wo 2017/053277 A1 | I 00N OO OO0 0 AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/053277 Al

(51

eay)

(22)

(25)
(26)
(30)

1

30 March 2017 (30.03.2017) WIPOIPCT
International Patent Classification: (72)
HO4N 19/46 (2014.01) HO4N 19/80 (2014.01)

HO04N 19/36 (2014.01) HO04N 19/85 (2014.01)
International Application Number:
PCT/US2016/052633

International Filing Date:
20 September 2016 (20.09.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/221,586 21 September 2015 (21.09.2015) US
62/236,804 2 October 2015 (02.10.2015) US
62/241,063 13 October 2015 (13.10.2015) US
15/269,558 19 September 2016 (19.09.2016) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

(74

(8D

Inventors: RAMASUBRAMONIAN, Adarsh Krishnan;
5775 Morehouse Drive, San Diego, California 92121-1714
(US). RUSANOVSKYY, Dmytro; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US). SOLE
ROJALS, Joel; 5775 Morehouse Drive, San Diego, Cali-
fornia 92121-1714 (US). LEE, Sungwon; 5775 More-
house Drive, San Diego, California 92121-1714 (US).
BUGDAYCI SANSLI, Done; 5775 Morehouse Drive, San
Diego, California 92121-1714 (US). KARCZEWICZ,
Marta; 5775 Morehouse Drive, San Diego, California
92121-1714 (US).

Agent: EVANS, Matthew J.; Shumaker & Sieffert, P.A.,
1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125

(US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

[Continued on next page]

(54) Title: FIXED POINT IMPLEMENTATION OF RANGE ADJUSTMENT OF COMPONENTS IN VIDEO CODING

(57) Abstract: Processing high dynamic range and or wide color gamut video

RECEIVE ONE OR MORE SYNTAX
ELEMENTS THAT CONTAIN INFORMATION
SPECIFYING HOW TO DETERMINE
PARAMETERS FOR PERFORMING AN
INVERSE DYNAMIC RANGE ADJUSTMENT
PROCESS

1300

/1 310
RECEIVE DECODED VIDEQ DATA

Y

DETERMINE THE PARAMETERS FOR THE
INVERSE DYNAMIC RANGE ADJUSTMENT
PROCESS

/1320

Y

PERFORM THE INVERSE DYNAMIC RANGE
ADJUST PROCESS ON THE DECODED
VIDEO DATA USING FIXED-POINT
COMPUTING IN ACCORDANCE WITH THE
INFORMATION RECEIVED

I

DISPLAY THE VIDEQ DATA

| —~1330

/1 340

FIG. 13

data using a fixed-point implementation. A method of processing video data may
include receiving one or more supplemental enhancement information (SEI) mes-
sages that contain information specifying how to determine parameters for per-
forming an inverse dynamic range adjustment process, receiving decoded video
data, and performing the inverse dynamic range adjustment process on the de-
coded video data using fixed-point computing in accordance with the information
Y in the one or more SEI messages.

WO 2017/053277 A1 WK 000V 000 OO 00 A

84)

KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZM, ZW.

TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Designated States (unless otherwise indicated, for every Published:

kind of regional protection available): ARIPO (BW, GH, __

GM, KF, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

with international search report (Art. 21(3))

WO 2017/053277 PCT/US2016/052633

FIXED POINT IMPLEMENTATION OF RANGE ADJUSTMENT OF
COMPONENTS IN VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Application No.
62/221,586, filed September 21, 2015, U.S. Provisional Application No. 62/236,804,
filed October 2, 2015, and U.S. Provisional Application No. 62/241,063, filed October

13, 2015, the entire content of each of which is incorporated by reference herein.

TECHNICAL FIELD

[0002] This disclosure relates to video processing.

BACKGROUND
[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video coding techniques, such as
those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T
H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), ITU-T H.265, High
Efficiency Video Coding (HEVC), and extensions of such standards. The video devices
may transmit, receive, encode, decode, and/or store digital video information more
efficiently by implementing such video coding techniques.
[0004] Video coding techniques include spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (e.g., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I)
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring

blocks in the same picture or temporal prediction with respect to reference samples in

WO 2017/053277 PCT/US2016/052633

other reference pictures. Pictures may be referred to as frames, and reference pictures
may be referred to as reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more
compression.

[0006] The total number of color values that may be captured, coded, and displayed
may be defined by a color gamut. A color gamut refers to the range of colors that a
device can capture (e.g., a camera) or reproduce (e.g., a display). Often, color gamuts
differ from device to device. For video coding, a predefined color gamut for video data
may be used such that each device in the video coding process may be configured to
process pixel values in the same color gamut. Some color gamuts are defined with a
larger range of colors than color gamuts that have been traditionally used for video
coding. Such color gamuts with a larger range of colors may be referred to as a wide
color gamut (WCG).

[0007] Another aspect of video data is dynamic range. Dynamic range is typically
defined as the ratio between the maximum and minimum brightness (e.g., luminance) of
a video signal. The dynamic range of common video data used in the past is considered
to have a standard dynamic range (SDR). Other example specifications for video data
define color data that has a larger ratio between the maximum and minimum brightness.

Such video data may be described as having a high dynamic range (HDR).

SUMMARY
[0008] This disclosure describes example techniques and devices for implementing the
dynamic range adjustment of components of video data using a fixed-point

implementation. The described techniques are applicable to video coding standards, not

WO 2017/053277 PCT/US2016/052633

limited to H.264/AVC, H.265/HEVC, and other standards, that are configured to encode
and decode High Dynamic Range (HDR) content.

[0009] In one example of the disclosure, a method of processing video data comprises
receiving one or more syntax elements that contain information specifying how to
determine parameters for performing an inverse dynamic range adjustment process,
receiving decoded video data, and performing the inverse dynamic range adjustment
process on the decoded video data using fixed-point computing in accordance with the
information received.

[0010] In another example of the disclosure, an apparatus configured to process video
data comprises a memory configured to store decoded video data, and one or more
processors configured to receive one or more syntax elements that contain information
specifying how to determine parameters for performing an inverse dynamic range
adjustment process, receive the decoded video data, and perform the inverse dynamic
range adjustment process on the decoded video data using fixed-point computing in
accordance with the information received.

[0011] In another example of the disclosure, an apparatus configured to process video
data comprises means for receiving one or more syntax elements that contain
information specifying how to determine parameters for performing an inverse dynamic
range adjustment process, means for receiving decoded video data, and means for
performing the inverse dynamic range adjustment process on the decoded video data
using fixed-point computing in accordance with the information received.

[0012] In another example, this disclosure describes a computer-readable storage
medium storing instructions that, when executed, cause one or more processors of a
device configured to process video data to receive one or more syntax elements that
contain information specifying how to determine parameters for performing an inverse
dynamic range adjustment process, receive the decoded video data, and perform the
inverse dynamic range adjustment process on the decoded video data using fixed-point
computing in accordance with the information received.

[0013] In another example of the disclosure, a method of processing video data
comprises performing a dynamic range adjustment process on video data using fixed-
point computing, and generating one or more syntax elements that contain information
specifying how to determine parameters for performing an inverse dynamic range
adjustment process, relative to the dynamic range adjustment process, using fixed-point

computing.

WO 2017/053277 PCT/US2016/052633

[0014] In another example of the disclosure, an apparatus configured to process video
data comprises a memory configured to store video data, and one or more processors
configured to perform a dynamic range adjustment process on the video data using
fixed-point computing, and generate one or more syntax elements that contain
information specifying how to determine parameters for performing an inverse dynamic
range adjustment process, relative to the dynamic range adjustment process, using fixed-
point computing.

[0015] In another example of the disclosure, an apparatus configured to process video
data comprises means for performing a dynamic range adjustment process on video data
using fixed-point computing, and means for generating one or more syntax elements
that contain information specifying how to determine parameters for performing an
inverse dynamic range adjustment process, relative to the dynamic range adjustment
process, using fixed-point computing.

[0016] In another example, this disclosure describes a computer-readable storage
medium storing instructions that, when executed, cause one or more processors of a
device configured to process video data to perform a dynamic range adjustment process
on the video data using fixed-point computing, and generate one or more syntax
elements that contain information specifying how to determine parameters for
performing an inverse dynamic range adjustment process, relative to the dynamic range
adjustment process, using fixed-point computing.

[0017] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description, drawings, and claims.

BRIEF DESCRIPTION OF DRAWINGS
[0018] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system configured to implement the techniques of the disclosure.
[0019] FIG. 2 is a conceptual drawing showing a typical structure of a color remapping
information (CRI) process.
[0020] FIG. 3 is a conceptual drawing illustrating the concepts of HDR data.
[0021] FIG. 4 is a conceptual diagram illustrating example color gamuts.
[0022] FIG. 5 is a flow diagram illustrating an example of HDR/WCG representation

conversion.

WO 2017/053277 PCT/US2016/052633

[0023] FIG. 6 is a flow diagram illustrating an example of HDR/WCG inverse
conversion.

[0024] FIG. 7 is conceptual diagram illustrating example of Electro-optical transfer
functions (EOTF) utilized for video data conversion (including SDR and HDR) from
perceptually uniform code levels to linear luminance.

[0025] FIG. 8 is a block diagram illustrating an example HDR/WCG conversion
apparatus operating according to the techniques of this disclosure.

[0026] FIG. 9 is a block diagram illustrating an example HDR/WCG inverse conversion
apparatus according to the techniques of this disclosure.

[0027] FIG. 10 is a block diagram illustrating an example of a video encoder that may
implement techniques of this disclosure.

[0028] FIG. 11 is a block diagram illustrating an example of a video decoder that may
implement techniques of this disclosure.

[0029] FIG. 12 is a flowchart showing one example video processing technique of the
disclosure.

[0030] FIG. 13 is a flowchart showing another example video processing technique of

the disclosure.

DETAILED DESCRIPTION
[0031] This disclosure is related to the processing and/or coding of video data with high
dynamic range (HDR) and wide color gamut (WCGQ) representations. More specifically,
the techniques of this disclosure include techniques for performing range adjustment of
video data components using fixed point processing operations (e.g., as opposed to
floating point processing operations). The techniques and devices described herein may
improve compression efficiency of hybrid-based video coding systems (e.g.,
H.265/HEVC, H.264/AVC, etc.) utilized for coding video data, including HDR and
WCG video data.
[0032] Video coding standards, including hybrid-based video coding standards, include
ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual,
ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC
MPEG-4 AVC), including its Scalable Video Coding (SVC) and Multi-view Video
Coding (MVC) extensions. The design of a new video coding standard, namely High
Efficiency Video coding (HEVC, also called H.265), has been finalized by the Joint
Collaboration Team on Video Coding (JCT-VC) of ITU-T Video Coding Experts Group

WO 2017/053277 PCT/US2016/052633

(VCEG) and ISO/IEC Motion Picture Experts Group (MPEG). An HEVC draft
specification referred to as HEVC Working Draft 10 (WD10), Bross et al., “High
efficiency video coding (HEVC) text specification draft 10 (for FDIS & Last Call),”
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WGT11, 12th Meeting: Geneva, CH, 14-23 January 2013, JCTVC-
L1003v34, is available from http://phenix.int-

evry fr/jct/doc_end_user/documents/12_Geneva/wgl 1/JCTVC-L1003-v34.zip. The
finalized HEVC standard is referred to as HEVC version 1.

[0033] A defect report, Wang et al., “High efficiency video coding (HEVC) Defect
Report,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11, 14th Meeting: Vienna, AT, 25 July—2 August 2013,
JCTVC-N1003v1, is available from http://phenix.int-

evry fr/jct/doc_end_user/documents/14_Vienna/wgl1/JCTVC-N1003-v1.zip. The
finalized HEVC standard document is published as ITU-T H.265, Series H: Audiovisual

and Multimedia Systems, Infrastructure of audiovisual services — Coding of moving
video, High efficiency video coding, Telecommunication Standardization Sector of
International Telecommunication Union (ITU), April 2013, and another version of the
finalized HEVC standard was published in October 2014. A copy of the H.265/HEVC
specification text may be downloaded from http://www.itu.int/rec/T-REC-H.265-
201504-1/en.

[0034] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize techniques of this disclosure. As shown in FIG. 1, system 10
includes a source device 12 that provides encoded video data to be decoded at a later
time by a destination device 14. In particular, source device 12 provides the video data
to destination device 14 via a computer-readable medium 16. Source device 12 and
destination device 14 may comprise any of a wide range of devices, including desktop
computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone
handsets such as so-called “smart” phones, so-called “smart” pads, televisions, cameras,
display devices, digital media players, video gaming consoles, video streaming devices,
broadcast receiver device, or the like. In some cases, source device 12 and destination
device 14 may be equipped for wireless communication.

[0035] Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any type

of medium or device capable of moving the encoded video data from source device 12

WO 2017/053277 PCT/US2016/052633

to destination device 14. In one example, computer-readable medium 16 may comprise
a communication medium to enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded video data may be
modulated according to a communication standard, such as a wired or wireless
communication protocol, and transmitted to destination device 14. The communication
medium may comprise any wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmission lines. The
communication medium may form part of a packet-based network, such as a local area
network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from source device 12 to
destination device 14.

[0036] In other examples, computer-readable medium 16 may include non-transitory
storage media, such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray
disc, or other computer-readable media. In some examples, a network server (not
shown) may receive encoded video data from source device 12 and provide the encoded
video data to destination device 14, e.g., via network transmission. Similarly, a
computing device of a medium production facility, such as a disc stamping facility, may
receive encoded video data from source device 12 and produce a disc containing the
encoded video data. Therefore, computer-readable medium 16 may be understood to
include one or more computer-readable media of various forms, in various examples.
[0037] In some examples, encoded data may be output from output interface 22 to a
storage device. Similarly, encoded data may be accessed from the storage device by
input interface. The storage device may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, the storage device may
correspond to a file server or another intermediate storage device that may store the
encoded video generated by source device 12. Destination device 14 may access stored
video data from the storage device via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting encoded video
data to the destination device 14. Example file servers include a web server (e.g., for a
website), an FTP server, network attached storage (NAS) devices, or a local disk drive.

Destination device 14 may access the encoded video data through any standard data

WO 2017/053277 PCT/US2016/052633

connection, including an Internet connection. This may include a wireless channel (e.g.,
a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from the storage device may be a
streaming transmission, a download transmission, or a combination thereof.

[0038] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, Internet streaming
video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital
video that is encoded onto a data storage medium, decoding of digital video stored on a
data storage medium, or other applications. In some examples, system 10 may be
configured to support one-way or two-way video transmission to support applications
such as video streaming, video playback, video broadcasting, and/or video telephony.
[0039] In the example of FIG. 1, source device 12 includes video source 18, video
encoding unit 21, which includes video pre-processor unit 19 and video encoder 20, and
output interface 22. Destination device 14 includes input interface 28, video decoding
unit 29, which includes video post-processor unit 31 and video decoder 30, and display
device 32. In accordance with this disclosure, video pre-processor unit 19 and/or video
encoder 20 of source device 12 and video post-processor unit 31 and/or video decoder
30 of destination device 14 may be configured to implement the techniques of this
disclosure, including signaling and related operations applied to video data in certain
color spaces to enable more efficient compression of HDR and WCG video data with a
fixed point implementation. In some examples, video pre-processor unit 19 may be
separate from video encoder 20. In other examples, video pre-processor unit 19 may be
part of video encoder 20. Likewise, in some examples, video post-processor unit 31
may be separate from video decoder 30. In other examples, video post-processor unit
31 may be part of video decoder 30. In other examples, a source device and a
destination device may include other components or arrangements. For example, source
device 12 may receive video data from an external video source 18, such as an external
camera. Likewise, destination device 14 may interface with an external display device,
rather than including an integrated display device.

[0040] The illustrated system 10 of FIG. 1 is merely one example. Techniques for
processing HDR and WCG video data may be performed by any digital video encoding

WO 2017/053277 PCT/US2016/052633

and/or video decoding device. Moreover, the techniques of this disclosure may also be
performed by a video pre-processor and/or video post-processor (e.g., video pre-
processor unit 19 and video post-processor unit 31). In general, a video pre-processor
may be any device configured to process video data before encoding (e.g., before
HEVC encoding). In general, a video post-processor may be any device configured to
process video data after decoding (e.g., after HEVC decoding). Source device 12 and
destination device 14 are merely examples of such coding devices in which source
device 12 generates coded video data for transmission to destination device 14. In some
examples, devices 12, 14 may operate in a substantially symmetrical manner such that
each of devices 12, 14 include video encoding and decoding components, as well as a
video pre-processor and a video post-processor (e.g., video pre-processor unit 19 and
video post-processor unit 31, respectively). Hence, system 10 may support one-way or
two-way video transmission between video devices 12, 14, e.g., for video streaming,
video playback, video broadcasting, or video telephony.

[0041] Video source 18 of source device 12 may include a video capture device, such as
a video camera, a video archive containing previously captured video, and/or a video
feed interface to receive video from a video content provider. As a further alternative,
video source 18 may generate computer graphics-based data as the source video, or a
combination of live video, archived video, and computer-generated video. In some
cases, if video source 18 is a video camera, source device 12 and destination device 14
may form so-called camera phones or video phones. As mentioned above, however, the
techniques described in this disclosure may be applicable to video coding and video
processing, in general, and may be applied to wireless and/or wired applications. In
each case, the captured, pre-captured, or computer-generated video may be encoded by
video encoding unit 21. The encoded video information may then be output by output
interface 22 onto a computer-readable medium 16.

[0042] Input interface 28 of destination device 14 receives information from computer-
readable medium 16. The information of computer-readable medium 16 may include
syntax information defined by video encoder 20, which is also used by video decoding
unit 29, that includes syntax elements that describe characteristics and/or processing of
blocks and other coded units, e.g., groups of pictures (GOPs). Display device 32
displays the decoded video data to a user, and may comprise any of a variety of display

devices such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma

WO 2017/053277 PCT/US2016/052633
10

display, an organic light emitting diode (OLED) display, or another type of display
device.

[0043] As illustrated, video pre-processor unit 19 receives the video data from video
source 18. Video pre-processor unit 19 may be configured to process the video data to
convert it into a form that is suitable for encoding with video encoder 20. For example,
video pre-processor unit 19 may perform dynamic range compacting (e.g., using a non-
linear transfer function), color conversion to a more compact or robust color space,
and/or floating-to-integer representation conversion. Video encoder 20 may perform
video encoding on the video data outputted by video pre-processor unit 19. Video
decoder 30 may perform the inverse of video encoder 20 to decode video data, and
video post-processor unit 31 may perform the inverse of video pre-processor unit 19 to
convert the video data into a form suitable for display. For instance, video post-
processor unit 31 may perform integer-to-floating conversion, color conversion from the
compact or robust color space, and/or the inverse of the dynamic range compacting to
generate video data suitable for display.

[0044] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0045] Video pre-processor unit 19 and video post-processor unit 31 each may be
implemented as any of a variety of suitable encoder circuitry, such as one or more
microprocessors, digital signal processors (DSPs), application specific integrated
circuits (ASICs), field programmable gate arrays (FPGAs), discrete logic, software,
hardware, firmware or any combinations thereof. When the techniques are implemented
partially in software, a device may store instructions for the software in a suitable, non-
transitory computer-readable medium and execute the instructions in hardware using
one or more processors to perform the techniques of this disclosure. As discussed

above video pre-processor unit 19 and video post-processor unit 31 be separate devices

WO 2017/053277 PCT/US2016/052633
11

from video encoder 20 and video decoder 30, respectively. In other examples, video
pre-processor unit 19 may integrate with video encoder 20 in a single device and inverse
video post-processor unit 31 may be integrated with video decoder 30 in a single device.
[0046] In some examples, video encoder 20 and video decoder 30 operate according to
a video compression standard, such as ISO/IEC MPEG-4 Visual and ITU-T H.264 (also
known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC)
extension, Multi-view Video Coding (MVC) extension, and MVC-based three-
dimensional video (3DV) extension. In some instances, any bitstream conforming to
MVC-based 3DV always contains a sub-bitstream that is compliant to a MVC profile,
e.g., stereo high profile. Furthermore, there is an ongoing effort to generate a 3DV
coding extension to H.264/AVC, namely AVC-based 3DV. Other examples of video
coding standards include ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or
ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual, and ITU-T H.264,
ISO/IEC Visual. In other examples, video encoder 20 and video decoder 30 may be
configured to operate according to the HEVC standard.

[0047] In HEVC and other video coding standards, a video sequence typically includes
a series of pictures. Pictures may also be referred to as “frames.” A picture may
include three sample arrays, denoted Si, Scb, and Scr. Si is a two-dimensional array
(1.e., a block) of luma samples. Scv is a two-dimensional array of Cb chrominance
samples. Scris a two-dimensional array of Cr chrominance samples. Chrominance
samples may also be referred to herein as “chroma” samples. In other instances, a
picture may be monochrome and may only include an array of luma samples.

[0048] Video encoder 20 may generate a set of coding tree units (CTUs). Each of the
CTUs may comprise a coding tree block of luma samples, two corresponding coding
tree blocks of chroma samples, and syntax structures used to code the samples of the
coding tree blocks. In a monochrome picture or a picture that has three separate color
planes, a CTU may comprise a single coding tree block and syntax structures used to
code the samples of the coding tree block. A coding tree block may be an NxN block of
samples. A CTU may also be referred to as a “tree block™ or a “largest coding unit”
(LCU). The CTUs of HEVC may be broadly analogous to the macroblocks of other
video coding standards, such as H.264/AVC. However, a CTU is not necessarily
limited to a particular size and may include one or more coding units (CUs). A slice

may include an integer number of CTUs ordered consecutively in the raster scan.

WO 2017/053277 PCT/US2016/052633
12

[0049] This disclosure may use the term “video unit” or “video block™ to refer to one or
more blocks of samples and syntax structures used to code samples of the one or more
blocks of samples. Example types of video units may include CTUs, CUs, PUs,
transform units (TUs) in HEVC, or macroblocks, macroblock partitions, and so on in
other video coding standards.

[0050] To generate a coded CTU, video encoder 20 may recursively perform quad-tree
partitioning on the coding tree blocks of a CTU to divide the coding tree blocks into
coding blocks, hence the name “coding tree units.” A coding block is an NxN block of
samples. A CU may comprise a coding block of luma samples and two corresponding
coding blocks of chroma samples of a picture that has a luma sample array, a Cb sample
array and a Cr sample array, and syntax structures used to code the samples of the
coding blocks. In a monochrome picture or a picture that has three separate color
planes, a CU may comprise a single coding block and syntax structures used to code the
samples of the coding block.

[0051] Video encoder 20 may partition a coding block of a CU into one or more
prediction blocks. A prediction block may be a rectangular (i.e., square or non-square)
block of samples on which the same prediction is applied. A prediction unit (PU) of a
CU may comprise a prediction block of luma samples, two corresponding prediction
blocks of chroma samples of a picture, and syntax structures used to predict the
prediction block samples. In a monochrome picture or a picture that have three separate
color planes, a PU may comprise a single prediction block and syntax structures used to
predict the prediction block samples. Video encoder 20 may generate predictive luma,
Cb and Cr blocks for luma, Cb and Cr prediction blocks of each PU of the CU.

[0052] Video encoder 20 may use intra prediction or inter prediction to generate the
predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the
predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the
PU based on decoded samples of the picture associated with the PU.

[0053] If video encoder 20 uses inter prediction to generate the predictive blocks of a
PU, video encoder 20 may generate the predictive blocks of the PU based on decoded
samples of one or more pictures other than the picture associated with the PU. Inter
prediction may be uni-directional inter prediction (i.e., uni-prediction) or bi-directional
inter prediction (i.e., bi-prediction). To perform uni-prediction or bi-prediction, video
encoder 20 may generate a first reference picture list (RefPicList0) and a second

reference picture list (RefPicListl) for a current slice.

WO 2017/053277 PCT/US2016/052633
13

[0054] Each of the reference picture lists may include one or more reference pictures.
When using uni-prediction, video encoder 20 may search the reference pictures in either
or both RefPicListO and RefPicList] to determine a reference location within a
reference picture. Furthermore, when using uni-prediction, video encoder 20 may
generate, based at least in part on samples corresponding to the reference location, the
predictive sample blocks for the PU. Moreover, when using uni-prediction, video
encoder 20 may generate a single motion vector that indicates a spatial displacement
between a prediction block of the PU and the reference location. To indicate the spatial
displacement between a prediction block of the PU and the reference location, a motion
vector may include a horizontal component specifying a horizontal displacement
between the prediction block of the PU and the reference location and may include a
vertical component specifying a vertical displacement between the prediction block of
the PU and the reference location.

