contain information specifying how to determine parameters for

performing an inverse dynamic range adjustment process, relative to the dynamic range

adjustment process, using fixed-point computing (1220).

[0242] In one example, video encoder 20 and/or video pre-processor unit 19 may be

configured to generate the one or more syntax elements by generating the one or more

syntax elements in one or more supplemental enhancement information (SEI) messages.

In one example, the parameters comprise one or more of a range parameter, a scale

parameter, or an offset parameter. In another example, the information indicates one or

more of a first number of fractional bits used for determining the range parameter, a

second number of fractional bits used for determining the scale parameter, and a third

WO 2017/053277 PCT/US2016/052633
92

number of fractional bits used for determining the offset parameter. In another example,

the information includes a minimum value and a maximum value for one or more color

components of the video data. In another example, the information includes an index to

a predetermined range of sample values of the decoded video data.

[0243] FIG. 13 is a flowchart showing another example video processing technique of

the disclosure. The techniques of FIG. 13 may be performed by video decoder 30

and/or video post-processor unit 31. In one example of the disclosure, video decoder 30

and/or video post-processor unit 31 may be configured to receive one or more syntax

elements that contain information specifying how to determine parameters for

performing an inverse dynamic range adjustment process (1300), and receive decoded

video data (1310).

[0244] Video decoder 30 and/or video post-processor unit 31 may be further configured

to determine parameters for an inverse dynamic range adjustment process from the

received information (1320), and perform the inverse dynamic range adjustment process

on the decoded video data using fixed-point computing in accordance with the

information received and the determined parameters (1330). Destination device 14 may

be further configured to display the decoded video data after performing the inverse

dynamic range adjustment process on the decoded video data (1340).

[0245] In one example of the disclosure, video decoder 30 and/or video post-processor

unit 31 may be configured to receive the one or more syntax elements in one or more

supplemental enhancement information (SEI) messages. In one example, the

parameters comprise one or more of a range parameter, a scale parameter, or an offset

parameter. In another example, the information indicates one or more of a first number

of fractional bits used for determining the range parameter, a second number of

fractional bits used for determining the scale parameter, and a third number of fractional

bits used for determining the offset parameter.

[0246] In another example of the disclosure, video decoder 30 and/or video post

processor unit 31 may be configured to determine the parameters, in the case that at

least one of the first number of fractional bits, the second number of fractional bits, or

the third number of fractional bits is different from one another, by accumulating any

fractional bits during any intermediate calculation processes used to determine the

parameters, and clip a final result for determining the parameters based on a

predetermined fractional accuracy.

WO 2017/053277 PCT/US2016/052633
93

[0247] In another example of the disclosure, video decoder 30 and/or video post

processor unit 31 may be configured to determine the parameters by truncating any

fractional bits over a desired fractional accuracy during all intermediate calculation

processes used to determine the parameters.

[0248] In another example, the information includes a minimum value and a maximum

value for one or more color components of the decoded video data, and video decoder

30 and/or video post-processor unit 31 may be configured to determine the parameters

based on the received minimum value and the received maximum value.

[0249] In another example, the information includes an index to a predetermined range

of sample values for one or more color components of the decoded video data, and

video decoder 30 and/or video post-processor unit 31 may be configured to determine a

minimum value and a maximum value for the one or more color components of the

decoded video data based on the received index, and determine the parameters based on

the determined minimum value and the determined maximum value.

[0250] In another example of the disclosure, video decoder 30 and/or video post

processor unit 31 may be configured to receive a syntax element indicating if the

parameters are signed or unsigned, and perform a parsing process on the information in

the SEI message, wherein the parsing process is the same regardless of the value of the

syntax element.

[0251] Certain aspects of this disclosure have been described with respect to extensions

of the HEVC standard for purposes of illustration. However, the techniques described

in this disclosure may be useful for other video coding processes, including other

standard or proprietary video coding processes not yet developed.

[0252] A video coder, as described in this disclosure, may refer to a video encoder or a

video decoder. Similarly, a video coding unit may refer to a video encoder or a video

decoder. Likewise, video coding may refer to video encoding or video decoding, as

applicable.

