
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) 

(19) World Intellectual Property 
Organization 

International Bureau 
(10) International Publication Number 

(43) International Publication Date W O 2017/053277 Al 
30 March 2017 (30.03.2017) W I P0 I P CT 

(51) International Patent Classification: (72) Inventors: RAMASUBRAMONIAN, Adarsh Krishnan; 
H04N19/46 (2014.01) H04N19/80 (2014.01) 5775 Morehouse Drive, San Diego, California 92121-1714 
H04N19/36 (2014.01) H04N19/85 (2014.01) (US). RUSANOVSKYY, Dmytro; 5775 Morehouse 

(21) International Application Number: Drive, San Diego, California 92121-1714 (US). SOLE 

PCT/US2016/052633 ROJALS, Joel; 5775 Morehouse Drive, San Diego, Cali
fornia 92121-1714 (US). LEE, Sungwon; 5775 More

(22) International Filing Date: house Drive, San Diego, California 92121-1714 (US).  
20 September 2016 (20.09.2016) BUGDAYCI SANSLI, Done; 5775 Morehouse Drive, San 

Diego, California 92121-1714 (US). KARCZEWICZ, 
(25) Filing Language: English Marta; 5775 Morehouse Drive, San Diego, California 

(26) Publication Language: English 92121-1714 (US).  

(30) Priority Data: (74) Agent: EVANS, Matthew J.; Shumaker & Sieffert, P.A., 
62/221,586 21 September 2015 (21.09.2015) US 1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125 

62/236,804 2 October 2015 (02.10.2015) US (US).  
62/241,063 13 October 2015 (13.10.2015) US (81) Designated States (unless otherwise indicated, for every 
15/269,558 19 September 2016 (19.09.2016) US kind of national protection available): AE, AG, AL, AM, 

(71) Applicant: QUALCOMM INCORPORATED [US/US]; AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 
ATTN: International IP Administration, 5775 Morehouse BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 
Drive, San Diego, California 92121-1714 (US). DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, 

HN, HR, FU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 

[Continued on next page] 

(54) Title: FIXED POINT IMPLEMENTATION OF RANGE ADJUSTMENT OF COMPONENTS IN VIDEO CODING 

(57) Abstract: Processing high dynamic range and or wide color gamut video 

RECEIVE ONE OR MORE SYNTAX data using a fixed-point implementation. A method of processing video data may 
ELEMENTS THAT CONTAIN INFORMATION 1300 include receiving one or more supplemental enhancement information (SEI) mes

SPECIFYING HOW TO DETERMINE 10 

PARAMETERS FOR PERFORMING AN sages that contain information specifying how to determine parameters for per
INVERSE DYNAMIC RANGE ADJUSTMENT forming an inverse dynamic range adjustment process, receiving decoded video 

data, and performing the inverse dynamic range adjustment process on the de
coded video data using fixed-point computing in accordance with the information 
in the one or more SEI messages.  

1310 

RECEIVE DECODED VIDEO DATA IP 
DETERMINE THE PARAMETERS FOR THE 1320 
INVERSE DYNAMIC RANGE ADJUSTMENT 

PROCESS 

PERFORM THE INVERSE DYNAMIC RANGE 1 
ADJUST PROCESS ON THE DECODED I1330 

VIDEO DATA USING FIXED-POINT 
COMPUTING IN ACCORDANCE WITH THE 

INFORMATION RECEIVED 

113110 
DISPLAY THE VIDEO DATA 

O FIG. 13



W O 20 17/053277 A 1l llll||ll lVlllDllllllll|||||||||||||||||||| DI II l ||||||||||||||||||I| D ID l | I| | | l 
KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, 
RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, 
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, 
ZA, ZM, ZW. GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).  

(84) Designated States (unless otherwise indicated, for every Published: 
kind of regional protection available): ARIPO (BW, GH' _ with international search report (Art. 21(3)) 
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,



WO 2017/053277 PCT/US2016/052633 
1 

FIXED POINT IMPLEMENTATION OF RANGE ADJUSTMENT OF 
COMPONENTS IN VIDEO CODING 

[0001] This application claims the benefit of U.S. Provisional Application No.  

62/221,586, filed September 21, 2015, U.S. Provisional Application No. 62/236,804, 

filed October 2, 2015, and U.S. Provisional Application No. 62/241,063, filed October 

13, 2015, the entire content of each of which is incorporated by reference herein.  

TECHNICAL FIELD 

[0002] This disclosure relates to video processing.  

BACKGROUND 

[0003] Digital video capabilities can be incorporated into a wide range of devices, 

including digital televisions, digital direct broadcast systems, wireless broadcast 

systems, personal digital assistants (PDAs), laptop or desktop computers, tablet 

computers, e-book readers, digital cameras, digital recording devices, digital media 

players, video gaming devices, video game consoles, cellular or satellite radio 

telephones, so-called "smart phones," video teleconferencing devices, video streaming 

devices, and the like. Digital video devices implement video coding techniques, such as 

those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T 

H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), ITU-T H.265, High 

Efficiency Video Coding (HEVC), and extensions of such standards. The video devices 

may transmit, receive, encode, decode, and/or store digital video information more 

efficiently by implementing such video coding techniques.  

[0004] Video coding techniques include spatial (intra-picture) prediction and/or 

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video 

sequences. For block-based video coding, a video slice (e.g., a video frame or a portion 

of a video frame) may be partitioned into video blocks, which may also be referred to as 

treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I) 

slice of a picture are encoded using spatial prediction with respect to reference samples 

in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice 

of a picture may use spatial prediction with respect to reference samples in neighboring 

blocks in the same picture or temporal prediction with respect to reference samples in
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other reference pictures. Pictures may be referred to as frames, and reference pictures 

may be referred to as reference frames.  

[0005] Spatial or temporal prediction results in a predictive block for a block to be 

coded. Residual data represents pixel differences between the original block to be 

coded and the predictive block. An inter-coded block is encoded according to a motion 

vector that points to a block of reference samples forming the predictive block, and the 

residual data indicating the difference between the coded block and the predictive block.  

An intra-coded block is encoded according to an intra-coding mode and the residual 

data. For further compression, the residual data may be transformed from the pixel 

domain to a transform domain, resulting in residual transform coefficients, which then 

may be quantized. The quantized transform coefficients, initially arranged in a two

dimensional array, may be scanned in order to produce a one-dimensional vector of 

transform coefficients, and entropy coding may be applied to achieve even more 

compression.  

[0006] The total number of color values that may be captured, coded, and displayed 

may be defined by a color gamut. A color gamut refers to the range of colors that a 

device can capture (e.g., a camera) or reproduce (e.g., a display). Often, color gamuts 

differ from device to device. For video coding, a predefined color gamut for video data 

may be used such that each device in the video coding process may be configured to 

process pixel values in the same color gamut. Some color gamuts are defined with a 

larger range of colors than color gamuts that have been traditionally used for video 

coding. Such color gamuts with a larger range of colors may be referred to as a wide 

color gamut (WCG).  

[0007] Another aspect of video data is dynamic range. Dynamic range is typically 

defined as the ratio between the maximum and minimum brightness (e.g., luminance) of 

a video signal. The dynamic range of common video data used in the past is considered 

to have a standard dynamic range (SDR). Other example specifications for video data 

define color data that has a larger ratio between the maximum and minimum brightness.  

Such video data may be described as having a high dynamic range (HDR).  

SUMMARY 

[0008] This disclosure describes example techniques and devices for implementing the 

dynamic range adjustment of components of video data using a fixed-point 

implementation. The described techniques are applicable to video coding standards, not
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limited to H.264/AVC, H.265/HEVC, and other standards, that are configured to encode 

and decode High Dynamic Range (HDR) content.  

[0009] In one example of the disclosure, a method of processing video data comprises 

receiving one or more syntax elements that contain information specifying how to 

determine parameters for performing an inverse dynamic range adjustment process, 

receiving decoded video data, and performing the inverse dynamic range adjustment 

process on the decoded video data using fixed-point computing in accordance with the 

information received.  

[0010] In another example of the disclosure, an apparatus configured to process video 

data comprises a memory configured to store decoded video data, and one or more 

processors configured to receive one or more syntax elements that contain information 

specifying how to determine parameters for performing an inverse dynamic range 

adjustment process, receive the decoded video data, and perform the inverse dynamic 

range adjustment process on the decoded video data using fixed-point computing in 

accordance with the information received.  

[0011] In another example of the disclosure, an apparatus configured to process video 

data comprises means for receiving one or more syntax elements that contain 

information specifying how to determine parameters for performing an inverse dynamic 

range adjustment process, means for receiving decoded video data, and means for 

performing the inverse dynamic range adjustment process on the decoded video data 

using fixed-point computing in accordance with the information received.  

[0012] In another example, this disclosure describes a computer-readable storage 

medium storing instructions that, when executed, cause one or more processors of a 

device configured to process video data to receive one or more syntax elements that 

contain information specifying how to determine parameters for performing an inverse 

dynamic range adjustment process, receive the decoded video data, and perform the 

inverse dynamic range adjustment process on the decoded video data using fixed-point 

computing in accordance with the information received.  

[0013] In another example of the disclosure, a method of processing video data 

comprises performing a dynamic range adjustment process on video data using fixed

point computing, and generating one or more syntax elements that contain information 

specifying how to determine parameters for performing an inverse dynamic range 

adjustment process, relative to the dynamic range adjustment process, using fixed-point 

computing.
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[0014] In another example of the disclosure, an apparatus configured to process video 

data comprises a memory configured to store video data, and one or more processors 

configured to perform a dynamic range adjustment process on the video data using 

fixed-point computing, and generate one or more syntax elements that contain 

information specifying how to determine parameters for performing an inverse dynamic 

range adjustment process, relative to the dynamic range adjustment process, using fixed

point computing.  

[0015] In another example of the disclosure, an apparatus configured to process video 

data comprises means for performing a dynamic range adjustment process on video data 

using fixed-point computing, and means for generating one or more syntax elements 

that contain information specifying how to determine parameters for performing an 

inverse dynamic range adjustment process, relative to the dynamic range adjustment 

process, using fixed-point computing.  

[0016] In another example, this disclosure describes a computer-readable storage 

medium storing instructions that, when executed, cause one or more processors of a 

device configured to process video data to perform a dynamic range adjustment process 

on the video data using fixed-point computing, and generate one or more syntax 

elements that contain information specifying how to determine parameters for 

performing an inverse dynamic range adjustment process, relative to the dynamic range 

adjustment process, using fixed-point computing.  

[0017] The details of one or more examples are set forth in the accompanying drawings 

and the description below. Other features, objects, and advantages will be apparent 

from the description, drawings, and claims.  

BRIEF DESCRIPTION OF DRAWINGS 

[0018] FIG. 1 is a block diagram illustrating an example video encoding and decoding 

system configured to implement the techniques of the disclosure.  

[0019] FIG. 2 is a conceptual drawing showing a typical structure of a color remapping 

information (CRI) process.  

[0020] FIG. 3 is a conceptual drawing illustrating the concepts of HDR data.  

[0021] FIG. 4 is a conceptual diagram illustrating example color gamuts.  

[0022] FIG. 5 is a flow diagram illustrating an example of HDR/WCG representation 

conversion.



WO 2017/053277 PCT/US2016/052633 
5 

[0023] FIG. 6 is a flow diagram illustrating an example of HDR/WCG inverse 

conversion.  

[0024] FIG. 7 is conceptual diagram illustrating example of Electro-optical transfer 

functions (EOTF) utilized for video data conversion (including SDR and HDR) from 

perceptually uniform code levels to linear luminance.  

[0025] FIG. 8 is a block diagram illustrating an example HDR/WCG conversion 

apparatus operating according to the techniques of this disclosure.  

[0026] FIG. 9 is a block diagram illustrating an example HDR/WCG inverse conversion 

apparatus according to the techniques of this disclosure.  

[0027] FIG. 10 is a block diagram illustrating an example of a video encoder that may 

implement techniques of this disclosure.  

[0028] FIG. 11 is a block diagram illustrating an example of a video decoder that may 

implement techniques of this disclosure.  

[0029] FIG. 12 is a flowchart showing one example video processing technique of the 

disclosure.  

[0030] FIG. 13 is a flowchart showing another example video processing technique of 

the disclosure.  

DETAILED DESCRIPTION 

[0031] This disclosure is related to the processing and/or coding of video data with high 

dynamic range (HDR) and wide color gamut (WCG) representations. More specifically, 

the techniques of this disclosure include techniques for performing range adjustment of 

video data components using fixed point processing operations (e.g., as opposed to 

floating point processing operations). The techniques and devices described herein may 

improve compression efficiency of hybrid-based video coding systems (e.g., 

H.265/HEVC, H.264/AVC, etc.) utilized for coding video data, including HDR and 

WCG video data.  

[0032] Video coding standards, including hybrid-based video coding standards, include 

ITU-T H.261, ISO/IEC MPEG-i Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual, 

ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC 

MPEG-4 AVC), including its Scalable Video Coding (SVC) and Multi-view Video 

Coding (MVC) extensions. The design of a new video coding standard, namely High 

Efficiency Video coding (HEVC, also called H.265), has been finalized by the Joint 

Collaboration Team on Video Coding (JCT-VC) of ITU-T Video Coding Experts Group
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(VCEG) and ISO/IEC Motion Picture Experts Group (MPEG). An HEVC draft 

specification referred to as HEVC Working Draft 10 (WD 10), Bross et al., "High 

efficiency video coding (HEVC) text specification draft 10 (for FDIS & Last Call)," 

Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and 

ISO/IEC JTC1/SC29/WG11, 12th Meeting: Geneva, CH, 14-23 January 2013, JCTVC

L1003v34, is available from http://phenix.int

evry.fr/ict/doc end user/documents/12 Geneva/wg11/JCTVC-L1003-v34.zip. The 

finalized HEVC standard is referred to as HEVC version 1.  

[0033] A defect report, Wang et al., "High efficiency video coding (HEVC) Defect 

Report," Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 

and ISO/IEC JTC1/SC29/WG1 1, 14th Meeting: Vienna, AT, 25 July-2 August 2013, 

JCTVC-N1003v1, is available from http://phenix.int

evry.fr/ict/doc end user/documents/14 Vienna/wg11/JCTVC-N1003-v1.zip. The 

finalized HEVC standard document is published as ITU-T H.265, Series H: Audiovisual 

and Multimedia Systems, Infrastructure of audiovisual services - Coding of moving 

video, High efficiency video coding, Telecommunication Standardization Sector of 

International Telecommunication Union (ITU), April 2013, and another version of the 

finalized HEVC standard was published in October 2014. A copy of the H.265/HEVC 

specification text may be downloaded from http://www.itu.int/rec/T-REC-H.265

201504-Ien.  

[0034] FIG. 1 is a block diagram illustrating an example video encoding and decoding 

system 10 that may utilize techniques of this disclosure. As shown in FIG. 1, system 10 

includes a source device 12 that provides encoded video data to be decoded at a later 

time by a destination device 14. In particular, source device 12 provides the video data 

to destination device 14 via a computer-readable medium 16. Source device 12 and 

destination device 14 may comprise any of a wide range of devices, including desktop 

computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone 

handsets such as so-called "smart" phones, so-called "smart" pads, televisions, cameras, 

display devices, digital media players, video gaming consoles, video streaming devices, 

broadcast receiver device, or the like. In some cases, source device 12 and destination 

device 14 may be equipped for wireless communication.  

[0035] Destination device 14 may receive the encoded video data to be decoded via 

computer-readable medium 16. Computer-readable medium 16 may comprise any type 

of medium or device capable of moving the encoded video data from source device 12
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to destination device 14. In one example, computer-readable medium 16 may comprise 

a communication medium to enable source device 12 to transmit encoded video data 

directly to destination device 14 in real-time. The encoded video data may be 

modulated according to a communication standard, such as a wired or wireless 

communication protocol, and transmitted to destination device 14. The communication 

medium may comprise any wireless or wired communication medium, such as a radio 

frequency (RF) spectrum or one or more physical transmission lines. The 

communication medium may form part of a packet-based network, such as a local area 

network, a wide-area network, or a global network such as the Internet. The 

communication medium may include routers, switches, base stations, or any other 

equipment that may be useful to facilitate communication from source device 12 to 

destination device 14.  

[0036] In other examples, computer-readable medium 16 may include non-transitory 

storage media, such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray 

disc, or other computer-readable media. In some examples, a network server (not 

shown) may receive encoded video data from source device 12 and provide the encoded 

video data to destination device 14, e.g., via network transmission. Similarly, a 

computing device of a medium production facility, such as a disc stamping facility, may 

receive encoded video data from source device 12 and produce a disc containing the 

encoded video data. Therefore, computer-readable medium 16 may be understood to 

include one or more computer-readable media of various forms, in various examples.  