[0055] When using bi-prediction to encode a PU, video encoder 20 may determine a
first reference location in a reference picture in RefPicListO and a second reference
location in a reference picture in RefPicListl. Video encoder 20 may then generate,
based at least in part on samples corresponding to the first and second reference
locations, the predictive blocks for the PU. Moreover, when using bi-prediction to
encode the PU, video encoder 20 may generate a first motion indicating a spatial
displacement between a sample block of the PU and the first reference location and a
second motion indicating a spatial displacement between the prediction block of the PU
and the second reference location.

[0056] After video encoder 20 generates predictive luma, Cb, and Cr blocks for one or
more PUs of a CU, video encoder 20 may generate a luma residual block for the CU.
Each sample in the CU’s luma residual block indicates a difference between a luma
sample in one of the CU’s predictive luma blocks and a corresponding sample in the
CU’s original luma coding block. In addition, video encoder 20 may generate a Cb
residual block for the CU. Each sample in the CU’s Cb residual block may indicate a
difference between a Cb sample in one of the CU’s predictive Cb blocks and a
corresponding sample in the CU’s original Cb coding block. Video encoder 20 may
also generate a Cr residual block for the CU. Each sample in the CU’s Cr residual block
may indicate a difference between a Cr sample in one of the CU’s predictive Cr blocks

and a corresponding sample in the CU’s original Cr coding block.

WO 2017/053277 PCT/US2016/052633
14

[0057] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the
luma, Cb and, Cr residual blocks of a CU into one or more luma, Cb, and Cr transform
blocks. A transform block may be a rectangular block of samples on which the same
transform is applied. A transform unit (TU) of a CU may comprise a transform block of
luma samples, two corresponding transform blocks of chroma samples, and syntax
structures used to transform the transform block samples. In a monochrome picture or a
picture that has three separate color planes, a TU may comprise a single transform block
and syntax structures used to transform the transform block samples. Thus, each TU of
a CU may be associated with a luma transform block, a Cb transform block, and a Cr
transform block. The luma transform block associated with the TU may be a sub-block
of the CU’s luma residual block. The Cb transform block may be a sub-block of the
CU’s Cb residual block. The Cr transform block may be a sub-block of the CU’s Cr
residual block.

[0058] Video encoder 20 may apply one or more transforms to a luma transform block
of a TU to generate a luma coefficient block for the TU. A coefficient block may be a
two-dimensional array of transform coefficients. A transform coefficient may be a
scalar quantity. Video encoder 20 may apply one or more transforms to a Cb transform
block of a TU to generate a Cb coefficient block for the TU. Video encoder 20 may
apply one or more transforms to a Cr transform block of a TU to generate a Cr
coefficient block for the TU.

[0059] After generating a coefficient block (e.g., a luma coefficient block, a Cb
coefficient block or a Cr coefficient block), video encoder 20 may quantize the
coefficient block. Quantization generally refers to a process in which transform
coefticients are quantized to possibly reduce the amount of data used to represent the
transform coefficients, providing further compression. Furthermore, video encoder 20
may inverse quantize transform coefficients and apply an inverse transform to the
transform coefticients in order to reconstruct transform blocks of TUs of CUs of a
picture. Video encoder 20 may use the reconstructed transform blocks of TUs of a CU
and the predictive blocks of PUs of the CU to reconstruct coding blocks of the CU. By
reconstructing the coding blocks of each CU of a picture, video encoder 20 may
reconstruct the picture. Video encoder 20 may store reconstructed pictures in a decoded
picture buffer (DPB). Video encoder 20 may use reconstructed pictures in the DPB for

inter prediction and intra prediction.

WO 2017/053277 PCT/US2016/052633
15

[0060] After video encoder 20 quantizes a coefficient block, video encoder 20 may
entropy encode syntax elements that indicate the quantized transform coefficients. For
example, video encoder 20 may perform Context-Adaptive Binary Arithmetic Coding
(CABAC) on the syntax elements indicating the quantized transform coefficients.
Video encoder 20 may output the entropy-encoded syntax elements in a bitstream.
[0061] Video encoder 20 may output a bitstream that includes a sequence of bits that
forms a representation of coded pictures and associated data. The bitstream may
comprise a sequence of network abstraction layer (NAL) units. Each of the NAL units
includes a NAL unit header and encapsulates a raw byte sequence payload (RBSP). The
NAL unit header may include a syntax element that indicates a NAL unit type code.
The NAL unit type code specified by the NAL unit header of a NAL unit indicates the
type of the NAL unit. A RBSP may be a syntax structure containing an integer number
of bytes that is encapsulated within a NAL unit. In some instances, an RBSP includes
zero bits.

[0062] Different types of NAL units may encapsulate different types of RBSPs. For
example, a first type of NAL unit may encapsulate a RBSP for a picture parameter set
(PPS), a second type of NAL unit may encapsulate a RBSP for a coded slice, a third
type of NAL unit may encapsulate a RBSP for Supplemental Enhancement Information
(SEI), and so on. A PPS is a syntax structure that may contain syntax elements that
apply to zero or more entire coded pictures. NAL units that encapsulate RBSPs for
video coding data (as opposed to RBSPs for parameter sets and SEI messages) may be
referred to as video coding layer (VCL) NAL units. A NAL unit that encapsulates a
coded slice may be referred to herein as a coded slice NAL unit. A RBSP for a coded
slice may include a slice header and slice data.

[0063] Video decoder 30 may receive a bitstream. In addition, video decoder 30 may
parse the bitstream to decode syntax elements from the bitstream. Video decoder 30
may reconstruct the pictures of the video data based at least in part on the syntax
elements decoded from the bitstream. The process to reconstruct the video data may be
generally reciprocal to the process performed by video encoder 20. For instance, video
decoder 30 may use motion vectors of PUs to determine predictive blocks for the PUs
of a current CU. Video decoder 30 may use a motion vector or motion vectors of PUs
to generate predictive blocks for the PUs.

[0064] In addition, video decoder 30 may inverse quantize coefficient blocks associated

with TUs of the current CU. Video decoder 30 may perform inverse transforms on the

WO 2017/053277 PCT/US2016/052633
16

coefficient blocks to reconstruct transform blocks associated with the TUs of the current
CU. Video decoder 30 may reconstruct the coding blocks of the current CU by adding
the samples of the predictive sample blocks for PUs of the current CU to corresponding
samples of the transform blocks of the TUs of the current CU. By reconstructing the
coding blocks for each CU of a picture, video decoder 30 may reconstruct the picture.
Video decoder 30 may store decoded pictures in a decoded picture buffer for output
and/or for use in decoding other pictures.

[0065] Supplemental Enhancement information (SEI) messages are often included in
video bitstreams, typically to carry information that is not essential in order to decode
the bitstream by the decoder (e.g., video decoder 30). The information contained in an
SEI message may be useful in improving the display or processing of the decoded
output; e.g. such information could be used by decoder-side entities to improve the
viewability of the content. It is also possible that certain application standards could
mandate the presence of such SEI messages in the bitstream so that the improvement in
quality can be brought to all devices that conform to the application standard (e.g., the
carriage of the frame-packing SEI message for frame-compatible plano-stereoscopic
3DTV video format, where the SEI message is carried for every frame of the video, e.g.,
as described in ETSI — TS 101 547-2, Digital Video Broadcasting (DVB) Plano-
stereoscopic 3DTV; Part 2: Frame compatible plano-stereoscopic 3DTV, handling of
recovery point SEI message, e.g., as described in 3GPP TS 26.114 v13.0.0, 3rd
Generation Partnership Project; Technical Specification Group Services and System
Aspects; [P Multimedia Subsystem (IMS); Multimedia Telephony; Media handling and
interaction (Release 13), or use of pan-scan scan rectangle SEI message in DVB, e.g., as
described in ETSI — TS 101 154, Digital Video Broadcasting (DVB); Specification for
the use of Video and Audio Coding in Broadcasting Applications based on the MPEG-2
Transport Stream).

[0066] A tone-mapping information SEI message is used to map luma samples, or each
of RGB component samples. Different values of tone map_id are used to define
different purposes, and the syntax of the tone-map SEI message is also modified
accordingly. A value of 1 for the tone_map id allows the SEI message to clip the RGB
samples to a minimum and a maximum value. A value of 3 for the tone_map id allows
the signaling of a look up table in the form of pivot points. However, when applied, the

same values are applied to all RGB components, or only applied to the luma component.

WO 2017/053277 PCT/US2016/052633
17

[0067] A knee function SEI message is used to indicate the mapping of the RGB
components of the decoded pictures in the normalized linear domain. The input and
output maximum luminance values are also indicated, and a look-up table maps the
input luminance values to the output luminance values. The same look-up table is
applied to all the three color components.

[0068] A color remapping information (CRI) SEI message defined in the HEVC
standard is used to convey information that is used to map pictures in one color space to
another. In one example, the syntax of the CRI SEI message includes three parts - first
look-up table (Pre-LUT), followed by a 3x3 matrix indicating color remapping
coefficients, followed by a second look-up table (Post-LUT). For each color
component, e.g., R,G,B or Y,Cb,Cr, independent LUT is defined for both, Pre-LUT and
Post-LUT. The CRI SEI message also includes syntax element called colour remap id,
different values of which may be used to indicate different purposes of the SEI message.
FIG. 2 shows a typical structure of the color remapping information process specified
by a CRI SEI message.

[0069] Dynamic range adjustment (DRA) SEI message. The dynamic range adjustment
SEI message, e.g., as described in D. Bugdayci Sansli, A. K. Ramasubramonian, D.
Rusanovskyy, S. Lee, J. Sole, M. Karczewicz, Dynamic range adjustment SEI message,
m36330, MPEG meeting, Warsaw, Poland, 22 — 26 June, 2015, has not been adopted as
part of any video coding standard; however, the SEI message includes signaling of one
set of scale and offset numbers to map the input samples. The SEI message also allows
the signaling of different look-up tables for different components, and also allows for
signaling optimization when the same scale and offset are to be used for more than one
component. The scale and offset numbers are signaled in fixed length accuracy.

[0070] Next generation video applications are anticipated to operate with video data
representing captured scenery with HDR and a WCG. Parameters of the utilized
dynamic range and color gamut are two independent attributes of video content, and
their specification for purposes of digital television and multimedia services are defined
by several international standards. For example, ITU-R Rec. BT.709, “Parameter values
for the HDTV standards for production and international programme exchange,” and
ITU-R Rec. BT.2020, “Parameter values for ultra-high definition television systems for
production and international programme exchange,” defines parameters for HDTV
(high definition television) and UHDTYV (ultra-high definition television), respectively,

such as standard dynamic range (SDR) and color primaries that extend beyond the

WO 2017/053277 PCT/US2016/052633
18

standard color gamut. Rec. BT.2100, “Image parameter values for high dynamic range
television for use in production and international programme exchange” defines transfer
functions and representations for HDR television use, including primaries that support
wide color gamut representations. There are also other standards developing
organization (SDOs) documents that specify dynamic range and color gamut attributes
in other systems, e.g., DCI-P3 color gamut is defined in SMPTE-231-2 (Society of
Motion Picture and Television Engineers) and some parameters of HDR are defined in
SMPTE-2084. A brief description of dynamic range and color gamut for video data is
provided below.

[0071] Dynamic range is typically defined as the ratio between the maximum and
minimum brightness (e.g., luminance) of the video signal. Dynamic range may also be
measured in terms of ‘f-stop,” where one f-stop corresponds to a doubling of a signal’s
dynamic range. In MPEG’s definition, content that features brightness variation with
more than 16 f-stops is referred as HDR content. In some terms, levels between 10 and
16 f-stops are considered as intermediate dynamic range, but it is considered HDR in
other definitions. In some examples of this disclosure, HDR video content may be any
video content that has a higher dynamic range than traditionally used video content with
a standard dynamic range (e.g., video content as specified by ITU-R Rec. BT.709).
[0072] The human visual system (HVS) is capable for perceiving much larger dynamic
ranges than SDR content and HDR content. However, the HVS includes an adaptation
mechanism to narrow the dynamic range of the HVS to a so-called simultaneous range.
The width of the simultaneous range may be dependent on current lighting conditions
(e.g., current brightness). Visualization of dynamic range provided by SDR of HDTYV,
expected HDR of UHDTYV and HVS dynamic range is shown in FIG. 3, although the
exact range may vary based on each individual and display.

[0073] Current video application and services are regulated by ITU Rec.709 and
provide SDR, typically supporting a range of brightness (e.g., luminance) of around 0.1
to 100 candelas (cd) per m2 (often referred to as “nits”), leading to less than 10 f-stops.
Some example next generation video services are expected to provide dynamic range of
up to 16 f-stops. Although detailed specifications for such content are currently under
development, some initial parameters have been specified in SMPTE-2084 and ITU-R
Rec. 2020.

[0074] Another aspect for a more realistic video experience, besides HDR, is the color

dimension. Color dimension is typically defined by the color gamut. FIG. 4 is a

WO 2017/053277 PCT/US2016/052633
19

conceptual diagram showing an SDR color gamut (triangle 100 based on the BT.709
color primaries), and the wider color gamut that for UHDTYV (triangle 102 based on the
BT.2020 color primaries). FIG. 4 also depicts the so-called spectrum locus (delimited
by the tongue-shaped area 104), representing the limits of the natural colors. As
illustrated by FIG. 3, moving from BT.709 (triangle 100) to BT.2020 (triangle 102)
color primaries aims to provide UHDTYV services with about 70% more colors. D65
specifies an example white color for the BT.709 and/or BT.2020 specifications.

[0075] Examples of color gamut specifications for the DCI-P3, BT.709, and BT.2020
color spaces are shown in Table 1.

Table 1 - Color gamut parameters

RGB color space parameters

White point Primary colors
Color space

XXw Yyw XXR | Y¥r | XXc | ¥YG | XXB Yys

DCI-P3 [0.314(0.351 [0.680]0.320]0.265(0.690[0.150] 0.060

ITU-R
0.3127]0.3290(0.64 10.3310.30|0.60 | 0.15| 0.06
BT.709
ITU-R
0.3127]0.3290(0.708(0.292|0.170]0.797]0.131| 0.046
BT.2020

[0076] As can be seen in Table 1, a color gamut may be defined by the X and Y values
of a white point, and by the x and y values of the primary colors (e.g., red (R), green
(G), and blue (B). The x and y values represent normalized values that are derived from
the chromaticity (X and Z) and the brightness (Y) of the colors, as is defined by the CIE
1931 color space. The CIE 1931 color space defines the links between pure colors (e.g.,
in terms of wavelengths) and how the human eye perceives such colors.

[0077] HDR/WCG video data is typically acquired and stored at a very high precision
per component (even floating point), with the 4:4:4 chroma format and a very wide
color space (e.g., CIE XYZ). This representation targets high precision and is almost
mathematically lossless. However, such a format for storing HDR/WCG video data
may include a lot of redundancies and may not be optimal for compression purposes. A
lower precision format with HVS-based assumptions is typically utilized for state-of-

the-art video applications.

WO 2017/053277 PCT/US2016/052633
20

[0078] One example of a video data format conversion process for purposes of
compression includes three major processes, as shown in FIG. 5. The techniques of
FIG. 5 may be performed by source device 12. Linear RGB data 110 may be
HDR/WCG video data and may be stored in a floating point representation. Linear
RGB data 110 may be compacted using a non-linear transfer function (TF) 112 for
dynamic range compacting. Transfer function 112 may compact linear RGB data 110
using any number of non-linear transfer functions, e.g., the PQ TF as defined in
SMPTE-2084. In some examples, color conversion process 114 converts the compacted
data into a more compact or robust color space (e.g., a YUV or YCrCb color space) that
is more suitable for compression by a hybrid video encoder. This data is then quantized
using a floating-to-integer representation quantization unit 116 to produce converted
HDR’ data 118. In this example HDR’ data 118 is in an integer representation. The
HDR’ data is now in a format more suitable for compression by a hybrid video encoder
(e.g., video encoder 20 applying HEVC techniques). The order of the processes
depicted in FIG. 5 is given as an example, and may vary in other applications. For
example, color conversion may precede the TF process. In addition, additional
processing, e.g. spatial subsampling, may be applied to color components.

[0079] The inverse conversion at the decoder side is depicted in FIG 6. The techniques
of FIG. 6 may be performed by destination device 14. Converted HDR’ data 120 may
be obtained at destination device 14 through decoding video data using a hybrid video
decoder (e.g., video decoder 30 applying HEVC techniques). HDR’ data 120 may then
be inverse quantized by inverse quantization unit 122. Then an inverse color conversion
process 124 may be applied to the inverse quantized HDR’ data. The inverse color
conversion process 124 may be the inverse of color conversion process 114. For
example, the inverse color conversion process 124 may convert the HDR’ data from a
YCrCb format back to an RGB format. Next, inverse transfer function 126 may be
applied to the data to add back the dynamic range that was compacted by transfer
function 112 to recreate the linear RGB data 128.

[0080] The techniques depicted in FIG. 5 will now be discussed in more detail. In
general, a transfer function is applied to data (e.g., HDR/WCG video data) to compact
the dynamic range of the data such that errors due to quantization are perceptually
uniform (approximately) across the range of luminance values. Such compaction allows
the data to be represented with fewer bits. In one example, the transfer function may be

a one-dimensional (1D) non-linear function and may reflect the inverse of an electro-

WO 2017/053277 PCT/US2016/052633
21

optical transfer function (EOTF) of the end-user display, e.g., as specified for SDR in
Rec. 709. In another example, the transfer function may approximate the HVS
perception to brightness changes, e.g., the PQ transfer function specified in SMPTE-
2084 for HDR. The inverse process of the OETF is the EOTF (electro-optical transfer
function), which maps the code levels back to luminance. FIG. 7 shows several
examples of non-linear transfer function used as EOTFs. The transfer functions may
also be applied to each R, G and B component separately.

[0081] In the context of this disclosure, the terms “signal value” or “color value” may
be used to describe a luminance level corresponding to the value of a specific color
component (such as R, G, B, or Y) for an image element. The signal value is typically
representative of a linear light level (luminance value). The terms “code level” or
“digital code value” may refer to a digital representation of an image signal value.
Typically, such a digital representation is representative of a nonlinear signal value. An
EOTF represents the relationship between the nonlinear signal values provided to a
display device (e.g., display device 32) and the linear color values produced by the
display device.

[0082] RGB data is typically utilized as the input color space, since RGB is the type of
data that is typically produced by image-capturing sensors. However, the RGB color
space has high redundancy among its components and is not optimal for compact
representation. To achieve more compact and a more robust representation, RGB
components are typically converted (e.g., a color transform is performed) to a more
uncorrelated color space that is more suitable for compression, e.g., YCbCr. A YCbCr
color space separates the brightness in the form of luminance (Y) and color information
(CrCb) in different less correlated components. In this context, a robust representation
may refer to a color space featuring higher levels of error resilience when compressed at
a constrained bitrate.

[0083] Following the color transform, input data in a target color space may be still
represented at high bit-depth (e.g. floating point accuracy). The high bit-depth data may
be converted to a target bit-depth, for example, using a quantization process. Certain
studies show that 10-12 bits accuracy in combination with the PQ transfer is sufficient
to provide HDR data of 16 f-stops with distortion below the Just-Noticeable Difference
(JND). In general, a JND is the amount of something (e.g., video data) must be change
in order for a difference to be noticeable (e.g., by the HVS). Data represented with 10-

bit accuracy can be further coded with most of the state-of-the-art video coding

WO 2017/053277 PCT/US2016/052633
22

solutions. This quantization is an element of lossy coding and is a source of inaccuracy
introduced to converted data.
[0084] It is anticipated that next generation HDR/WCG video applications will operate
with video data captured at different parameters of HDR and CG. Examples of different
configuration can be the capture of HDR video content with peak brightness up-to 1000
nits, or up-to 10,000 nits. Examples of different color gamuts may include BT.709,
BT.2020 as well SMPTE specified-P3, or others.
[0085] It is also anticipated that a single color space, e.g., a target color container, that
incorporates (or nearly incorporates) all other currently used color gamuts to be utilized
in future. One example of such a target color container is BT.2020. Support of a single
target color container would significantly simplify standardization, implementation and
deployment of HDR/WCG systems, since a reduced number of operational points (e.g.,
number of color containers, color spaces, color conversion algorithms, etc.) and/or a
reduced number of required algorithms should be supported by a decoder (e.g., video
decoder 30).
[0086] In one example of such a system, content captured with a native color gamut
(e.g. P3 or BT.709) different from the target color container (e.g. BT.2020) may be
converted to the target container prior to processing (e.g., prior to video encoding).
Below are several examples of such conversion:
RGB conversion from BT.709 to BT.2020 color container:
0 R2020 = 0.627404078626 * R709 + 0.329282097415 * Groo + 0.043313797587 * B7o9
0 (2020 = 0.069097233123 * R709 + 0.919541035593 * G709 + 0.011361189924 * B9
0 B2020 =0.016391587664 * R709 + 0.088013255546 * G709 + 0.895595009604 * B7o9
(D
RGB conversion from P3 to BT.2020 color container:
0 R2020 = 0.753832826496 * Rps + 0.198597635641 * Gps + 0.047569409186 * Bps
o G2020 = 0.045744636411 * Re3 + 0.941777687331 * Ges + 0.012478735611 * Bps
0 B2020 =-0.001210377285 * Re3 + 0.017601107390 * Gesz + 0.983608137835 * Bps
2
[0087] During this conversion, the value range occupied by each component (e.g.,
RGB, YUV, YCrCb, etc.) of a signal captured in P3 or BT.709 color gamut may be
reduced in a BT 2020 representation. Since the data is represented in floating point
accuracy, there is no loss; however, when combined with color conversion (e.g., a

conversion from RGB to YCrCB shown in equation 3 below) and quantization (example

WO 2017/053277 PCT/US2016/052633
23

in equation 4 below), the shrinking of the value range leads to increased quantization

error for input data.

B —Y' R —Y’

o Y =02627* R+ 0.6780 * G +0.0593 * B’; Cb= ;
1.4746

T 1.8814
3)

o Dy = <Round ((1 « (BitDepthy — 8)) * (219 Y’ + 16)))
o Dgp = <Round ((1 « (BitDepthe, — 8)) * (224 = Cb + 128)))

o Dg = <Round ((1 « (BitDepthgy, — 8)) * (224 * Cr + 128)))
4)
In equation (4) Dy’ is the quantized Y’ component, D¢y is the quantized Cb and
Dcr 1s the quantized Cr component. The term << represents a bit-wise right shift.
BitDepthy, BitDepthcr, and BitDepthcy are the desired bit depths of the quantized

components, respectively.

[0088] In addition, in a real-world coding system, coding a signal with reduced dynamic
range may lead to significant loss of accuracy for coded chroma components and would
be observed by a viewer as coding artifacts, e.g., color mismatch and/or color bleeding.
[0089] To address the problems described above, the following techniques may be
considered. One example technique involves HDR coding at the native color space. In
such a technique an HDR video coding system would support various types of currently
known color gamuts, and allow extensions of a video coding standard to support future
color gamuts. This support would not be only limited to support different color
conversion transforms, e.g. RGB to YCbCer, and their inverse transforms, but also would
specify transform functions that are adjusted to each of the color gamuts. Support of
such variety of tools would complex and expensive.

[0090] Another example technique includes a color gamut aware video codec. In such a
technique, a hypothetical video encoder is configured to estimate the native color gamut
of the input signal and adjust coding parameters (e.g., quantization parameters for coded
chroma components) to reduce any distortion resulting from the reduced dynamic range.
However, such a technique would not be able to recover loss of accuracy, which may
happen due to the quantization conducted in equation (4) above, since all input data is

provided to a typical codec in integer point accuracy.

WO 2017/053277 PCT/US2016/052633
24

[0091] This disclosure describes techniques, methods, and apparatuses to perform a
dynamic range adjustment (DRA) to compensate dynamic range changes introduced to
HDR signal representations by a color gamut conversion. The dynamic range
adjustment may help to prevent and/or lessen any distortion caused by a color gamut
conversion, including color mismatch, color bleeding, etc. In one or more examples of
the disclosure, DRA is conducted on the values of each color component of the target
color space, e.g., YCbCr, prior to quantization at the encoder side (e.g., by source
device 12) and after the inverse quantization at the decoder side (e.g., by destination
device 14).

[0092] FIG. 8 is a block diagram illustrating an example HDR/WCG conversion
apparatus operating according to the techniques of this disclosure. In FIG. 8, solid lines
specify the data flow and dashed lines specify control signals. The techniques of this
disclosure may be performed by video pre-processor unit 19 of source device 12. As
discussed above, video pre-processor unit 19 may be a separate device from video
encoder 20. In other examples, video pre-processor unit 19 may be incorporated into
the same device as video encoder 20.