[0253] It is to be recognized that depending on the example, certain acts or events of

any of the techniques described herein can be performed in a different sequence, may be

added, merged, or left out altogether (e.g., not all described acts or events are necessary

for the practice of the techniques). Moreover, in certain examples, acts or events may

be performed concurrently, e.g., through multi-threaded processing, interrupt

processing, or multiple processors, rather than sequentially.

WO 2017/053277 PCT/US2016/052633
94

[0254] In one or more examples, the functions described may be implemented in

hardware, software, firmware, or any combination thereof. If implemented in software,

the functions may be stored on or transmitted over as one or more instructions or code

on a computer-readable medium and executed by a hardware-based processing unit.

Computer-readable media may include computer-readable storage media, which

corresponds to a tangible medium such as data storage media, or communication media

including any medium that facilitates transfer of a computer program from one place to

another, e.g., according to a communication protocol. In this manner, computer

readable media generally may correspond to (1) tangible computer-readable storage

media which is non-transitory or (2) a communication medium such as a signal or

carrier wave. Data storage media may be any available media that can be accessed by

one or more computers or one or more processors to retrieve instructions, code and/or

data structures for implementation of the techniques described in this disclosure. A

computer program product may include a computer-readable medium.

[0255] By way of example, and not limitation, such computer-readable storage media

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic

disk storage, or other magnetic storage devices, flash memory, or any other medium that

can be used to store desired program code in the form of instructions or data structures

and that can be accessed by a computer. Also, any connection is properly termed a

computer-readable medium. For example, if instructions are transmitted from a

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless

technologies such as infrared, radio, and microwave are included in the definition of

medium. It should be understood, however, that computer-readable storage media and

data storage media do not include connections, carrier waves, signals, or other transitory

media, but are instead directed to non-transitory, tangible storage media. Disk and disc,

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,

while discs reproduce data optically with lasers. Combinations of the above should also

be included within the scope of computer-readable media.

[0256] Instructions may be executed by one or more processors, such as one or more

digital signal processors (DSPs), general purpose microprocessors, application specific

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other

WO 2017/053277 PCT/US2016/052633
95

equivalent integrated or discrete logic circuitry. Accordingly, the term "processor," as

used herein may refer to any of the foregoing structure or any other structure suitable for

implementation of the techniques described herein. In addition, in some aspects, the

functionality described herein may be provided within dedicated hardware and/or

software modules configured for encoding and decoding, or incorporated in a combined

codec. Also, the techniques could be fully implemented in one or more circuits or logic

elements.

[0257] The techniques of this disclosure may be implemented in a wide variety of

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of

ICs (e.g., a chip set). Various components, modules, or units are described in this

disclosure to emphasize functional aspects of devices configured to perform the

disclosed techniques, but do not necessarily require realization by different hardware

units. Rather, as described above, various units may be combined in a codec hardware

unit or provided by a collection of interoperative hardware units, including one or more

processors as described above, in conjunction with suitable software and/or firmware.

[0258] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2017/053277 PCT/US2016/052633
96

WHAT IS CLAIMED IS:

1 A method of processing video data, the method comprising:

receiving one or more syntax elements that contain information specifying how

to determine parameters for performing an inverse dynamic range adjustment process;

receiving decoded video data; and

performing the inverse dynamic range adjustment process on the decoded video

data using fixed-point computing in accordance with the information received.

2. The method of claim 1, wherein receiving the one or more syntax elements

comprises receiving the one or more syntax elements in one or more supplemental

enhancement information (SEI) messages, and wherein the parameters comprise one or

more of a range parameter, a scale parameter, or an offset parameter.

3. The method of claim 2, wherein the information indicates one or more of a first

number of fractional bits used for determining the range parameter, a second number of

fractional bits used for determining the scale parameter, and a third number of fractional

bits used for determining the offset parameter.

4. The method of claim 3, further comprising:

determining the parameters using the first number of fractional bits, the second

number of fractions bits, and the third number of fractional bits.

5. The method of claim 4, wherein determining the parameters further comprises:

determining the parameters, in the case that at least one of the first number of

fractional bits, the second number of fractional bits, or the third number of fractional

bits is different from one another, by accumulating any fractional bits during any

intermediate calculation processes used to determine the parameters; and

clipping a final result for determining the parameters based on a predetermined

fractional accuracy.