[0037] In some examples, encoded data may be output from output interface 22 to a 

storage device. Similarly, encoded data may be accessed from the storage device by 

input interface. The storage device may include any of a variety of distributed or locally 

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs, 

flash memory, volatile or non-volatile memory, or any other suitable digital storage 

media for storing encoded video data. In a further example, the storage device may 

correspond to a file server or another intermediate storage device that may store the 

encoded video generated by source device 12. Destination device 14 may access stored 

video data from the storage device via streaming or download. The file server may be 

any type of server capable of storing encoded video data and transmitting encoded video 

data to the destination device 14. Example file servers include a web server (e.g., for a 

website), an FTP server, network attached storage (NAS) devices, or a local disk drive.  

Destination device 14 may access the encoded video data through any standard data
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connection, including an Internet connection. This may include a wireless channel (e.g., 

a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a 

combination of both that is suitable for accessing encoded video data stored on a file 

server. The transmission of encoded video data from the storage device may be a 

streaming transmission, a download transmission, or a combination thereof.  

[0038] The techniques of this disclosure are not necessarily limited to wireless 

applications or settings. The techniques may be applied to video coding in support of 

any of a variety of multimedia applications, such as over-the-air television broadcasts, 

cable television transmissions, satellite television transmissions, Internet streaming 

video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital 

video that is encoded onto a data storage medium, decoding of digital video stored on a 

data storage medium, or other applications. In some examples, system 10 may be 

configured to support one-way or two-way video transmission to support applications 

such as video streaming, video playback, video broadcasting, and/or video telephony.  

[0039] In the example of FIG. 1, source device 12 includes video source 18, video 

encoding unit 21, which includes video pre-processor unit 19 and video encoder 20, and 

output interface 22. Destination device 14 includes input interface 28, video decoding 

unit 29, which includes video post-processor unit 31 and video decoder 30, and display 

device 32. In accordance with this disclosure, video pre-processor unit 19 and/or video 

encoder 20 of source device 12 and video post-processor unit 31 and/or video decoder 

30 of destination device 14 may be configured to implement the techniques of this 

disclosure, including signaling and related operations applied to video data in certain 

color spaces to enable more efficient compression of HDR and WCG video data with a 

fixed point implementation. In some examples, video pre-processor unit 19 may be 

separate from video encoder 20. In other examples, video pre-processor unit 19 may be 

part of video encoder 20. Likewise, in some examples, video post-processor unit 31 

may be separate from video decoder 30. In other examples, video post-processor unit 

31 may be part of video decoder 30. In other examples, a source device and a 

destination device may include other components or arrangements. For example, source 

device 12 may receive video data from an external video source 18, such as an external 

camera. Likewise, destination device 14 may interface with an external display device, 

rather than including an integrated display device.  

[0040] The illustrated system 10 of FIG. 1 is merely one example. Techniques for 

processing HDR and WCG video data may be performed by any digital video encoding
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and/or video decoding device. Moreover, the techniques of this disclosure may also be 

performed by a video pre-processor and/or video post-processor (e.g., video pre

processor unit 19 and video post-processor unit 31). In general, a video pre-processor 

may be any device configured to process video data before encoding (e.g., before 

HEVC encoding). In general, a video post-processor may be any device configured to 

process video data after decoding (e.g., after HEVC decoding). Source device 12 and 

destination device 14 are merely examples of such coding devices in which source 

device 12 generates coded video data for transmission to destination device 14. In some 

examples, devices 12, 14 may operate in a substantially symmetrical manner such that 

each of devices 12, 14 include video encoding and decoding components, as well as a 

video pre-processor and a video post-processor (e.g., video pre-processor unit 19 and 

video post-processor unit 31, respectively). Hence, system 10 may support one-way or 

two-way video transmission between video devices 12, 14, e.g., for video streaming, 

video playback, video broadcasting, or video telephony.  

[0041] Video source 18 of source device 12 may include a video capture device, such as 

a video camera, a video archive containing previously captured video, and/or a video 

feed interface to receive video from a video content provider. As a further alternative, 

video source 18 may generate computer graphics-based data as the source video, or a 

combination of live video, archived video, and computer-generated video. In some 

cases, if video source 18 is a video camera, source device 12 and destination device 14 

may form so-called camera phones or video phones. As mentioned above, however, the 

techniques described in this disclosure may be applicable to video coding and video 

processing, in general, and may be applied to wireless and/or wired applications. In 

each case, the captured, pre-captured, or computer-generated video may be encoded by 

video encoding unit 21. The encoded video information may then be output by output 

interface 22 onto a computer-readable medium 16.  

[0042] Input interface 28 of destination device 14 receives information from computer

readable medium 16. The information of computer-readable medium 16 may include 

syntax information defined by video encoder 20, which is also used by video decoding 

unit 29, that includes syntax elements that describe characteristics and/or processing of 

blocks and other coded units, e.g., groups of pictures (GOPs). Display device 32 

displays the decoded video data to a user, and may comprise any of a variety of display 

devices such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma
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display, an organic light emitting diode (OLED) display, or another type of display 

device.  

[0043] As illustrated, video pre-processor unit 19 receives the video data from video 

source 18. Video pre-processor unit 19 may be configured to process the video data to 

convert it into a form that is suitable for encoding with video encoder 20. For example, 

video pre-processor unit 19 may perform dynamic range compacting (e.g., using a non

linear transfer function), color conversion to a more compact or robust color space, 

and/or floating-to-integer representation conversion. Video encoder 20 may perform 

video encoding on the video data outputted by video pre-processor unit 19. Video 

decoder 30 may perform the inverse of video encoder 20 to decode video data, and 

video post-processor unit 31 may perform the inverse of video pre-processor unit 19 to 

convert the video data into a form suitable for display. For instance, video post

processor unit 31 may perform integer-to-floating conversion, color conversion from the 

compact or robust color space, and/or the inverse of the dynamic range compacting to 

generate video data suitable for display.  

[0044] Video encoder 20 and video decoder 30 each may be implemented as any of a 

variety of suitable encoder circuitry, such as one or more microprocessors, digital signal 

processors (DSPs), application specific integrated circuits (ASICs), field programmable 

gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations 

thereof. When the techniques are implemented partially in software, a device may store 

instructions for the software in a suitable, non-transitory computer-readable medium and 

execute the instructions in hardware using one or more processors to perform the 

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be 

included in one or more encoders or decoders, either of which may be integrated as part 

of a combined encoder/decoder (CODEC) in a respective device.  

[0045] Video pre-processor unit 19 and video post-processor unit 31 each may be 

implemented as any of a variety of suitable encoder circuitry, such as one or more 

microprocessors, digital signal processors (DSPs), application specific integrated 

circuits (ASICs), field programmable gate arrays (FPGAs), discrete logic, software, 

hardware, firmware or any combinations thereof. When the techniques are implemented 

partially in software, a device may store instructions for the software in a suitable, non

transitory computer-readable medium and execute the instructions in hardware using 

one or more processors to perform the techniques of this disclosure. As discussed 

above video pre-processor unit 19 and video post-processor unit 31 be separate devices
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from video encoder 20 and video decoder 30, respectively. In other examples, video 

pre-processor unit 19 may integrate with video encoder 20 in a single device and inverse 

video post-processor unit 31 may be integrated with video decoder 30 in a single device.  

[0046] In some examples, video encoder 20 and video decoder 30 operate according to 

a video compression standard, such as ISO/IEC MPEG-4 Visual and ITU-T H.264 (also 

known as ISO/JEC MPEG-4 AVC), including its Scalable Video Coding (SVC) 

extension, Multi-view Video Coding (MVC) extension, and MVC-based three

dimensional video (3DV) extension. In some instances, any bitstream conforming to 

MVC-based 3DV always contains a sub-bitstream that is compliant to a MVC profile, 

e.g., stereo high profile. Furthermore, there is an ongoing effort to generate a 3DV 

coding extension to H.264/AVC, namely AVC-based 3DV. Other examples of video 

coding standards include ITU-T H.261, ISO/IEC MPEG-i Visual, ITU-T H.262 or 

ISO/JEC MPEG-2 Visual, ITU-T H.263, ISO/JEC MPEG-4 Visual, and ITU-T H.264, 

ISO/JEC Visual. In other examples, video encoder 20 and video decoder 30 may be 

configured to operate according to the HEVC standard.  

[0047] In HEVC and other video coding standards, a video sequence typically includes 

a series of pictures. Pictures may also be referred to as "frames." A picture may 

include three sample arrays, denoted SL, Scb, and SCr. SL is a two-dimensional array 

(i.e., a block) of luma samples. Scb is a two-dimensional array of Cb chrominance 

samples. SCr is a two-dimensional array of Cr chrominance samples. Chrominance 

samples may also be referred to herein as "chroma" samples. In other instances, a 

picture may be monochrome and may only include an array of luma samples.  

[0048] Video encoder 20 may generate a set of coding tree units (CTUs). Each of the 

CTUs may comprise a coding tree block of luma samples, two corresponding coding 

tree blocks of chroma samples, and syntax structures used to code the samples of the 

coding tree blocks. In a monochrome picture or a picture that has three separate color 

planes, a CTU may comprise a single coding tree block and syntax structures used to 

code the samples of the coding tree block. A coding tree block may be an NxN block of 

samples. A CTU may also be referred to as a "tree block" or a "largest coding unit" 

(LCU). The CTUs of HEVC may be broadly analogous to the macroblocks of other 

video coding standards, such as H.264/AVC. However, a CTU is not necessarily 

limited to a particular size and may include one or more coding units (CUs). A slice 

may include an integer number of CTUs ordered consecutively in the raster scan.
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[0049] This disclosure may use the term "video unit" or "video block" to refer to one or 

more blocks of samples and syntax structures used to code samples of the one or more 

blocks of samples. Example types of video units may include CTUs, CUs, PUs, 

transform units (TUs) in HEVC, or macroblocks, macroblock partitions, and so on in 

other video coding standards.  

[0050] To generate a coded CTU, video encoder 20 may recursively perform quad-tree 

partitioning on the coding tree blocks of a CTU to divide the coding tree blocks into 

coding blocks, hence the name "coding tree units." A coding block is an NxN block of 

samples. A CU may comprise a coding block of luma samples and two corresponding 

coding blocks of chroma samples of a picture that has a luma sample array, a Cb sample 

array and a Cr sample array, and syntax structures used to code the samples of the 

coding blocks. In a monochrome picture or a picture that has three separate color 

planes, a CU may comprise a single coding block and syntax structures used to code the 

samples of the coding block.  

[0051] Video encoder 20 may partition a coding block of a CU into one or more 

prediction blocks. A prediction block may be a rectangular (i.e., square or non-square) 

block of samples on which the same prediction is applied. A prediction unit (PU) of a 

CU may comprise a prediction block of luma samples, two corresponding prediction 

blocks of chroma samples of a picture, and syntax structures used to predict the 

prediction block samples. In a monochrome picture or a picture that have three separate 

color planes, a PU may comprise a single prediction block and syntax structures used to 

predict the prediction block samples. Video encoder 20 may generate predictive luma, 

Cb and Cr blocks for luma, Cb and Cr prediction blocks of each PU of the CU.  

[0052] Video encoder 20 may use intra prediction or inter prediction to generate the 

predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the 

predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the 

PU based on decoded samples of the picture associated with the PU.  

[0053] If video encoder 20 uses inter prediction to generate the predictive blocks of a 

PU, video encoder 20 may generate the predictive blocks of the PU based on decoded 

samples of one or more pictures other than the picture associated with the PU. Inter 

prediction may be uni-directional inter prediction (i.e., uni-prediction) or bi-directional 

inter prediction (i.e., bi-prediction). To perform uni-prediction or bi-prediction, video 

encoder 20 may generate a first reference picture list (RefPicList0) and a second 

reference picture list (RefPicListl) for a current slice.
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[0054] Each of the reference picture lists may include one or more reference pictures.  

When using uni-prediction, video encoder 20 may search the reference pictures in either 

or both RefPicListO and RefPicListl to determine a reference location within a 

reference picture. Furthermore, when using uni-prediction, video encoder 20 may 

generate, based at least in part on samples corresponding to the reference location, the 

predictive sample blocks for the PU. Moreover, when using uni-prediction, video 

encoder 20 may generate a single motion vector that indicates a spatial displacement 

between a prediction block of the PU and the reference location. To indicate the spatial 

displacement between a prediction block of the PU and the reference location, a motion 

vector may include a horizontal component specifying a horizontal displacement 

between the prediction block of the PU and the reference location and may include a 

vertical component specifying a vertical displacement between the prediction block of 

the PU and the reference location.  

[0055] When using bi-prediction to encode a PU, video encoder 20 may determine a 

first reference location in a reference picture in RefPicList0 and a second reference 

location in a reference picture in RefPicListl. Video encoder 20 may then generate, 

based at least in part on samples corresponding to the first and second reference 

locations, the predictive blocks for the PU. Moreover, when using bi-prediction to 

encode the PU, video encoder 20 may generate a first motion indicating a spatial 

displacement between a sample block of the PU and the first reference location and a 

second motion indicating a spatial displacement between the prediction block of the PU 

and the second reference location.  

[0056] After video encoder 20 generates predictive luma, Cb, and Cr blocks for one or 

more PUs of a CU, video encoder 20 may generate a luma residual block for the CU.  

Each sample in the CU's luma residual block indicates a difference between a luma 

sample in one of the CU's predictive luma blocks and a corresponding sample in the 

CU's original luma coding block. In addition, video encoder 20 may generate a Cb 

residual block for the CU. Each sample in the CU's Cb residual block may indicate a 

difference between a Cb sample in one of the CU's predictive Cb blocks and a 

corresponding sample in the CU's original Cb coding block. Video encoder 20 may 

also generate a Cr residual block for the CU. Each sample in the CU's Cr residual block 

may indicate a difference between a Cr sample in one of the CU's predictive Cr blocks 

and a corresponding sample in the CU's original Cr coding block.
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[0057] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the 

luma, Cb and, Cr residual blocks of a CU into one or more luma, Cb, and Cr transform 

blocks. A transform block may be a rectangular block of samples on which the same 

transform is applied. A transform unit (TU) of a CU may comprise a transform block of 

luma samples, two corresponding transform blocks of chroma samples, and syntax 

structures used to transform the transform block samples. In a monochrome picture or a 

picture that has three separate color planes, a TU may comprise a single transform block 

and syntax structures used to transform the transform block samples. Thus, each TU of 

a CU may be associated with a luma transform block, a Cb transform block, and a Cr 

transform block. The luma transform block associated with the TU may be a sub-block 

of the CU's luma residual block. The Cb transform block may be a sub-block of the 

CU's Cb residual block. The Cr transform block may be a sub-block of the CU's Cr 

residual block.  

[0058] Video encoder 20 may apply one or more transforms to a luma transform block 

of a TU to generate a luma coefficient block for the TU. A coefficient block may be a 

two-dimensional array of transform coefficients. A transform coefficient may be a 

scalar quantity. Video encoder 20 may apply one or more transforms to a Cb transform 

block of a TU to generate a Cb coefficient block for the TU. Video encoder 20 may 

apply one or more transforms to a Cr transform block of a TU to generate a Cr 

coefficient block for the TU.  

[0059] After generating a coefficient block (e.g., a luma coefficient block, a Cb 

coefficient block or a Cr coefficient block), video encoder 20 may quantize the 

coefficient block. Quantization generally refers to a process in which transform 

coefficients are quantized to possibly reduce the amount of data used to represent the 

transform coefficients, providing further compression. Furthermore, video encoder 20 

may inverse quantize transform coefficients and apply an inverse transform to the 

transform coefficients in order to reconstruct transform blocks of TUs of CUs of a 

picture. Video encoder 20 may use the reconstructed transform blocks of TUs of a CU 

and the predictive blocks of PUs of the CU to reconstruct coding blocks of the CU. By 

reconstructing the coding blocks of each CU of a picture, video encoder 20 may 

reconstruct the picture. Video encoder 20 may store reconstructed pictures in a decoded 

picture buffer (DPB). Video encoder 20 may use reconstructed pictures in the DPB for 

inter prediction and intra prediction.
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[0060] After video encoder 20 quantizes a coefficient block, video encoder 20 may 

entropy encode syntax elements that indicate the quantized transform coefficients. For 

example, video encoder 20 may perform Context-Adaptive Binary Arithmetic Coding 

(CABAC) on the syntax elements indicating the quantized transform coefficients.  

Video encoder 20 may output the entropy-encoded syntax elements in a bitstream.  