[0093] As shown in FIG. 8, RGB native CG video data 200 is input to video pre-
processor unit 19. In the context of video preprocessing by video pre-processor unit 19,
RGB native CG video data 200 is defined by an input color container. The input color
container specifies set of color primaries used to represent video data 200 (e.g., BT. 709,
BT. 2020, P3, etc.). In one example of the disclosure, video pre-processor unit 19 may
be configured to convert both the color container and the color space of RGB native CB
video data 200 to a target color container and target color space for HDR’ data 216.
Like the input color container, the target color container may specify a set or color
primaries used to represent the HDR’ data 216. In one example of the disclosure, RGB
native CB video data 200 may be HDR/WCG video, and may have a BT.2020 or P3
color container (or any WCG), and be in an RGB color space. In another example,
RGB native CB video data 200 may be SDR video, and may have a BT.709 color
container. In one example, the target color container for HDR’ data 216 may have been
configured for HDR/WCG video (e.g., BT.2020 color container) and may use a color
space more optimal for video encoding (e.g., YCrCb).

[0094] In one example of the disclosure, CG converter 202 may be configured to
convert the color container of RGB native CG video data 200 from the input color

container (e.g., first color container) to the target color container (e.g., second color

WO 2017/053277 PCT/US2016/052633
25

container). As one example, CG converter 202 may convert RGB native CG video data
200 from a BT.709 color representation to a BT.2020 color representation, example of
which is shown below.
[0095] The process to convert RGB BT.709 samples (R709, G709, B709) to RGB BT.2020
samples (R2020, G2020, B2020) can be implemented with a two-step conversion that
involves converting first to the XYZ representation, followed by a conversion from
XYZ to RGB BT.2020 using the appropriate conversion matrices.

X =0.412391 * R709 + 0.357584 * G709 + 0.180481 * B709

Y =0.212639 * R709 + 0.715169 * G709 + 0.072192 * B709 (5)

7 =0.019331 * R709 + 0.119195 * G709 + 0.950532 * B709

[0096] Conversion from XYZ to R2020G2020B2020 (BT.2020)
R2020 = clipRGB(1.716651 * X — 0.355671 * Y - 0.253366 * Z)
Ga020 = clipRGB(-0.666684 * X + 1.616481 * Y +0.015768 * Z) (6)
B2020 = clipRGB(0.017640 * X - 0.042771 * Y + 0.942103 * Z)
Similarly, the single step and recommended method is as follows:
R2020 = clipRGB(0.627404078626 * R709 + 0.329282097415 * Gro9 +
0.043313797587 * B7o9)

G2020 = clipRGB(0.069097233123 * R709 + 0.919541035593 * G709 +
0.011361189924 * B709) (7)

B2o2o = clipRGB(0.016391587664 * Rz9 + 0.088013255546 * Groy +
0.895595009604 * B7o9)

[0097] The resulting video data after CG conversion is shown as RGB target CG video
data 204 in FIG. 8. In other examples of the disclosure, the color container for the input
data and the output HDR’ data may be the same. In such an example, CG converter 202
need not perform any conversion on RGB native CG video data 200.

[0098] Next, transfer function unit 206 compacts the dynamic range of RGB target CG
video data 204. Transfer function unit 206 may be configured to apply a transfer
function to compact the dynamic range in the same manner as discussed above with
reference to FIG. 5. The color conversion unit 208 converts RGB target CG color data
204 from the color space of the input color container (e.g., RGB) to the color space of
the target color container (e.g., YCrCb). As explained above with reference to FIG. 5,
color conversion unit 208 converts the compacted data into a more compact or robust
color space (e.g., a YUV or YCrCb color space) that is more suitable for compression

by a hybrid video encoder (e.g., video encoder 20).

WO 2017/053277 PCT/US2016/052633
26

[0099] Adjustment unit 210 is configured to perform a dynamic range adjustment
(DRA) of the color converted video data in accordance with DRA parameters derived
by DRA parameters estimation unit 212. In general, after CG conversion by CG
converter 202 and dynamic range compaction by transfer function unit 206, the actual
color values of the resulting video data may not use all available codewords (e.g.,
unique bit sequences that represent each color) allocated for the color gamut of a
particular target color container. That is, in some circumstances, the conversion of RGB
native CG video data 200 from an input color container to an output color container may
overly compact the color values (e.g., Cr and Cb) of the video data such that the
resultant compacted video data does not make efficient use of all possible color
representations. As explained above, coding a signal with a reduced range of values for
the colors may lead to a significant loss of accuracy for coded chroma components and
would be observed by a viewer as coding artifacts, e.g., color mismatch and/or color
bleeding.
[0100] Adjustment unit 210 may be configured to apply DRA parameters to the color
components (e.g., YCrCb) of the video data, e.g., RGB target CG video data 204 after
dynamic range compaction and color conversion to make full use of the codewords
available for a particular target color container. Adjustment unit 210 may apply the
DRA parameter to the video data at a pixel level. In general, the DRA parameters
define a function that expands the codewords used to represent the actual video data to
as many of the codewords available for the target color container as possible.
[0101] In one example of the disclosure, the DRA parameters include a scale and offset
value that is applied to the components of the video data. In general, the lower the value
range of the color components of the video data, the larger a scaling factor may be used.
The offset parameter may be used to center the values of the color components to the
center of the available codewords for a target color container. For example, if a target
color container includes 1024 codewords per color component, an offset value may be
chosen such that the center codeword is moved to codeword 512 (e.g., the middle most
codeword). In other examples, the offset parameter may be used to provide better
mapping of input codewords to output codewords such that overall representation in the
target color container is more efficient in combating coding artefacts.
[0102] In one example, adjustment unit 210 applies DRA parameters to video data in
the target color space (e.g., YCrCb) as follows:

- Y’ =scalel *Y’ + offsetl

WO 2017/053277 PCT/US2016/052633
27

- Cb’’ = scale2 *Cb’ + offset2 (8)
- Cr” =scale3 *Cr’ + offset3

where signal components Y’, Cb’ and Cr’ is a signal produced from RGB to YCbCr
conversion (example in equation 3). Note that Y’, Cr’ and Cr’ may also be a video
signal decoded by video decoder 30. Y, Cb”, and Cr’’ are the color components of the
video signal after the DRA parameters have been applied to each color component. As
can be seen in the example above, each color component is related to different scale and
offset parameters. For example, scalel and offsetl are used for the Y’ component,
scale2 and offset2 are used for the Cb’ component, and scale3 and offset3 are used for
the Cr’ component. It should be understood that this is just an example. In other
examples, the same scale and offset values may be used for every color component.
[0103] In other examples, each color component may be associated with multiple scale
and offset parameters. For example, the actual distribution of chroma values for the Cr
or Cb color components may differ for different partitions or ranges of codewords. As
one example, there may be more unique codewords used above the center codeword
(e.g., codeword 512) than there are below the center codeword. In such an example,
adjustment unit 210 may be configured to apply one set of scale and offset parameters
for chroma values above the center codeword (e.g., having values greater than the center
codeword) and apply a different set of scale and offset parameters for chroma values
below the center codeword (e.g., having values less than the center codeword).
[0104] As can be seen in the above example, adjustment unit 210 applies the scale and
offset DRA parameters as a linear function. As such, it is not necessary for adjustment
unit 210 to apply the DRA parameters in the target color space after color conversion by
color conversion unit 208. This is because color conversion is itself a linear process.
As such, in other examples, adjustment unit 210 may apply the DRA parameters to the
video data in the native color space (e.g., RGB) before any color conversion process. In
this example, color conversion unit 208 would apply color conversion after adjustment
unit 210 applies the DRA parameters.
[0105] In another example of the disclosure, adjustment unit 210 may apply the DRA
parameters in either the target color space or the native color space as follows:

- Y’ =(scalel *(Y’ — offsetY) + offsetl) + offsetY;

- Cb’’ = scale2 *Cb’ + offset2 9

- Cr” =scale3 *Cr’ + offset3

WO 2017/053277 PCT/US2016/052633
28

In this example, the parameter scalel, scale2, scale3, offsetl, offset2, and offset3 have
the same meaning as described above. The parameter offsetY is a parameter reflecting
brightness of the signal, and can be equal to the mean value of Y’. In other examples,
an offset parameter similar to offsetY may be applied for the Cb’ and Cr’ components to
better preserve the mapping of the center value in the input and the output
representations.
[0106] In another example of the disclosure, adjustment unit 210 may be configured to
apply the DRA parameters in a color space other than the native color space or the
target color space. In general, adjustment unit 210 may be configured to apply the DRA
parameters as follows:

- A’ =scalel *A + offsetl;

- B’ = scale2 *B + offset2 (10)

- C’ =scale3 *C + offset3
where signal components A, B and C are signal components in a color space which is
different from target color space, e.g., RGB or an intermediate color space.
[0107] In other examples of the disclosure, adjustment unit 210 is configured to apply a
linear transfer function to the video to perform DRA. Such a transfer function is
different from the transfer function used by transfer function unit 206 to compact the
dynamic range. Similar to the scale and offset terms defined above, the transfer
function applied by adjustment unit 210 may be used to expand and center the color
values to the available codewords in a target color container. An example of applying a

transfer function to perform DRA is shown below:

- Y’ =TF2(Y’)
- Cb” =TF2 (Cb’)
- Cr’ =TF2 (Cr’)

Term TF2 specifies the transfer function applied by adjustment unit 210. In some
examples, adjustment unit 210 may be configured to apply different transfer functions to
each of the components.

[0108] In another example of the disclosure, adjustment unit 210 may be configured to
apply the DRA parameters jointly with the color conversion of color conversion unit
208 in a single process. That is, the linear functions of adjustment unit 210 and color
conversion unit 208 may be combined. An example of a combined application, where
f1 and {2 are a combination of the RGB to YCbCr matrix and the DRA scaling factors,

is shown below:

WO 2017/053277 PCT/US2016/052633
29

B-Y . _R-Y
1 T TR

[0109] In another example of the disclosure, after applying the DRA parameters,

Cb =

adjustment unit 210 may be configured to perform a clipping process to prevent the
video data from having values outside the range of codewords specified for a certain
target color container. In some circumstances, the scale and offset parameters applied
by adjustment unit 210 may cause some color component values to exceed the range of
allowable codewords. In this case, adjustment unit 210 may be configured to clip the
values of the components that exceed the range to the maximum value in the range.
[0110] The DRA parameters applied by adjustment unit 210 may be determined by
DRA parameters estimation unit 212. The frequency and the time instances at which
the DRA parameters estimation unit 212 updates the DRA parameters are flexible. For
example, DRA parameters estimation unit 212 may update the DRA parameters on a
temporal level. That is, new DRA parameters may be determined for a group of
pictures (GOP), or a single picture (frame). In this example, the RGB native CG video
data 200 may be a GOP or a single picture. In other examples, DRA parameters
estimation unit 212 may update the DRA parameters on a spatial level, e.g., at the slice
tile, or block level. In this context, a block of video data may be a macroblock, coding
tree unit (CTU), coding unit, or any other size and shape of block. A block may be
square, rectangular, or any other shape. Accordingly, the DRA parameters may be used
for more efficient temporal and spatial prediction and coding.

[0111] In one example of the disclosure, DRA parameters estimation unit 212 may
derive the DRA parameters based on the correspondence of the native color gamut of
RGB native CG video data 200 and the color gamut of the target color container. For
example, DRA parameters estimation unit 212 may use a set of predefined rules to
determine scale and offset values given a certain native color gamut (e.g., BT.709) and
the color gamut of a target color container (e.g., BT.2020).

[0112] For example, assume that native color gamut and target color container are
defined in the form of color primaries coordinates in Xy space and white point
coordinates. One example of such information for BT.709 and BT.2020 is shown in

Table 2 below.

WO 2017/053277 PCT/US2016/052633
30

Table 2- RGB color space parameters

RGB color space parameters

White point [Primary colors

Color space
XXw | YYw | XXR | YYR | XXG | YYG | XXB | YYB

DCI-P3 0.314 10.351 [0.680]0.320]0.265]0.690]0.150{0.060

ITU-R BT.709 0.3127{0.3290]0.64 10.33]0.30 [0.60 [0.15 [0.06

ITU-R BT.2020]0.3127{0.3290]0.708]0.292]0.170{0.797(0.131{0.046

[0113] In one example, BT.2020 is the color gamut of the target color container and
BT.709 is the color gamut of the native color container. In this example, adjustment
unit 210 applies the DRA parameters to the YCbCr target color space. DRA parameters
estimation unit 212 may be configured to estimate and forward the DRA parameters to
adjustment unit 210 as follows:

scalel = 1; offsetl = 0;

scale2 = 1.0698; offset2 =0;

scale3 =2.1735; offset3 =0;
[0114] As another example, with BT.2020 being a target color gamut and P3 being a
native color gamut, and DRA being applied in YCbCr target color space, DRA

parameters estimation unit 212 may be configured to estimate the DRA parameters as:

scalel = 1; offsetl = 0;
scale2 = 1.0068; offset2 = 0;
scale3 =1.7913; offset3 = 0;

[0115] In the examples above, DRA parameters estimation unit 212 may be configured
to determine the above-listed scale and offset values by consulting a lookup table that
indicates the DRA parameters to use, given a certain native color gamut and a certain
target color gamut. In other examples, DRA parameters estimation unit 212 may be
configured to calculate the DRA parameters from the primary and white space values of
the native color gamut and target color gamut, e.g., as shown in Table 2.

[0116] For example, consider a target (T) color container specified by primary

coordinates (xXt, yXt), where X stated for R,G,B color components:

xRt yRt
primeT = [xGt yGt
xBt yBt

WO 2017/053277 PCT/US2016/052633
31

and native (N) color gamut specified by primaries coordinates (xXn, yXn), where X

stated for R,G,B color components:

xRn yRn
primeN = |xGn yGn
xBn yBn

The white point coordinate for both gamuts equals whiteP = (xW,yW). DRA
parameters estimation unit 212 may derive the scale2 and scale3 parameters for DRA as
a function of the distances between primaries coordinates to the white point. One
example of such an estimation is given below:

rdT = sqrt((primeT(1,1) - whiteP(1,1))"2 + (primeN(1,2) - whiteP(1,2))"2)

gdT = sqrt((primeT(2,1) - whiteP(1,1))"2 + (primeN(2,2) - whiteP(1,2))"2)

bdT = sqrt((primeT(3,1) - whiteP(1,1))*2 + (primeN(3,2) - whiteP(1,2))"2)

rdN = sqrt((primeN(1,1) - whiteP(1,1))"2 + (primeN(1,2) - whiteP(1,2))"2)

gdN = sqrt((primeN(2,1) - whiteP(1,1))*2 + (primeN(2,2) - whiteP(1,2))"2)

bdN = sqrt((primeN(3,1) - whiteP(1,1))"2 + (primeN(3,2) - whiteP(1,2))"2)

scale2 = bdT/bdN

scale3 = sqrt ((rdT/rdN)*2 + (gdT/gdN)*2)
[0117] In some examples, DRA parameters estimation unit 212 may be configured to
estimate the DRA parameters by determining the primaries coordinates in primeN from
the actual distribution of color values in RGB native CG video data 200, and not from
the pre-defined primary values of the native color gamut. That is, DRA parameters
estimation unit 212 may be configured to analyze the actual colors present in RGB
native CG video data 200, and use the primary color values and white point determined
from such an analysis in the function described above to calculate DRA parameters.
Approximation of some parameters defined above might be used as DRA to facilitate
the computation. For instance, scale3 = 2.1735 can be approximated to scale3 = 2,
which allows for easier implementation in some architectures.
[0118] In other examples of the disclosure, DRA parameters estimation unit 212 may be
configured to determine the DRA parameters based not only on the color gamut of the
target color container, but also on the target color space. The actual distributions of
values of component values may differ from color space to color space. For example,
the chroma value distributions may be difterent for YCbCr color spaces having a

constant luminance as compared to YCbCr color spaces having a non-constant

WO 2017/053277 PCT/US2016/052633
32

luminance. DRA parameters estimation unit 212 may use the color distributions of
different color spaces to determine the DRA parameters.

[0119] In other examples of the disclosure, DRA parameters estimation unit 212 may be
configured to derive values for DRA parameters so as to minimize certain cost functions
associated with pre-processing and/or encoding video data. As one example, DRA
parameters estimation unit 212 may be configured to estimate DRA parameters that
minimized quantization errors introduced by quantization unit 214 (e.g., see equation
(4)) above. DRA parameters estimation unit 212 may minimize such an error by
performing quantization error tests on video data that has had different sets of DRA
parameters applied. In another example, DRA parameters estimation unit 212 may be
configured to estimate DRA parameters that minimize the quantization errors
introduced by quantization unit 214 in a perceptual manner. DRA parameters estimation
unit 212 may minimize such an error based on perceptual error tests on video data that
has had different sets of DRA parameters applied. DRA parameters estimation unit 212
may then select the DRA parameters that produced the lowest quantization error.

[0120] In another example, DRA parameters estimation unit 212 may select DRA
parameters that minimize a cost function associated with both the DRA performed by
adjustment unit 210 and the video encoding performed by video encoder 20. For
example, DRA parameters estimation unit 212 may perform DRA and encode the video
data with multiple different sets of DRA parameters. DRA parameters estimation unit
212 may then calculate a cost function for each set of DRA parameters by forming a
weighted sum of the bitrate resulting from DRA and video encoding, as well as the
distortion introduced by these two lossy process. DRA parameters estimation unit 212
may then select the set of DRA parameters that minimizes the cost function.

[0121] In each of the above techniques for DRA parameter estimation, DRA parameters
estimation unit 212 may determine the DRA parameters separately for each component
using information regarding that component. In other examples, DRA parameters
estimation unit 212 may determine the DRA parameters using cross-component
information. For example, the DRA parameters derived for a Cr component may be
used to derive DRA parameters for a Cb component.

[0122] In addition to deriving DRA parameters, DRA parameters estimation unit 212
may be configured to signal the DRA parameters in an encoded bitstream. DRA
parameters estimation unit 212 may signal one or more syntax elements that indicate the

DRA parameters directly, or may be configured to provide the one or more syntax

WO 2017/053277 PCT/US2016/052633
33

elements to video encoder 20 for signaling. Such syntax elements of the parameters
may be signaled in the bitstream such that video decoder 30 and/or video post-processor
unit 31 may perform the inverse of the process of video pre-processor unit 19 to
reconstruct the video data in its native color container. Example techniques for
signaling the DRA parameters are discussed below.

[0123] In one example, DRA parameters estimation unit 212 may signal one or more
syntax elements that in an encoded video bitstream as metadata, in a supplemental
enhancement information (SEI) message, in video usability information (VUI), in a
video parameter set (VPS), in a sequence parameter set (SPS), in a picture parameter
set, in a slice header, in a CTU header, or in any other syntax structure suitable for
indicating the DRA parameters for the size of the video data (e.g., GOP, pictures,
blocks, macroblock, CTUs, etc.).

[0124] In some examples, the one or more syntax elements indicate the DRA
parameters explicitly. For example, the one or more syntax elements may be the
various scale and offset values for DRA. In other examples, the one or more syntax
elements may be one or more indices into a lookup table that includes the scale and
offset values for DRA. In still another example, the one or more syntax elements may
be indices into a lookup table that specifies the linear transfer function to use for DRA.
[0125] In other examples, the DRA parameters are not signaled explicitly, but rather,
both video pre-processor unit 19 and video post-processor unit 31 are configured to
derive the DRA parameters using the same pre-defined process using the same
information and/or characteristics of the video data that are discernible form the
bitstream. As one example, video post-processor unit 31 may be configured to indicate
the native color container of the video data as well as the target color container of the
encoded video data in the encoded bitstream. Video post-processor unit 31 may then be
configured to derive the DRA parameters from such information using the same process
as defined above. In some examples, one or more syntax elements that identify the
native and target color containers are supplied in a syntax structure. Such syntax
elements may indicate the color containers explicitly, or may be indices to a lookup
table. In another example, video pre-processor unit 19 may be configured to signal one
or more syntax elements that indicate the XY values of the color primaries and the white
point for a particular color container. In another example, video pre-processor unit 19
may be configured to signal one or more syntax elements that indicate the XY values of

the color primaries and the white point of the actual color values (content primaries and

WO 2017/053277 PCT/US2016/052633
34

content white point) in the video data based on an analysis performed by DRA
parameters estimation unit 212.
[0126] As one example, the color primaries of the smallest color gamut containing the
color in the content might be signaled, and at video decoder 30 and/or video post-
processor unit 31, the DRA parameters are derived using both the container primaries
and the content primaries. In one example, the content primaries can be signaled using
the x and y components for R, G and B, as described above. In another example, the
content primaries can be signaled as the ratio between two known primary sets. For
example, the content primaries can be signaled as the linear position between the
BT.709 primaries and the BT.2020 primaries: Xr content = alfar * Xr bt70o + (1-alfar) *
Xr bt2020 (With similar equation with alfag and alfas for the G and B components), where
parameter alfar specifies a ratio between two known primary sets. In some examples,
the signaled and/or derived DRA parameters may be used by video encoder 20 and/or
video decoder 30 to facilitate weighted prediction based techniques utilized for coding
of HDR/WCG video data.
[0127] In video coding schemes utilizing weighted prediction, a sample of currently
coded picture Sc are predicted from a sample (for single directional prediction) of the
reference picture Sr taken with a weight (Wwp) and an offset (Owp) which results in
predicted sample Sp:

Sp=Sr-* Wyp + Owp.
[0128] In some examples utilizing DRA, samples of the reference and currently coded
picture can be processed with DRA employing different parameters, namely { scalelcur,
offsetlcur } for a current picture and { scalelrr, offsetl wf } for a reference picture. In
such embodiments, parameters of weighted prediction can be derived from DRA, e.g

Wup = scalelcur / scalelrer

Owp = offsetlcur - offset]rer
[0129] After adjustment unit 210 applies the DRA parameters, video pre-processor unit
19 may then quantize the video data using quantization unit 214. Quantization unit 214
may operate in the same manner as described above with reference to FIG. 4. After
quantization, the video data is now adjusted in the target color space and target color
gamut of the target primaries of HDR’ data 216. HDR’ data 216 may then be sent to
video encoder 20 for compression.
[0130] FIG. 9 is a block diagram illustrating an example HDR/WCG inverse conversion

apparatus according to the techniques of this disclosure. As shown in FIG. 9, video

WO 2017/053277 PCT/US2016/052633
35

post-processor unit 31 may be configured to apply the inverse of the techniques
performed by video pre-processor unit 19 of FIG. 8. In other examples, the techniques
of video post-processor unit 31 may be incorporated in, and performed by, video
decoder 30.

[0131] In one example, video decoder 30 may be configured to decode the video data
encoded by video encoder 20. The decoded video data (HDR’ data 316 in the target
color container) is then forwarded to video post-processor unit 31. Inverse quantization
unit 314 performs an inverse quantization process on HDR’ data 316 to reverse the
quantization process performed by quantization unit 214 of FIG. 8.

[0132] Video decoder 30 may also be configured to decode and send any of the one or
more syntax elements produced by DRA parameters estimation unit 212 of FIG. 8 to
DRA parameters derivation unit 312 of video post-processor unit 31. DRA parameters
derivation unit 312 may be configured to determine the DRA parameters based on the
one or more syntax elements, as described above. In some examples, the one or more
syntax elements indicate the DRA parameters explicitly. In other examples, DRA
parameters derivation unit 312 is configured to derive the DRA parameters using the
same techniques used by DRA parameters estimation unit 212 of FIG. 8.

[0133] The parameters derived by DRA parameters derivation unit 312 are sent to
inverse adjustment unit 310. Inverse adjustment unit 310 uses the DRA parameters to
perform the inverse of the linear DRA adjustment performed by adjustment unit 210.
Inverse adjustment unit 310 may apply the inverse of any of the adjustment techniques
described above for adjustment unit 210. In addition, as with adjustment unit 210,
inverse adjustment unit 310 may apply the inverse DRA before or after any inverse
color conversion. As such, inverse adjustment unit 310 may apply the DRA parameter
on the video data in the target color container or the native color container. In some
examples, inverse adjustment unit 310 may be positioned to apply inverse adjustment
before inverse quantization unit 314.

[0134] Inverse color conversion unit 308 converts the video data from the target color
space (e.g., YCbCr) to the native color space (e.g., RGB). Inverse transfer function 306
then applies an inverse of the transfer function applied by transfer function 206 to
uncompact the dynamic range of the video data. In some examples, he resulting video
data (RGB target CG 304) is still in the target color gamut, but is now in the native
dynamic range and native color space. Next, inverse CG converter 302 converts RGB

target CG 304 to the native color gamut to reconstruct RGB native CG 300.

WO 2017/053277 PCT/US2016/052633
36

[0135] In some examples, additional post-processing techniques may be employed by
video post-processor unit 31. Applying the DRA may put the video outside its actual
native color gamut. The quantization steps performed by quantization unit 214 and
inverse quantization unit 314, as well as the up and down-sampling techniques
performed by adjustment unit 210 and inverse adjustment unit 310, may contribute to
the resultant color values in the native color container being outside the native color
gamut. When the native color gamut is known (or the actual smallest content primaries,
if signaled, as described above), then additional process can be applied to RGB native
CG video data 304 to transform color values (e.g., RGB or Cb and Cr) back into the
intended gamut as post-processing for DRA. In other examples, such post-processing
may be applied after the quantization or after DRA application.