WO 2017/053277 PCT/US2016/052633
97

6. The method of claim 4, wherein determining the parameters further comprises:

determining the parameters by truncating any fractional bits over a desired

fractional accuracy during all intermediate calculation processes used to determine the

parameters.

7. The method of claim 1, wherein the information includes a minimum value and

a maximum value for one or more color components of the decoded video data, the

method further comprising:

determining the parameters based on the received minimum value and the

received maximum value.

8. The method of claim 1, wherein the information includes an index to a

predetermined range of sample values for one or more color components of the decoded

video data, the method further comprising:

determining a minimum value and a maximum value for the one or more color

components of the decoded video data based on the received index; and

determining the parameters based on the determined minimum value and the

determined maximum value.

9. The method of claim 1, further comprising:

receiving a syntax element indicating if the parameters are signed or unsigned;

and

performing a parsing process on the information in the SEI message, wherein the

parsing process is the same regardless of the value of the syntax element.

10. The method of claim 1, further comprising:

displaying the decoded video data after performing the inverse dynamic range

adjustment process on the decoded video data.

WO 2017/053277 PCT/US2016/052633
98

11. An apparatus configured to process video data, the apparatus comprising:

a memory configured to store decoded video data; and

one or more processors configured to:

receive one or more syntax elements that contain information specifying

how to determine parameters for performing an inverse dynamic range

adjustment process;

receive the decoded video data; and

perform the inverse dynamic range adjustment process on the decoded

video data using fixed-point computing in accordance with the information

received.

12. The apparatus of claim 11, wherein receiving the one or more processors are

further configured to receive the one or more syntax elements in one or more

supplemental enhancement information (SEI) messages, and wherein the parameters

comprise one or more of a range parameter, a scale parameter, or an offset parameter.

13. The apparatus of claim 12, wherein the information indicates one or more of a

first number of fractional bits used for determining the range parameter, a second

number of fractional bits used for determining the scale parameter, and a third number

of fractional bits used for determining the offset parameter.

14. The apparatus of claim 13, wherein the one or more processors are further

configured to:

determine the parameters using the first number of fractional bits, the second

number of fractions bits, and the third number of fractional bits.

15. The apparatus of claim 14, wherein to determine the parameters, the one or more

processors are further configured to:

determine the parameters, in the case that at least one of the first number of

fractional bits, the second number of fractional bits, or the third number of fractional

bits is different from one another, by accumulating any fractional bits during any

intermediate calculation processes used to determine the parameters; and

clip a final result for determining the parameters based on a predetermined

fractional accuracy.

WO 2017/053277 PCT/US2016/052633
99

16. The apparatus of claim 14, wherein to determine the parameters, the one or more

processors are further configured to:

determine the parameters by truncating any fractional bits over a desired

fractional accuracy during all intermediate calculation processes used to determine the

parameters.

17. The apparatus of claim 11, wherein the information includes a minimum value

and a maximum value for one or more color components of the decoded video data, and

wherein the one or more processors are further configured to:

determine the parameters based on the received minimum value and the received

maximum value.

18. The apparatus of claim 11, wherein the information includes an index to a

predetermined range of sample values of one or more color components of the decoded

video data, and wherein the one or more processors are further configured to:

determine a minimum value and a maximum value for the one or more color

components of the decoded video data based on the received index; and

determine the parameters based on the determined minimum value and the

determined maximum value.

19. The apparatus of claim 11, wherein the one or more processors are further

configured to:

receive a syntax element indicating if the parameters are signed or unsigned; and

perform a parsing process on the information in the SEI message, wherein the

parsing process is the same regardless of the value of the syntax element.

20. The apparatus of claim 11, the apparatus further comprising:

a display configured to display the decoded video data after the one or more

processors perform the inverse dynamic range adjustment process on the decoded video

data.

21. The apparatus of claim 11, wherein the apparatus comprises one or more of a

camera, a computer, a mobile device, a broadcast receiver device, or a set-top box.

WO 2017/053277 PCT/US2016/052633
100

22. An apparatus configured to process video data, the apparatus comprising:

means for receiving one or more syntax elements that contain information

specifying how to determine parameters for performing an inverse dynamic range

adjustment process;

means for receiving decoded video data; and

means for performing the inverse dynamic range adjustment process on the

decoded video data using fixed-point computing in accordance with the information

received.