[0061] Video encoder 20 may output a bitstream that includes a sequence of bits that 

forms a representation of coded pictures and associated data. The bitstream may 

comprise a sequence of network abstraction layer (NAL) units. Each of the NAL units 

includes a NAL unit header and encapsulates a raw byte sequence payload (RBSP). The 

NAL unit header may include a syntax element that indicates a NAL unit type code.  

The NAL unit type code specified by the NAL unit header of a NAL unit indicates the 

type of the NAL unit. A RBSP may be a syntax structure containing an integer number 

of bytes that is encapsulated within a NAL unit. In some instances, an RBSP includes 

zero bits.  

[0062] Different types of NAL units may encapsulate different types of RBSPs. For 

example, a first type of NAL unit may encapsulate a RBSP for a picture parameter set 

(PPS), a second type of NAL unit may encapsulate a RBSP for a coded slice, a third 

type of NAL unit may encapsulate a RBSP for Supplemental Enhancement Information 

(SEI), and so on. A PPS is a syntax structure that may contain syntax elements that 

apply to zero or more entire coded pictures. NAL units that encapsulate RBSPs for 

video coding data (as opposed to RBSPs for parameter sets and SEI messages) may be 

referred to as video coding layer (VCL) NAL units. A NAL unit that encapsulates a 

coded slice may be referred to herein as a coded slice NAL unit. A RBSP for a coded 

slice may include a slice header and slice data.  

[0063] Video decoder 30 may receive a bitstream. In addition, video decoder 30 may 

parse the bitstream to decode syntax elements from the bitstream. Video decoder 30 

may reconstruct the pictures of the video data based at least in part on the syntax 

elements decoded from the bitstream. The process to reconstruct the video data may be 

generally reciprocal to the process performed by video encoder 20. For instance, video 

decoder 30 may use motion vectors of PUs to determine predictive blocks for the PUs 

of a current CU. Video decoder 30 may use a motion vector or motion vectors of PUs 

to generate predictive blocks for the PUs.  

[0064] In addition, video decoder 30 may inverse quantize coefficient blocks associated 

with TUs of the current CU. Video decoder 30 may perform inverse transforms on the
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coefficient blocks to reconstruct transform blocks associated with the TUs of the current 

CU. Video decoder 30 may reconstruct the coding blocks of the current CU by adding 

the samples of the predictive sample blocks for PUs of the current CU to corresponding 

samples of the transform blocks of the TUs of the current CU. By reconstructing the 

coding blocks for each CU of a picture, video decoder 30 may reconstruct the picture.  

Video decoder 30 may store decoded pictures in a decoded picture buffer for output 

and/or for use in decoding other pictures.  

[0065] Supplemental Enhancement information (SEI) messages are often included in 

video bitstreams, typically to carry information that is not essential in order to decode 

the bitstream by the decoder (e.g., video decoder 30). The information contained in an 

SEI message may be useful in improving the display or processing of the decoded 

output; e.g. such information could be used by decoder-side entities to improve the 

viewability of the content. It is also possible that certain application standards could 

mandate the presence of such SEI messages in the bitstream so that the improvement in 

quality can be brought to all devices that conform to the application standard (e.g., the 

carriage of the frame-packing SEI message for frame-compatible plano-stereoscopic 

3DTV video format, where the SEI message is carried for every frame of the video, e.g., 

as described in ETSI - TS 101 547-2, Digital Video Broadcasting (DVB) Plano

stereoscopic 3DTV; Part 2: Frame compatible plano-stereoscopic 3DTV, handling of 

recovery point SEI message, e.g., as described in 3GPP TS 26.114 v13.0.0, 3rd 

Generation Partnership Project; Technical Specification Group Services and System 

Aspects; IP Multimedia Subsystem (IMS); Multimedia Telephony; Media handling and 

interaction (Release 13), or use of pan-scan scan rectangle SEI message in DVB, e.g., as 

described in ETSI - TS 101 154, Digital Video Broadcasting (DVB); Specification for 

the use of Video and Audio Coding in Broadcasting Applications based on the MPEG-2 

Transport Stream).  

[0066] A tone-mapping information SEI message is used to map luma samples, or each 

of RGB component samples. Different values of tone mapid are used to define 

different purposes, and the syntax of the tone-map SEI message is also modified 

accordingly. A value of 1 for the tonemap id allows the SEI message to clip the RGB 

samples to a minimum and a maximum value. A value of 3 for the tone map id allows 

the signaling of a look up table in the form of pivot points. However, when applied, the 

same values are applied to all RGB components, or only applied to the luma component.
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[0067] A knee function SEI message is used to indicate the mapping of the RGB 

components of the decoded pictures in the normalized linear domain. The input and 

output maximum luminance values are also indicated, and a look-up table maps the 

input luminance values to the output luminance values. The same look-up table is 

applied to all the three color components.  

[0068] A color remapping information (CRI) SEI message defined in the HEVC 

standard is used to convey information that is used to map pictures in one color space to 

another. In one example, the syntax of the CRI SEI message includes three parts - first 

look-up table (Pre-LUT), followed by a 3x3 matrix indicating color remapping 

coefficients, followed by a second look-up table (Post-LUT). For each color 

component, e.g., R,G,B or Y,Cb,Cr, independent LUT is defined for both, Pre-LUT and 

Post-LUT. The CRI SEI message also includes syntax element called colourremap id, 

different values of which may be used to indicate different purposes of the SEI message.  

FIG. 2 shows a typical structure of the color remapping information process specified 

by a CRI SEI message.  

[0069] Dynamic range adjustment (DRA) SEI message. The dynamic range adjustment 

SEI message, e.g., as described in D. Bugdayci Sansli, A. K. Ramasubramonian, D.  

Rusanovskyy, S. Lee, J. Sole, M. Karczewicz, Dynamic range adjustment SEI message, 

m36330, MPEG meeting, Warsaw, Poland, 22 - 26 June, 2015, has not been adopted as 

part of any video coding standard; however, the SEI message includes signaling of one 

set of scale and offset numbers to map the input samples. The SEI message also allows 

the signaling of different look-up tables for different components, and also allows for 

signaling optimization when the same scale and offset are to be used for more than one 

component. The scale and offset numbers are signaled in fixed length accuracy.  

[0070] Next generation video applications are anticipated to operate with video data 

representing captured scenery with HDR and a WCG. Parameters of the utilized 

dynamic range and color gamut are two independent attributes of video content, and 

their specification for purposes of digital television and multimedia services are defined 

by several international standards. For example, ITU-R Rec. BT.709, "Parameter values 

for the HDTV standards for production and international programme exchange," and 

ITU-R Rec. BT.2020, "Parameter values for ultra-high definition television systems for 

production and international programme exchange," defines parameters for HDTV 

(high definition television) and UHDTV (ultra-high definition television), respectively, 

such as standard dynamic range (SDR) and color primaries that extend beyond the
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standard color gamut. Rec. BT.2100, "Image parameter values for high dynamic range 

television for use in production and international programme exchange" defines transfer 

functions and representations for HDR television use, including primaries that support 

wide color gamut representations. There are also other standards developing 

organization (SDOs) documents that specify dynamic range and color gamut attributes 

in other systems, e.g., DCI-P3 color gamut is defined in SMPTE-231-2 (Society of 

Motion Picture and Television Engineers) and some parameters of HDR are defined in 

SMPTE-2084. A brief description of dynamic range and color gamut for video data is 

provided below.  

[0071] Dynamic range is typically defined as the ratio between the maximum and 

minimum brightness (e.g., luminance) of the video signal. Dynamic range may also be 

measured in terms of 'f-stop,' where one f-stop corresponds to a doubling of a signal's 

dynamic range. In MPEG's definition, content that features brightness variation with 

more than 16 f-stops is referred as HDR content. In some terms, levels between 10 and 

16 f-stops are considered as intermediate dynamic range, but it is considered HDR in 

other definitions. In some examples of this disclosure, HDR video content may be any 

video content that has a higher dynamic range than traditionally used video content with 

a standard dynamic range (e.g., video content as specified by ITU-R Rec. BT.709).  

[0072] The human visual system (HVS) is capable for perceiving much larger dynamic 

ranges than SDR content and HDR content. However, the HVS includes an adaptation 

mechanism to narrow the dynamic range of the HVS to a so-called simultaneous range.  

The width of the simultaneous range may be dependent on current lighting conditions 

(e.g., current brightness). Visualization of dynamic range provided by SDR of HDTV, 

expected HDR of UHDTV and HVS dynamic range is shown in FIG. 3, although the 

exact range may vary based on each individual and display.  

[0073] Current video application and services are regulated by ITU Rec.709 and 

provide SDR, typically supporting a range of brightness (e.g., luminance) of around 0.1 

to 100 candelas (cd) per m2 (often referred to as "nits"), leading to less than 10 f-stops.  

Some example next generation video services are expected to provide dynamic range of 

up to 16 f-stops. Although detailed specifications for such content are currently under 

development, some initial parameters have been specified in SMPTE-2084 and ITU-R 

Rec. 2020.  

[0074] Another aspect for a more realistic video experience, besides HDR, is the color 

dimension. Color dimension is typically defined by the color gamut. FIG. 4 is a
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conceptual diagram showing an SDR color gamut (triangle 100 based on the BT.709 

color primaries), and the wider color gamut that for UHDTV (triangle 102 based on the 

BT.2020 color primaries). FIG. 4 also depicts the so-called spectrum locus (delimited 

by the tongue-shaped area 104), representing the limits of the natural colors. As 

illustrated by FIG. 3, moving from BT.709 (triangle 100) to BT.2020 (triangle 102) 

color primaries aims to provide UHDTV services with about 70% more colors. D65 

specifies an example white color for the BT.709 and/or BT.2020 specifications.  

[0075] Examples of color gamut specifications for the DCI-P3, BT.709, and BT.2020 

color spaces are shown in Table 1.  

Table 1 - Color gamut parameters 

RGB color space parameters 

White point Primary colors 
Color space 

XXw yyw XXR yyR XXG yyG XXB yyB 

DCI-P3 0.314 0.351 0.680 0.320 0.265 0.690 0.150 0.060 

ITU-R 
0.3127 0.3290 0.64 0.33 0.30 0.60 0.15 0.06 

BT.709 

ITU-R 
0.3127 0.3290 0.708 0.292 0.170 0.797 0.131 0.046 

BT.2020 

[0076] As can be seen in Table 1, a color gamut may be defined by the X and Y values 

of a white point, and by the x and y values of the primary colors (e.g., red (R), green 

(G), and blue (B). The x and y values represent normalized values that are derived from 

the chromaticity (X and Z) and the brightness (Y) of the colors, as is defined by the CIE 

1931 color space. The CIE 1931 color space defines the links between pure colors (e.g., 

in terms of wavelengths) and how the human eye perceives such colors.  

[0077] HDR/WCG video data is typically acquired and stored at a very high precision 

per component (even floating point), with the 4:4:4 chroma format and a very wide 

color space (e.g., CIE XYZ). This representation targets high precision and is almost 

mathematically lossless. However, such a format for storing HDR/WCG video data 

may include a lot of redundancies and may not be optimal for compression purposes. A 

lower precision format with HVS-based assumptions is typically utilized for state-of

the-art video applications.
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[0078] One example of a video data format conversion process for purposes of 

compression includes three major processes, as shown in FIG. 5. The techniques of 

FIG. 5 may be performed by source device 12. Linear RGB data 110 may be 

HDR/WCG video data and may be stored in a floating point representation. Linear 

RGB data 110 may be compacted using a non-linear transfer function (TF) 112 for 

dynamic range compacting. Transfer function 112 may compact linear RGB data 110 

using any number of non-linear transfer functions, e.g., the PQ TF as defined in 

SMPTE-2084. In some examples, color conversion process 114 converts the compacted 

data into a more compact or robust color space (e.g., a YUV or YCrCb color space) that 

is more suitable for compression by a hybrid video encoder. This data is then quantized 

using a floating-to-integer representation quantization unit 116 to produce converted 

HDR' data 118. In this example HDR' data 118 is in an integer representation. The 

HDR' data is now in a format more suitable for compression by a hybrid video encoder 

(e.g., video encoder 20 applying HEVC techniques). The order of the processes 

depicted in FIG. 5 is given as an example, and may vary in other applications. For 

example, color conversion may precede the TF process. In addition, additional 

processing, e.g. spatial subsampling, may be applied to color components.  

[0079] The inverse conversion at the decoder side is depicted in FIG 6. The techniques 

of FIG. 6 may be performed by destination device 14. Converted HDR' data 120 may 

be obtained at destination device 14 through decoding video data using a hybrid video 

decoder (e.g., video decoder 30 applying HEVC techniques). HDR' data 120 may then 

be inverse quantized by inverse quantization unit 122. Then an inverse color conversion 

process 124 may be applied to the inverse quantized HDR' data. The inverse color 

conversion process 124 may be the inverse of color conversion process 114. For 

example, the inverse color conversion process 124 may convert the HDR' data from a 

YCrCb format back to an RGB format. Next, inverse transfer function 126 may be 

applied to the data to add back the dynamic range that was compacted by transfer 

function 112 to recreate the linear RGB data 128.  

[0080] The techniques depicted in FIG. 5 will now be discussed in more detail. In 

general, a transfer function is applied to data (e.g., HDR/WCG video data) to compact 

the dynamic range of the data such that errors due to quantization are perceptually 

uniform (approximately) across the range of luminance values. Such compaction allows 

the data to be represented with fewer bits. In one example, the transfer function may be 

a one-dimensional (ID) non-linear function and may reflect the inverse of an electro-
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optical transfer function (EOTF) of the end-user display, e.g., as specified for SDR in 

Rec. 709. In another example, the transfer function may approximate the HVS 

perception to brightness changes, e.g., the PQ transfer function specified in SMPTE

2084 for HDR. The inverse process of the OETF is the EOTF (electro-optical transfer 

function), which maps the code levels back to luminance. FIG. 7 shows several 

examples of non-linear transfer function used as EOTFs. The transfer functions may 

also be applied to each R, G and B component separately.  

[0081] In the context of this disclosure, the terms "signal value" or "color value" may 

be used to describe a luminance level corresponding to the value of a specific color 

component (such as R, G, B, or Y) for an image element. The signal value is typically 

representative of a linear light level (luminance value). The terms "code level" or 

"digital code value" may refer to a digital representation of an image signal value.  

Typically, such a digital representation is representative of a nonlinear signal value. An 

EOTF represents the relationship between the nonlinear signal values provided to a 

display device (e.g., display device 32) and the linear color values produced by the 

display device.  

[0082] RGB data is typically utilized as the input color space, since RGB is the type of 

data that is typically produced by image-capturing sensors. However, the RGB color 

space has high redundancy among its components and is not optimal for compact 

representation. To achieve more compact and a more robust representation, RGB 

components are typically converted (e.g., a color transform is performed) to a more 

uncorrelated color space that is more suitable for compression, e.g., YCbCr. A YCbCr 

color space separates the brightness in the form of luminance (Y) and color information 

(CrCb) in different less correlated components. In this context, a robust representation 

may refer to a color space featuring higher levels of error resilience when compressed at 

a constrained bitrate.  

[0083] Following the color transform, input data in a target color space may be still 

represented at high bit-depth (e.g. floating point accuracy). The high bit-depth data may 

be converted to a target bit-depth, for example, using a quantization process. Certain 

studies show that 10-12 bits accuracy in combination with the PQ transfer is sufficient 

to provide HDR data of 16 f-stops with distortion below the Just-Noticeable Difference 

(JND). In general, a JND is the amount of something (e.g., video data) must be change 

in order for a difference to be noticeable (e.g., by the HVS). Data represented with 10

bit accuracy can be further coded with most of the state-of-the-art video coding
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solutions. This quantization is an element of lossy coding and is a source of inaccuracy 

introduced to converted data.  

[0084] It is anticipated that next generation HDR/WCG video applications will operate 

with video data captured at different parameters of HDR and CG. Examples of different 

configuration can be the capture of HDR video content with peak brightness up-to 1000 

nits, or up-to 10,000 nits. Examples of different color gamuts may include BT.709, 

BT.2020 as well SMPTE specified-P3, or others.  

[0085] It is also anticipated that a single color space, e.g., a target color container, that 

incorporates (or nearly incorporates) all other currently used color gamuts to be utilized 

in future. One example of such a target color container is BT.2020. Support of a single 

target color container would significantly simplify standardization, implementation and 

deployment of HDR/WCG systems, since a reduced number of operational points (e.g., 

number of color containers, color spaces, color conversion algorithms, etc.) and/or a 

reduced number of required algorithms should be supported by a decoder (e.g., video 

decoder 30).  