[0136] As mentioned above, several SEI messages may be used to convey the
information regarding dynamic range adjustment information for the various color
components of the video data. The component scaling SEI message, such as described
above and in more detail below, may convey a set of scale factors, offsets, and ranges
(e.g., partitions of codeword values) that can be used to indicate the mapping
information for the various color components of the video data. The mapping
information may be used to indicate to video decoder 30 and/or video post-processor
unit 31 how to expand or shrink the different ranges of sample values in such a way that
the overall quality of the reconstructed HDR video data, or also quality of reconstructed
SDR video data in some cases where backward compatibility is desired, is improved, or
to make the reconstructed output more suitable for display capabilities.

[0137] Table 3 below provides one variation of the syntax structure of a component
scaling SEI message. Note that although the names of the syntax elements below
contain the prefix “hdr _recon ” that is different from that described in the examples
below, where the names of the syntax elements are prefixed as component_scaling, the

syntax table is otherwise the same.

WO 2017/053277 37 PCT/US2016/052633
[0138] Table 3 — Example Range Adjustment SEI syntax
hdr_reconstruction_info(payloadSize) { Descriptor

hdr_recon_id ue(v)
hdr_recon_cancel_flag u(l)
if('hdr_recon_cancel flag) {
hdr_recon_persistence flag u(l)
hdr_recon_transfer characteristics u(8)
hdr_recon_default flag u(l)
if('hdr recon_default flag) {
hdr_recon_scale bit _depth u(4)
hdr_recon_offset_bit depth u(4)
hdr_recon_scale frac bit depth u(4)
hdr_recon_offset frac bit depth u(4)
hdr_recon_num_comps_minusl ue(v)
}
for(¢ =0; ¢ <= hdr recon_num_comps_minusl; ct++) {
hdr_recon_num_ranges| c | ue(v)
hdr_recon_equal_ranges flag| c | u(l)
hdr_recon_global offset val[¢] u(v)
for(1=0;1 <= hdr_recon_num_ranges[c]; i++)
hdr_recon_scale val[c][1] u(v)
if('hdr _recon equal ranges[c])
for(1=0;1 <= hdr_recon_num_ranges[c]; i++)
hdr_recon_range val[c][i] u(v)
}
}
}

WO 2017/053277 PCT/US2016/052633
38

[0139] The semantics of the SEI syntax of Table 3 is presented below.
[0140] The mapping process is based on piece-wise linear functions map[¢](), for
¢ =0.hdr recon num comps minusl, that map a value x in[0,1] to a value
y =map|[¢](x) as follows:
- For 1 in the range of O to hdr recon num ranges[c¢] — 1, inclusive, the
following applies:
- The value ScaleValue[¢][1] is derived as described in semantics of syntax
element hdr recon scale val[¢][1].
- The value RangeValue[¢][1] is derived as described in semantics of syntax
element hdr recon range val[c][1].
- The values InputRanges[¢][i] and OutputRanges|[¢][1], for i in the range of
0 to hdr_recon_num_ranges| ¢ | — 1, inclusive, are derived as follows:
- If i is equal to O, the following applies:
OutputRanges[¢][1] =-hdr_recon global offset val[c] * ScaleValue[c][1—-1](D-
XX)
InputRanges[c][1]=0 (D-xx)
- Otherwise (i is not equal to 0), the following applies:
InputRanges[¢][1] = InputRanges[c][1 — 1] + RangeValue[c][1— 1] (D-xx)
OutputRanges|[¢][1] = OutputRanges[c J[1— 1]+
RangeValue[c [[1—1] * ScaleValue[c J[1-1] (D-xx)
- The wvalues OffsetValue[c][i], for 1 in the range of O to
hdr recon_num_ranges[¢] — 1, inclusive, are derived as follows:
OffsetValue[¢][1] = InputRanges[¢][1+ 1] — OutputRanges[¢][1+ 1] O
ScaleValue[cJ[1—1] (D-xx)
- The parameter y = map[¢](x) is derived as follows:
- If x is lower than or equal to OutputRanges| ¢][O], the following applies:
y = InputRanges[¢][O] (D-xx)
- Otherwise if x is larger than OutputRanges| ¢][hdr recon num ranges[¢]],
the following applies:
y = InputRanges| ¢][hdr_recon_num_ranges| ¢ |] (D-xx)
- Otherwise, the following applies:
for(1=1;1<=hdr recon num_ranges| ¢ [, i++)
if(OutputRanges[1— 1] <x && x <=OutputRanges[i])
y =x + ScaleValue[¢ J[1— 1] + OffsetValue[c][1—1] (D-xx)

WO 2017/053277 PCT/US2016/052633
39

[0141] Several problems have been identified that are associated with the component
scaling information SEI messages, and other parameters that are applicable to adjust the
dynamic range of components. In particular, problems have been identified related to
the use of floating point numbers to derive scale and offset values, as well as the ranges
of codewords for sample values (e.g., RGB values, YCrCb values, YUV values, XYZ
values, etc.). For example, the scale values that are signalled in the bitstream are used at
the decoder side, for example, by video post-processor 31, to perform an inverse
dynamic range adjustment process. However, in order to use the scale values for
computing the ranges of sample values, and for computing the mapping process, a
reciprocal operation is performed at video post-processor 31. Previous example
semantics for a component scaling SEI message specify the use of the reciprocal (e.g.,
the reciprocal of a scale value, or reciprocal of a scale value and an added offset value)
to be multiplied with sample values. Errors introduced in such a reciprocal operation
would be more significant than potential errors in a forward operation, as the reciprocal
is applied to every sample value generated.

[0142] The semantics of the component scaling SEI message indicates the derivation
process of the ranges of sample values, and the mapping process (e.g., the application of
scale and offset values) to each range of codewords of color components (e.g., sample
values) in terms of floating point operations. This could lead to differences in the
reconstructed HDR output based on the various floating point arithmetic
implementations in different computing systems.

[0143] This application describes several techniques to improve the communication of
component scaling information using SEI signaling and processing, or other similar
signaling techniques which may be specified in video coding standards, such as
H.265/HEVC, H.264/AVC, BDA, MPEG or others. It is to be recognized that one or
more of the following aspects may be applied independently, or in suitable combination
with others of these aspects in any particular example.

[0144] In general, this disclosure describes techniques wherein video encoder 20 and/or
video pre-processor unit 19 may be configured to signal a scale value for one or more
sample value ranges of a component sample values (e.g., color component values). The
scale value is specified such that video decoder 30 and video post-processor unit 31 may
be configured to perform a mapping process to obtain an output sample value from the
input sample value of the component by multiplying the scale value specified for a

specific sample value range containing the input sample value with the input sample

WO 2017/053277 PCT/US2016/052633
40

value and adding an offset computed based on the parameters as part of the component
scaling information.

[0145] In another example of the disclosure, rather than using a floating point
implementation to compute the size and number of ranges of codewords of a color
component, video encoder 20 and/or video pre-processor unit 19 may be configured to
derive the size and number of ranges of codewords of the color component using a
fixed-point computing implementation. For example, video encoder 20 and/or video
pre-processor unit 19 may be configured to use a predetermined number of fractional
bits for determining and applying the parameters of the dynamic range adjustment
mapping process. Note that the number of fractional bits may be different for each
parameter (e.g., range of values for each color component (codeword), scale value, and
offset value) of the dynamic range adjustment process.

[0146] For example, video pre-processor unit 19 may be configured to perform integer
operations on any parameters or syntax element (e.g. hdr recon_num_ranges| ¢]) used
to communicate the size and number of ranges of codewords for a color component.
Video pre-processor unit 19 may be configured to keep track of the number of bits used
by the fractional part of any calculation of the size and number of ranges in the fixed-
point implementation used. Video pre-processor unit 19 and/or video encoder 20 may
be configured to signal the number of bits used in the fractional part in an SEI message
(e.g., hdr recon_offset frac bit depth, hdr recon scale frac bit depth), or the number
of bits used in the fractional part may be a pre-determined value. Video decoder 30 may
be configured to decode the syntax elements in the SEI message indicating the number
of bits in the fractional part and video post-processor unit 31 may be configured to
perform an inverse dynamic range adjustment using the same number of bits in the
fractional part for one or more of the parameters of the inverse dynamic range
adjustment process.

[0147] In one example of the disclosure, when determining the ranges and/or other
parameters for the mapping process, video decoder 30 and/or video post-processor unit
31 may be configured to determine such parameters so that, when the signaled fractional
bit depths of different parameters are different, the accuracy of the computations
performed for the parameters are retained as far as possible. For example, video
decoder 30 and/or video post-processor unit 31 may be configured to retain any errors
introduced due to rounding to a minimum by accumulating the number of fractional bits

in any intermediate calculation steps used to determine a particular parameter. Video

WO 2017/053277 PCT/US2016/052633
41

decoder 30 and/or video post-processor unit 31 may then perform a clipping process to
bring the final value of a particular parameter to the desired fractional accuracy at the
last step of determining and/or calculating a particular parameter. In another example,
when the signaled fractional bit depths of the parameters are the same, video decoder 30
and/or video post-processor unit 31 may be configured to accumulate the number of
fractional bits in the intermediate steps, and perform clipping to bring the final value of
a parameter to the desired accuracy at the last step(s).

[0148] In another example, video decoder 30 and/or video post-processor unit 31 may
be configured to clip and/or truncate the value of a parameter at one or more
intermediate steps of a calculation process or the parameter such that the fractional parts
of values obtained for the parameter are reduced to a pre-determined value. That is,
rather than waiting until determining a final value for the parameter to perform any
clipping, video decoder 30 and/or video post-processor unit 31 may clip intermediate
values of calculations performed to determine the parameter. Such clipping or
truncation may be based on the number of fractional bits indicated in the SEI message.
In another example, video decoder 30 and/or video post-processor unit 31 may be
configured to clip and/or truncate intermediate values used when calculating a particular
parameter before a particular operation/step when it is determined that, if the
operation/step is performed without clipping, the accumulated number of fractional bits
would exceed a certain pre-determined value, e.g. the bit depth of the registers used to
store the intermediate values.

[0149] In another example of the disclosure, video pre-processor unit 19 and/or video
post-processor unit 31 may be configured to derive scale, offset and range values
according to predetermined sample value ranges based on a defined minimum and
maximum values defined for the fixed representation of the color components. For
example, a fixed representation of color components may have a plurality of ranges of
values defined, e.g., a “standard” range of values, a “full” range of values, and a
“restricted” range values. The “full” range of values may have a larger span between
the minimum and maximum value of a particular component (e.g., for an 8-bit full-
range representation of YCbCr color space, the Y, Cb, and Cr components can take
values in the rage of 0 to 255, inclusive) as compared to the “standard” range of values
(e.g., an 8-bit standard range representation of YCbCr color space, the Y component
may take values in the range of 16 to 235, inclusive, and the Cb and Cr components

may take values between 16 and 240, inclusive). The “restricted” range of values may

WO 2017/053277 PCT/US2016/052633
42

have a smaller span between the minimum and maximum value of a particular
component (e.g., for a 10-bit restricted-range representation of YCbCr color space, the
Y, Cb, and Cr components may take values in the range of 4 to 1019, inclusive) as
compared to the “standard” range of values.

[0150] In one example, video encoder 20 and/or video pre-processor unit 19 may be
configured to signal a syntax element (e.g., in an SEI message) to indicate to video
decoder 30 and/or video post-processor unit 31 the minimum and maximum permitted
values of the samples (e.g., color component values) based on what sample range is
used (e.g. full, restricted, standard, or others). In another example, video encoder 20
and/or video pre-processor unit 19 may be configured to signal one or more syntax
values (e.g., in an SEI message) that indicate the minimum and maximum permitted
values of the samples to video decoder based on what sample range is used (e.g. full,
restricted, standard). Video decoder 30 and/or video post-processor unit 31 may then
determine the range of component values allowed for the inverse dynamic range
adjustment process based on the received minimum value and the received maximum
value.

[0151] In another example, video encoder 20 and/or video pre-processor unit 19 may be
configured to signal a flag (e.g., in an SEI message) to indicate whether the scale values
are signed or unsigned. In this example, the parsing process of any SEI messages is the
same regardless the value of the flag.

[0152] The following section includes several examples of embodiments that use
example techniques disclosed in the previous section. In this embodiment, the
component scaling function is signaled as a lookup table and the number of bits used to
signal the points defining the lookup table are also signaled. In one example, the lookup
defines a piece-wise linear mapping function. The points for the lookup table
correspond to the (x,y) coordinates that define the piece-wise linear mapping. For
sample values that do not have explicit points signaled, the value is interpolated based
on the neighboring pivot points.

[0153] The derivation process of the ranges and the output sample values are defined as
below.

[0154] The mapping of sample x from component ¢ to sample y =map[¢](x) is

specified as follows:

WO 2017/053277 PCT/US2016/052633
43

— Set the value of DefaultPrecShift equal to 9

— Let the variables minSampleVal and maxSampleVal denote the minimum and the

maximum sample values as defined by the sample range of the content.

— The variable ScaleValue[¢][1], for i in the range of O to

hdr recon_num_ranges[¢] — 1, inclusive, is derived as follows:

SignValue[¢][1] =0 //0 for positive, 1 for negative
hdrReconScaleBitDepth = hdr recon scale bit depth —
(hdr negative scales present flag? 1:0)
if(hdr_negative scales present flag)

ScaleValue[¢][1] =hdr recon scale val[c][1] & ((1 <<
hdrReconScaleBitDepth) — 1) (D-xx)

SignValue[¢][1]=hdr recon scale val[cJ[1]& (1 <<
hdrReconScaleBitDepth)
else

ScaleValue[¢][1] =hdr recon scale val[c][1] (D-xx)
shiftinvScale = 1 <<hdrReconScaleBitDepth
InvScaleValue[¢][1] = (1 << (DefaultPrecShift + hdrReconScaleBitDepth)
+ shiftlnvScale)/

ScaleValue[¢][1]

— The variable RangeValue[¢][1], for i in the range of O to

hdr recon_num_ranges[¢] — 1, inclusive, is derived as follows:
— If hdr recon equal ranges flag[¢]is equal to O, the following applies:
RangeValue[¢][1] =hdr _recon range val[c][1] (D-xx)
— Otherwise (hdr_recon_equal ranges flag[¢]is equal to 1), the following
applies:

RangeValue[¢][1] = ((InputDynamicRangeValue <<
hdr recon offset frac bit depth)+
((hdr_recon num ranges[c]+1) >> 1))/

hdr_recon_num_ranges[¢] (D-xx)

WO 2017/053277 PCT/US2016/052633
44

where InputDynamicRangeValue is equal to 1 when the sample range is normalized
fromOto 1.

— The variables InputRanges[¢][1] and OutputRanges[¢][1], for i in the range of 0

to hdr_recon_num_ranges| ¢], inclusive, are derived as follows:

— Ifiis equal to O, the following applies:

OutputRanges[¢][1] =— hdr_recon_global offset val[¢] *
InvScaleValue[c][1-1] (D-xx)

InputRanges[c][1]=0 (D-xx)
— Otherwise (i is not equal to 0), the following applies:

InputRanges| ¢][1] = InputRanges[¢][1 — 1] + RangeValue[c J[1—1] (D-
XX)
OutputRanges|[¢][1] = OutputRanges[¢ J[1— 1]+
RangeValue[c][1—1] * InvScaleValue[c [[1—1]
(D-xx)
— The parameters OffsetValue[¢][1], for i in the range of 0 to

hdr recon_num_ranges[¢] — 1, inclusive, are derived as follows:

precOffsetDeltaBits = DefaultPrecShift + hdr recon_scale frac bit depth
OffsetValue[c][1] =InputRanges[c][1+ 1] * (1 << precOffsetDeltaBits)
OutputRanges[¢ [[1+ 1] * ScaleValue[c][1—1] (D-
XX)
OffsetValue[¢][1] = ((OffsetValue[c][1]+ (1 << (BitDepth—1)))>>
BitDepth) *
(maxSampleVal — minSampleVal)

WO 2017/053277 PCT/US2016/052633
45

— The parameter y = map[¢](x) is derived as follows:

Variable bitDepthDelta is set equal to DefaultPrecShift +
hdr recon offset frac bit depth — BitDepth

— If (x << bitDepthDelta) is lower than or equal to OutputRanges[¢][0], the

following applies:

y = InputRanges[¢][O] (D-xx)
fracBitDepth = hdr_recon offset frac bit depth

— Otherwise if (x << bitDepthDelta) is larger than

OutputRanges| ¢][hdr_recon num ranges| ¢]], the following applies:

y = InputRanges| ¢][hdr_recon num_ranges| ¢] [(D-xx)
fracBitDepth = hdr_recon offset frac bit depth

— Otherwise, the following applies:

fracBitDepth = DefaultPrecShift + hdr recon_scale frac bit depth +
hdr recon_offset frac bit depth — BitDepth
for(1=1;1<=hdr recon num_ranges| ¢ [, i++)
if(OutputRanges[1 — 1] <(x << bitDepthDelta) &&
(x << bitDepthDelta) <= OutputRanges[i1]) {
rangeBitShift = DefaultPrecShift +
hdr recon_offset frac bit depth — BitDepth
y =(x —minSampleVal) * ScaleValue[c J[1-1]* (1 <<
rangeBitDepth) +
OffsetValue[c][1—1]+
minSampleVal * (1 << fracBitDepth) (D-xx)

- fracShiftOffset = 1 << (fracBitDepth — 1)
y = (y + fracShiftOffset) >> fracBitDepth

Alterantively, the adjustment of the sample range based on minSampleVal and
maxSampleVal are not performed on the OffsetValue, but rather on the InputRanges
and OutputRanges as follows:

deltaSampleVal = maxSampleval — minSampleVal

WO 2017/053277 PCT/US2016/052633
46

deltaBitShift = DefaultPrecShift + hdr_recon_offset frac bit depth
sampleShift = (1 << (BitDepth — 1)) + (minSampleVal << deltaBitShift))
OutputRanges|[¢][1] = ((OutputRanges[¢][1] * deltaSampleVal) +
sampleShift) >>

BitDepth

deltaBitShift = DefaultPrecShift + hdr recon offset frac bit depth

sampleShift = (1 << (BitDepth — 1)) + (minSampleVal << deltaBitShift))

InputRanges[¢][1] = ((InputRanges[c][1 | * deltaSampleVal) + sampleShift)

>>

BitDepth

[0155] This disclosure provides several techniques to improve carriage of component
scaling information using SEI signaling and processing or other means which is
specified or to be specified in video coding standards, such as H.265/HEVC,
H.264/AVC, BDA, MPEG or others. One or more of these techniques may be applied
independently, or in combination with others. In addition, the techniques described
above for signaling and/or using information in SEI messages for performing a fixed-
point implementation of a dynamic range process may utilize one or more of the syntax
structures described below for signaling/receiving the information.
[0156] In some examples, video encoder 20 may signal one or more SEI messages that
include global offset values, including, for each component, a first offset value that
determines a first unadjusted component value below which all component values are
clipped to the first component value before applying dynamic range adjustment as
described in this disclosure. Decoder 30 may receive one or more of such SEI
messages, parse and/or decode the information in the SEI messages, and pass the
information to the video post-processor 31.
[0157] In some examples, for each component, video encoder 20 may signal one or
more SEI messages that include a second offset value that specifies the adjusted value to
which the first offset value maps to after dynamic range adjustment. Video decoder 30
may receive such SEI messages, parse and/or decode the information, and pass that
information to video post-processor 31.
[0158] In another example, neither the first global offset value nor the second global

offset value is signaled in a SEI message. Instead, decoder 30 assumes that the values

WO 2017/053277 PCT/US2016/052633
47

of the first global offset and the second global offset is a constant, predetermined, or
signaled value that the decoder 30 either determines per sequence or receives by
external means. In another example, video encoder 20 signals the first global offset
value in an SEI message, but the second global offset value is not signaled in a SEI
message. Instead, video decoder 30 infers that its value is a constant, predetermined, or
signaled value that decoder 30 either determines per sequence or received by external
means. In a still further example, video encoder 20 signals the second global offset
value in an SEI message, but the first global offset value is not signaled in a SEI
message. Instead, video decoder 30 infers that the first global offset value is a constant,
predetermined, or signaled value that decoder 30 either determines per sequence or
received by external means.

[0159] In some examples, video encoder 20 may signal offset values that are received
by decoder 30, and are used by decoder 30 to derive other global or local parameters,
including both global and local scale and offset values, as well as partitions of a range of
unadjusted values, and partitions of a range of adjusted values.

[0160] In some examples, video encoder 20 may signal one or more SEI messages that
include the number of partitions that the range of input representation values (i.e.,
component values) was divided into during dynamic range adjustment. In one example,
the number of partitions may be constrained to be a power of 2 (i.e. 1, 2, 4, 8, 16, etc.)
and the number of partitions is signaled as logarithm (e.g. 8 partitions is signaled as 3 =
logz 8). Video decoder 30 may receive such SEI messages, parse and/or decode the
information, and pass that information to video post-processor 31.

[0161] In some examples, the number of partitions for the chroma components may be
different from the number of partitions for the luma component. The number of
partitions may be constrained to be a power of 2 + 1 and signaled as logarithm and
rounding towards minus 0. In this way, pixels with neutral chroma can have their own
values and the size of that partition can be smaller than the other partitions. In such an
example, neutral chroma may refer to values of chroma around the mid-value (e.g., O
when the chroma values range between -0.5 and 0.5, or between -512 and 511 in a 10-
bit representation). Constraining the number of partitions as a power of 2 may enable
the encoder 20 to save bits, because encoder 20 may be able to represent the log of a
value with fewer bits than the actual value for integer values. Constraining the number
of partitions to a power of 2 + 1 may ensure that at least one partition may be dedicated

to the neutral chroma values, and in some examples, the width of the partition

WO 2017/053277 PCT/US2016/052633
48

corresponding to the neutral chroma values may be smaller than the rest. In other
examples, such a partition may be larger than one or more of the other partitions.
[0162] In some examples, decoder 30 may use the signaled number of partitions to
derive other global or local parameters, including both global and local scale and offset
values, as well as the actual size of the partitions of a range of unadjusted component
values and/or the size of the partitions of a range of adjusted component values.

[0163] In some examples, encoder 20 may signal one or more SEI messages that may
include, for each partition, a local scale and local offset value specifying a range of the
input component values and the corresponding mapped output component values. In
some examples, encoder 20 may signal an SEI message that includes the number of bits
used by the syntax elements to signal the scale and offsets. In other examples, encoder
20 may signal an SEI message that indicates the number of bits that are used to
represent the fractional part of the scale and offsets in the syntax elements. In other
examples, encoder 20 may signal one or more SEI messages or syntax elements that
indicate that the integer part of the scale parameters is signaled in a signed
representation. In some examples, the signed representation is two’s complement. In
other examples, the signed representation is signed magnitude representation. Video
decoder 30 may receive such SEI messages and/or syntax elements, parse and/or decode
the information, and pass that information to video post-processor 31.

[0164] In other examples, encoder 20 may use each offset value successively to first
compute the range of adjusted component or representation values, and then using the
scale value, compute the corresponding range in the unadjusted representation. For
example, one offset value may be used to compute the range of a first partition in the
adjusted component using the value of a global offset value derived or signalled for the
adjusted component, followed by using the scale value and the range of a first partition
of the adjusted representation to derive the range in the corresponding partition of the
unadjusted representation and with the respective ranges of the first partition of the
adjusted and the corresponding partition of the unadjusted representations, derive a
respective value derived for the first partition of the adjusted range and the
corresponding partition of unadjusted representations that indicate a boundary of the
partitions. Following this, another offset value may be used to compute the range of a
second partition in the adjusted component using the boundary value of the first
partition in the adjusted component derived in the previous step, followed by using the

scale value and the range of a second partition of the adjusted representation to derive

WO 2017/053277 PCT/US2016/052633
49

the range of the unadjusted representation, and with the respective ranges of the second
partitions of the adjusted representation and corresponding partition of the unadjusted
representations, a respective value is derived for the partitions in the adjusted and
unadjusted representations that indicate a boundary of the respective representations.
This method is repeated until all the ranges and boundaries are derived for all the
partitions in the adjusted and unadjusted representations. In another example, encoder
20 may use each offset value successively to first compute the range of unadjusted
component or representation values, and then using the scale value, compute the
corresponding range in the adjusted representation. In other words, the component or
representation to which the scale and offset values are applied could be swapped
between unadjusted and adjusted representations.