23. The apparatus of claim 22, wherein the means for receiving the one or more

syntax elements comprises means for receiving the one or more syntax elements in one

or more supplemental enhancement information (SEI) messages, and wherein the

parameters comprise one or more of a range parameter, a scale parameter, or an offset

parameter.

24. The apparatus of claim 23, wherein the information indicates one or more of a

first number of fractional bits used for determining the range parameter, a second

number of fractional bits used for determining the scale parameter, and a third number

of fractional bits used for determining the offset parameter.

25. The apparatus of claim 24, further comprising:

means for determining the parameters using the first number of fractional bits,

the second number of fractions bits, and the third number of fractional bits.

26. The apparatus of claim 25, wherein the means for determining the parameters

further comprises:

means for determining the parameters, in the case that at least one of the first

number of fractional bits, the second number of fractional bits, or the third number of

fractional bits is different from one another, by accumulating any fractional bits during

any intermediate calculation processes used to determine the parameters; and

means for clipping a final result for determining the parameters based on a

predetermined fractional accuracy.

WO 2017/053277 PCT/US2016/052633
101

27. The apparatus of claim 25, wherein the means for determining the parameters

further comprises:

means for determining the parameters by truncating any fractional bits over a

desired fractional accuracy during all intermediate calculation processes used to

determine the parameters.

28. The apparatus of claim 22, wherein the information includes a minimum value

and a maximum value for one or more color components of the decoded video data, the

apparatus further comprising:

means for determining the parameters based on the received minimum value and

the received maximum value.

29. The apparatus of claim 22, wherein the information includes an index to a

predetermined range of sample values or one or more color components of the decoded

video data, the apparatus further comprising:

means for determining a minimum value and a maximum value for the one or

more color components of the decoded video data based on the received index; and

means for determining the parameters based on the determined minimum value

and the determined maximum value.

30. The apparatus of claim 22, further comprising:

means for receiving a syntax element indicating if the parameters are signed or

unsigned; and

means for performing a parsing process on the information in the SEI message,

wherein the parsing process is the same regardless of the value of the syntax element.

31. The apparatus of claim 22, further comprising:

means for displaying the decoded video data after performing the inverse

dynamic range adjustment process on the decoded video data.

WO 2017/053277 PCT/US2016/052633
102

32. A computer-readable storage medium storing instructions that, when executed,

cause one or more processors of a device configured to process video data to:

receive one or more syntax elements that contain information specifying how to

determine parameters for performing an inverse dynamic range adjustment process;

receive the decoded video data; and

perform the inverse dynamic range adjustment process on the decoded video

data using fixed-point computing in accordance with the information received.

33. The computer-readable storage medium of claim 32, wherein the instructions

further cause the one or more processors to receive the one or more syntax elements in

one or more supplemental enhancement information (SEI) messages, and wherein the

parameters comprise one or more of a range parameter, a scale parameter, or an offset

parameter.

34. The computer-readable storage medium of claim 33, wherein the information

indicates one or more of a first number of fractional bits used for determining the range

parameter, a second number of fractional bits used for determining the scale parameter,

and a third number of fractional bits used for determining the offset parameter.

35. The computer-readable storage medium of claim 34, wherein the instructions

further cause the one or more processors to:

determine the parameters using the first number of fractional bits, the second

number of fractions bits, and the third number of fractional bits.

36. The computer-readable storage medium of claim 35, wherein the instructions

further cause the one or more processors to:

determine the parameters, in the case that at least one of the first number of

fractional bits, the second number of fractional bits, or the third number of fractional

bits is different from one another, by accumulating any fractional bits during any

intermediate calculation processes used to determine the parameters; and

clip a final result for determining the parameters based on a predetermined

fractional accuracy.

WO 2017/053277 PCT/US2016/052633
103

37. The computer-readable storage medium of claim 35, wherein the instructions

further cause the one or more processors to:

determine the parameters by truncating any fractional bits over a desired

fractional accuracy during all intermediate calculation processes used to determine the

parameters.