[0086] In one example of such a system, content captured with a native color gamut 

(e.g. P3 or BT.709) different from the target color container (e.g. BT.2020) may be 

converted to the target container prior to processing (e.g., prior to video encoding).  

Below are several examples of such conversion: 

RGB conversion from BT.709 to BT.2020 color container: 

o R2020 = 0.627404078626 * Ros + 0.329282097415 * G709 + 0.043313797587 * B709 

o G2020 = 0.069097233123 * Ros + 0.919541035593 * G7o9 + 0.011361189924 * B709 

o B2020 = 0.016391587664 * Ros + 0.088013255546 * G7o9 + 0.895595009604 * B709 

(1) 

RGB conversion from P3 to BT.2020 color container: 

o R2020 = 0.753832826496 * RP3 + 0.198597635641 * GP3 + 0.047569409186 * B3 

o G2020 = 0.045744636411 * RP3 + 0.941777687331 * GP3 + 0.012478735611 * B3 

o B2020 = -0.001210377285 * RP3 + 0.017601107390 * GP3 + 0.983608137835 * B3 

(2) 

[0087] During this conversion, the value range occupied by each component (e.g., 

RGB, YUV, YCrCb, etc.) of a signal captured in P3 or BT.709 color gamut may be 

reduced in a BT.2020 representation. Since the data is represented in floating point 

accuracy, there is no loss; however, when combined with color conversion (e.g., a 

conversion from RGB to YCrCB shown in equation 3 below) and quantization (example
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in equation 4 below), the shrinking of the value range leads to increased quantization 

error for input data.  

o Y' = 0.2627 * R' + 0.6780 * G' + 0.0593 * B'; Cb = B'-Y C R'-Y' 

1.8814 1.4746 

(3) 

o Dyr (Round ((1 < (BitDepthy - 8)) * (219 * Y' + 16) 

o Dcb (Round ((1 < (BitDepthcr - 8)) * (224 * Cb + 128) 

o Dcr (Round ((1 < (BitDepthCb - 8)) * (224 * Cr + 128) 

(4) 

In equation (4) Dy' is the quantized Y' component, Dcb is the quantized Cb and 

DCr is the quantized Cr component. The term << represents a bit-wise right shift.  

BitDepthy, BitDepthcr, and BitDepthcb are the desired bit depths of the quantized 

components, respectively.  

[0088] In addition, in a real-world coding system, coding a signal with reduced dynamic 

range may lead to significant loss of accuracy for coded chroma components and would 

be observed by a viewer as coding artifacts, e.g., color mismatch and/or color bleeding.  

[0089] To address the problems described above, the following techniques may be 

considered. One example technique involves HDR coding at the native color space. In 

such a technique an HDR video coding system would support various types of currently 

known color gamuts, and allow extensions of a video coding standard to support future 

color gamuts. This support would not be only limited to support different color 

conversion transforms, e.g. RGB to YCbCr, and their inverse transforms, but also would 

specify transform functions that are adjusted to each of the color gamuts. Support of 

such variety of tools would complex and expensive.  

[0090] Another example technique includes a color gamut aware video codec. In such a 

technique, a hypothetical video encoder is configured to estimate the native color gamut 

of the input signal and adjust coding parameters (e.g., quantization parameters for coded 

chroma components) to reduce any distortion resulting from the reduced dynamic range.  

However, such a technique would not be able to recover loss of accuracy, which may 

happen due to the quantization conducted in equation (4) above, since all input data is 

provided to a typical codec in integer point accuracy.
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[0091] This disclosure describes techniques, methods, and apparatuses to perform a 

dynamic range adjustment (DRA) to compensate dynamic range changes introduced to 

HDR signal representations by a color gamut conversion. The dynamic range 

adjustment may help to prevent and/or lessen any distortion caused by a color gamut 

conversion, including color mismatch, color bleeding, etc. In one or more examples of 

the disclosure, DRA is conducted on the values of each color component of the target 

color space, e.g., YCbCr, prior to quantization at the encoder side (e.g., by source 

device 12) and after the inverse quantization at the decoder side (e.g., by destination 

device 14).  

[0092] FIG. 8 is a block diagram illustrating an example HDR/WCG conversion 

apparatus operating according to the techniques of this disclosure. In FIG. 8, solid lines 

specify the data flow and dashed lines specify control signals. The techniques of this 

disclosure may be performed by video pre-processor unit 19 of source device 12. As 

discussed above, video pre-processor unit 19 may be a separate device from video 

encoder 20. In other examples, video pre-processor unit 19 may be incorporated into 

the same device as video encoder 20.  

[0093] As shown in FIG. 8, RGB native CG video data 200 is input to video pre

processor unit 19. In the context of video preprocessing by video pre-processor unit 19, 

RGB native CG video data 200 is defined by an input color container. The input color 

container specifies set of color primaries used to represent video data 200 (e.g., BT. 709, 

BT. 2020, P3, etc.). In one example of the disclosure, video pre-processor unit 19 may 

be configured to convert both the color container and the color space of RGB native CB 

video data 200 to a target color container and target color space for HDR' data 216.  

Like the input color container, the target color container may specify a set or color 

primaries used to represent the HDR' data 216. In one example of the disclosure, RGB 

native CB video data 200 may be HDR/WCG video, and may have a BT.2020 or P3 

color container (or any WCG), and be in an RGB color space. In another example, 

RGB native CB video data 200 may be SDR video, and may have a BT.709 color 

container. In one example, the target color container for HDR' data 216 may have been 

configured for HDR/WCG video (e.g., BT.2020 color container) and may use a color 

space more optimal for video encoding (e.g., YCrCb).  

[0094] In one example of the disclosure, CG converter 202 may be configured to 

convert the color container of RGB native CG video data 200 from the input color 

container (e.g., first color container) to the target color container (e.g., second color
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container). As one example, CG converter 202 may convert RGB native CG video data 

200 from a BT.709 color representation to a BT.2020 color representation, example of 

which is shown below.  

[0095] The process to convert RGB BT.709 samples (R7os, G7o9, B70 9) to RGB BT.2020 

samples (R2o2o, G2020, B2 0 2 0) can be implemented with a two-step conversion that 

involves converting first to the XYZ representation, followed by a conversion from 

XYZ to RGB BT.2020 using the appropriate conversion matrices.  

X = 0.412391 *R7o + 0.357584 * G7o9 + 0.180481 *B709 

Y = 0.212639* R7o + 0.715169* G7o9 + 0.072192 *B709 (5) 

Z = 0.019331 * R709 + 0.119195 * G709 + 0.950532 * B709 

[0096] Conversion from XYZ to R202oG202oB2020 (BT.2020) 

R2020 = clipRGB( 1.716651 * X - 0.355671 * Y - 0.253366 * Z) 

G2020 = clipRGB( -0.666684 * X + 1.616481 * Y + 0.015768 * Z) (6) 

B2020 = clipRGB( 0.017640 * X - 0.042771 * Y + 0.942103 * Z ) 

Similarly, the single step and recommended method is as follows: 

R2020 = clipRGB( 0.627404078626 * Ros + 0.329282097415 * G7os + 

0.043313797587 * B 70 9 ) 

G2020 = clipRGB( 0.069097233123 * R709 + 0.919541035593 * G709 + 
0.011361189924 * B709 ) (7) 

B2020 = clipRGB( 0.016391587664 * Ros + 0.088013255546 * Gos + 
0.895595009604 * B 70 9 ) 

[0097] The resulting video data after CG conversion is shown as RGB target CG video 

data 204 in FIG. 8. In other examples of the disclosure, the color container for the input 

data and the output HDR' data may be the same. In such an example, CG converter 202 

need not perform any conversion on RGB native CG video data 200.  

[0098] Next, transfer function unit 206 compacts the dynamic range of RGB target CG 

video data 204. Transfer function unit 206 may be configured to apply a transfer 

function to compact the dynamic range in the same manner as discussed above with 

reference to FIG. 5. The color conversion unit 208 converts RGB target CG color data 

204 from the color space of the input color container (e.g., RGB) to the color space of 

the target color container (e.g., YCrCb). As explained above with reference to FIG. 5, 

color conversion unit 208 converts the compacted data into a more compact or robust 

color space (e.g., a YUV or YCrCb color space) that is more suitable for compression 

by a hybrid video encoder (e.g., video encoder 20).
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[0099] Adjustment unit 210 is configured to perform a dynamic range adjustment 

(DRA) of the color converted video data in accordance with DRA parameters derived 

by DRA parameters estimation unit 212. In general, after CG conversion by CG 

converter 202 and dynamic range compaction by transfer function unit 206, the actual 

color values of the resulting video data may not use all available codewords (e.g., 

unique bit sequences that represent each color) allocated for the color gamut of a 

particular target color container. That is, in some circumstances, the conversion of RGB 

native CG video data 200 from an input color container to an output color container may 

overly compact the color values (e.g., Cr and Cb) of the video data such that the 

resultant compacted video data does not make efficient use of all possible color 

representations. As explained above, coding a signal with a reduced range of values for 

the colors may lead to a significant loss of accuracy for coded chroma components and 

would be observed by a viewer as coding artifacts, e.g., color mismatch and/or color 

bleeding.  

[0100] Adjustment unit 210 may be configured to apply DRA parameters to the color 

components (e.g., YCrCb) of the video data, e.g., RGB target CG video data 204 after 

dynamic range compaction and color conversion to make full use of the codewords 

available for a particular target color container. Adjustment unit 210 may apply the 

DRA parameter to the video data at a pixel level. In general, the DRA parameters 

define a function that expands the codewords used to represent the actual video data to 

as many of the codewords available for the target color container as possible.  

[0101] In one example of the disclosure, the DRA parameters include a scale and offset 

value that is applied to the components of the video data. In general, the lower the value 

range of the color components of the video data, the larger a scaling factor may be used.  

The offset parameter may be used to center the values of the color components to the 

center of the available codewords for a target color container. For example, if a target 

color container includes 1024 codewords per color component, an offset value may be 

chosen such that the center codeword is moved to codeword 512 (e.g., the middle most 

codeword). In other examples, the offset parameter may be used to provide better 

mapping of input codewords to output codewords such that overall representation in the 

target color container is more efficient in combating coding artefacts.  

[0102] In one example, adjustment unit 210 applies DRA parameters to video data in 

the target color space (e.g., YCrCb) as follows: 

- Y" = scale *Y' + offset
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- Cb" = scale2 *Cb' + offset2 (8) 

- Cr" = scale3 *Cr' + offset3 

where signal components Y', Cb' and Cr' is a signal produced from RGB to YCbCr 

conversion (example in equation 3). Note that Y', Cr' and Cr' may also be a video 

signal decoded by video decoder 30. Y", Cb", and Cr" are the color components of the 

video signal after the DRA parameters have been applied to each color component. As 

can be seen in the example above, each color component is related to different scale and 

offset parameters. For example, scale and offset are used for the Y' component, 

scale2 and offset2 are used for the Cb' component, and scale3 and offset3 are used for 

the Cr' component. It should be understood that this is just an example. In other 

examples, the same scale and offset values may be used for every color component.  

[0103] In other examples, each color component may be associated with multiple scale 

and offset parameters. For example, the actual distribution of chroma values for the Cr 

or Cb color components may differ for different partitions or ranges of codewords. As 

one example, there may be more unique codewords used above the center codeword 

(e.g., codeword 512) than there are below the center codeword. In such an example, 

adjustment unit 210 may be configured to apply one set of scale and offset parameters 

for chroma values above the center codeword (e.g., having values greater than the center 

codeword) and apply a different set of scale and offset parameters for chroma values 

below the center codeword (e.g., having values less than the center codeword).  

[0104] As can be seen in the above example, adjustment unit 210 applies the scale and 

offset DRA parameters as a linear function. As such, it is not necessary for adjustment 

unit 210 to apply the DRA parameters in the target color space after color conversion by 

color conversion unit 208. This is because color conversion is itself a linear process.  

As such, in other examples, adjustment unit 210 may apply the DRA parameters to the 

video data in the native color space (e.g., RGB) before any color conversion process. In 

this example, color conversion unit 208 would apply color conversion after adjustment 

unit 210 applies the DRA parameters.  

[0105] In another example of the disclosure, adjustment unit 210 may apply the DRA 

parameters in either the target color space or the native color space as follows: 

- Y" = (scalel *(Y' - offsetY) + offset) + offsetY; 

- Cb" = scale2 *Cb' + offset2 (9) 

- Cr" = scale3 *Cr' + offset3
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In this example, the parameter scale, scale2, scale3, offset, offset2, and offset3 have 

the same meaning as described above. The parameter offsetY is a parameter reflecting 

brightness of the signal, and can be equal to the mean value of Y'. In other examples, 

an offset parameter similar to offsetY may be applied for the Cb' and Cr' components to 

better preserve the mapping of the center value in the input and the output 

representations.  

[0106] In another example of the disclosure, adjustment unit 210 may be configured to 

apply the DRA parameters in a color space other than the native color space or the 

target color space. In general, adjustment unit 210 may be configured to apply the DRA 

parameters as follows: 

- A' = scale *A + offset; 

- B' = scale2 *Bl + offset2 (10) 

- C' = scale3 *C + offset3 

where signal components A, B and C are signal components in a color space which is 

different from target color space, e.g., RGB or an intermediate color space.  

[0107] In other examples of the disclosure, adjustment unit 210 is configured to apply a 

linear transfer function to the video to perform DRA. Such a transfer function is 

different from the transfer function used by transfer function unit 206 to compact the 

dynamic range. Similar to the scale and offset terms defined above, the transfer 

function applied by adjustment unit 210 may be used to expand and center the color 

values to the available codewords in a target color container. An example of applying a 

transfer function to perform DRA is shown below: 

- Y" = TF2 (Y') 

- Cb" = TF2 (Cb') 

- Cr" = TF2 (Cr') 

Term TF2 specifies the transfer function applied by adjustment unit 210. In some 

examples, adjustment unit 210 may be configured to apply different transfer functions to 

each of the components.  

[0108] In another example of the disclosure, adjustment unit 210 may be configured to 

apply the DRA parameters jointly with the color conversion of color conversion unit 

208 in a single process. That is, the linear functions of adjustment unit 210 and color 

conversion unit 208 may be combined. An example of a combined application, where 

fl and f2 are a combination of the RGB to YCbCr matrix and the DRA scaling factors, 

is shown below:
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B'1 - Y' R' - Y' 
Cb= ; Cr= f2 

fi f 

[0109] In another example of the disclosure, after applying the DRA parameters, 

adjustment unit 210 may be configured to perform a clipping process to prevent the 

video data from having values outside the range of codewords specified for a certain 

target color container. In some circumstances, the scale and offset parameters applied 

by adjustment unit 210 may cause some color component values to exceed the range of 

allowable codewords. In this case, adjustment unit 210 may be configured to clip the 

values of the components that exceed the range to the maximum value in the range.  

[0110] The DRA parameters applied by adjustment unit 210 may be determined by 

DRA parameters estimation unit 212. The frequency and the time instances at which 

the DRA parameters estimation unit 212 updates the DRA parameters are flexible. For 

example, DRA parameters estimation unit 212 may update the DRA parameters on a 

temporal level. That is, new DRA parameters may be determined for a group of 

pictures (GOP), or a single picture (frame). In this example, the RGB native CG video 

data 200 may be a GOP or a single picture. In other examples, DRA parameters 

estimation unit 212 may update the DRA parameters on a spatial level, e.g., at the slice 

tile, or block level. In this context, a block of video data may be a macroblock, coding 

tree unit (CTU), coding unit, or any other size and shape of block. A block may be 

square, rectangular, or any other shape. Accordingly, the DRA parameters may be used 

for more efficient temporal and spatial prediction and coding.  

[0111] In one example of the disclosure, DRA parameters estimation unit 212 may 

derive the DRA parameters based on the correspondence of the native color gamut of 

RGB native CG video data 200 and the color gamut of the target color container. For 

example, DRA parameters estimation unit 212 may use a set of predefined rules to 

determine scale and offset values given a certain native color gamut (e.g., BT.709) and 

the color gamut of a target color container (e.g., BT.2020).  