[0165] In some examples, the number of bits used by the syntax elements to signal scale
and offset values may depend on the component. In other examples, a default number
of bits is defined and used when these numbers are not explicitly signaled.

[0166] In some examples, encoder 20 may signal a syntax element indicating whether
the length of the partitions of the output representations (i.e., output components) are
equal. In such an example, encoder 20 might not signal the offset value for one or more
partitions. Decoder 30 may infer the offset values to be equal in some examples. In
another example, decoder 30 may assume the partitions are of equal length and may not
receive a syntax element so indicating. In some examples, decoder 30 may derive the
size of each partition from signaled syntax elements and predefined total dynamical
range of the representation.

[0167] In other examples, rather than signaling pivot points for each partition as well as
scale and offset values for each partition, video encoder 20 may signal one or more SEI
messages that indicate derivative or scale value for each partition along with the size of
one or more or all partitions. This approach may allow encoder 20 to avoid signaling
local offset values for each partition. Instead, in some examples, encoder 20 may be
able to signal, in one or more SEI messages, the partition size and scale value (or
derivative) for one or more partitions. The local offset value for each partition or
partitioning (which may require higher accuracy) may be determined or derived by
decoder 30.

[0168] In some examples, encoder 20 may signal one or more SEI messages that

indicate a mode value that specifies several default values for offset and scale values for

WO 2017/053277 PCT/US2016/052633
50

certain partitions. Video decoder 30 may receive such SEI messages, parse and/or
decode the information, and pass that information to video post-processor 31.

[0169] In some examples, encoder 20 may signal one or more SEI messages that
indicate a value defining the persistence of the SEI message such that the persistence of
a subset of the components may be defined and component scale values of a subset of
the components may be updated. The persistence of an SEI message indicates the
pictures to which the values signalled in the instance of the SEI may apply. In some
examples, the persistence of the SEI message is defined such that the values signalled in
one instance of SEI messages may apply correspondingly to the all components of the
pictures to which the SEI message applies. In other examples, the persistence of the SEI
message is defined such that the values signalled in one instance of the SEI may be
indicated to apply correspondingly to a subset of the components wherein the
components to which the values in the instance of the SEI does not apply may either
have no values applicable or may have values applicable that are signalled in another
instance of the SEI message. Video decoder 30 may receive such SEI messages, parse
and/or decode the information, and pass that information to video post-processor 31.
[0170] In some examples, encoder 20 may signal one or more SEI messages that
include syntax elements indicating the post-processing steps to be performed to the
decoded output. Each syntax element may be associated with a particular process (e.g.
scaling components, color transforms, up-sampling/down-sampling filters, etc.) and
each value of the syntax element may specify that a particular set of parameters
associated with the process be used. In some examples, the parameters associated with
the process are signaled by video encoder 20 using SEI messages that are part of the
bitstream or as metadata that may be transmitted through other means. Video decoder
30 may receive such SEI messages, parse and/or decode the information, and pass that
information to video post-processor 31.

[0171] In some examples, encoder 20 may signal syntax elements or one or more SEI
messages that may be used for describing and/or constructing a piece-wise linear model
function for mapping input representations (i.e., input component values) to output
representations (i.e., output component values). Video decoder 30 may receive such
SEI messages, parse and/or decode the information, and pass that information to video
post-processor 31. In other examples, predefined assumptions may be used for
describing and/or constructing a piece-wise linear model function for mapping input

representations to the output representation.

WO 2017/053277 PCT/US2016/052633
51

[0172] In some examples, encoder 20 may signal one or more SEI messages that may
include one or more syntax elements indicating that the scale and offset parameters
signaled in the SEI message represent the variation of the scale to be applied to a first
component as a function of different values of a second component.

[0173] In some examples, encoder 20 may signal one or more SEI messages indicating
offset parameters that are to be or may be applied along with the scale on a first
component as a function of different values of a second component. In some examples,
encoder 20 may signal one or more SEI messages that may include one or more
additional syntax elements that indicating offset parameters that are to be or may be
applied along with the scale on a first component as a function of different values of a
second component. Video decoder 30 may receive such SEI messages, parse and/or
decode the information, and pass that information to video post-processor 31.

[0174] In some examples, encoder 20 may signal one or more SEI messages including a
first syntax element that indicates a first set of electro-optical transfer function
characteristics such that the signaled scale, offset and other dynamic range adjustment
parameters the SEI message are applied when the electro-optical transfer function
characteristics used on the decoder-side are similar to that first set of electro-optical
transfer function characteristics.

[0175] In another example, encoder 20 may signal one or more SEI messages indicating
that the signaled offset, scale and other dynamic range parameters in the SEI message(s)
are to be applied for best reconstruction of the HDR output when the first set of electro-
optical transfer function characteristics, or those with similar characteristics, are used by
the decoder 30. Video decoder 30 may receive such SEI messages, parse and/or decode
the information, and pass that information to video post-processor 31.

[0176] In another example, encoder 20 may signal one or more SEI messages indicating
that a first set of opto-electronic transfer function characteristics, and the signaled scale,
offset and other dynamic range adjustment parameters are applied on by decoder 30
when the corresponding inverse electro-optical transfer function characteristics are
applied at the decoder side. Video decoder 30 may receive such SEI messages, parse
and/or decode the information, and pass that information to video post-processor 31.
[0177] In other examples, encoder 20 may signal a condition such that when more than
one SEI message is present indicating different set of electro-optical/opto-electronic
characteristics and applicable the current picture, only one SEI message is applied. The

encoder may signal different set of electro-optical/opto-electronic characteristics to

WO 2017/053277 PCT/US2016/052633
52

satisfy different types of decoders, or decoders with different capabilities. For example,
some displays at the decoder side may apply the PT EOTF to convert the coded
component values in appropriate domain to linear light, whereas other displays, e.g.
legacy displays, may apply the gamma EOTF to convert to linear light. Each SEI with a
particular characteristic that the encoder sends may be appropriate or beneficial for
certain types of displays and not for other types of displays, e.g. an SEI message with
PQ EOTF characteristics may be suitable for displays that apply PQ EOTF to convert
the coded video to linear light. The decoder 30 determines which SEI message is to be
applied, and makes such a choice based on the application standard, based on the end-
user device, based on a signal received, or based on another indication received through
external means. For example, decoder 30 may determine that the first syntax element in
a first SEI message that applies to a current picture indicates that the SEI message is to
be applied with the inverse of PQ OETF and the first syntax element in a second SEI
message that applies to a current picture indicates that the SEI message is to be applied
with another transfer function (such as BBC, or PH), the decoder 30 or end-user device
may choose to apply the parameters in the first SEI message because the device uses PQ
EOTEF. In some examples, an application standard to which the decoder conforms to
may specify that an SEI message with a particular set of characteristics is to be used.
[0178] In other examples, encoder 20 may signal an SEI message that carries the
parameters corresponding to multiple sets of transfer characteristics. In other examples,
encoder 20 may signal different SEI messages for that purpose. Video decoder 30 may
receive such SEI messages, parse and/or decode the information, and pass that
information to video post-processor 31

[0179] In some examples, encoder 20 may signal one or more SEI messages that
include a syntax element indicating the applicability of the SEI message. The
applicability of the SEI message may include, but is not limited to (1) the components to
which the scales and offsets apply, (2) the position at which the component scaling is
applied, and/or (3) whether additional scaling parameters are signaled.

[0180] As described, encoder 20 may signal one or more SEI messages that include a
syntax element indicating the components to which the scales and offsets apply. The
following lists several examples of such an application. For example, one value of the
syntax element could indicate that signaled parameters for the first component index are
to be applied to the RGB components. Another value may indicate that the signaled

parameters for the first component index is to be applied to luma component, and those

WO 2017/053277 PCT/US2016/052633
53

for the second and third indices are to be applied to the Cb and Cr components. Another
value may indicate that the signaled parameters for the first component index is to be
applied to R, G and B components, and those for the second and third indices are to be
applied to the Cb and Cr components. Another value may indicate that signaled
parameters for first three indices are applied to luma, Cb and Cr components, and that
corresponding to the remaining indices are applied for color correction. Video decoder
30 may receive such SEI messages, parse and/or decode the information, and pass that
information to video post-processor 31.

[0181] Also as described, encoder 20 may signal one or more SEI messages including a
syntax element indicating the position at which the component scaling is applied.
Several processes occur on the decoder-side, after decoding of the video, and in the
video post-processor 31. Signaling of syntax element indicating the position at which
the process associated with the SEI is to be applied, in other words indication of any
subset of the preceding or succeeding operations of the process associated with using
the information in the SEI, would be helpful to the video decoder 30 or the video post-
processor 31 to process the video. For example, such a syntax element could indicate
the position at which the component scaling is applied, for example to YCbCr
components before or after upsampling. In another example, the syntax element could
indicate that the component scaling is applied before the quantization no the decoder
side. Video decoder 30 may receive such SEI messages, parse and/or decode the
information, and pass that information to video post-processor 31.

[0182] Also as described, encoder 20 may signal one or more SEI messages that include
a syntax element indicating whether an additional set of scaling and parameters, e.g. for
color correction, are signaled. The additional set of parameters could be used for color
correction to map the color components to fit a particular color gamut, or for correction
of component values when a different transfer function is applied than that indicated by
the transfer characteristics syntax element in the VUL

[0183] In other examples, encoder 20 may signal different syntax elements to indicate
the above aspects; e.g. one syntax element to indicate which component(s) the SEI
applies to, one syntax element to indicate whether it applies to HDR-compatible of
SDR-compatible content, and one syntax element to indicate the position(s) where the
component scaling SEI message is to be applied.

[0184] When the number of components to which the component scaling SEI message

parameters are applied is more than one, encoder 20 may signal one or more SEI

WO 2017/053277 PCT/US2016/052633
54

messages that include a syntax element indicating that application of scale and offset
parameters may be done sequentially based on the index of the component. For
example, the mapping based on the scale and offset parameters of the first component
may be applied, and then the mapping of the second component, which for example
uses scale and offset signaled for the second component, may depend on the values of
the first component. In some examples, this is indicated by, for example, by syntax
element specifying that the mapped values of the first component should be used.
Video decoder 30 may receive such SEI messages, parse and/or decode the information,
and pass that information to video post-processor 31.

[0185] In another example, video encoder 20 may constrain the values signaled in one
or more SEI messages, or in the bitstream, in such a way that an HDR 10 receiver can
decode and show a viewable HDR video even if the SEI post-processing is not applied.
The SEI message(s) may include a syntax element to indicate that this is the case (e.g.,
that the bitstream is an HDR 10 backward compatible bitstream).

[0186] This section includes several examples that use techniques disclosed in
accordance with one or more aspects of the present disclosure.

Example 1

[0187] In this example 1, the component scaling function is signaled as a look-up table
and the number of bits used to signal the points defining the look up table are also
signaled. For sample values that do not have explicit points signaled, the value is

interpolated based on the neighboring pivot points.

WO 2017/053277 PCT/US2016/052633
55

Syntax of the component scaling SEI message

component_scale info(payloadSize) { Descriptor
comp_scale id ue(v)
comp_scale cancel flag u(1)

if('comp_scale cancel flag) {

comp_scale persistence flag u(1)

comp scale num_comps_minusl ue(v)
comp_scale input_bit_depth ue(v)
comp_scale output bit _depth ue(v)

for(¢ =0; c <=comp_scale num_comps minusl; c++) {

comp _scale num_points minusl| ¢] ue(v)

for(1=0;1 <= comp_scale num_points minusl| c]; i++) {

comp _scale input point[c][1] u(v)

comp_scale output point[¢][1] u(v)

Semantics of the component scaling SEI message

The component scaling SEI message provides information to perform scaling operations
on the various components of the decoded pictures. The colour space and the
components on which the scaling operations should be performed are determined by the
value of the syntax elements signalled in the SEI message.

comp_scale id contains an identifying number that may be used to identify the purpose
of the component scaling SEI message. The value of comp scale id shall be in the
range of 0 to 2% — 2, inclusive. The value of comp scale id may be used to specify the
colour space at which the component scaling SEI message, or whether the component
scaling SEI message is applied in the linear or the non-linear domain.

Values of comp_scale_id from 0 to 255, inclusive, and from 512 to 2°! — 1, inclusive,
may be used as determined by the application. Values of comp_scale id from 256 to
511, inclusive, and from 23! to 2°2 — 2, inclusive, are reserved for future use by ITU-T |

ISO/IEC. Decoders shall ignore all component scale information SEI messages

WO 2017/053277 PCT/US2016/052633
56

containing a value of comp_scale id in the range of 256 to 511, inclusive, or in the
range of 2°! to 2°2 — 2, inclusive, and bitstreams shall not contain such values.

NOTE 1 — The comp_scale id can be used to support component scaling processes that
are suitable for different display scenarios. For example, different values of
comp_scale id may correspond to different display bit depths or different colour spaces
in which the scaling is applied.

Alternatively, the comp_scale id may also be used to identify whether the scaling is
performed for compatibility to certain types of displays or decoder, e.g. HDR, SDR.
comp _scale cancel flag equal to 1 indicates that the component scaling information
SEI message cancels the persistence of any previous component information SEI
messages in output order that applies to the current layer. comp scale cancel flag equal
to 0 indicates that component scaling information follows.

comp_scale persistence flag specifies the persistence of the component scaling
information SEI message for the current layer.

comp_scale persistence flag equal to O specifies that the component scaling
information applies to the current decoded picture only.

Let picA be the current picture. comp_scale persistence flag equal to 1 specifies that
the component scaling information persists for the current layer in output order until any
of the following conditions are true:

- A new CLVS of the current layer begins.

- The bitstream ends.

- A picture picB in the current layer in an access unit containing a component
scaling information SEI message with the same value of comp scale id and applicable
to the current layer is output for which PicOrderCnt(picB) is greater than
PicOrderCnt(picA), where PicOrderCnt(picB) and PicOrderCnt(picA) are the
PicOrderCntVal values of picB and picA, respectively, immediately after the invocation
of the decoding process for picture order count for picB.

comp scale num_comps_minusl plus 1 specifies the number of components for
which the component scaling function is specified. comp_scale num_comps minusl
shall be in the range of 0 to 2, inclusive.

When comp_scale num_comps minusl is less than 2 and the component scaling
parameters of the c-th component is not signalled, are inferred to be equal to those of the

(c — 1)-th component.

WO 2017/053277 PCT/US2016/052633
57

Alternatively, when comp scale num comps minusl is less than 2, and the component
scaling parameters of the c-th component is not signalled, the component scaling
parameters of the c—th component are inferred to be equal to default values such that
effectively there is no scaling of that component.

Alternatively, the inference of the component scaling parameters may be specified
based on the colour space on which the SEI message is applied.

- When the colour space is YCbCr, and comp scale num_comps_minusl is
equal to 1, the component scaling parameters apply to both Cb and Cr components.

- When the colour space is YCbCr, and comp_scale num_comps _minus] is
equal to 2, the first and second component scaling parameters apply to Cb and Cr
components.

In one alternative, the different inference is specified based on the value of
comp_scale id or on the basis of an explicit syntax element.

Alternatively, a constraint is added as follows:

It is constraint for bitstream conformance that the value of

comp_scale num_comps minusl shall be the same for all the component scaling SEI
message with a given value of comp_scale id within a CLVS.
comp_scale_input_bit_depth_minus8 plus 8 specifies the number of bits used to
signal the syntax element comp_scale input point[¢][1]. The value of

comp_scale input_bit depth minus8 shall be in the range of 0 to 8, inclusive.

When component scaling SEI message is applied to an input that is in a normalized
floating point representation in the range 0.0 to 1.0, the SEI message refers to the
hypothetical result of a quantization operation performed to convert the input video to a
converted video representation with bit depth equal to
colour_remap input bit depth minus8 + 8.

When component scaling SEI message is applied to a input that has a bit depth not equal
to the comp scale input bit depth minus8 + 8, the SEI message refers to the
hypothetical result of a transcoding operation performed to convert the input video
representation to a converted video representation with bit depth equal to
colour_remap input bit depth minus8 + 8.

comp_scale output_bit_depth_minus8 plus 8 specifies the number of bits used to
signal the syntax element comp_scale output point[¢][1]. The value of

comp_scale output bit depth minus8 shall be in the range of 0 to 8, inclusive.

WO 2017/053277 PCT/US2016/052633
58

When component scaling SEI message is applied to an input that is in floating point
representation, the SEI message refers to the hypothetical result of an inverse
quantization operation performed to convert the video representation with a bit depth
equal to colour remap output bit depth minus8 + 8 that is obtained after processing of
the component scaling SEI message to a floating point representation in the range 0.0 to
1.0.
Alternatively, the number of bits used to signal comp scale input point[¢][i] and
comp_scale output point[¢][1] are signalled as comp_scale input_bit depth and
comp_scale output bit depth, respectively, or in other words without subtracting 8.
comp_scale num_points_minusl1| c] plus 1 specifies the number of pivot points used
to define the component scaling function. comp_scale num_points minusl1[c | shall be
in the range of O to (1 << Min(comp_scale input_bit _depth minus8 + 8,
comp_scale output bit depth minus8 + 8)) — 1, inclusive.
comp_scale input_point[c][i] specifies the i-th pivot point of the c-th component of
the input picture. The value of comp scale input point[¢][1] shall be in the range of
Oto(1 << comp scale input bit depth minus8[¢]+ 8)— 1, inclusive. The value of
comp_scale input point[¢][i | shall be greater than or equal to the value of
comp_scale input point[¢][1 — 1], for i in the range of 1 to
comp_scale points_minusl[¢], inclusive.
comp_scale output_point[¢][1] specifies the i-th pivot point of the c-th component
of the output picture. The value of comp scale output point[¢][i] shall be in the
range of 1to (1 << comp_scale output bit depth minus8[c] +8)— 1, inclusive.
The value of comp_scale output point[¢][1] shall be greater than or equal to the value
of comp_scale output point[¢]J[1— 1], fori in the range of 1 to
comp_scale points_minusl[¢], inclusive.
The process of mapping an input signal representation x and an output signal
representation y, where the sample values for both input and output are in the range of 0
to(1 << comp_scale input bit_depth minus8[¢]+ 8) — 1, inclusive, and 0 to
(1 << comp scale output bit depth minus8[¢ | + 8) — 1, inclusive, respectively, is
specified as follows:
if(x <= comp_ scale input point[c][0])

y =comp_scale output point[¢][0]
else if(x > comp_scale input point[¢][comp scale input point minusl[c]])

y =comp_scale output point[¢][comp_scale output point minusl|c]]

WO 2017/053277 PCT/US2016/052633
59

else
for(1=1;1 <= comp_scale output point minusl[c];i++)
if(comp scale input point[i—1]<x && x <=

comp_scale input point[i])

y =((comp_scale output point[¢][1]— comp scale output point[c][1— 1]

)+

(comp_scale input point[¢][1] — comp scale input point[c][1—1])) *
(x —comp_scale input point[c][1—1])+

(comp_scale output point[c][1—1])

[0188] In one alternative, input and output pivot points comp scale input point[¢][1]
and comp_scale output point[¢][1] are coded as difference of adjacent values; e.g.,
delta_comp scale input point[][] and delta comp scale output point[][], and the
syntax elements are coded using exponential Golomb codes.

In another alternative, the process of mapping an input and output representation value
is specified by other interpolation methods including, but not limited to, splines and

cubic interpolation.

Example 2
[0189] This Example 2 shows a different syntax structure compared to the SEI syntax
structure described in Example 1. In this syntax structure, the mapping function is

described in terms of scales and offsets instead of pivot points.

WO 2017/053277 PCT/US2016/052633
60

Syntax of the component scaling SEI message

component scale info(payloadSize) { Descriptor
comp_scale id ue(v)
comp_scale cancel flag u(l)

if('comp_scale cancel flag) {

comp_scale persistence flag u(l)

comp_scale num_comps ue(v)
comp_scale input_bit_depth ue(v)
comp_scale output bit_depth ue(v)
comp_scale bit _depth_scale val ue(v)
comp_scale log2 denom_scale val ue(v)

for(c=0; c <comp scale num comps; ct++) {

comp_scale num_points_minusl[¢] ue(v)
comp_scale global offset input val[¢] u(v)
comp_scale global offset output val[c | u(v)

for(1=0;1 < comp_scale num_points minusl[¢]; 1++) {

comp_scale offset val[c][1] u(v)

comp scale val[c][1] u(v)

comp_scale bit_depth_scale val specifies the number of bits used to signal the syntax
element comp_scale val[¢][1]. The value of comp_scale bit depth scale val shall
be in the range of 0 to 24, inclusive.

comp _scale log2 denom_scale val specifies the base 2 denominator of the scale
value. The value of comp_scale log2 denom scale val shall be in the range of 0 to 16,
inclusive.

comp_scale global offset _input val[¢] plus 1 specifies the input sample value below
which all the input representation values are clipped to

CompScaleOffsetOutputVal[¢][O]. used to define the component scaling function.

comp_scale num_points minusl[¢] shall be in the range of 0 to

WO 2017/053277 PCT/US2016/052633
61

(1 << comp_scale input_bit depth) — 1, inclusive. The number of bits used to
represent comp_scale global offset input val[¢]is comp_scale input bit depth.
comp_scale global offset output val[c | plus 1 specifies the output sample value to
which all the input representation values below
comp_scale global offset input val[¢] are to be clipped.
comp_scale num_points minusl[¢] shall be in the range of 0 to
(1 << comp_scale output_bit_depth) — 1, inclusive. The number of bits used to
represent comp_scale global offset output val[¢]is comp scale output bit depth.
comp_scale num_points_minusl1| c] plus 1 specifies the number of pivot points used
to define the component scaling function. comp_scale num_points minusl1[c | shall be
in the range of 0 to (1 << Min(comp_scale input bit depth,
comp_scale output bit depth) — 1, inclusive.
The process of mapping an input signal representation x and an output signal
representation y, where the sample values for both input representation is in the range of
0to (1 << comp_ scale input bit depth)— 1, inclusive, and output representation is in
the range of and 0 to (1 << comp_scale output bit depth)— 1, inclusive, is specified
as follows:
if(x <= CompScaleOffsetlnputVal[c][0])

y = CompScaleOffsetOutputVal[¢][0]
else if(x > CompScaleOffsetlnputVal[¢][comp scale output point minusl])

y = CompScaleOffsetOutputVal[¢][comp_scale output point minusl]
else

for(1=1;1 <= comp_scale output point minusl; i++)

if(CompScaleOffsetlnputVal[1— 1] <x && x <=
CompScaleOffsetlnputVal[i])
y=(x-
CompScaleOffsetlnputVal[1i— 1] * (comp scale val[c][1] +
CompScaleOffsetOutputVal[¢][1]

comp_scale offset val[c][1] specifies the offset value of the i-th sample value region
of the c-th component. The number of bits used to represent comp_scale offset val[¢]
is equal to comp_scale input bit depth.
comp_scale val[¢][1] specifies the scale value of the i-th sample value region point
of the c-th component. The number of bits used to represent comp_scale val[¢]1is

equal to comp scale bit depth scale val.

WO 2017/053277 PCT/US2016/052633
62

The variables CompScaleOffsetOutputVal[¢][1] and
CompScaleOffsetInputVal[¢][i] for i in the range of 0 to
comp_scale num_points_minusl[¢], inclusive, is derived as follows:
roundingOffset = (comp scale log2 denom scale val == 0)?0: (1 <<
comp_scale log2 denom_ scale val — 1)
for(1=0;1<=comp_scale num_points minusl[¢]; i++)
if(i ==0)
CompScaleOffsetOutputVal[¢ J[1] =
comp_scale global offset output val[¢]
CompScaleOffsetlnputVal[c][1] =
comp_scale global offset input val[¢]
else
CompScaleOffsetOutputVal[¢][1] = CompScaleOffsetOutputVal[¢][1 —
1]+
(comp_scale offset val[c][1—1] 0 comp scale val[c][1—1]
+ roundingOffset) >>
comp_scale log2 denom_ scale val

CompScaleOffsetInputVal[¢][i] = CompScaleOffsetlnputVal[¢ J[1— 1]

comp_scale offset val[c][i—1]

In one alternative, comp scale offset val[¢][1] is used to directly calculate
CompScaleOffsetOutputVal[][1] and indirectly calculate
CompScaleOffsetInputVal[][1] for 1 in the range of O to
comp_scale num_points minusl1[¢] as follows:
for(1=0;1<comp scale num_points minusl[c [, i++)
if(i ==0)
CompScaleOffsetOutputVal[¢ J[1] =
comp_scale global offset output val[¢]
CompScaleOffsetlnputVal[c][1] =
comp_scale global offset input val[¢]
else

CompScaleOffsetInputVal[¢][i] = CompScaleOffsetlnputVal[¢ J[1— 1]

WO 2017/053277 PCT/US2016/052633
63

(comp scale offset val[c][1—1]*
comp_scale val[c][1—1]
+ roundingOffset) >>
comp_scale log2 denom_scale val)
CompScaleOffsetOutputVal[¢][1] = CompScaleOffsetOutputVal[¢][1 —
1]+

comp_scale offset val[c][i—1]

In one alternative, comp scale offset val[¢][1] for1 in the range of O to
comp_scale num_points minusl[¢], inclusive, are not signaled, and the values of
comp_scale offset val[c][1] are derived based on

comp_scale num_points minusl[¢] equally spaced intervals for which the scale is
specified. The value of comp scale offset val[¢][1] for i in the range of O to

comp_scale num_points minusl| ¢] — 1, inclusive, is derived as follows:

comp_scale offset val[c][1]=((1 <<comp scale output bit depth)—
comp_scale global offset output val[c])~+

(comp_scale num_points minusl| ¢])

In another alternative, comp_scale offset val[¢][1] for i in the range of O to
comp_scale num_points minusl[¢] is calculated as follows:
comp_scale offset val[c][1]=(1 <<comp scale output bit depth)+

(comp_scale num points minusl[c])

In one alternative, instead of signaling comp scale num_points minusl[¢], the
number of pivot points is signaled using log2 comp_scale num_points[¢ |, where
(1 << log2 comp scale num_points| ¢ |) specifies the number of pivot points for the

c-th component.