38. The computer-readable storage medium of claim 32, wherein the information

includes a minimum value and a maximum value for one or more color components of

the decoded video data, and wherein the instructions further cause the one or more

processors to:

determine the parameters based on the received minimum value and the received

maximum value.

39. The computer-readable storage medium of claim 32, wherein the information

includes an index to a predetermined range of sample values of one or more color

components of the decoded video data, wherein the instructions further cause the one or

more processors to:

determine a minimum value and a maximum value for the one or more color

components of the decoded video data based on the received index; and

determine the parameters based on the determined minimum value and the

determined maximum value.

40. The computer-readable storage medium of claim 32, wherein the instructions

further cause the one or more processors to:

receive a syntax element indicating if the parameters are signed or unsigned; and

perform a parsing process on the information in the SEI message, wherein the

parsing process is the same regardless of the value of the syntax element.

41. The computer-readable storage medium of claim 32, wherein the instructions

further cause the one or more processors to:

display the decoded video data after performing the inverse dynamic range

adjustment process on the decoded video data.

WO 2017/053277 PCT/US2016/052633
104

42. A method of processing video data, the method comprising:

performing a dynamic range adjustment process on video data using fixed-point

computing; and

generating one or more syntax elements that contain information specifying how

to determine parameters for performing an inverse dynamic range adjustment process,

relative to the dynamic range adjustment process, using fixed-point computing.

43. The method of claim 42, wherein generating the one or more syntax elements

comprises generating the one or more syntax elements in one or more supplemental

enhancement information (SEI) messages, and wherein the parameters comprise one or

more of a range parameter, a scale parameter, or an offset parameter.

44. The method of claim 43, wherein the information indicates one or more of a first

number of fractional bits used for determining the range parameter, a second number of

fractional bits used for determining the scale parameter, and a third number of fractional

bits used for determining the offset parameter.

45. The method of claim 42, wherein the information includes a minimum value and

a maximum value for one or more color components of the video data.

46. The method of claim 42, wherein the information includes an index to a

predetermined range of sample values of the decoded video data.

47. The method of claim 42, further comprising:

capturing the video data with a camera.

WO 2017/053277 PCT/US2016/052633
105

48. An apparatus configured to process video data, the apparatus comprising:

a memory configured to store video data; and

one or more processors configured to:

perform a dynamic range adjustment process on the video data using

fixed-point computing; and

generate one or more syntax elements that contain information specifying

how to determine parameters for performing an inverse dynamic range

adjustment process, relative to the dynamic range adjustment process, using

fixed-point computing.

49. The apparatus of claim 48, wherein the one or more processors are further

configured to generate the one or more syntax elements in one or more supplemental

enhancement information (SEI) messages, and wherein the parameters comprise one or

more of a range parameter, a scale parameter, or an offset parameter.

50. The apparatus of claim 49, wherein the information indicates one or more of a

first number of fractional bits used for determining the range parameter, a second

number of fractional bits used for determining the scale parameter, and a third number

of fractional bits used for determining the offset parameter.

51. The apparatus of claim 48, wherein the information includes a minimum value

and a maximum value for one or more color components of the video data.

52. The apparatus of claim 48, wherein the information includes an index to a

predetermined range of sample values of the decoded video data.

53. The apparatus of claim 48, the apparatus further comprising:

a camera configured to capture the video data.

54. The apparatus of claim 48, wherein the apparatus comprises one or more of a

camera, a computer, a mobile device, a broadcast receiver device, or a set-top box.

WO 2017/053277 PCT/US2016/052633
106

55. An apparatus configured to process video data, the apparatus comprising:

means for performing a dynamic range adjustment process on video data using

fixed-point computing; and

means for generating one or more syntax elements that contain information

specifying how to determine parameters for performing an inverse dynamic range

adjustment process, relative to the dynamic range adjustment process, using fixed-point

computing.

56. A computer-readable storage medium storing instructions that, when executed,

cause one or more processors of a device configured to process video data to:

perform a dynamic range adjustment process on the video data using fixed-point

computing; and

generate one or more syntax elements that contain information specifying how to

determine parameters for performing an inverse dynamic range adjustment process,

relative to the dynamic range adjustment process, using fixed-point computing.

	Abstract
	Description
	Claims
	Drawings