[0112] For example, assume that native color gamut and target color container are 

defined in the form of color primaries coordinates in xy space and white point 

coordinates. One example of such information for BT.709 and BT.2020 is shown in 

Table 2 below.
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Table 2- RGB color space parameters 

RGB color space parameters 

White point Primary colors 
Color space 

XXW YYW XXR YYR XXG YYG XXB YYB 

DCI-P3 0.314 0.351 0.680 0.320 0.265 0.690 0.150 0.060 

ITU-R BT.709 0.3127 0.3290 0.64 0.33 0.30 0.60 0.15 0.06 

ITU-R BT.2020 0.3127 0.3290 0.708 0.292 0.170 0.797 0.131 0.046 

[0113] In one example, BT.2020 is the color gamut of the target color container and 

BT.709 is the color gamut of the native color container. In this example, adjustment 

unit 210 applies the DRA parameters to the YCbCr target color space. DRA parameters 

estimation unit 212 may be configured to estimate and forward the DRA parameters to 

adjustment unit 210 as follows: 

scale = 1; offset = 0; 

scale2 = 1.0698; offset2 = 0; 

scale3 = 2.1735; offset3 = 0; 

[0114] As another example, with BT.2020 being a target color gamut and P3 being a 

native color gamut, and DRA being applied in YCbCr target color space, DRA 

parameters estimation unit 212 may be configured to estimate the DRA parameters as: 

scale = 1; offset = 0; 

scale2 = 1.0068; offset2 = 0; 

scale3 = 1.7913; offset3 = 0; 

[0115] In the examples above, DRA parameters estimation unit 212 may be configured 

to determine the above-listed scale and offset values by consulting a lookup table that 

indicates the DRA parameters to use, given a certain native color gamut and a certain 

target color gamut. In other examples, DRA parameters estimation unit 212 may be 

configured to calculate the DRA parameters from the primary and white space values of 

the native color gamut and target color gamut, e.g., as shown in Table 2.  

[0116] For example, consider a target (T) color container specified by primary 

coordinates (xXt, yXt), where X stated for R,G,B color components: 

xRt yRt 
primeT = xGt yGt 

xBt yBt.
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and native (N) color gamut specified by primaries coordinates (xXn, yXn), where X 

stated for R,G,B color components: 

xRn yRn 
primeN = xGn yGn 

xBn yBn.  

The white point coordinate for both gamuts equals whiteP = (xW,yW). DRA 

parameters estimation unit 212 may derive the scale2 and scale3 parameters for DRA as 

a function of the distances between primaries coordinates to the white point. One 

example of such an estimation is given below: 

rdT = sqrt((primeT(1,1) - whiteP(1,1))A2 + (primeN(1,2) - whiteP(1,2))A2) 

gdT = sqrt((primeT(2,1) - whiteP(1,1))A2 + (primeN(2,2) - whiteP(1,2))A2) 

bdT = sqrt((primeT(3,1) - whiteP(1,1))A2 + (primeN(3,2) - whiteP(1,2))A2) 

rdN = sqrt((primeN(1,1) - whiteP(1,1))A2 + (primeN(1,2) - whiteP(1,2))A2) 

gdN = sqrt((primeN(2, 1) - whiteP(1, 1))A2 + (primeN(2,2) - whiteP(1,2))A2) 

bdN = sqrt((primeN(3, 1) - whiteP(1, 1))A2 + (primeN(3,2) - whiteP(1,2))A2) 

scale2 = bdT/bdN 

scale3 = sqrt ( (rdT/rdN)A2 + (gdT/gdN)A 2) 

[0117] In some examples, DRA parameters estimation unit 212 may be configured to 

estimate the DRA parameters by determining the primaries coordinates in primeN from 

the actual distribution of color values in RGB native CG video data 200, and not from 

the pre-defined primary values of the native color gamut. That is, DRA parameters 

estimation unit 212 may be configured to analyze the actual colors present in RGB 

native CG video data 200, and use the primary color values and white point determined 

from such an analysis in the function described above to calculate DRA parameters.  

Approximation of some parameters defined above might be used as DRA to facilitate 

the computation. For instance, scale3 = 2.1735 can be approximated to scale3 = 2, 

which allows for easier implementation in some architectures.  

[0118] In other examples of the disclosure, DRA parameters estimation unit 212 may be 

configured to determine the DRA parameters based not only on the color gamut of the 

target color container, but also on the target color space. The actual distributions of 

values of component values may differ from color space to color space. For example, 

the chroma value distributions may be different for YCbCr color spaces having a 

constant luminance as compared to YCbCr color spaces having a non-constant
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luminance. DRA parameters estimation unit 212 may use the color distributions of 

different color spaces to determine the DRA parameters.  

[0119] In other examples of the disclosure, DRA parameters estimation unit 212 may be 

configured to derive values for DRA parameters so as to minimize certain cost functions 

associated with pre-processing and/or encoding video data. As one example, DRA 

parameters estimation unit 212 may be configured to estimate DRA parameters that 

minimized quantization errors introduced by quantization unit 214 (e.g., see equation 

(4)) above. DRA parameters estimation unit 212 may minimize such an error by 

performing quantization error tests on video data that has had different sets of DRA 

parameters applied. In another example, DRA parameters estimation unit 212 may be 

configured to estimate DRA parameters that minimize the quantization errors 

introduced by quantization unit 214 in a perceptual manner. DRA parameters estimation 

unit 212 may minimize such an error based on perceptual error tests on video data that 

has had different sets of DRA parameters applied. DRA parameters estimation unit 212 

may then select the DRA parameters that produced the lowest quantization error.  

[0120] In another example, DRA parameters estimation unit 212 may select DRA 

parameters that minimize a cost function associated with both the DRA performed by 

adjustment unit 210 and the video encoding performed by video encoder 20. For 

example, DRA parameters estimation unit 212 may perform DRA and encode the video 

data with multiple different sets of DRA parameters. DRA parameters estimation unit 

212 may then calculate a cost function for each set of DRA parameters by forming a 

weighted sum of the bitrate resulting from DRA and video encoding, as well as the 

distortion introduced by these two lossy process. DRA parameters estimation unit 212 

may then select the set of DRA parameters that minimizes the cost function.  

[0121] In each of the above techniques for DRA parameter estimation, DRA parameters 

estimation unit 212 may determine the DRA parameters separately for each component 

using information regarding that component. In other examples, DRA parameters 

estimation unit 212 may determine the DRA parameters using cross-component 

information. For example, the DRA parameters derived for a Cr component may be 

used to derive DRA parameters for a Cb component.  

[0122] In addition to deriving DRA parameters, DRA parameters estimation unit 212 

may be configured to signal the DRA parameters in an encoded bitstream. DRA 

parameters estimation unit 212 may signal one or more syntax elements that indicate the 

DRA parameters directly, or may be configured to provide the one or more syntax
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elements to video encoder 20 for signaling. Such syntax elements of the parameters 

may be signaled in the bitstream such that video decoder 30 and/or video post-processor 

unit 31 may perform the inverse of the process of video pre-processor unit 19 to 

reconstruct the video data in its native color container. Example techniques for 

signaling the DRA parameters are discussed below.  

[0123] In one example, DRA parameters estimation unit 212 may signal one or more 

syntax elements that in an encoded video bitstream as metadata, in a supplemental 

enhancement information (SEI) message, in video usability information (VUI), in a 

video parameter set (VPS), in a sequence parameter set (SPS), in a picture parameter 

set, in a slice header, in a CTU header, or in any other syntax structure suitable for 

indicating the DRA parameters for the size of the video data (e.g., GOP, pictures, 

blocks, macroblock, CTUs, etc.).  

[0124] In some examples, the one or more syntax elements indicate the DRA 

parameters explicitly. For example, the one or more syntax elements may be the 

various scale and offset values for DRA. In other examples, the one or more syntax 

elements may be one or more indices into a lookup table that includes the scale and 

offset values for DRA. In still another example, the one or more syntax elements may 

be indices into a lookup table that specifies the linear transfer function to use for DRA.  

[0125] In other examples, the DRA parameters are not signaled explicitly, but rather, 

both video pre-processor unit 19 and video post-processor unit 31 are configured to 

derive the DRA parameters using the same pre-defined process using the same 

information and/or characteristics of the video data that are discernible form the 

bitstream. As one example, video post-processor unit 31 may be configured to indicate 

the native color container of the video data as well as the target color container of the 

encoded video data in the encoded bitstream. Video post-processor unit 31 may then be 

configured to derive the DRA parameters from such information using the same process 

as defined above. In some examples, one or more syntax elements that identify the 

native and target color containers are supplied in a syntax structure. Such syntax 

elements may indicate the color containers explicitly, or may be indices to a lookup 

table. In another example, video pre-processor unit 19 may be configured to signal one 

or more syntax elements that indicate the XY values of the color primaries and the white 

point for a particular color container. In another example, video pre-processor unit 19 

may be configured to signal one or more syntax elements that indicate the XY values of 

the color primaries and the white point of the actual color values (content primaries and
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content white point) in the video data based on an analysis performed by DRA 

parameters estimation unit 212.  

[0126] As one example, the color primaries of the smallest color gamut containing the 

color in the content might be signaled, and at video decoder 30 and/or video post

processor unit 31, the DRA parameters are derived using both the container primaries 

and the content primaries. In one example, the content primaries can be signaled using 

the x and y components for R, G and B, as described above. In another example, the 

content primaries can be signaled as the ratio between two known primary sets. For 

example, the content primaries can be signaled as the linear position between the 

BT.709 primaries and the BT.2020 primaries: xr content = alfar * xr bt709 + (1-alfar) * 

xr t2o2o (with similar equation with alfag and alfab for the G and B components), where 

parameter alfar specifies a ratio between two known primary sets. In some examples, 

the signaled and/or derived DRA parameters may be used by video encoder 20 and/or 

video decoder 30 to facilitate weighted prediction based techniques utilized for coding 

of HDR/WCG video data.  

[0127] In video coding schemes utilizing weighted prediction, a sample of currently 

coded picture Sc are predicted from a sample (for single directional prediction) of the 

reference picture Sr taken with a weight (Wwp) and an offset (Owp) which results in 

predicted sample Sp: 

Sp= Sr * Wwp + Owp.  

[0128] In some examples utilizing DRA, samples of the reference and currently coded 

picture can be processed with DRA employing different parameters, namely { scale cur, 

offsetlcur } for a current picture and { scalere, offset ref } for a reference picture. In 

such embodiments, parameters of weighted prediction can be derived from DRA, e.g.: 

Wwp = scalelcur / scaleIref 

Owp = offsetlcur - offset1ref 

[0129] After adjustment unit 210 applies the DRA parameters, video pre-processor unit 

19 may then quantize the video data using quantization unit 214. Quantization unit 214 

may operate in the same manner as described above with reference to FIG. 4. After 

quantization, the video data is now adjusted in the target color space and target color 

gamut of the target primaries of HDR' data 216. HDR' data 216 may then be sent to 

video encoder 20 for compression.  

[0130] FIG. 9 is a block diagram illustrating an example HDR/WCG inverse conversion 

apparatus according to the techniques of this disclosure. As shown in FIG. 9, video
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post-processor unit 31 may be configured to apply the inverse of the techniques 

performed by video pre-processor unit 19 of FIG. 8. In other examples, the techniques 

of video post-processor unit 31 may be incorporated in, and performed by, video 

decoder 30.  

[0131] In one example, video decoder 30 may be configured to decode the video data 

encoded by video encoder 20. The decoded video data (HDR' data 316 in the target 

color container) is then forwarded to video post-processor unit 31. Inverse quantization 

unit 314 performs an inverse quantization process on HDR' data 316 to reverse the 

quantization process performed by quantization unit 214 of FIG. 8.  

[0132] Video decoder 30 may also be configured to decode and send any of the one or 

more syntax elements produced by DRA parameters estimation unit 212 of FIG. 8 to 

DRA parameters derivation unit 312 of video post-processor unit 31. DRA parameters 

derivation unit 312 may be configured to determine the DRA parameters based on the 

one or more syntax elements, as described above. In some examples, the one or more 

syntax elements indicate the DRA parameters explicitly. In other examples, DRA 

parameters derivation unit 312 is configured to derive the DRA parameters using the 

same techniques used by DRA parameters estimation unit 212 of FIG. 8.  

[0133] The parameters derived by DRA parameters derivation unit 312 are sent to 

inverse adjustment unit 310. Inverse adjustment unit 310 uses the DRA parameters to 

perform the inverse of the linear DRA adjustment performed by adjustment unit 210.  

Inverse adjustment unit 310 may apply the inverse of any of the adjustment techniques 

described above for adjustment unit 210. In addition, as with adjustment unit 210, 

inverse adjustment unit 310 may apply the inverse DRA before or after any inverse 

color conversion. As such, inverse adjustment unit 310 may apply the DRA parameter 

on the video data in the target color container or the native color container. In some 

examples, inverse adjustment unit 310 may be positioned to apply inverse adjustment 

before inverse quantization unit 314.  

[0134] Inverse color conversion unit 308 converts the video data from the target color 

space (e.g., YCbCr) to the native color space (e.g., RGB). Inverse transfer function 306 

then applies an inverse of the transfer function applied by transfer function 206 to 

uncompact the dynamic range of the video data. In some examples, he resulting video 

data (RGB target CG 304) is still in the target color gamut, but is now in the native 

dynamic range and native color space. Next, inverse CG converter 302 converts RGB 

target CG 304 to the native color gamut to reconstruct RGB native CG 300.
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[0135] In some examples, additional post-processing techniques may be employed by 

video post-processor unit 31. Applying the DRA may put the video outside its actual 

native color gamut. The quantization steps performed by quantization unit 214 and 

inverse quantization unit 314, as well as the up and down-sampling techniques 

performed by adjustment unit 210 and inverse adjustment unit 310, may contribute to 

the resultant color values in the native color container being outside the native color 

gamut. When the native color gamut is known (or the actual smallest content primaries, 

if signaled, as described above), then additional process can be applied to RGB native 

CG video data 304 to transform color values (e.g., RGB or Cb and Cr) back into the 

intended gamut as post-processing for DRA. In other examples, such post-processing 

may be applied after the quantization or after DRA application.  

[0136] As mentioned above, several SEI messages may be used to convey the 

information regarding dynamic range adjustment information for the various color 

components of the video data. The component scaling SEI message, such as described 

above and in more detail below, may convey a set of scale factors, offsets, and ranges 

(e.g., partitions of codeword values) that can be used to indicate the mapping 

information for the various color components of the video data. The mapping 

information may be used to indicate to video decoder 30 and/or video post-processor 

unit 31 how to expand or shrink the different ranges of sample values in such a way that 

the overall quality of the reconstructed HDR video data, or also quality of reconstructed 

SDR video data in some cases where backward compatibility is desired, is improved, or 

to make the reconstructed output more suitable for display capabilities.  

[0137] Table 3 below provides one variation of the syntax structure of a component 

scaling SEI message. Note that although the names of the syntax elements below 

contain the prefix "hdrrecon_" that is different from that described in the examples 

below, where the names of the syntax elements are prefixed as componentscaling, the 

syntax table is otherwise the same.
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[0138] Table 3 - Example Range Adjustment SEI syntax 

hdrreconstruction info( payloadSize) { Descriptor 

hdrrecon id ue(v) 

hdrreconcancelflag u(1) 

if( !hdrrecon cancel flag) { 

hdrrecon persistence flag u(1) 

hdrrecontransfer characteristics u(8) 

hdrrecondefault flag u(1) 

if( !hdrrecon defaultflag) { 

hdr recon scale bit depth u(4) 

hdrreconoffset bit depth u(4) 

hdrreconscale frac bit depth u(4) 

hdr recon offset frac bit depth u(4) 

hdrreconnum compsminusl ue(v) 

} 
for( c = 0; c <= hdrreconnumcomps minus 1; c++) { 

hdr-reconnumranges[ c ] ue(v) 

hdrreconequalrangesflag[ c] u(1) 

hdrrecon_globaloffset-val[ c ] u(v) 

for( i = 0; i <= hdr reconnum ranges[ c ]; i++) 

hdrrecon scale val[ c ][ i] u(v) 

if( !hdr recon equal ranges[ c]) 

for( i = 0; i <= hdr recon num ranges[ c ]; i++) 

hdrreconrange val [ c ][i u(v) 

} 

} 

}
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[0139] The semantics of the SEI syntax of Table 3 is presented below.  

[0140] The mapping process is based on piece-wise linear functions map[ c]( ), for 

c = O..hdrreconnumcompsminus1, that map a value x in[0,1] to a value 

y = map[ c ]( x ) as follows: 

- For i in the range of 0 to hdrrecon-num ranges[ c] - 1, inclusive, the 

following applies: 

- The value ScaleValue[ c ][ i] is derived as described in semantics of syntax 

element hdrrecon_scaleval[ c ][ i ].  

- The value RangeValue[ c ][ i] is derived as described in semantics of syntax 

element hdrreconrange val[ c ][ i ].  