Alternatively, each of comp scale offset val[¢][] and comp scale val[c][]is
signaled as floating point numbers, or as two syntax elements with exponent and

mantissa.

WO 2017/053277 PCT/US2016/052633
64

In another alternative, signaling of comp scale val[¢][1] is replaced by

comp_scale output point[¢][1].

The semantics of rest of the syntax elements are similar to those described in Example

1.

Example 3
[0190] This method described in Example 3 is similar to one of the alternatives
described in Example 2, with the exception that the component scaling functions are

allowed to be updated independently.

WO 2017/053277
65

Syntax of the component scaling SEI message

PCT/US2016/052633

component_scale info(payloadSize) { Descriptor
comp_scale id ue(v)
comp_scale cancel flag u(1)
if('comp_scale cancel flag) {
comp_scale persistence flag u(1)
comp_scale num_comps ue(v)
comp_scale input_bit_depth ue(v)
comp_scale output bit _depth ue(v)
for(¢ =0; c <comp scale num comps; ct+) {
comp_scale persist component flag[c | u(1)
if('comp_scale persist component flag[¢])
comp scale num_scale regions| ¢ | ue(v)
comp_scale global offset input val[c | u(v)
comp_scale global offset output val[c | u(v)
for(1=0;1 < comp scale num_scale regions[¢]; i++) {
comp scale offset val[c][1] u(v)
comp scale val[c][1] u(v)
}
}
}
}
}

Semantics of the component scaling SEI message

The semantics is similar to Example 2, except for the following syntax elements.

comp _scale num_scale regions| ¢] specifies the number of regions for which the

syntax element comp scale val[¢][1] is signalled for the c-the component.

comp_scale num_scale regions[¢] shall be in the range of 0 to (1 <<

comp_scale input bit depth) — 1, inclusive.

comp _scale persist component flag[¢] equal to O specifies that component scaling

parameters for the c-th component are explicitly signalled in the SEI message.

comp_scale persist component flag[¢] equal to 1 specifies that component scaling

parameters for the c-th component are not explicitly signalled in the SEI message, and it

WO 2017/053277 PCT/US2016/052633
66

persists from the component scaling parameters of the c-th component of the component
scaling SEI message that applies to previous picture, in output order.

It is a requirement of bitstream conformance that when the component scaling SEI
message is present in an IRAP access unit, the value of

comp_scale persist component flag[¢], when present, shall be equal to 0.
Alternatively, the following condition is added:

It is a requirement of bitstream conformance that when the component scaling SEI
message is present in an access unit that is not an IRAP access unit and

comp_scale persist component flag[¢] is equal to 1, then there is at least one picture
that precedes the current picture in output order and succeeds, in output order, the
previous IRAP picture in decoding order, inclusive, such that the one picture is
associated with a component scaling SEI message with comp _scale persistence flag
equal to 1.

comp_scale persistence flag specifies the persistence of the component scaling
information SEI message for the current layer.

comp_scale persistence flag equal to O specifies that the component scaling
information applies to the current decoded picture only.

Let picA be the current picture comp_scale persistence flag equal to 1 specifies that the
component scaling information of the c-th component persists for the current layer in
output order until any of the following conditions are true:

- A new CLVS of the current layer begins.

- The bitstream ends.

- A picture picB in the current layer in an access unit containing a component
scaling information SEI message with the same value of comp_scale id and
comp_scale persist component flag[¢] equal to O, and applicable to the current layer
is output for which PicOrderCnt(picB) is greater than PicOrderCnt(picA), where
PicOrderCnt(picB) and PicOrderCnt(picA) are the PicOrderCntVal values of picB
and picA, respectively, immediately after the invocation of the decoding process for

picture order count for picB.

Example 4
[0191] In this Example 4, a different method to signal the scale regions is disclosed.

WO 2017/053277 PCT/US2016/052633
67

Changes to component scaling SEI message syntax

component scale info(payloadSize) { Descriptor
comp_scale id ue(v)
comp_scale cancel flag u(l)

if('comp_scale cancel flag) {

comp_scale persistence flag u(l)

comp_scale num_comps ue(v)
comp_scale input_bit_depth ue(v)
comp_scale output bit_depth ue(v)

for(c=0; c <comp scale num comps; ct++) {

comp_scale persist component_flag| c | u(l)

if('comp scale persist component flag[¢])

comp_scale global offset input val[¢] u(v)
comp_scale global offset output val[c | u(v)
comp_scale num_scale regions| ¢ | ue(v)

for(i=0;1 < comp scale num scale regions[¢ |;i++) {

comp_scale offset _begin val[c][1] u(v)
comp_scale offset end val[c][1] u(v)
comp scale val[c][1] u(v)

Changes to component scaling SEI message semantics

The semantics of the syntax elements are similar to those described in previous
examples, except for the following:

comp_scale offset_begin_val[¢][1] specifies the beginning of the sample value range
for which the scale value comp_scale val[¢][1] is applicable. The number of bits
used to represent comp_scale offset begin val[¢] is equal to

comp_scale input bit depth.

WO 2017/053277 PCT/US2016/052633
68

comp_scale offset_end _val[c][1] specifies the end of the sample value range for
which the scale value comp scale val[¢][1] is applicable. The number of bits used to
represent comp_scale offset end wval[¢] is equal to comp_scale input_bit depth.

For regions that are not explicitly specified by comp scale offset begin val and
comp_scale offset end val, the comp_scale value[¢][1] for those regions is inferred
to be equal to 0.

[0192] Alternatively, comp scale offset end wval[¢][1] 1s not signaled and instead the
difference between comp scale offset end val[¢][1] and
comp_scale offset begin val[¢][i]is signaled, and the value of
comp_scale offset end wval[¢][1] derived at the decoder-side.

[0193] In another alternative, the total number of regions in to which the output sample
range is split is specified, and the number of regions is signaled for which the scale

regions are explicitly signaled.

u(v)

comp_scale global offset output val[c | u(v)
comp_scale tot scale regions| c | ue(v)
comp scale num_scale regions| ¢ | ue(v)
for(1=0;1 < comp scale num_scale regions[¢]; i++) {

comp_scale region idx[c][1] u(v)

comp scale val[c][1] u(v)
}

comp_scale tot scale regions| c | specifies the total number of equal length sample
value ranges in to which the sample values are split. The number of bits used to
represent comp_scale tot scale regions| ¢] is equal to comp scale input_bit depth.

In one alternative, the comp_scale tot scale regions| ¢] sample value ranges may not
be exactly equal in length but very nearly equal to account for the integer accuracy of
the region lengths.

comp_scale region idx[c][i] specifies the index of the sample value range for which
the scale value comp scale val[¢][1]1is applied. The length of the syntax element

comp_scale region idx[¢] is Ceil(Log2(comp scale tot scale regions| ¢])) bits.

WO 2017/053277 PCT/US2016/052633

69

Alternatives

Alternatively, region around the chroma neutral (511 for 10-bit data) have smaller size,

p.e., half the size of the other regions.

Example §
Syntax of the component scale SEI message
component scale info(payloadSize) { Descriptor
comp_scale id ue(v)
comp_scale cancel flag u(l)
if('comp_scale cancel flag) {
comp_scale persistence flag u(l)
comp_scale scale bit depth u(4)
comp_scale offset bit depth u(4)
comp_scale scale frac bit depth u(4)
comp_scale offset frac_bit depth u(4)
comp_scale num_comps_minusl ue(v)
for(¢ =0; c <=comp_scale num_ comps minusl; ct++) {
comp_scale num_ranges| c | ue(v)
comp_scale equal ranges flag| c | u(l)
comp_scale global offset val[¢] u(v)
for(1=0;1 <= comp_scale num_ranges| ¢ |, i++)
comp_scale scale val[c][1] u(v)
if('comp scale equal ranges[c]) u(v)
for(i=0;1 <= comp_scale num_ranges[¢ |; i++)
comp_scale offset val[c][1] u(v)

Semantics of the component scale SEI message

The component scaling SEI message provides information to perform scaling operations

on the various components of the decoded pictures. The colour space and the

components on which the scaling operations should be performed are determined by the

value of the syntax elements signalled in the SEI message.

WO 2017/053277 PCT/US2016/052633
70

comp_scale id contains an identifying number that may be used to identify the purpose
of the component scaling SEI message. The value of comp scale id shall be in the
range of 0 to 2% — 2 inclusive. The value of comp scale id may be used to specify the
colour space at which the component scaling SEI message, or whether the component
scaling SEI message is applied in the linear or the non-linear domain.

In some examples, comp_scale id can specify the configuration of the HDR
reconstruction process. In some examples, particular value of comp scale id may be
associated with signaling of scaling parameters for 3 components. The scaling of the
first components to be applied to samples of R’,G’, B’ color space, and parameters of
following 2 components are applied for scaling of Cr and Cb.

For yet another comp_scale_id value, hdr reconstruction process can utilize parameters
for 3 components, and scaling is aplied to samples of Luma, Cr and Cb color
components.

In yet another comp_scale i1d value, hdr reconstruction process can utilize signaling for
4 components, 3 of which to be applied to Luma, Cr and Cb scaling, and 4th component
to bring parameters of color correction.

In some examples, certain range of comp scale id values may be associated with HDR
reconstruction conducted in SDR-backward compatible configuration, whereas another
range of comp_scale id values may be associated with HDR reconstruction conducted
to non-backward compatible configuration.

Values of comp_scale_id from 0 to 255, inclusive, and from 512 to 2°! — 1, inclusive,
may be used as determined by the application. Values of comp_scale id from 256 to
511, inclusive, and from 23! to 2°2 — 2, inclusive, are reserved for future use by ITU-T |
ISO/IEC. Decoders shall ignore all component scale information SEI messages
containing a value of comp_scale id in the range of 256 to 511, inclusive, or in the
range of 2°! to 2°2 — 2, inclusive, and bitstreams shall not contain such values.

NOTE 1 — The comp_scale id can be used to support component scaling processes that
are suitable for different display scenarios. For example, different values of
comp_scale id may correspond to different display bit depths or different colour spaces
in which the scaling is applied.

Alternatively, the comp_scale id may also be used to identify whether the scaling is
performed for compatibility to certain types of displays or decoder, e.g. HDR, SDR.
comp _scale cancel flag equal to 1 indicates that the component scaling information

SEI message cancels the persistence of any previous component information SEI

WO 2017/053277 PCT/US2016/052633
71

messages in output order that applies to the current layer. comp scale cancel flag equal
to 0 indicates that component scaling information follows.

comp_scale persistence flag specifies the persistence of the component scaling
information SEI message for the current layer.

comp_scale persistence flag equal to O specifies that the component scaling
information applies to the current decoded picture only.

Let picA be the current picture. comp_scale persistence flag equal to 1 specifies that
the component scaling information persists for the current layer in output order until any
of the following conditions are true:

- A new CLVS of the current layer begins.

- The bitstream ends.

- A picture picB in the current layer in an access unit containing a component
scaling information SEI message with the same value of comp scale id and applicable
to the current layer is output for which PicOrderCnt(picB) is greater than
PicOrderCnt(picA), where PicOrderCnt(picB) and PicOrderCnt(picA) are the
PicOrderCntVal values of picB and picA, respectively, immediately after the invocation
of the decoding process for picture order count for picB.

comp_scale scale bit depth specifies the number of bits used to signal the syntax
element comp_scale scale val[¢][1]. The value of comp scale scale bit depth shall
be in the range of 0 to 15, inclusive.

comp_scale offset_bit depth specifies the number of bits used to signal the syntax
elements comp scale global offset val[¢] and comp scale offset val[¢][1]. The
value of comp scale offset bit depth shall be in the range of O to 15, inclusive.
comp_scale scale frac_bit_depth specifies the number of LSBs used to indicate the
fractional part of the scale parameter of the i-th partition of the c-th component. The
value of comp scale scale frac bit depth shall be in the range of O to 15, inclusive.
The value of comp_scale scale frac bit depth shall be less than or equal to the value of
comp_scale scale bit depth.

comp_scale offset frac bit_depth specifies the number of LSBs used to indicate the
fractional part of the offset parameter of the i-th partition of the c-th component and
global offset of the c-th component. The value of comp_scale offset frac bit depth
shall be in the range of 0 to 15, inclusive. The value of
comp_scale offset frac bit depth shall be less than or equal to the value of

comp_scale offset bit depth.

WO 2017/053277 PCT/US2016/052633
72

comp scale num_comps_minusl plus 1 specifies the number of components for
which the component scaling function is specified. comp scale num_comps_minusl
shall be in the range of 0 to 2, inclusive.
comp_scale num_ranges| c | specifies the number of ranges in to which the output
sample range is partitioned in to. The value of comp scale num_ranges[¢ | shall be in
the range of 0 to 63, inclusive..
comp scale equal _ranges flag[c | equal to 1 indicates that that output sample range
is partitioned into comp scale num_ranges| ¢] nearly equal partitions, and the partition
widths are not explicitly signalled. comp_scale equal ranges flag[¢] equal to O
indicates that that output sample range may be partitioned into
comp_scale num_ranges| ¢ | partitions not all of which are of the same size, and the
partitions widths are explicitly signalled.
comp_scale_global offset val[c | is used to derive the offset value that is used to map
the smallest value of the valid input data range for the c-th component. The length of
comp_scale global offset val[¢]is comp scale offset bit depth bits.
comp_scale scale val[c][1] is used to derive the offset value that is used to derive the
width of the of the i-th partition of the c-th component. The length of
comp_scale global offset val[¢]is comp scale offset bit depth bits.
The variable CompScaleScaleVal[¢][1] is derived as follows :
CompScaleScaleVal[c][1]=(comp scale scale val[c][1] >>
comp_scale scale frac bit depth)+

(comp scale scale val[c][1]&

((1 << comp scale scale frac bit depth)—1)

(1 << comp_scale scale frac bit depth)
comp _scale offset val[c][1] is used to derive the offset value that is used to derive
the width of the of the i-th partition of the c-th component. The length of
comp_scale global offset val[¢]is comp scale offset bit depth bits.
When comp_scale offset val[¢][1] is signalled, the value of
CompScaleOffsetVal[¢][1] is derived as follows:
CompScaleOffsetVal[¢][1] =(comp scale offset val[c][1] >>
comp_scale offset frac bit depth)+

(comp scale offset val[c][1]&

((1 << comp scale offset frac bit depth)—1)

WO 2017/053277 PCT/US2016/052633
73

)N+
(1 << comp_scale offset frac bit depth)
Alternatively, the variable CompScaleScaleVal[¢][1] and
CompScaleOffsetVal[¢][1] are derived as follows :
CompScaleScaleVal[c][1] =comp scale scale val[c][1]&
(1 << comp_scale scale frac bit depth)
CompScaleOffsetVal[¢][1] =comp scale offset val[c][1]+
(1 << comp_scale offset frac bit depth)
When comp_scale equal ranges flag[c]is equal to 1, comp scale offset val[¢][1]
is not signalled, and the value of CompScaleOffsetVal[¢][1] is derived as follows:
CompScaleOffsetVal[¢][1] =1+ comp_scale num_ranges| ¢]
The variable CompScaleOutputRanges| ¢][1] and CompScaleOutputRanges[¢][1] for
11in the range of 0 to comp_scale num_ranges| c] is derived as follows:
for(1=0;1<=comp_scale num_ranges[¢ |; i++)
if(i ==0)
CompScaleOutputRanges[¢][1] = comp_scale global offset val[¢]+
(1 << comp_scale offset frac bit depth)
CompScalelnputRanges[¢ J[1] =0
else
CompScalelnputRanges| ¢][i | = CompScaleOffsetlnputRanges[c][1 —
1]+
(CompScaleOffsetVal[c J[1-1]*
CompScaleScaleVal[c J[1—-1]
CompScaleOutputRanges[¢][1] = CompScaleOutputRanges[c J[[1— 1]+
CompScaleOffsetVal[c][1—-1]
In one alternative, the values of CompScaleOutputRanges[[] and
CompScaleOutputRanges|][] are derived as follows:
for(1=0;1<=comp_scale num_ranges[¢ |; i++)
if(i ==0)
CompScalelnputRanges| ¢][1] = comp_scale global offset val[¢]+
(1 << comp_scale offset frac bit depth)
CompScaleOutputRanges[¢ J[1]=0
else

CompScalelnputRanges| ¢][i | = CompScaleOffsetlnputRanges[c][1 —

WO 2017/053277 PCT/US2016/052633
74

1]+
(CompScaleOffsetVal[c J[1-1]*
CompScaleScaleVal[c J[1—-1]
CompScaleOutputRanges[¢][1] = CompScaleOutputRanges[c J[[1— 1]+
CompScaleOffsetVal[c][1—-1]

The process of mapping an input signal representation (which may be used to cover
both integer as well as floating point) x and an output signal representation y, where the
sample values for both input representation is normalized in the range of 0 to 1, and
output representation is in the range of and 0 to 1, is specified as follows:
if(x <= CompScalelnputRanges[c][0])

y = CompScaleOutputRanges[¢][0]
else if(x > CompScalelnputRanges[¢][comp scale num ranges[¢]])

y = CompScaleOutputRanges| ¢][comp_scale num_ranges[¢ |;]
else

for(1=1;1 <= comp_scale num_ranges| ¢ |; i++)

if(CompScalelnputRanges[1— 1 | <x && x <=
CompScalelnputRanges[i])
y=(x-
CompScalelnputRanges[1 —1]) O comp scale val[c][1] +
CompScaleOutputRanges[¢ J[1—1]

In one alternative, the value of CompScaleOutputRanges| ¢][O] is set based on the
permitted sample value range.
Alternatively, the process of mapping an input value valln to output value valOut is
defined as follows:

m_pAtfRangeln[0] =0;

m_pAtfRangeOut[0]| = —m_offset2 *m_pAtfScale2[c][0];

for (int) = 1;) <m_atfNumberRanges + 1; j++)

{

m_pAtfRangeln[j] = m_pAtfRangeln[j — 1]+ m_pAtfDelta[j — 1];
m_pAtfRangeOut[j] = m_pAtfRangeOut[j — 1] + m_pAtfScale2[c][] —
1]*
m_pAtfDelta[j— 1];

WO 2017/053277 PCT/US2016/052633
75

for (int j = 0;) < numRanges && skip == 0; j++)

{
if (valln <=pAtfRangeln[j+11])
{
valOut = (valln — pOffset[cos
pScale[companent |[] 1
skip = 1;
}

]

In one alternative, m_offset2 is equal to

comp_scale global offset val[¢ |=(1 << comp scale offset frac bit depth),
m_pAtfScale[¢][1] is equal to CompScaleScaleVal[¢][1] and m_pAtfDelta[i] is
equal to CompScaleOffsetVal[c][i | for the c-th component, and pScale and pOffset
are scale and offset parameter derived from m_AtfScale and m pAtfDelta.

An inverse operation would be defined accordingly.

Example 6

In some examples, some of signaling methods described above, e.g. in example 5, can
be utilized as shown in following pseudo code.

m_atfNumberRanges is a term for syntax elements comp_scale num_ranges[¢] for a
given c, that specifies number of dynamic range partitioning for mapped data.
m_pAtfRangeln is a term for CompScalelnputRanges, is an arrays size of
m_atfNumberRanges+1 that includes input sample value specifying the border between
two concatenated partitions, e.g., 1 and i+1.

m_pAtfRangeOut is a term for CompScaleOutputRanges, is an arrays size of
m_atfNumberRanges+1 that includes output sample value specifying the border
between two concatenated partitions, e.g. i and 1+1.

m_pAtfScale2 is a term for variable CompScaleScaleVal [¢] is an arrays size of
m_atfNumberRanges that includes scale values for each partitions.

m_pAtfOffset2 is an array arrays size of m_atfNumberRanges that includes offset
values for each partition.

m_offset2 is a term for comp_scale global offset val.

In this example, parameters of piece-wise linear model can be determined form syntax

elements as in Algorithm 1:

WO 2017/053277 PCT/US2016/052633
76

Algorithm 1:
m_pAtfRangeln[0] = 0;
m_pAtfRangeOut[0] = -m_offset2 *m_pAtfScale2[c][0];
for (int) = 1;) <m_atfNumberRanges + 1; j++)
{
m_pAtfRangeln[j] = m_pAtfRangeln[j - 1] + m_pAtfDelta[j - 1];
m_pAtfRangeOut[j] = m_pAtfRangeOut[j - 1]+ m_pAtfScale2[c][j - 1]
*m_pAtfDelta[j - 1];
}

for (int j = 0; j < m_atfNumberRanges; j++)
{
temp = m_pAtfRangeln[j + 1] - m_pAtfRangeOut[j + 1]/
m_pAtfScale2[c][j];
m_pAtfOffset2[c][j] = temp;

Once determined, piece-wise linear model can be applied to input samples value

inValue to determine output sample value outValue as in Algorithm 2:

Algorithm 2:
for (int j = 0;) < m_atfNumberRanges && skip == 0; j++)
{
if (inValue <= m_pAtfRangeln[j + 1])
{
outValue = (inValue — m_pAtfOftset2 [j]) *
m_pAtfScale2 [j];
skip = 1;
}

}

Inverse process to be conducted as in Algorithm 3:

Algorithm 3:
for (int j = 0;) < m_atfNumberRanges && skip == 0; j++)
{

WO 2017/053277 PCT/US2016/052633
77

if (inValue <= m_pAtfRangeOut[j + 1])
{
outValue = inValue / m_pAtfScale2 [j] + m_pAtfOffset2
[i;
skip = 1;

}

[0194] In some examples, border sample value (an entry of m_pAtfRangeln or
m_pAtfRangeOut) between two concatenated partitions i and i+1 can be interpreted
differently, as belonging to i+1, instead of belonging to 1 partition as it is shown in
Algorithm 2 and 3.

[0195] In some examples, inverse process shown in Algorithm 3, can be implemented
with a multiplication by m_pAtfInverseScale2 value, instead of division by
m_pAtfScale2[j]. In such examples, a value of m_pAtfScale2[j] is determined from
m_pAtfScale2 [j] in advance.

[0196] In some examples, m_pAtflnverseScale2 [j] is determined at the decoder side as
1/m_pAtfScale2[j].

[0197] In some examples, m_pAtflnverseScale2 [j] can be computed at the encoder
side, and signalled through bitstream. In such examples, operation given in Algorithms
1, 2 and 3 will be adjusted accordingly.

[0198] Various examples

[0199] In some examples, proposed signaling mechanism can be used to model a piece-
wise function that can be utilized to enable dynamical range adjustment for samples of
input signal, e.g. to improve compression efficiency of video coding systems.

[0200] In some examples, proposed signaling mechanism can be used to model a piece-
wise function that can be applied to codewords (non-linear representation of R,G,B
samples) produced by an OETF, e.g. by PQ TF of ST.2084, or others.

[0201] In some examples, proposed signaling mechanism can be used to model a piece-
wise function that can be applied to samples of YCbCr color representation.

[0202] In some examples, proposed signaling mechanism can be used to model a piece-
wise function that can be utilized to HDR/WCG solutions with SDR compatibility.
[0203] In some examples, proposed signaling mechanism can be used to model a piece-

wise function that can be applied to samples in floating point representation. In yet

WO 2017/053277 PCT/US2016/052633
78

another example, proposed signaling mechanism and resulting function can be applied
to samples in integer representation, e.g. 10 bits.

[0204] In some examples, proposed signaling mechanism can be used to model a piece-
wise function that can be applied to samples in a form of Look Up Tables. In yet
another examples, proposed signaling can be used to model function that can be applied
to a sample in a form of multiplier.