- The values InputRanges[ c ][ i] and OutputRanges[ c ][ i ], for i in the range of 

0 to hdrreconnum ranges[ c ] - 1, inclusive, are derived as follows: 

- If i is equal to 0, the following applies: 

OutputRanges[ c ][ i ] = - hdr reconglobaloffset val[ c] * ScaleValue[ c ][ i - 1 ] (D

xx) 

InputRanges[ c ][ i ] = 0 (D-xx) 

- Otherwise (i is not equal to 0), the following applies: 

InputRanges[ c ][ i ] = InputRanges[ c ][ i - 1 ] + RangeValue[ c ][ i - 1 ] (D-xx) 

OutputRanges[ c ][ i ]= OutputRanges[ c ][ i - 1 ] + 

RangeValue[ c ][ i - 1] * ScaleValue[ c ][ i - 1 ] (D-xx) 

- The values OffsetValue[ c ][ i ], for i in the range of 0 to 

hdrreconnumranges[ c ] - 1, inclusive, are derived as follows: 

OffsetValue[ c ][ i ] = InputRanges[ c ][ i + 1] - OutputRanges[ c ][ i + 1 ] E 

ScaleValue[ c ][ i - 1 ] (D-xx) 

- The parameter y = map[ c ]( x ) is derived as follows: 

- If x is lower than or equal to OutputRanges[ c ][ 0 ], the following applies: 

y = InputRanges[ c ][ 0 ] (D-xx) 

- Otherwise if x is larger than OutputRanges[ c ][ hdrrecon num ranges[ c]], 

the following applies: 

y = InputRanges[ c ][ hdr recon num ranges[ c] ] (D-xx) 

- Otherwise, the following applies: 

for( i = 1; i < = hdrreconnum ranges[ c]; i++) 

if( OutputRanges[ i - 1 ] < x && x <= OutputRanges[ i]) 

y = x + ScaleValue[ c ][ i - 1] + OffsetValue[ c ][ i - 1 ] (D-xx)
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[0141] Several problems have been identified that are associated with the component 

scaling information SEI messages, and other parameters that are applicable to adjust the 

dynamic range of components. In particular, problems have been identified related to 

the use of floating point numbers to derive scale and offset values, as well as the ranges 

of codewords for sample values (e.g., RGB values, YCrCb values, YUV values, XYZ 

values, etc.). For example, the scale values that are signalled in the bitstream are used at 

the decoder side, for example, by video post-processor 31, to perform an inverse 

dynamic range adjustment process. However, in order to use the scale values for 

computing the ranges of sample values, and for computing the mapping process, a 

reciprocal operation is performed at video post-processor 31. Previous example 

semantics for a component scaling SEI message specify the use of the reciprocal (e.g., 

the reciprocal of a scale value, or reciprocal of a scale value and an added offset value) 

to be multiplied with sample values. Errors introduced in such a reciprocal operation 

would be more significant than potential errors in a forward operation, as the reciprocal 

is applied to every sample value generated.  

[0142] The semantics of the component scaling SEI message indicates the derivation 

process of the ranges of sample values, and the mapping process (e.g., the application of 

scale and offset values) to each range of codewords of color components (e.g., sample 

values) in terms of floating point operations. This could lead to differences in the 

reconstructed HDR output based on the various floating point arithmetic 

implementations in different computing systems.  

[0143] This application describes several techniques to improve the communication of 

component scaling information using SEI signaling and processing, or other similar 

signaling techniques which may be specified in video coding standards, such as 

H.265/HEVC, H.264/AVC, BDA, MPEG or others. It is to be recognized that one or 

more of the following aspects may be applied independently, or in suitable combination 

with others of these aspects in any particular example.  

[0144] In general, this disclosure describes techniques wherein video encoder 20 and/or 

video pre-processor unit 19 may be configured to signal a scale value for one or more 

sample value ranges of a component sample values (e.g., color component values). The 

scale value is specified such that video decoder 30 and video post-processor unit 31 may 

be configured to perform a mapping process to obtain an output sample value from the 

input sample value of the component by multiplying the scale value specified for a 

specific sample value range containing the input sample value with the input sample
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value and adding an offset computed based on the parameters as part of the component 

scaling information.  

[0145] In another example of the disclosure, rather than using a floating point 

implementation to compute the size and number of ranges of codewords of a color 

component, video encoder 20 and/or video pre-processor unit 19 may be configured to 

derive the size and number of ranges of codewords of the color component using a 

fixed-point computing implementation. For example, video encoder 20 and/or video 

pre-processor unit 19 may be configured to use a predetermined number of fractional 

bits for determining and applying the parameters of the dynamic range adjustment 

mapping process. Note that the number of fractional bits may be different for each 

parameter (e.g., range of values for each color component (codeword), scale value, and 

offset value) of the dynamic range adjustment process.  

[0146] For example, video pre-processor unit 19 may be configured to perform integer 

operations on any parameters or syntax element (e.g. hdr recon num ranges[ c ]) used 

to communicate the size and number of ranges of codewords for a color component.  

Video pre-processor unit 19 may be configured to keep track of the number of bits used 

by the fractional part of any calculation of the size and number of ranges in the fixed

point implementation used. Video pre-processor unit 19 and/or video encoder 20 may 

be configured to signal the number of bits used in the fractional part in an SEI message 

(e.g., hdrreconoffsetfracbit depth, hdrreconscalefracbitdepth), or the number 

of bits used in the fractional part may be a pre-determined value. Video decoder 30 may 

be configured to decode the syntax elements in the SEI message indicating the number 

of bits in the fractional part and video post-processor unit 31 may be configured to 

perform an inverse dynamic range adjustment using the same number of bits in the 

fractional part for one or more of the parameters of the inverse dynamic range 

adjustment process.  

[0147] In one example of the disclosure, when determining the ranges and/or other 

parameters for the mapping process, video decoder 30 and/or video post-processor unit 

31 may be configured to determine such parameters so that, when the signaled fractional 

bit depths of different parameters are different, the accuracy of the computations 

performed for the parameters are retained as far as possible. For example, video 

decoder 30 and/or video post-processor unit 31 may be configured to retain any errors 

introduced due to rounding to a minimum by accumulating the number of fractional bits 

in any intermediate calculation steps used to determine a particular parameter. Video
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decoder 30 and/or video post-processor unit 31 may then perform a clipping process to 

bring the final value of a particular parameter to the desired fractional accuracy at the 

last step of determining and/or calculating a particular parameter. In another example, 

when the signaled fractional bit depths of the parameters are the same, video decoder 30 

and/or video post-processor unit 31 may be configured to accumulate the number of 

fractional bits in the intermediate steps, and perform clipping to bring the final value of 

a parameter to the desired accuracy at the last step(s).  

[0148] In another example, video decoder 30 and/or video post-processor unit 31 may 

be configured to clip and/or truncate the value of a parameter at one or more 

intermediate steps of a calculation process or the parameter such that the fractional parts 

of values obtained for the parameter are reduced to a pre-determined value. That is, 

rather than waiting until determining a final value for the parameter to perform any 

clipping, video decoder 30 and/or video post-processor unit 31 may clip intermediate 

values of calculations performed to determine the parameter. Such clipping or 

truncation may be based on the number of fractional bits indicated in the SEI message.  

In another example, video decoder 30 and/or video post-processor unit 31 may be 

configured to clip and/or truncate intermediate values used when calculating a particular 

parameter before a particular operation/step when it is determined that, if the 

operation/step is performed without clipping, the accumulated number of fractional bits 

would exceed a certain pre-determined value, e.g. the bit depth of the registers used to 

store the intermediate values.  

[0149] In another example of the disclosure, video pre-processor unit 19 and/or video 

post-processor unit 31 may be configured to derive scale, offset and range values 

according to predetermined sample value ranges based on a defined minimum and 

maximum values defined for the fixed representation of the color components. For 

example, a fixed representation of color components may have a plurality of ranges of 

values defined, e.g., a "standard" range of values, a "full" range of values, and a 

"restricted" range values. The "full" range of values may have a larger span between 

the minimum and maximum value of a particular component (e.g., for an 8-bit full

range representation of YCbCr color space, the Y, Cb, and Cr components can take 

values in the rage of 0 to 255, inclusive) as compared to the "standard" range of values 

(e.g., an 8-bit standard range representation of YCbCr color space, the Y component 

may take values in the range of 16 to 235, inclusive, and the Cb and Cr components 

may take values between 16 and 240, inclusive). The "restricted" range of values may
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have a smaller span between the minimum and maximum value of a particular 

component (e.g., for a 10-bit restricted-range representation of YCbCr color space, the 

Y, Cb, and Cr components may take values in the range of 4 to 1019, inclusive) as 

compared to the "standard" range of values.  

[0150] In one example, video encoder 20 and/or video pre-processor unit 19 may be 

configured to signal a syntax element (e.g., in an SEI message) to indicate to video 

decoder 30 and/or video post-processor unit 31 the minimum and maximum permitted 

values of the samples (e.g., color component values) based on what sample range is 

used (e.g. full, restricted, standard, or others). In another example, video encoder 20 

and/or video pre-processor unit 19 may be configured to signal one or more syntax 

values (e.g., in an SEI message) that indicate the minimum and maximum permitted 

values of the samples to video decoder based on what sample range is used (e.g. full, 

restricted, standard). Video decoder 30 and/or video post-processor unit 31 may then 

determine the range of component values allowed for the inverse dynamic range 

adjustment process based on the received minimum value and the received maximum 

value.  

[0151] In another example, video encoder 20 and/or video pre-processor unit 19 may be 

configured to signal a flag (e.g., in an SEI message) to indicate whether the scale values 

are signed or unsigned. In this example, the parsing process of any SEI messages is the 

same regardless the value of the flag.  

[0152] The following section includes several examples of embodiments that use 

example techniques disclosed in the previous section. In this embodiment, the 

component scaling function is signaled as a lookup table and the number of bits used to 

signal the points defining the lookup table are also signaled. In one example, the lookup 

defines a piece-wise linear mapping function. The points for the lookup table 

correspond to the (x,y) coordinates that define the piece-wise linear mapping. For 

sample values that do not have explicit points signaled, the value is interpolated based 

on the neighboring pivot points.  

[0153] The derivation process of the ranges and the output sample values are defined as 

below.  

[0154] The mapping of sample x from component c to sample y = map[ c ]( x ) is 

specified as follows:
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- Set the value of DefaultPrecShift equal to 9 

- Let the variables minSampleVal and maxSampleVal denote the minimum and the 

maximum sample values as defined by the sample range of the content.  

- The variable ScaleValue[ c ][ i ], for i in the range of 0 to 

hdrreconnum ranges[ c ] - 1, inclusive, is derived as follows: 

SignValue[ c ][ i ] = 0 // 0 for positive, 1 for negative 

hdrReconScaleBitDepth = hdrreconscalebitdepth 

( hdr negativescalespresent flag ? 1 : 0) 

if( hdr negative scalespresent flag ) 

ScaleValue[ c ][ i ] = hdr recon scale val[ c ][ i] & ((1 << 

hdrReconScaleBitDepth ) - 1 ) (D-xx) 

SignValue[ c ][ i ] = hdrreconscale val[ c ][ i ] & ( 1 << 

hdrReconScaleBitDepth) 

else 

ScaleValue[ c ][ i ]= hdr recon scale val[ c ][ i] (D-xx) 

shiftInvScale = 1 << hdrReconScaleBitDepth 

InvScaleValue[ c ][ i ]= (<1 < (DefaultPrecShift + hdrReconScaleBitDepth) 

+ shiftInvScale ) / 

ScaleValue[ c ][ i] 

- The variable RangeValue[ c ][ i ], for i in the range of 0 to 

hdrreconnum ranges[ c ] - 1, inclusive, is derived as follows: 

- If hdrrecon equal ranges flag[ c ] is equal to 0, the following applies: 

RangeValue[ c ][ i ] = hdr recon range val[ c ][ i ] (D-xx) 

- Otherwise ( hdrrecon equal ranges flag[ c ] is equal to 1 ), the following 

applies: 

RangeValue[ c ][ i ] = ( (InputDynamicRangeValue << 

hdrreconoffsetfracbitdepth ) + 

( ( hdr reconnum ranges[ c + 1) > 1)) / 

hdrrecon num ranges[ c ] (D-xx)
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where InputDynamicRangeValue is equal to 1 when the sample range is normalized 

from 0 to 1.  

- The variables InputRanges[ c ][ i ] and OutputRanges[ c ][ i ], for i in the range of 0 

to hdrreconnum ranges[ c ], inclusive, are derived as follows: 

- If i is equal to 0, the following applies: 

OutputRanges[ c ][ i ] = - hdr reconglobaloffset val[ c] * 

InvScaleValue[ c ][ i - 1] (D-xx) 

InputRanges[ c ][ i ] = 0 (D-xx) 

- Otherwise (i is not equal to 0), the following applies: 

InputRanges[ c ][ i ] = InputRanges[ c ][ i - 1] + RangeValue[ c ][ i - 1] (D

xx) 

OutputRanges[ c ][ i ]= OutputRanges[ c ][ i - 1] + 

RangeValue[ c ][ i - 1] * InvScaleValue[ c ][ i - 1] 

(D-xx) 

- The parameters OffsetValue[ c ][ i ], for i in the range of 0 to 

hdrreconnum ranges[ c ] - 1, inclusive, are derived as follows: 

precOffsetDeltaBits = DefaultPrecShift + hdrreconscalefracbitdepth 

OffsetValue[ c ][ i ]= InputRanges[ c ][ i + 1] * (1 << precOffsetDeltaBits) 

OutputRanges[ c ][ i + 1] * ScaleValue[ c ][ i - 1] (D

xx) 

OffsetValue[ c ][ i ]= ((OffsetValue[ c ][ i] + (1 << (BitDepth - 1))) >> 

BitDepth) * 

( maxSampleVal - minSampleVal)
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- The parameter y = map[ c ](x ) is derived as follows: 

- Variable bitDepthDelta is set equal to DefaultPrecShift + 

hdrreconoffsetfrac bit depth - BitDepth 

- If ( x << bitDepthDelta ) is lower than or equal to OutputRanges[ c ][ 0 ], the 

following applies: 

y = InputRanges[ c ][ 0] (D-xx) 

fracBitDepth = hdrreconoffsetfracbit depth 

- Otherwise if ( x << bitDepthDelta ) is larger than 

OutputRanges[ c ][ hdrreconnum ranges[ c ] ], the following applies: 

y = InputRanges[ c ][ hdr recon num ranges[ c ] ](D-xx) 

fracBitDepth = hdrreconoffsetfracbit depth 

- Otherwise, the following applies: 

fracBitDepth = DefaultPrecShift + hdrreconscalefrac bit depth + 

hdrreconoffsetfracbitdepth - BitDepth 

for( i = 1; i < = hdrreconnum ranges[ c ]; i++) 

if( OutputRanges[ i - 1 ] < ( x << bitDepthDelta) && 

( x << bitDepthDelta ) < = OutputRanges[ i]) { 

rangeBitShift = DefaultPrecShift + 

hdrreconoffsetfracbitdepth - BitDepth 

y =(x - minSampleVal) * ScaleValue[ c ]i - 1] * (<1 < 

rangeBitDepth ) + 

OffsetValue[ c ][ i - 1] + 

minSampleVal * (<1 < fracBitDepth ) (D-xx) 

} 

- fracShiftOffset = 1 << (fracBitDepth - 1) 

y = ( y + fracShiftOffset ) >> fracBitDepth 

Alterantively, the adjustment of the sample range based on minSampleVal and 

maxSampleVal are not performed on the OffsetValue, but rather on the InputRanges 

and OutputRanges as follows: 

deltaSampleVal = maxSampleval - minSampleVal
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deltaBitShift = DefaultPrecShift + hdrreconoffsetfracbitdepth 

sampleShift = 1 << (BitDepth - 1)) + (minSampleVal << deltaBitShift)) 

OutputRanges[ c ][ i ]= ( ( OutputRanges[ c ][ i] * deltaSampleVal ) + 

sampleShift) >> 

BitDepth 

deltaBitShift = DefaultPrecShift + hdrreconoffsetfracbitdepth 

sampleShift = 1 << (BitDepth - 1)) + (minSampleVal << deltaBitShift)) 

InputRanges[ c ][ i] = ( ( InputRanges[ c ][ i] * deltaSampleVal ) + sampleShift) 

BitDepth 

[0155] This disclosure provides several techniques to improve carriage of component 

scaling information using SEI signaling and processing or other means which is 

specified or to be specified in video coding standards, such as H.265/HEVC, 

H.264/AVC, BDA, MPEG or others. One or more of these techniques may be applied 

independently, or in combination with others. In addition, the techniques described 

above for signaling and/or using information in SEI messages for performing a fixed

point implementation of a dynamic range process may utilize one or more of the syntax 

structures described below for signaling/receiving the information.  

[0156] In some examples, video encoder 20 may signal one or more SEI messages that 

include global offset values, including, for each component, a first offset value that 

determines a first unadjusted component value below which all component values are 

clipped to the first component value before applying dynamic range adjustment as 

described in this disclosure. Decoder 30 may receive one or more of such SEI 

messages, parse and/or decode the information in the SEI messages, and pass the 

information to the video post-processor 31.  

[0157] In some examples, for each component, video encoder 20 may signal one or 

more SEI messages that include a second offset value that specifies the adjusted value to 

which the first offset value maps to after dynamic range adjustment. Video decoder 30 

may receive such SEI messages, parse and/or decode the information, and pass that 

information to video post-processor 31.  

[0158] In another example, neither the first global offset value nor the second global 

offset value is signaled in a SEI message. Instead, decoder 30 assumes that the values
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of the first global offset and the second global offset is a constant, predetermined, or 

signaled value that the decoder 30 either determines per sequence or receives by 

external means. In another example, video encoder 20 signals the first global offset 

value in an SEI message, but the second global offset value is not signaled in a SEI 

message. Instead, video decoder 30 infers that its value is a constant, predetermined, or 

signaled value that decoder 30 either determines per sequence or received by external 

means. In a still further example, video encoder 20 signals the second global offset 

value in an SEI message, but the first global offset value is not signaled in a SEI 

message. Instead, video decoder 30 infers that the first global offset value is a constant, 

predetermined, or signaled value that decoder 30 either determines per sequence or 

received by external means.  

[0159] In some examples, video encoder 20 may signal offset values that are received 

by decoder 30, and are used by decoder 30 to derive other global or local parameters, 

including both global and local scale and offset values, as well as partitions of a range of 

unadjusted values, and partitions of a range of adjusted values.  

[0160] In some examples, video encoder 20 may signal one or more SEI messages that 

include the number of partitions that the range of input representation values (i.e., 

component values) was divided into during dynamic range adjustment. In one example, 

the number of partitions may be constrained to be a power of 2 (i.e. 1, 2, 4, 8, 16, etc.) 

and the number of partitions is signaled as logarithm (e.g. 8 partitions is signaled as 3 = 

log2 8). Video decoder 30 may receive such SEI messages, parse and/or decode the 

information, and pass that information to video post-processor 31.  

[0161] In some examples, the number of partitions for the chroma components may be 

different from the number of partitions for the luma component. The number of 

partitions may be constrained to be a power of 2 + 1 and signaled as logarithm and 

rounding towards minus 0. In this way, pixels with neutral chroma can have their own 

values and the size of that partition can be smaller than the other partitions. In such an 

example, neutral chroma may refer to values of chroma around the mid-value (e.g., 0 

when the chroma values range between -0.5 and 0.5, or between -512 and 511 in a 10

bit representation). Constraining the number of partitions as a power of 2 may enable 

the encoder 20 to save bits, because encoder 20 may be able to represent the log of a 

value with fewer bits than the actual value for integer values. Constraining the number 

of partitions to a power of 2 + 1 may ensure that at least one partition may be dedicated 

to the neutral chroma values, and in some examples, the width of the partition
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corresponding to the neutral chroma values may be smaller than the rest. In other 

examples, such a partition may be larger than one or more of the other partitions.  

[0162] In some examples, decoder 30 may use the signaled number of partitions to 

derive other global or local parameters, including both global and local scale and offset 

values, as well as the actual size of the partitions of a range of unadjusted component 

values and/or the size of the partitions of a range of adjusted component values.  

[0163] In some examples, encoder 20 may signal one or more SEI messages that may 

include, for each partition, a local scale and local offset value specifying a range of the 

input component values and the corresponding mapped output component values. In 

some examples, encoder 20 may signal an SEI message that includes the number of bits 

used by the syntax elements to signal the scale and offsets. In other examples, encoder 

20 may signal an SEI message that indicates the number of bits that are used to 

represent the fractional part of the scale and offsets in the syntax elements. In other 

examples, encoder 20 may signal one or more SEI messages or syntax elements that 

indicate that the integer part of the scale parameters is signaled in a signed 

representation. In some examples, the signed representation is two's complement. In 

other examples, the signed representation is signed magnitude representation. Video 

decoder 30 may receive such SEI messages and/or syntax elements, parse and/or decode 

the information, and pass that information to video post-processor 31.  

[0164] In other examples, encoder 20 may use each offset value successively to first 

compute the range of adjusted component or representation values, and then using the 

scale value, compute the corresponding range in the unadjusted representation. For 

example, one offset value may be used to compute the range of a first partition in the 

adjusted component using the value of a global offset value derived or signalled for the 

adjusted component, followed by using the scale value and the range of a first partition 

of the adjusted representation to derive the range in the corresponding partition of the 

unadjusted representation and with the respective ranges of the first partition of the 

adjusted and the corresponding partition of the unadjusted representations, derive a 

respective value derived for the first partition of the adjusted range and the 

corresponding partition of unadjusted representations that indicate a boundary of the 

partitions. Following this, another offset value may be used to compute the range of a 

second partition in the adjusted component using the boundary value of the first 

partition in the adjusted component derived in the previous step, followed by using the 

scale value and the range of a second partition of the adjusted representation to derive
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the range of the unadjusted representation, and with the respective ranges of the second 

partitions of the adjusted representation and corresponding partition of the unadjusted 

representations, a respective value is derived for the partitions in the adjusted and 

unadjusted representations that indicate a boundary of the respective representations.  

This method is repeated until all the ranges and boundaries are derived for all the 

partitions in the adjusted and unadjusted representations. In another example, encoder 

20 may use each offset value successively to first compute the range of unadjusted 

component or representation values, and then using the scale value, compute the 

corresponding range in the adjusted representation. In other words, the component or 

representation to which the scale and offset values are applied could be swapped 

between unadjusted and adjusted representations.  

[0165] In some examples, the number of bits used by the syntax elements to signal scale 

and offset values may depend on the component. In other examples, a default number 

of bits is defined and used when these numbers are not explicitly signaled.  

[0166] In some examples, encoder 20 may signal a syntax element indicating whether 

the length of the partitions of the output representations (i.e., output components) are 

equal. In such an example, encoder 20 might not signal the offset value for one or more 

partitions. Decoder 30 may infer the offset values to be equal in some examples. In 

another example, decoder 30 may assume the partitions are of equal length and may not 

receive a syntax element so indicating. In some examples, decoder 30 may derive the 

size of each partition from signaled syntax elements and predefined total dynamical 

range of the representation.  

[0167] In other examples, rather than signaling pivot points for each partition as well as 

scale and offset values for each partition, video encoder 20 may signal one or more SEI 

messages that indicate derivative or scale value for each partition along with the size of 

one or more or all partitions. This approach may allow encoder 20 to avoid signaling 

local offset values for each partition. Instead, in some examples, encoder 20 may be 

able to signal, in one or more SEI messages, the partition size and scale value (or 

derivative) for one or more partitions. The local offset value for each partition or 

partitioning (which may require higher accuracy) may be determined or derived by 

decoder 30.  

[0168] In some examples, encoder 20 may signal one or more SEI messages that 

indicate a mode value that specifies several default values for offset and scale values for
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certain partitions. Video decoder 30 may receive such SEI messages, parse and/or 

decode the information, and pass that information to video post-processor 31.  

[0169] In some examples, encoder 20 may signal one or more SEI messages that 

indicate a value defining the persistence of the SEI message such that the persistence of 

a subset of the components may be defined and component scale values of a subset of 

the components may be updated. The persistence of an SEI message indicates the 

pictures to which the values signalled in the instance of the SEI may apply. In some 

examples, the persistence of the SEI message is defined such that the values signalled in 

one instance of SEI messages may apply correspondingly to the all components of the 

pictures to which the SEI message applies. In other examples, the persistence of the SEI 

message is defined such that the values signalled in one instance of the SEI may be 

indicated to apply correspondingly to a subset of the components wherein the 

components to which the values in the instance of the SEI does not apply may either 

have no values applicable or may have values applicable that are signalled in another 

instance of the SEI message. Video decoder 30 may receive such SEI messages, parse 

and/or decode the information, and pass that information to video post-processor 31.  

[0170] In some examples, encoder 20 may signal one or more SEI messages that 

include syntax elements indicating the post-processing steps to be performed to the 

decoded output. Each syntax element may be associated with a particular process (e.g.  

scaling components, color transforms, up-sampling/down-sampling filters, etc.) and 

each value of the syntax element may specify that a particular set of parameters 

associated with the process be used. In some examples, the parameters associated with 

the process are signaled by video encoder 20 using SEI messages that are part of the 

bitstream or as metadata that may be transmitted through other means. Video decoder 

30 may receive such SEI messages, parse and/or decode the information, and pass that 

information to video post-processor 31.  

[0171] In some examples, encoder 20 may signal syntax elements or one or more SEI 

messages that may be used for describing and/or constructing a piece-wise linear model 

function for mapping input representations (i.e., input component values) to output 

representations (i.e., output component values). Video decoder 30 may receive such 

SEI messages, parse and/or decode the information, and pass that information to video 

post-processor 31. In other examples, predefined assumptions may be used for 

describing and/or constructing a piece-wise linear model function for mapping input 

representations to the output representation.
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[0172] In some examples, encoder 20 may signal one or more SEI messages that may 

include one or more syntax elements indicating that the scale and offset parameters 

signaled in the SEI message represent the variation of the scale to be applied to a first 

component as a function of different values of a second component.  

[0173] In some examples, encoder 20 may signal one or more SEI messages indicating 

offset parameters that are to be or may be applied along with the scale on a first 

component as a function of different values of a second component. In some examples, 

encoder 20 may signal one or more SEI messages that may include one or more 

additional syntax elements that indicating offset parameters that are to be or may be 

applied along with the scale on a first component as a function of different values of a 

second component. Video decoder 30 may receive such SEI messages, parse and/or 

decode the information, and pass that information to video post-processor 31.  

[0174] In some examples, encoder 20 may signal one or more SEI messages including a 

first syntax element that indicates a first set of electro-optical transfer function 

characteristics such that the signaled scale, offset and other dynamic range adjustment 

parameters the SEI message are applied when the electro-optical transfer function 

characteristics used on the decoder-side are similar to that first set of electro-optical 

transfer function characteristics.  

[0175] In another example, encoder 20 may signal one or more SEI messages indicating 

that the signaled offset, scale and other dynamic range parameters in the SEI message(s) 

are to be applied for best reconstruction of the HDR output when the first set of electro

optical transfer function characteristics, or those with similar characteristics, are used by 

the decoder 30. Video decoder 30 may receive such SEI messages, parse and/or decode 

the information, and pass that information to video post-processor 31.  

[0176] In another example, encoder 20 may signal one or more SEI messages indicating 

that a first set of opto-electronic transfer function characteristics, and the signaled scale, 

offset and other dynamic range adjustment parameters are applied on by decoder 30 

when the corresponding inverse electro-optical transfer function characteristics are 

applied at the decoder side. Video decoder 30 may receive such SEI messages, parse 

and/or decode the information, and pass that information to video post-processor 31.  

[0177] In other examples, encoder 20 may signal a condition such that when more than 

one SEI message is present indicating different set of electro-optical/opto-electronic 

characteristics and applicable the current picture, only one SEI message is applied. The 

encoder may signal different set of electro-optical/opto-electronic characteristics to
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satisfy different types of decoders, or decoders with different capabilities. For example, 

some displays at the decoder side may apply the PT EOTF to convert the coded 

component values in appropriate domain to linear light, whereas other displays, e.g.  

legacy displays, may apply the gamma EOTF to convert to linear light. Each SEI with a 

particular characteristic that the encoder sends may be appropriate or beneficial for 

certain types of displays and not for other types of displays, e.g. an SEI message with 

PQ EOTF characteristics may be suitable for displays that apply PQ EOTF to convert 

the coded video to linear light. The decoder 30 determines which SEI message is to be 

applied, and makes such a choice based on the application standard, based on the end

user device, based on a signal received, or based on another indication received through 

external means. For example, decoder 30 may determine that the first syntax element in 

a first SEI message that applies to a current picture indicates that the SEI message is to 

be applied with the inverse of PQ OETF and the first syntax element in a second SEI 

message that applies to a current picture indicates that the SEI message is to be applied 

with another transfer function (such as BBC, or PH), the decoder 30 or end-user device 

may choose to apply the parameters in the first SEI message because the device uses PQ 

EOTF. In some examples, an application standard to which the decoder conforms to 

may specify that an SEI message with a particular set of characteristics is to be used.  

[0178] In other examples, encoder 20 may signal an SEI message that carries the 

parameters corresponding to multiple sets of transfer characteristics. In other examples, 

encoder 20 may signal different SEI messages for that purpose. Video decoder 30 may 

receive such SEI messages, parse and/or decode the information, and pass that 

information to video post-processor 31 

[0179] In some examples, encoder 20 may signal one or more SEI messages that 

include a syntax element indicating the applicability of the SEI message. The 

applicability of the SEI message may include, but is not limited to (1) the components to 

which the scales and offsets apply, (2) the position at which the component scaling is 

applied, and/or (3) whether additional scaling parameters are signaled.  

[0180] As described, encoder 20 may signal one or more SEI messages that include a 

syntax element indicating the components to which the scales and offsets apply. The 

following lists several examples of such an application. For example, one value of the 

syntax element could indicate that signaled parameters for the first component index are 

to be applied to the RGB components. Another value may indicate that the signaled 

parameters for the first component index is to be applied to luma component, and those
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for the second and third indices are to be applied to the Cb and Cr components. Another 

value may indicate that the signaled parameters for the first component index is to be 

applied to R, G and B components, and those for the second and third indices are to be 

applied to the Cb and Cr components. Another value may indicate that signaled 

parameters for first three indices are applied to luma, Cb and Cr components, and that 

corresponding to the remaining indices are applied for color correction. Video decoder 

30 may receive such SEI messages, parse and/or decode the information, and pass that 

information to video post-processor 31.  

[0181] Also as described, encoder 20 may signal one or more SEI messages including a 

syntax element indicating the position at which the component scaling is applied.  

Several processes occur on the decoder-side, after decoding of the video, and in the 

video post-processor 31. Signaling of syntax element indicating the position at which 

the process associated with the SEI is to be applied, in other words indication of any 

subset of the preceding or succeeding operations of the process associated with using 

the information in the SEI, would be helpful to the video decoder 30 or the video post

processor 31 to process the video. For example, such a syntax element could indicate 

the position at which the component scaling is applied, for example to YCbCr 

components before or after upsampling. In another example, the syntax element could 

indicate that the component scaling is applied before the quantization no the decoder 

side. Video decoder 30 may receive such SEI messages, parse and/or decode the 

information, and pass that information to video post-processor 31.  

[0182] Also as described, encoder 20 may signal one or more SEI messages that include 

a syntax element indicating whether an additional set of scaling and parameters, e.g. for 

color correction, are signaled. The additional set of parameters could be used for color 

correction to map the color components to fit a particular color gamut, or for correction 

of component values when a different transfer function is applied than that indicated by 

the transfercharacteristics syntax element in the VUI.  

[0183] In other examples, encoder 20 may signal different syntax elements to indicate 

the above aspects; e.g. one syntax element to indicate which component(s) the SEI 

applies to, one syntax element to indicate whether it applies to HDR-compatible of 

SDR-compatible content, and one syntax element to indicate the position(s) where the 

component scaling SEI message is to be applied.  

[0184] When the number of components to which the component scaling SEI message 

parameters are applied is more than one, encoder 20 may signal one or more SEI
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messages that include a syntax element indicating that application of scale and offset 

parameters may be done sequentially based on the index of the component. For 

example, the mapping based on the scale and offset parameters of the first component 

may be applied, and then the mapping of the second component, which for example 

uses scale and offset signaled for the second component, may depend on the values of 

the first component. In some examples, this is indicated by, for example, by syntax 

element specifying that the mapped values of the first component should be used.  

Video decoder 30 may receive such SEI messages, parse and/or decode the information, 

and pass that information to video post-processor 31.  

[0185] In another example, video encoder 20 may constrain the values signaled in one 

or more SEI messages, or in the bitstream, in such a way that an HDR10 receiver can 

decode and show a viewable HDR video even if the SEI post-processing is not applied.  

The SEI message(s) may include a syntax element to indicate that this is the case (e.g., 

that the bitstream is an HDR1O backward compatible bitstream).  

[0186] This section includes several examples that use techniques disclosed in 

accordance with one or more aspects of the present disclosure.  