Combinations and Extensions

[0205] In the examples above, a linear model is assumed for each region (i.e., scale plus
offset); the techniques of this disclosure also may be applicable for higher-order
polynomial models, for example, with a polynomial of 2nd degree requiring three
parameters instead of two. The signaling and syntax would be properly extended for
this scenario.

[0206] Combinations of aspects described above are possible and part of the techniques
of this disclosure.

[0207] Toolbox combination: there are several HDR methods that can target somewhat
similar goals to those of the SEIs described in this disclosure. In order to accommodate
more than one of them but, at the same time, limiting the number of applicable SEI
processing per frame, it is proposed to combine (one or more of) these methods in a
single SEI. A proposed syntax element would indicate the specific method to apply in
each instance. For example, if there are two possible methods in the SEI, the syntax
element would be a flag indicating the one to be used.

Example 7

[0208] In this example, the signaling of scale parameters is modified such that negative
scales can be transmitted, and the signaled scale parameters indicate the variation of
scale to be applied for different ranges of the various components. The changes with

respect to example 5 are below.

WO 2017/053277 PCT/US2016/052633

79
Changes to syntax of the SEI message
component scale info(payloadSize) { Descriptor
comp_scale id ue(v)
comp_scale cancel flag u(l)
if('comp_scale cancel flag) {
comp_scale persistence flag u(l)
comp_scale scale bit depth u(4)
comp_scale offset bit depth u(4)
comp_scale scale frac bit depth u(4)
comp_scale offset frac bit depth u(4)
comp_scale negative scales present flag u(l)
comp_scale dep component_id ue(v)
comp_scale num_comps_minusl ue(v)

for(¢ =0; c <=comp_scale num_ comps minusl; ct++) {

comp_scale num_ranges| c | ue(v)
comp_scale equal ranges flag| c | u(l)
comp_scale global offset val[¢] u(v)

for(1=0;1 <= comp_scale num_ranges| ¢ |; i++)

comp_scale scale val[c][1] u(v)

if('comp scale equal ranges[c]) u(v)

for(1=0;1 <= comp_scale num_ranges| ¢ |, i++)

comp_scale offset val[c][1] u(v)

Changes to semantics of the SEI message

comp _scale negative scales present flag equal to 1 specifies that the integer part of
the scale parameters derived from comp_scale scale val[¢][1] is represented as a
signed integer. comp_scale negative scales present flag equal to O specifies that the
integer part scale parameters derived from comp_scale scale val[¢][1] is represented

as an unsigned integer.

WO 2017/053277 PCT/US2016/052633
80

[0209] In one alternative, another set of offset parameters are signaled along with
comp_scale scale val that are used to define the offset that is applied along with the
scale on a first component as a function of the value of a second component.

[0210] The signed-integer representation includes, but is not limited to, twos-
complement notation and signed magnitude representation (one bit for sign and the
remaining bits in the integer-part). The derivation below is given for the signed
magnitude representation. The derivation can be similarly defined for other forms of
signed representations.

The variable CompScaleScaleVal[¢][1] is derived as follows :
compScaleScaleFracPart = (comp scale scale val[c][1] &

((1 << comp scale scale frac bit depth)—1)

(1 << comp_scale scale frac bit depth)

if(comp scale negative scales present flag) {

compScaleSignPart = comp _scale scale val[c][1] >>
(comp_scale scale bit depth — 1)

compScalelntegerPart = comp_scale scale val[¢][1] — (compScaleSignPart

<<{(comp_scale scale bit depth — 1))

compScalelntegerVal = ((compScaleSignPart == 1):—-1:1)*
compScalelntegerPart
} else

compScalelntegerVal = comp_scale scale val[c][1] >>
comp_scale scale frac bit depth
CompScaleScaleVal[¢][i | = compScalelntegerVal + compScaleScaleFracPart
It is a requirement of bitstream conformance that when
comp_scale negative scale present flagis equal to 1, the value of
comp_scale scale bit depth shall be greater than or equal to
comp_scale scale frac bit depth
comp_scale _dependent_component_id specifies the application of scale and offset
parameters to the various components of the video. When
comp_scale dependent component id is equal to 0, the syntax elements
comp_scale global offset val[¢], comp scale scale val[¢][1]and
comp_scale offset val[c][1] are used to identify mapping of input and output values

of the c-th component. When comp scale dependent component id is greater than O,

WO 2017/053277 PCT/US2016/052633
31

comp_scale dependent component id — 1 specifies the index of the component such
that the syntax elements comp scale global offset val[¢],

comp_scale scale val[c][1] and comp_scale offset val[¢][1] specify the mapping
of a scale parameter to be applied to the c-th component of a sample as a function of the

value of (comp_scale dependent component id — 1)-th component of the sample.

The rest of the semantics are similar to those described in Example 5.

Example 8

[0211] In this example, the bit depth of the ATF parameters depend on the component.
For each component, the bit depth of the syntax elements is explicitly signal. In
addition, there are default bit-depth for those syntax elements. The default value is
assigned when the bit depth is not explicitly signaled. A flag might indicate whether the
default values are applied or they are explicitly signaled.

[0212] The table below shows an example of these concepts. Syntax elements of the
ATF parameters are the scale hdr_recon_scale val[][] and range

hdr recon range wval[][]. The syntax elements indicating the corresponding bit depth

(integer and fractional part) are the following ones:

o hdr recon scale bit depth[c],

o hdr recon offset bit depth[c],

o hdr recon scale frac bit depth[c],

o hdr recon offset frac bit depth[c],

where c is the component index. The default bit-depths for scale and offset (range) can

be set to:

o hdr recon scale bit depth[c] =8,

o hdr recon_offset bit depth[c] =8,

o hdr recon scale frac bit depth[c] =6,

o hdr recon offset frac bit depth[¢]=8.

[0213] The accuracy of the parameters might also be different for the ATF parameters
and the color adjustment parameters. Also, the default might be different per
component and for the color adjustment parameters. In this example, the defaults are

assumed to be the same.

WO 2017/053277 . PCT/US2016/052633
hdr_reconstruction_info(payloadSize) { Descriptor
hdr_recon_id ue(v)
hdr_recon_cancel flag u(l)
if('hdr recon cancel flag) {
hdr_recon_persistence flag u(l)
if (hdr_recon_id==1) {
hdr_output full range flag
hdr_output_colour_ primaries
hdr_output_transfer_characteristics
hdr_output_matrix_coeffs
}

SYNTAX FOR THE MAPPING LUTs
hdr_recon_num_comps_minusl ue(v)
for(¢ =0; ¢ <=hdr_recon num_comps_minusl;

ct+){

hdr_recon_default bit depth [c] u(l)
if (hdr recon default bit depth[c]==0) {
hdr_recon_scale bit depth|[¢] u(4)
hdr_recon_offset_bit depth|[¢] u(4)
hdr_recon_scale frac bit_depth[c] u(4)
hdr_recon_offset frac bit_depth[c] u(4)
}
hdr_recon_num_ranges| c | ue(v)
hdr_recon_equal_ranges flag[c | u(l)
hdr_recon_global offset val[¢] u(v)
for(1=0;1 <= hdr_recon_num_ranges[¢]; i++

)

hdr_recon_scale val[c][1] u(v)
if('hdr _recon equal ranges[c]) u(v)
for(i=0;1 <= hdr _recon _num ranges| ¢ |; i++

)

hdr_recon_range val [c][i] u(v)

u(v)

WO 2017/053277 PCT/US2016/052633
33

SYNTAX FOR THE COLOR CORRECTION PART

if (hdr_recon_id==1) { Params related to Colour

correction

hdr_color_correction_type 0:onU,V-1:0nRG,B

hdr_color_accuracy_flag Syntax for coding the
colour

if(! hdr_recon color accuracy flag) { correction LUT

hdr_color scale bit depth u(4)

hdr_color _offset_bit depth u(4)

hdr_color scale frac bit depth u(4)

hdr_color offset frac_bit depth u(4)

}

color correction_num_ranges

color_correction_equal len ranges flag

color_correction_zero offset val

for(1=0;1 <color correction num_ranges;

i)

color_correction_scale val[1]

if(! color_correction_equal len ranges flag)

for(1=0; 1 <color_correction num_ranges;

i)

color_correction_range val[1]

Example 9

[0214] A desirable property of a new HDR solution is that it is backward compatible to
previous HDR solutions, like HDR10. A syntax element may indicate that this is the
case. This indicates a characteristic of the bitstream, and an HDR decoder might decide
not to spend computational resources on the inverse ATF processing under some

circumstances if the non ATF version is already viewable.

WO 2017/053277 PCT/US2016/052633
34

[0215] In one example, some values of the hdr recon_id syntax element are reserved to
indicate HDR 10 backward compatibility, or to what degree there is backward
compatibility.

[0216] In another example, a flag (hdr recon_hdr10 bc) indicates this situation.

[0217] In one example, the signaled HDR 10 backward compatibility indicates that the
bitstream is viewable. Alternatively, it might indicate some specific properties of the
signaled values: for example, that they are a range of values that guarantees this
property. For instance, a constraint could be that the scale is between 0.9 and 1.1.
[0218] FIG. 10 is a block diagram illustrating an example of video encoder 20 that may
implement the techniques of this disclosure. Video encoder 20 may perform intra- and
inter-coding of video blocks within video slices in a target color container that have
been processed by video pre-processor unit 19. Intra-coding relies on spatial prediction
to reduce or remove spatial redundancy in video within a given video frame or picture.
Inter-coding relies on temporal prediction to reduce or remove temporal redundancy in
video within adjacent frames or pictures of a video sequence. Intra-mode (I mode) may
refer to any of several spatial based coding modes. Inter-modes, such as uni-directional
prediction (P mode) or bi-prediction (B mode), may refer to any of several temporal-
based coding modes.

[0219] As shown in FIG. 10, video encoder 20 receives a current video block within a
video frame to be encoded. In the example of FIG. 10, video encoder 20 includes mode
select unit 40, a video data memory 41, decoded picture buffer 64, summer 50,
transform processing unit 52, quantization unit 54, and entropy encoding unit 56. Mode
select unit 40, in turn, includes motion compensation unit 44, motion estimation unit 42,
intra prediction processing unit 46, and partition unit 48. For video block
reconstruction, video encoder 20 also includes inverse quantization unit 58, inverse
transform processing unit 60, and summer 62. A deblocking filter (not shown in FIG.
10) may also be included to filter block boundaries to remove blockiness artifacts from
reconstructed video. If desired, the deblocking filter would typically filter the output of
summer 62. Additional filters (in loop or post loop) may also be used in addition to the
deblocking filter. Such filters are not shown for brevity, but if desired, may filter the
output of summer 50 (as an in-loop filter).

[0220] Video data memory 41 may store video data to be encoded by the components of
video encoder 20. The video data stored in video data memory 41 may be obtained, for

example, from video source 18. Decoded picture buffer 64 may be a reference picture

WO 2017/053277 PCT/US2016/052633
85

memory that stores reference video data for use in encoding video data by video
encoder 20, e.g., in intra- or inter-coding modes. Video data memory 41 and decoded
picture buffer 64 may be formed by any of a variety of memory devices, such as
dynamic random access memory (DRAM), including synchronous DRAM (SDRAM),
magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory
devices. Video data memory 41 and decoded picture buffer 64 may be provided by the
same memory device or separate memory devices. In various examples, video data
memory 41 may be on-chip with other components of video encoder 20, or off-chip
relative to those components.

[0221] During the encoding process, video encoder 20 receives a video frame or slice to
be coded. The frame or slice may be divided into multiple video blocks. Motion
estimation unit 42 and motion compensation unit 44 perform inter-predictive coding of
the received video block relative to one or more blocks in one or more reference frames
to provide temporal prediction. Intra prediction processing unit 46 may alternatively
perform intra-predictive coding of the received video block relative to one or more
neighboring blocks in the same frame or slice as the block to be coded to provide spatial
prediction. Video encoder 20 may perform multiple coding passes, e.g., to select an
appropriate coding mode for each block of video data.

[0222] Moreover, partition unit 48 may partition blocks of video data into sub-blocks,
based on evaluation of previous partitioning schemes in previous coding passes. For
example, partition unit 48 may initially partition a frame or slice into LCUSs, and
partition each of the LCUs into sub-CUs based on rate-distortion analysis (e.g., rate-
distortion optimization). Mode select unit 40 may further produce a quadtree data
structure indicative of partitioning of an LCU into sub-CUs. Leaf-node CUs of the
quadtree may include one or more PUs and one or more TUs.

[0223] Mode select unit 40 may select one of the coding modes, intra or inter, e.g.,
based on error results, and provides the resulting intra- or inter-coded block to summer
50 to generate residual block data and to summer 62 to reconstruct the encoded block
for use as a reference frame. Mode select unit 40 also provides syntax elements, such as
motion vectors, intra-mode indicators, partition information, and other such syntax
information, to entropy encoding unit 56.

[0224] Motion estimation unit 42 and motion compensation unit 44 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,

performed by motion estimation unit 42, is the process of generating motion vectors,

WO 2017/053277 PCT/US2016/052633
86

which estimate motion for video blocks. A motion vector, for example, may indicate
the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference picture (or other coded unit) relative to
the current block being coded within the current picture (or other coded unit). A
predictive block is a block that is found to closely match the block to be coded, in terms
of pixel difference, which may be determined by sum of absolute difference (SAD), sum
of square difference (SSD), or other difference metrics. In some examples, video
encoder 20 may calculate values for sub-integer pixel positions of reference pictures
stored in decoded picture buffer 64. For example, video encoder 20 may interpolate
values of one-quarter pixel positions, one-eighth pixel positions, or other fractional
pixel positions of the reference picture. Therefore, motion estimation unit 42 may
perform a motion search relative to the full pixel positions and fractional pixel positions
and output a motion vector with fractional pixel precision.

[0225] Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in decoded picture buffer 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

[0226] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation unit 42. Again, motion estimation unit 42 and motion compensation
unit 44 may be functionally integrated, in some examples. Upon receiving the motion
vector for the PU of the current video block, motion compensation unit 44 may locate
the predictive block to which the motion vector points in one of the reference picture
lists. Summer 50 forms a residual video block by subtracting pixel values of the
predictive block from the pixel values of the current video block being coded, forming
pixel difference values, as discussed below. In general, motion estimation unit 42
performs motion estimation relative to luma components, and motion compensation unit
44 uses motion vectors calculated based on the luma components for both chroma
components and luma components. Mode select unit 40 may also generate syntax
elements associated with the video blocks and the video slice for use by video decoder

30 in decoding the video blocks of the video slice.

WO 2017/053277 PCT/US2016/052633
87

[0227] Intra prediction processing unit 46 may intra-predict a current block, as an
alternative to the inter-prediction performed by motion estimation unit 42 and motion
compensation unit 44, as described above. In particular, intra prediction processing unit
46 may determine an intra-prediction mode to use to encode a current block. In some
examples, intra prediction processing unit 46 may encode a current block using various
intra-prediction modes, e.g., during separate encoding passes, and intra prediction
processing unit 46 (or mode select unit 40, in some examples) may select an appropriate
intra-prediction mode to use from the tested modes.

[0228] For example, intra prediction processing unit 46 may calculate rate-distortion
values using a rate-distortion analysis for the various tested intra-prediction modes, and
select the intra-prediction mode having the best rate-distortion characteristics among the
tested modes. Rate-distortion analysis generally determines an amount of distortion (or
error) between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bit rate (that is, a number of bits) used to
produce the encoded block. Intra prediction processing unit 46 may calculate ratios
from the distortions and rates for the various encoded blocks to determine which intra-
prediction mode exhibits the best rate-distortion value for the block.

[0229] After selecting an intra-prediction mode for a block, intra prediction processing
unit 46 may provide information indicative of the selected intra-prediction mode for the
block to entropy encoding unit 56. Entropy encoding unit 56 may encode the
information indicating the selected intra-prediction mode. Video encoder 20 may
include in the transmitted bitstream configuration data, which may include a plurality of
intra-prediction mode index tables and a plurality of modified intra-prediction mode
index tables (also referred to as codeword mapping tables), definitions of encoding
contexts for various blocks, and indications of a most probable intra-prediction mode,
an intra-prediction mode index table, and a modified intra-prediction mode index table
to use for each of the contexts.

[0230] Video encoder 20 forms a residual video block by subtracting the prediction data
from mode select unit 40 from the original video block being coded. Summer 50
represents the component or components that perform this subtraction operation.
Transform processing unit 52 applies a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform, to the residual block, producing a video
block comprising residual transform coefficient values. Transform processing unit 52

may perform other transforms which are conceptually similar to DCT. Wavelet

WO 2017/053277 PCT/US2016/052633
38

transforms, integer transforms, sub-band transforms or other types of transforms could
also be used. In any case, transform processing unit 52 applies the transform to the
residual block, producing a block of residual transform coefficients. The transform may
convert the residual information from a pixel value domain to a transform domain, such
as a frequency domain. Transform processing unit 52 may send the resulting transform
coefficients to quantization unit 54.

[0231] Quantization unit 54 quantizes the transform coefficients to further reduce bit
rate. The quantization process may reduce the bit depth associated with some or all of
the coefficients. The degree of quantization may be modified by adjusting a
quantization parameter. In some examples, quantization unit 54 may then perform a
scan of the matrix including the quantized transform coefficients. Alternatively, entropy
encoding unit 56 may perform the scan.

[0232] Following quantization, entropy encoding unit 56 entropy codes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy coding technique. In the
case of context-based entropy coding, context may be based on neighboring blocks.
Following the entropy coding by entropy encoding unit 56, the encoded bitstream may
be transmitted to another device (e.g., video decoder 30) or archived for later
transmission or retrieval.

[0233] Inverse quantization unit 58 and inverse transform processing unit 60 apply
inverse quantization and inverse transformation, respectively, to reconstruct the residual
block in the pixel domain, e.g., for later use as a reference block. Motion compensation
unit 44 may calculate a reference block by adding the residual block to a predictive
block of one of the frames of decoded picture buffer 64. Motion compensation unit 44
may also apply one or more interpolation filters to the reconstructed residual block to
calculate sub-integer pixel values for use in motion estimation. Summer 62 adds the
reconstructed residual block to the motion compensated prediction block produced by
motion compensation unit 44 to produce a reconstructed video block for storage in
decoded picture buffer 64. The reconstructed video block may be used by motion
estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a

block in a subsequent video frame.

WO 2017/053277 PCT/US2016/052633
89

[0234] FIG. 11 is a block diagram illustrating an example of video decoder 30 that may
implement the techniques of this disclosure. In particular, video decoder 30 may decode
video data into a target color container that may then be processed by video post-
processor unit 31, as described above. In the example of FIG. 11, video decoder 30
includes an entropy decoding unit 70, a video data memory 71, motion compensation
unit 72, intra prediction processing unit 74, inverse quantization unit 76, inverse
transform processing unit 78, decoded picture buffer 82 and summer 80. Video decoder
30 may, in some examples, perform a decoding pass generally reciprocal to the
encoding pass described with respect to video encoder 20 (FIG. 10). Motion
compensation unit 72 may generate prediction data based on motion vectors received
from entropy decoding unit 70, while intra prediction processing unit 74 may generate
prediction data based on intra-prediction mode indicators received from entropy
decoding unit 70.

[0235] Video data memory 71 may store video data, such as an encoded video
bitstream, to be decoded by the components of video decoder 30. The video data stored
in video data memory 71 may be obtained, for example, from computer-readable
medium 16, e.g., from a local video source, such as a camera, via wired or wireless
network communication of video data, or by accessing physical data storage

media. Video data memory 71 may form a coded picture buffer (CPB) that stores
encoded video data from an encoded video bitstream. Decoded picture buffer 82 may
be a reference picture memory that stores reference video data for use in decoding video
data by video decoder 30, e.g., in intra- or inter-coding modes. Video data memory 71
and decoded picture buffer 82 may be formed by any of a variety of memory devices,
such as dynamic random access memory (DRAM), including synchronous DRAM
(SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of
memory devices. Video data memory 71 and decoded picture buffer 82 may be
provided by the same memory device or separate memory devices. In various
examples, video data memory 71 may be on-chip with other components of video
decoder 30, or off-chip relative to those components.

[0236] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy
decodes the bitstream to generate quantized coefficients, motion vectors or intra-

prediction mode indicators, and other syntax elements. Entropy decoding unit 70

WO 2017/053277 PCT/US2016/052633
90

forwards the motion vectors to and other syntax elements to motion compensation unit
72. Video decoder 30 may receive the syntax elements at the video slice level and/or
the video block level.

[0237] When the video slice is coded as an intra-coded (I) slice, intra prediction
processing unit 74 may generate prediction data for a video block of the current video
slice based on a signaled intra prediction mode and data from previously decoded blocks
of the current frame or picture. When the video frame is coded as an inter-coded (i.e., B
or P) slice, motion compensation unit 72 produces predictive blocks for a video block of
the current video slice based on the motion vectors and other syntax elements received
from entropy decoding unit 70. The predictive blocks may be produced from one of the
reference pictures within one of the reference picture lists. Video decoder 30 may
construct the reference picture lists, List 0 and List 1, using default construction
techniques based on reference pictures stored in decoded picture buffer 82. Motion
compensation unit 72 determines prediction information for a video block of the current
video slice by parsing the motion vectors and other syntax elements, and uses the
prediction information to produce the predictive blocks for the current video block
being decoded. For example, motion compensation unit 72 uses some of the received
syntax elements to determine a prediction mode (e.g., intra- or inter-prediction) used to
code the video blocks of the video slice, an inter-prediction slice type (e.g., B slice or P
slice), construction information for one or more of the reference picture lists for the
slice, motion vectors for each inter-encoded video block of the slice, inter-prediction
status for each inter-coded video block of the slice, and other information to decode the
video blocks in the current video slice.

[0238] Motion compensation unit 72 may also perform interpolation based on
interpolation filters. Motion compensation unit 72 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 72
may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0239] Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
70. The inverse quantization process may include use of a quantization parameter QPy
calculated by video decoder 30 for each video block in the video slice to determine a

degree of quantization and, likewise, a degree of inverse quantization that should be

WO 2017/053277 PCT/US2016/052633
91

applied. Inverse transform processing unit 78 applies an inverse transform, e.g., an
inverse DCT, an inverse integer transform, or a conceptually similar inverse transform
process, to the transform coefficients in order to produce residual blocks in the pixel
domain.

[0240] After motion compensation unit 72 generates the predictive block for the current
video block based on the motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks from inverse transform
processing unit 78 with the corresponding predictive blocks generated by motion
compensation unit 72. Summer 80 represents the component or components that
perform this summation operation. If desired, a deblocking filter may also be applied to
filter the decoded blocks in order to remove blockiness artifacts. Other loop filters
(either in the coding loop or after the coding loop) may also be used to smooth pixel
transitions, or otherwise improve the video quality. The decoded video blocks in a
given frame or picture are then stored in decoded picture buffer 82, which stores
reference pictures used for subsequent motion compensation. Decoded picture buffer
82 also stores decoded video for later presentation on a display device, such as display
device 32 of FIG. 1.

[0241] FIG. 12 is a flowchart showing one example video processing technique of the
disclosure. The techniques of FIG. 12 may be performed by video encoder 20 and/or
video pre-processor unit 19. In the example of FIG. 12, source device 12 may be
configured to capture video data using a camera (1200). Video encoder 20 and/or video
pre-processor unit 19 may be configured to perform a dynamic range adjustment
process on video data using fixed-point computing (1210). Video encoder 20 and/or
video pre-processor unit 19 may be further configured to generate one or more syntax
elements that contain information specifying how to determine parameters for
performing an inverse dynamic range adjustment process, relative to the dynamic range
adjustment process, using fixed-point computing (1220).

[0242] In one example, video encoder 20 and/or video pre-processor unit 19 may be
configured to generate the one or more syntax elements by generating the one or more
syntax elements in one or more supplemental enhancement information (SEI) messages.
In one example, the parameters comprise one or more of a range parameter, a scale
parameter, or an offset parameter. In another example, the information indicates one or
more of a first number of fractional bits used for determining the range parameter, a

second number of fractional bits used for determining the scale parameter, and a third

WO 2017/053277 PCT/US2016/052633
92

number of fractional bits used for determining the offset parameter. In another example,
the information includes a minimum value and a maximum value for one or more color
components of the video data. In another example, the information includes an index to
a predetermined range of sample values of the decoded video data.

[0243] FIG. 13 is a flowchart showing another example video processing technique of
the disclosure. The techniques of FIG. 13 may be performed by video decoder 30
and/or video post-processor unit 31. In one example of the disclosure, video decoder 30
and/or video post-processor unit 31 may be configured to receive one or more syntax
elements that contain information specifying how to determine parameters for
performing an inverse dynamic range adjustment process (1300), and receive decoded
video data (1310).

[0244] Video decoder 30 and/or video post-processor unit 31 may be further configured
to determine parameters for an inverse dynamic range adjustment process from the
received information (1320), and perform the inverse dynamic range adjustment process
on the decoded video data using fixed-point computing in accordance with the
information received and the determined parameters (1330). Destination device 14 may
be further configured to display the decoded video data after performing the inverse
dynamic range adjustment process on the decoded video data (1340).

[0245] In one example of the disclosure, video decoder 30 and/or video post-processor
unit 31 may be configured to receive the one or more syntax elements in one or more
supplemental enhancement information (SEI) messages. In one example, the
parameters comprise one or more of a range parameter, a scale parameter, or an offset
parameter. In another example, the information indicates one or more of a first number
of fractional bits used for determining the range parameter, a second number of
fractional bits used for determining the scale parameter, and a third number of fractional
bits used for determining the offset parameter.

[0246] In another example of the disclosure, video decoder 30 and/or video post-
processor unit 31 may be configured to determine the parameters, in the case that at
least one of the first number of fractional bits, the second number of fractional bits, or
the third number of fractional bits is different from one another, by accumulating any
fractional bits during any intermediate calculation processes used to determine the
parameters, and clip a final result for determining the parameters based on a

predetermined fractional accuracy.

WO 2017/053277 PCT/US2016/052633
93

[0247] In another example of the disclosure, video decoder 30 and/or video post-
processor unit 31 may be configured to determine the parameters by truncating any
fractional bits over a desired fractional accuracy during all intermediate calculation
processes used to determine the parameters.

[0248] In another example, the information includes a minimum value and a maximum
value for one or more color components of the decoded video data, and video decoder
30 and/or video post-processor unit 31 may be configured to determine the parameters
based on the received minimum value and the received maximum value.

[0249] In another example, the information includes an index to a predetermined range
of sample values for one or more color components of the decoded video data, and
video decoder 30 and/or video post-processor unit 31 may be configured to determine a
minimum value and a maximum value for the one or more color components of the
decoded video data based on the received index, and determine the parameters based on
the determined minimum value and the determined maximum value.

[0250] In another example of the disclosure, video decoder 30 and/or video post-
processor unit 31 may be configured to receive a syntax element indicating if the
parameters are signed or unsigned, and perform a parsing process on the information in
the SEI message, wherein the parsing process is the same regardless of the value of the
syntax element.

[0251] Certain aspects of this disclosure have been described with respect to extensions
of the HEVC standard for purposes of illustration. However, the techniques described
in this disclosure may be useful for other video coding processes, including other
standard or proprietary video coding processes not yet developed.

[0252] A video coder, as described in this disclosure, may refer to a video encoder or a
video decoder. Similarly, a video coding unit may refer to a video encoder or a video
decoder. Likewise, video coding may refer to video encoding or video decoding, as
applicable.

[0253] It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt

processing, or multiple processors, rather than sequentially.

WO 2017/053277 PCT/US2016/052633
94

[0254] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over as one or more instructions or code
on a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0255] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transitory
media, but are instead directed to non-transitory, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0256] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other

WO 2017/053277 PCT/US2016/052633
95

equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0257] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0258] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2017/053277 PCT/US2016/052633
96

WHAT IS CLAIMED IS:

1. A method of processing video data, the method comprising:
receiving one or more syntax elements that contain information specifying how
to determine parameters for performing an inverse dynamic range adjustment process;
receiving decoded video data; and
performing the inverse dynamic range adjustment process on the decoded video

data using fixed-point computing in accordance with the information received.

2. The method of claim 1, wherein receiving the one or more syntax elements
comprises receiving the one or more syntax elements in one or more supplemental
enhancement information (SEI) messages, and wherein the parameters comprise one or

more of a range parameter, a scale parameter, or an offset parameter.

3. The method of claim 2, wherein the information indicates one or more of a first
number of fractional bits used for determining the range parameter, a second number of
fractional bits used for determining the scale parameter, and a third number of fractional

bits used for determining the offset parameter.

4. The method of claim 3, further comprising:
determining the parameters using the first number of fractional bits, the second

number of fractions bits, and the third number of fractional bits.

5. The method of claim 4, wherein determining the parameters further comprises:
determining the parameters, in the case that at least one of the first number of
fractional bits, the second number of fractional bits, or the third number of fractional
bits is different from one another, by accumulating any fractional bits during any
intermediate calculation processes used to determine the parameters; and
clipping a final result for determining the parameters based on a predetermined

fractional accuracy.

WO 2017/053277 PCT/US2016/052633
97

6. The method of claim 4, wherein determining the parameters further comprises:
determining the parameters by truncating any fractional bits over a desired
fractional accuracy during all intermediate calculation processes used to determine the

parameters.

7. The method of claim 1, wherein the information includes a minimum value and
a maximum value for one or more color components of the decoded video data, the
method further comprising:

determining the parameters based on the received minimum value and the

received maximum value.

8. The method of claim 1, wherein the information includes an index to a
predetermined range of sample values for one or more color components of the decoded
video data, the method further comprising:

determining a minimum value and a maximum value for the one or more color
components of the decoded video data based on the received index; and

determining the parameters based on the determined minimum value and the

determined maximum value.

0. The method of claim 1, further comprising:

receiving a syntax element indicating if the parameters are signed or unsigned,
and

performing a parsing process on the information in the SEI message, wherein the

parsing process is the same regardless of the value of the syntax element.

10. The method of claim 1, further comprising:
displaying the decoded video data after performing the inverse dynamic range

adjustment process on the decoded video data.

WO 2017/053277 PCT/US2016/052633
98

11. An apparatus configured to process video data, the apparatus comprising:

a memory configured to store decoded video data; and
one or more processors configured to:

receive one or more syntax elements that contain information specifying
how to determine parameters for performing an inverse dynamic range
adjustment process;

receive the decoded video data; and

perform the inverse dynamic range adjustment process on the decoded
video data using fixed-point computing in accordance with the information

received.

12. The apparatus of claim 11, wherein receiving the one or more processors are
further configured to receive the one or more syntax elements in one or more
supplemental enhancement information (SEI) messages, and wherein the parameters

comprise one or more of a range parameter, a scale parameter, or an offset parameter.

13. The apparatus of claim 12, wherein the information indicates one or more of a
first number of fractional bits used for determining the range parameter, a second
number of fractional bits used for determining the scale parameter, and a third number

of fractional bits used for determining the offset parameter.

14. The apparatus of claim 13, wherein the one or more processors are further
configured to:
determine the parameters using the first number of fractional bits, the second

number of fractions bits, and the third number of fractional bits.

15. The apparatus of claim 14, wherein to determine the parameters, the one or more
processors are further configured to:

determine the parameters, in the case that at least one of the first number of
fractional bits, the second number of fractional bits, or the third number of fractional
bits is different from one another, by accumulating any fractional bits during any
intermediate calculation processes used to determine the parameters; and

clip a final result for determining the parameters based on a predetermined

fractional accuracy.

WO 2017/053277 PCT/US2016/052633
99

16. The apparatus of claim 14, wherein to determine the parameters, the one or more
processors are further configured to:

determine the parameters by truncating any fractional bits over a desired
fractional accuracy during all intermediate calculation processes used to determine the

parameters.

17. The apparatus of claim 11, wherein the information includes a minimum value
and a maximum value for one or more color components of the decoded video data, and
wherein the one or more processors are further configured to:

determine the parameters based on the received minimum value and the received

maximum value.

18. The apparatus of claim 11, wherein the information includes an index to a
predetermined range of sample values of one or more color components of the decoded
video data, and wherein the one or more processors are further configured to:
determine a minimum value and a maximum value for the one or more color
components of the decoded video data based on the received index; and
determine the parameters based on the determined minimum value and the

determined maximum value.

19. The apparatus of claim 11, wherein the one or more processors are further
configured to:
receive a syntax element indicating if the parameters are signed or unsigned; and
perform a parsing process on the information in the SEI message, wherein the

parsing process is the same regardless of the value of the syntax element.

20. The apparatus of claim 11, the apparatus further comprising:
a display configured to display the decoded video data after the one or more
processors perform the inverse dynamic range adjustment process on the decoded video

data.

21. The apparatus of claim 11, wherein the apparatus comprises one or more of a

camera, a computer, a mobile device, a broadcast receiver device, or a set-top box.

WO 2017/053277 PCT/US2016/052633
100

22. An apparatus configured to process video data, the apparatus comprising:

means for receiving one or more syntax elements that contain information
specifying how to determine parameters for performing an inverse dynamic range
adjustment process;

means for receiving decoded video data; and

means for performing the inverse dynamic range adjustment process on the
decoded video data using fixed-point computing in accordance with the information

received.

23. The apparatus of claim 22, wherein the means for receiving the one or more
syntax elements comprises means for receiving the one or more syntax elements in one
or more supplemental enhancement information (SEI) messages, and wherein the
parameters comprise one or more of a range parameter, a scale parameter, or an offset

parameter.

24. The apparatus of claim 23, wherein the information indicates one or more of a
first number of fractional bits used for determining the range parameter, a second
number of fractional bits used for determining the scale parameter, and a third number

of fractional bits used for determining the offset parameter.

25. The apparatus of claim 24, further comprising:
means for determining the parameters using the first number of fractional bits,

the second number of fractions bits, and the third number of fractional bits.

26. The apparatus of claim 25, wherein the means for determining the parameters
further comprises:

means for determining the parameters, in the case that at least one of the first
number of fractional bits, the second number of fractional bits, or the third number of
fractional bits is different from one another, by accumulating any fractional bits during
any intermediate calculation processes used to determine the parameters; and

means for clipping a final result for determining the parameters based on a

predetermined fractional accuracy.

WO 2017/053277 PCT/US2016/052633
101

27. The apparatus of claim 25, wherein the means for determining the parameters
further comprises:

means for determining the parameters by truncating any fractional bits over a
desired fractional accuracy during all intermediate calculation processes used to

determine the parameters.

28. The apparatus of claim 22, wherein the information includes a minimum value
and a maximum value for one or more color components of the decoded video data, the
apparatus further comprising:

means for determining the parameters based on the received minimum value and

the received maximum value.

29. The apparatus of claim 22, wherein the information includes an index to a
predetermined range of sample values or one or more color components of the decoded
video data, the apparatus further comprising:
means for determining a minimum value and a maximum value for the one or
more color components of the decoded video data based on the received index; and
means for determining the parameters based on the determined minimum value

and the determined maximum value.

30. The apparatus of claim 22, further comprising:

means for receiving a syntax element indicating if the parameters are signed or
unsigned; and

means for performing a parsing process on the information in the SEI message,

wherein the parsing process is the same regardless of the value of the syntax element.

31. The apparatus of claim 22, further comprising:
means for displaying the decoded video data after performing the inverse

dynamic range adjustment process on the decoded video data.

WO 2017/053277 PCT/US2016/052633
102

32. A computer-readable storage medium storing instructions that, when executed,
cause one or more processors of a device configured to process video data to:

receive one or more syntax elements that contain information specifying how to
determine parameters for performing an inverse dynamic range adjustment process;

receive the decoded video data; and

perform the inverse dynamic range adjustment process on the decoded video

data using fixed-point computing in accordance with the information received.

33. The computer-readable storage medium of claim 32, wherein the instructions
further cause the one or more processors to receive the one or more syntax elements in
one or more supplemental enhancement information (SEI) messages, and wherein the
parameters comprise one or more of a range parameter, a scale parameter, or an offset

parameter.

34. The computer-readable storage medium of claim 33, wherein the information
indicates one or more of a first number of fractional bits used for determining the range
parameter, a second number of fractional bits used for determining the scale parameter,

and a third number of fractional bits used for determining the offset parameter.

35. The computer-readable storage medium of claim 34, wherein the instructions
further cause the one or more processors to:
determine the parameters using the first number of fractional bits, the second

number of fractions bits, and the third number of fractional bits.

36. The computer-readable storage medium of claim 35, wherein the instructions
further cause the one or more processors to:

determine the parameters, in the case that at least one of the first number of
fractional bits, the second number of fractional bits, or the third number of fractional
bits is different from one another, by accumulating any fractional bits during any
intermediate calculation processes used to determine the parameters; and

clip a final result for determining the parameters based on a predetermined

fractional accuracy.

WO 2017/053277 PCT/US2016/052633
103

37. The computer-readable storage medium of claim 35, wherein the instructions
further cause the one or more processors to:

determine the parameters by truncating any fractional bits over a desired
fractional accuracy during all intermediate calculation processes used to determine the

parameters.

38. The computer-readable storage medium of claim 32, wherein the information
includes a minimum value and a maximum value for one or more color components of
the decoded video data, and wherein the instructions further cause the one or more
processors to:

determine the parameters based on the received minimum value and the received

maximum value.

39. The computer-readable storage medium of claim 32, wherein the information
includes an index to a predetermined range of sample values of one or more color
components of the decoded video data, wherein the instructions further cause the one or
more processors to:

determine a minimum value and a maximum value for the one or more color
components of the decoded video data based on the received index; and

determine the parameters based on the determined minimum value and the

determined maximum value.

40. The computer-readable storage medium of claim 32, wherein the instructions
further cause the one or more processors to:
receive a syntax element indicating if the parameters are signed or unsigned; and
perform a parsing process on the information in the SEI message, wherein the

parsing process is the same regardless of the value of the syntax element.

41. The computer-readable storage medium of claim 32, wherein the instructions
further cause the one or more processors to:
display the decoded video data after performing the inverse dynamic range

adjustment process on the decoded video data.

WO 2017/053277 PCT/US2016/052633
104

42. A method of processing video data, the method comprising:

performing a dynamic range adjustment process on video data using fixed-point
computing; and

generating one or more syntax elements that contain information specifying how
to determine parameters for performing an inverse dynamic range adjustment process,

relative to the dynamic range adjustment process, using fixed-point computing.

43, The method of claim 42, wherein generating the one or more syntax elements
comprises generating the one or more syntax elements in one or more supplemental
enhancement information (SEI) messages, and wherein the parameters comprise one or

more of a range parameter, a scale parameter, or an offset parameter.

44. The method of claim 43, wherein the information indicates one or more of a first
number of fractional bits used for determining the range parameter, a second number of
fractional bits used for determining the scale parameter, and a third number of fractional

bits used for determining the offset parameter.

45. The method of claim 42, wherein the information includes a minimum value and

a maximum value for one or more color components of the video data.

46. The method of claim 42, wherein the information includes an index to a

predetermined range of sample values of the decoded video data.

47. The method of claim 42, further comprising:

capturing the video data with a camera.

WO 2017/053277 PCT/US2016/052633
105

48. An apparatus configured to process video data, the apparatus comprising:

a memory configured to store video data; and
one or more processors configured to:

perform a dynamic range adjustment process on the video data using
fixed-point computing; and

generate one or more syntax elements that contain information specifying
how to determine parameters for performing an inverse dynamic range
adjustment process, relative to the dynamic range adjustment process, using

fixed-point computing.

49. The apparatus of claim 48, wherein the one or more processors are further
configured to generate the one or more syntax elements in one or more supplemental
enhancement information (SEI) messages, and wherein the parameters comprise one or

more of a range parameter, a scale parameter, or an offset parameter.

50. The apparatus of claim 49, wherein the information indicates one or more of a
first number of fractional bits used for determining the range parameter, a second
number of fractional bits used for determining the scale parameter, and a third number

of fractional bits used for determining the offset parameter.

51. The apparatus of claim 48, wherein the information includes a minimum value

and a maximum value for one or more color components of the video data.

52. The apparatus of claim 48, wherein the information includes an index to a

predetermined range of sample values of the decoded video data.

53. The apparatus of claim 48, the apparatus further comprising:

a camera configured to capture the video data.

54. The apparatus of claim 48, wherein the apparatus comprises one or more of a

camera, a computer, a mobile device, a broadcast receiver device, or a set-top box.

WO 2017/053277 PCT/US2016/052633
106

55. An apparatus configured to process video data, the apparatus comprising:
means for performing a dynamic range adjustment process on video data using
fixed-point computing; and
means for generating one or more syntax elements that contain information
specifying how to determine parameters for performing an inverse dynamic range
adjustment process, relative to the dynamic range adjustment process, using fixed-point

computing.

56. A computer-readable storage medium storing instructions that, when executed,
cause one or more processors of a device configured to process video data to:

perform a dynamic range adjustment process on the video data using fixed-point
computing; and

generate one or more syntax elements that contain information specifying how to
determine parameters for performing an inverse dynamic range adjustment process,

relative to the dynamic range adjustment process, using fixed-point computing.

WO 2017/053277

1/13

10

SOURCE DEVICE
12

VIDEO SOURCE
18

VIDEO PRE-
PROCESSOR UNIT
19

L

VIDEO
ENCODER
20

OUTPUT
INTERFACE —
22

PCT/US2016/052633

-21

Ve

FIG. 1

DESTINATION DEVICE
14

DISPLAY DEVICE
32

VIDEO POST-
PROCESSOR UNIT
31

VIDEO
DECODER
30

)

INPUT

—> INTERFACE

28

-29

PCT/US2016/052633

WO 2017/053277

2/13

1n7-sod

AH_

Xujew ¢xg

XUlew gxg

AH_

1N7-9.d

¢ Old

PCT/US2016/052633

WO 2017/053277

3/13

€ 'Old

_ Aeidsig ¥aH _

Ke|dsig ¥as

P S ———

€ —— — — o —_—-—_ = > uoIsi/ UewnH
abuey snoauejnwig

wbiung sJoopu| Bijuoo|y wbipe)s

9 14 rA 0 N -

(a1eas Hoj s3Iu) abuey asueulwnT]

PCT/US2016/052633

WO 2017/053277

4/13

100

HDTV o——a

UHDTV = ===

; \\ " \

Rllnne

% SN

OO DR RR
N

N ZAamnnmne

0.9

- 4 -

N s At
\\\&\\ SRR
G R
L L L

0.2 0.3 0.4 0.5 0.6 0.7 0.9

0.1

FIG. 4

PCT/US2016/052633

WO 2017/053277

5/13

G 'Old

¥3A0OON4
O3dlA

a9y
AVANIT

NOISY3IANOD NOILONNA
NOLLVZILNVNO ~J07102 UJ4SNVHL
m:.\ v:.\ N:.\

cl

-~

PCT/US2016/052633

WO 2017/053277

6/13

9 'Old

a9y
AVANIT

¥3a09o3aa
o3aln
A
0s—
viva NOLLVZILNVYNO NOISY3ANOD NOILONNA
¥aH ISUIANI 40102 YIASNVAL
: 3ISUIANI 2SHIANI
ONF.\ NNF.\ .eru\ wN—\\

~

14

PCT/US2016/052633

WO 2017/053277

7/13

€0

ddH

$3103 jo ajdwex3 L0l
UOISINOXd uoISINOXd
\I wooJ-pesy WO00J-}00} I,
100000
<+—— S|9A3| BP0
} | 1 op s|axid JaxJep Jo) S|9A8| 8p0od >>mc/n LJ_
: : v L0000
' " ,W/P2 S000°0 ' 1000
m / E_oo 00001 abuel YQs 1o} sjeAs| apoo (Jesuap) alow m '
]] { 1 K 00
' H T ' :
; 1 sjexid Jeyybliqg 4o} S|9As| 8p0d Mau m wjpa 10 .\. m
. i ' : ' L0
Ll b [" N
mmuor ot 00k 00l 00l 00l ormmoor 00l 00l cez .oo_. ' "ﬁ r
' ' .\. H .@t‘ 79 /ol
' ' \ ZH/P2 001 ' .o’
' e/ T ol
Im.\ ' das R S L

H l.ll-l.lllll-.l
) dugeencspeas=es"
v v P 00l
' ' ,W/P2 001 0} L°0 sH9-g (60.18) ¥AS
] ' 0001
[] []
m L m /INE_oo 000°0l 0} S000°0 ¥d-01 (80Z 1S) ¥aH
. 00001

(;w/p2) ddueUIWN| Jeaul]

PCT/US2016/052633

WO 2017/053277

8/13

8 'Old

V1YQ LINN LINN 1INN 99
4aH NOLLYZILNYND [¢—| 1IN3A [¢— NOISYIANOO [¢—| NOILONNA 139¥vVL
- : -1snrav ¥0109 YIISNVL a9y
=
9le yiz—’ oz 1 80z — 90z~ oz
_
LINN
NOLLYINILST | Y3LYIANOD
S¥ILINVIVd 99
via
A
217 20z
A 4 \
oL viva
03aiA
¥3AQO0ONS
ozan [99 JAILYN
a9y

ON.\

00¢ -/

PCT/US2016/052633

WO 2017/053277

9/13

6 'Old

T LINN 1INA 1INN 0
v1iva ININ NOISHIANOD NOILONNA
MaH zo_mhMNN_wp\qu:o — -1snrav [l w0109 HIASNVHL Em_owm_m_ﬁ
—= = 3SHIANI 3SYIANI 3SHIANI -
9Le _ }oe
vie Ormu\ A 80¢ — |\
_ 90¢
|
1INN
,| NolLvAraa J| waLuaanoo
SYILINVHV 99 ISHIANI
vya
o) z0e—
\ \ 4
99
¥30093d Le JAILYN
03aIA a0y
ooc—’

om.\

PCT/US2016/052633

WO 2017/053277

10/13

||| |_

_ _

0¢ — _

¥3AOON3 O3AIA b9 _

| ¥3ddng |

5 = 09 ¢9 $)001d 03dIA FANLOId |

LINA LINA LINN d3LoNYULSNODIY d3aood3d _

ONIdOONT [“A T Nowwvzinvno [w,__“__wwwmmmm_ « _

AdO¥LNT 3ISHUIANI 3SUIANI - |

A SM201d 1INA _

‘ais3y ONISS300¥d |

NOOJ3d NOLLOIQ3¥d _

VLN _

v |

1INN _

NOILYSNIdINOD 35 _

NOILOW _

S3OVSSAN LINN |

I3S ONIANTONI 4 NOLLILYVd _

SLNINITI XVLNAS 47 _

LINN v

|

NOILVINILSE 1INN _

NOILOW 1253138 3A0On | |

S1N3ID14430D — 0s _

INMO4SNVYHL 55 hw_m: (%7 |

vNaIs3 LNN % 5\ 1853004d AYOWIW — <—— ——
@3ZILNVNO
NOILVZILNVNO NOJSNVAL |SHO0TS Vv.1Vd O3aiA P
) |

PCT/US2016/052633

WO 2017/053277

11/13

L1 "Old

-t

S)0074 __
73 YNAIS3Y hwh: oz
¥344ng < LINN
- oadIn UL | ONISS300¥d NOILLYZILNYNO
by INYO4SNVYL JSHIANI
a3aods3a 08 3ISUIANI
o __1l____
_ _ ‘44309
| _ "ZILNYNO
_ |
_ — |
| v. _ oL
| LINN _ 1INN
Il Nowwoigaud | S3OVSSAN \dOMLNI
| VMLNI _ IS ONIANTONI
_ | SLNIW373 XVINAS 3
_ — | Tz
| ZZ _ AHOWIW
| 1INN _ v.1va 03diA
| | NOLLYSN3dNOD | |
| NOILOW _
_ |
! ! 3
| I ¥3aoo3a ozain

NVv3dLslig
O3aiA
a3doON43

WO 2017/053277 PCT/US2016/052633
12/13

/1200
CAPTURE VIDEO DATA WITH A CAMERA

PERFORM A DYNAMIC RANGE —1210
ADJUSTMENT PROCESS ON THE VIDEO
DATA USING FIXED-POINT COMPUTING

GENERATE ONE OR MORE SYNTAX
ELEMENTS THAT CONTAIN INFORMATION
SPECIFYING HOW TO DETERMINE

PARAMETERS FOR PERFORMING AN |—1220
INVERSE DYNAMIC RANGE ADJUSTMENT
PROCESS, RELATIVE TO THE DYNAMIC
RANGE ADJUSTMENT PROCESS, USING
FIXED-POINT COMPUTING

FIG. 12

WO 2017/053277

FIG. 13

PCT/US2016/052633

13/13

RECEIVE ONE OR MORE SYNTAX
ELEMENTS THAT CONTAIN INFORMATION
SPECIFYING HOW TO DETERMINE
PARAMETERS FOR PERFORMING AN
INVERSE DYNAMIC RANGE ADJUSTMENT
PROCESS

/1300

RECEIVE DECODED VIDEO DATA

/1310

DETERMINE THE PARAMETERS FOR THE
INVERSE DYNAMIC RANGE ADJUSTMENT
PROCESS

/1320

l

PERFORM THE INVERSE DYNAMIC RANGE
ADJUST PROCESS ON THE DECODED
VIDEO DATA USING FIXED-POINT
COMPUTING IN ACCORDANCE WITH THE
INFORMATION RECEIVED

/-1330

;

DISPLAY THE VIDEO DATA

/1340

	Abstract
	Description
	Claims
	Drawings