Example 1 

[0187] In this example 1, the component scaling function is signaled as a look-up table 

and the number of bits used to signal the points defining the look up table are also 

signaled. For sample values that do not have explicit points signaled, the value is 

interpolated based on the neighboring pivot points.
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Syntax of the component scaling SEI message 

component scaleinfo( payloadSize) { Descriptor 

compscale id ue(v) 

compscale cancelflag u(1) 

if( !compscale_cancel flag) { 

compscale persistence_flag u(1) 

compscale numcomps-minusl ue(v) 

compscale input bitdepth ue(v) 

compscale output bit depth ue(v) 

for( c = 0; c <= compscalenum_comps minus; c++) { 

compscalenumpointsminusl[ c ] ue(v) 

for( i = 0; i <= compscalenumpoints minus[ c]; i++) { 

compscale input point[ c ][ i ] u(v) 

compscale output point[ c ][ i] u(v) 

} 
} 

} 
} 

Semantics of the component scaling SEI message 

The component scaling SEI message provides information to perform scaling operations 

on the various components of the decoded pictures. The colour space and the 

components on which the scaling operations should be performed are determined by the 

value of the syntax elements signalled in the SEI message.  

compscale_id contains an identifying number that may be used to identify the purpose 

of the component scaling SEI message. The value of comp_scaleid shall be in the 

range of 0 to 232 - 2, inclusive. The value of compscale id may be used to specify the 

colour space at which the component scaling SEI message, or whether the component 

scaling SEI message is applied in the linear or the non-linear domain.  

Values of compscaleid from 0 to 255, inclusive, and from 512 to 231 - 1, inclusive, 

may be used as determined by the application. Values of compscaleid from 256 to 

511, inclusive, and from 231 to 232 - 2, inclusive, are reserved for future use by ITU-T 

ISO/JEC. Decoders shall ignore all component scale information SEI messages
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containing a value of compscaleid in the range of 256 to 511, inclusive, or in the 

range of 231 to 232 - 2, inclusive, and bitstreams shall not contain such values.  

NOTE 1 - The compscale-id can be used to support component scaling processes that 

are suitable for different display scenarios. For example, different values of 

compscale id may correspond to different display bit depths or different colour spaces 

in which the scaling is applied.  

Alternatively, the compscale id may also be used to identify whether the scaling is 

performed for compatibility to certain types of displays or decoder, e.g. HDR, SDR.  

compscalecancelflag equal to 1 indicates that the component scaling information 

SEI message cancels the persistence of any previous component information SEI 

messages in output order that applies to the current layer. compscalecancelflag equal 

to 0 indicates that component scaling information follows.  

compscale persistence_flag specifies the persistence of the component scaling 

information SEI message for the current layer.  

compscalepersistence flag equal to 0 specifies that the component scaling 

information applies to the current decoded picture only.  

Let picA be the current picture. compscalepersistenceflag equal to 1 specifies that 

the component scaling information persists for the current layer in output order until any 

of the following conditions are true: 

- A new CLVS of the current layer begins.  

- The bitstream ends.  

- A picture picB in the current layer in an access unit containing a component 

scaling information SEI message with the same value of compscale id and applicable 

to the current layer is output for which PicOrderCnt( picB ) is greater than 

PicOrderCnt( picA ), where PicOrderCnt( picB ) and PicOrderCnt( picA ) are the 

PicOrderCntVal values of picB and picA, respectively, immediately after the invocation 

of the decoding process for picture order count for picB.  

compscale_num_compsminus1 plus 1 specifies the number of components for 

which the component scaling function is specified. compscalenumcomps-minusl 

shall be in the range of 0 to 2, inclusive.  

When compscale num_comps minus is less than 2 and the component scaling 

parameters of the c-th component is not signalled, are inferred to be equal to those of the 

(c - 1)-th component.
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Alternatively, when compscalenumcomps minus 1 is less than 2, and the component 

scaling parameters of the c-th component is not signalled, the component scaling 

parameters of the c-th component are inferred to be equal to default values such that 

effectively there is no scaling of that component.  

Alternatively, the inference of the component scaling parameters may be specified 

based on the colour space on which the SEI message is applied.  

- When the colour space is YCbCr, and compscale numcomps minus is 

equal to 1, the component scaling parameters apply to both Cb and Cr components.  

- When the colour space is YCbCr, and compscale numcomps minus is 

equal to 2, the first and second component scaling parameters apply to Cb and Cr 

components.  

In one alternative, the different inference is specified based on the value of 

compscaleid or on the basis of an explicit syntax element.  

Alternatively, a constraint is added as follows: 

It is constraint for bitstream conformance that the value of 

compscalenum_compsminus 1 shall be the same for all the component scaling SEI 

message with a given value of compscaleid within a CLVS.  

compscale input bit depthminus8 plus 8 specifies the number of bits used to 

signal the syntax element compscale inputpoint[ c ][ i ]. The value of 

compscale input bit depthminus8 shall be in the range of 0 to 8, inclusive.  

When component scaling SEI message is applied to an input that is in a normalized 

floating point representation in the range 0.0 to 1.0, the SEI message refers to the 

hypothetical result of a quantization operation performed to convert the input video to a 

converted video representation with bit depth equal to 

colourremap input bit depthminus8 + 8.  

When component scaling SEI message is applied to a input that has a bit depth not equal 

to the compscale input bit depth minus8 + 8, the SEI message refers to the 

hypothetical result of a transcoding operation performed to convert the input video 

representation to a converted video representation with bit depth equal to 

colourremap input bit depth minus8 + 8.  

compscale output bit depth_minus8 plus 8 specifies the number of bits used to 

signal the syntax element compscaleoutputpoint[ c ][ i ]. The value of 

compscaleoutput bit depth minus8 shall be in the range of 0 to 8, inclusive.
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When component scaling SEI message is applied to an input that is in floating point 

representation, the SEI message refers to the hypothetical result of an inverse 

quantization operation performed to convert the video representation with a bit depth 

equal to colourremapoutput bit depthminus8 + 8 that is obtained after processing of 

the component scaling SEI message to a floating point representation in the range 0.0 to 

1.0.  

Alternatively, the number of bits used to signal compscale input-point[ c ][ i ] and 

compscaleoutput_point[ c ][ i ] are signalled as compscale input bit depth and 

compscaleoutput bit depth, respectively, or in other words without subtracting 8.  

compscale_num_pointsminus1[ c ] plus 1 specifies the number of pivot points used 

to define the component scaling function. comp_scalenum_points minus[ c ] shall be 

in the range of 0 to ( 1 << Min(compscale inputbitdepth minus8 + 8, 

compscaleoutput bit depthminus8 + 8) ) - 1, inclusive.  

compscale input point[ c ][ i ] specifies the i-th pivot point of the c-th component of 

the input picture. The value of compscale input_point[ c ][ i ] shall be in the range of 

0 to ( 1 << compscale inputbitdepth minus8[ c ] + 8 ) - 1, inclusive. The value of 

compscale input_point[ c ][ i ] shall be greater than or equal to the value of 

compscale input_point[ c ][ i - 1 ], for i in the range of 1 to 

compscale_points minus [ c ], inclusive.  

compscale output point[ c ][ i ] specifies the i-th pivot point of the c-th component 

of the output picture. The value of compscaleoutput_point[ c ][ i ] shall be in the 

range of I to ( 1 << compscaleoutputbitdepth minus8[ c ] + 8 ) - 1, inclusive.  

The value of comp_scale_output_point[ c ][ i ] shall be greater than or equal to the value 

of compscale_output_point[ c ][ i - 1 ], for i in the range of I to 

compscale_points minus [ c ], inclusive.  

The process of mapping an input signal representation x and an output signal 

representation y, where the sample values for both input and output are in the range of 0 

to ( 1 << compscale input bit depth minus8[ c] + 8 ) - 1, inclusive, and 0 to 

( 1 << compscaleoutput bit depth minus8[ c] + 8 ) - 1, inclusive, respectively, is 

specified as follows: 

if( x <= compscale input_point[ c ][ 0]) 

y = compscaleoutput_point[ c ][ 0] 

else if( x > compscale input_point[ c ][ compscale inputpoint minus[ c]]) 

y = compscaleoutput_point[ c ][ compscale_output_point minus 1[ c]]
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else 

for( i = 1; i <= comp_scale_outputpoint minus[ c ]; i++) 

if( compscale inputpoint[ i - 1] < x && x <= 

compscale inputpoint[ i ] ) 

y = ( ( comp_scale_outputpoint[ c ][ i ] - compscaleoutputpoint[ c ][ i - 1] 

(compscale inputpoint[ c ][ i] - comp_scaleinputpoint[ c ][ i - 1])) * 

(x - compscale inputpoint[ c ][ i - 1]) + 

(compscaleoutputpoint[ c ][ i - 1 ]) 

[0188] In one alternative, input and output pivot points compscale input-point[ c ][ i] 
and comp_scale_outputpoint[ c ][ i ] are coded as difference of adjacent values; e.g., 

deltacompscale inputpoint[ ][] and deltacompscaleoutput-point[][], and the 

syntax elements are coded using exponential Golomb codes.  

In another alternative, the process of mapping an input and output representation value 

is specified by other interpolation methods including, but not limited to, splines and 

cubic interpolation.  

Example 2 

[0189] This Example 2 shows a different syntax structure compared to the SEI syntax 

structure described in Example 1. In this syntax structure, the mapping function is 

described in terms of scales and offsets instead of pivot points.
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Syntax of the component scaling SEI message 

component scaleinfo( payloadSize) { Descriptor 

compscale id ue(v) 

compscalecancelflag u(1) 

if( !compscale_cancel flag) { 

compscale persistenceflag u(1) 

compscale num-comps ue(v) 

compscale input bitdepth ue(v) 

compscale output bit depth ue(v) 

compscale bit depth scaleval ue(v) 

compscale log2_denomscaleval ue(v) 

for( c = 0; c < compscalenumcomps; c++) { 

compscale numpoints_minusl[ c ] ue(v) 

compscale global_offset input val[ c] u(v) 

compscale global_offset output val[ c] u(v) 

for( i = 0; i < compscale numpoints minus[ c]; i++) { 

compscale offsetval[ c ][ i] u(v) 

compscale val[ c ][ i] u(v) 

} 
} 

} 
} 

compscalebitdepthscale val specifies the number of bits used to signal the syntax 

element compscale val[ c ][ i ]. The value of compscale bit depth_scaleval shall 

be in the range of 0 to 24, inclusive.  

compscale-log2_denom_scaleval specifies the base 2 denominator of the scale 

value. The value of compscale log2_denomscaleval shall be in the range of 0 to 16, 

inclusive.  

compscale global_offsetinput val[ c ] plus 1 specifies the input sample value below 

which all the input representation values are clipped to 

CompScaleOffsetOutputVal[ c ][ 0 ]. used to define the component scaling function.  

compscale numpointsminus1[ c ] shall be in the range of 0 to
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(1 << compscale input bit depth ) - 1, inclusive. The number of bits used to 

represent compscaleglobal_offsetinput val[ c ] is compscale input bit depth.  

compscale global_offsetoutput val[ c ] plus 1 specifies the output sample value to 

which all the input representation values below 

compscaleglobaloffsetinput val[ c ] are to be clipped.  

compscale numpointsminus1[ c ] shall be in the range of 0 to 

( 1 << compscaleoutput bit depth) - 1, inclusive. The number of bits used to 

represent compscaleglobal_offsetoutput val[ c ] is compscale_output bit depth.  

compscale_num_pointsminus1[ c ] plus 1 specifies the number of pivot points used 

to define the component scaling function. comp_scalenumpoints minus[ c ] shall be 

in the range of 0 to ( 1 << Min(compscale inputbitdepth, 

compscaleoutput bit depth) - 1, inclusive.  

The process of mapping an input signal representation x and an output signal 

representation y, where the sample values for both input representation is in the range of 

0 to (1 << compscale input bit depth) - 1, inclusive, and output representation is in 

the range of and 0 to (1 << compscaleoutput bit depth) - 1, inclusive, is specified 

as follows: 

if( x <= CompScaleOffsetInputVal[ c ][ 0]) 

y = CompScaleOffsetOutputVal[ c ][ 0] 

else if( x > CompScaleOffsetInputVal[ c ][ comp_scale_output-point minus ]) 

y = CompScaleOffsetOutputVal[ c ][ compscaleoutputpoint minus] 

else 

for( i = 1; i <= comp_scale_outputpointminusI; i++) 

if( CompScaleOffsetlnputVal[ i - 1] < x && x <= 

CompScaleOffsetInputVal[ i ] ) 

y=(x 

CompScaleOffsetInputVal[ i - 1] * (compscale val[ c ][ i] + 

CompScaleOffsetOutputVal[ c ][ i] 

compscale_offset val[ c ][ i ] specifies the offset value of the i-th sample value region 

of the c-th component. The number of bits used to represent compscale_offset val[ c] 

is equal to compscale input bit depth.  

compscale val[ c ][ i ] specifies the scale value of the i-th sample value region point 

of the c-th component. The number of bits used to represent compscale val[ c ] is 

equal to compscale bit depthscaleval.
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The variables CompScaleOffsetOutputVal[ c ][ i ] and 

CompScaleOffsetInputVal[ c ][ i ] for i in the range of 0 to 

compscale numpointsminus1[ c ], inclusive, is derived as follows: 

roundingOffset = (compscale log2_denomscaleval = = 0 ) ? 0 : (1 << 

compscale log2denomscaleval - 1) 

for( i = 0; i <= compscale numpoints minus[ c ]; i++) 

if(i == 0) 

CompScaleOffsetOutputVal[ c ][ i ]= 

compscaleglobaloffsetoutput val[ c ] 

CompScaleOffsetInputVal[ c ][ i] = 

compscaleglobaloffsetinput val[ c] 

else 

CompScaleOffsetOutputVal[ c ][ i ]= CompScaleOffsetOutputVal[ c ][ i 

1I + 

(comp_scaleoffset val[ c ][ i - 1 ] E compscale val[ c ][ i - 1] 

+ roundingOffset ) >> 

compscale log2_denomscaleval 

CompScaleOffsetInputVal[ c ][ i ]= CompScaleOffsetInputVal[ c ][ i - 1] 

comp scaleoffsetval[ c ][ i - 1] 

In one alternative, compscaleoffsetval[ c ][ i ] is used to directly calculate 

CompScaleOffsetOutputVal[ ][ i ] and indirectly calculate 

CompScaleOffsetInputVal[ ][ i ] for i in the range of 0 to 

compscalenum_points minus [ c] as follows: 

for( i = 0; i < comp_scalenumpoints minus[ c ]; i++) 

if(i == 0) 

CompScaleOffsetOutputVal[ c ][ i ]= 

compscaleglobaloffsetoutput val[ c ] 

CompScaleOffsetInputVal[ c ][ i] = 

compscaleglobaloffsetinput val[ c] 

else 

CompScaleOffsetInputVal[ c ][ i ]= CompScaleOffsetInputVal[ c ][ i - 1]
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(compscale_offset val[ c ][ i - 1] * 

compscale val[ c ][ i - 1 ] 

+ roundingOffset) >> 

compscale log2_denomscale val ) 

CompScaleOffsetOutputVal[ c ][ i ]= CompScaleOffsetOutputVal[ c ][ i 

1]+ 

comp scaleoffset_val[ c ][ i - 1] 

In one alternative, compscaleoffsetval[ c ][ i ] for i in the range of 0 to 

compscale numpointsminus1 [ c ], inclusive, are not signaled, and the values of 

compscale_offset val[ c ][ i ] are derived based on 

compscale numpointsminus1 [ c ] equally spaced intervals for which the scale is 

specified. The value of comp_scale_offset val[ c ][ i ] for i in the range of 0 to 

compscalenum_points minus[ c] - 1, inclusive, is derived as follows: 

compscale_offset val[ c ][ i ]= ((1 << compscaleoutput bit depth ) 

compscaleglobaloffset output val[ c] ) + 

(compscalenumpoints minus 1[ c ]) 

In another alternative, comp scaleoffset val[ c ][ i ] for i in the range of 0 to 

compscale numpointsminus1[ c ] is calculated as follows: 

compscale_offset val[ c ][ i ] = (1 << compscaleoutput bit depth) + 

(compscalenumpoints minus 1[ c ] ) 

In one alternative, instead of signaling compscale numpointsminus 1[ c ], the 

number of pivot points is signaled using log2_compscale num-points[ c ], where 

(1 << log2_comp_scalenumpoints[ c] ) specifies the number of pivot points for the 

c-th component.  

Alternatively, each of compscaleoffset val[ c ][ ] and compscale val[ c ][ ] is 

signaled as floating point numbers, or as two syntax elements with exponent and 

mantissa.
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In another alternative, signaling of compscale val[ c ][ i ] is replaced by 

compscaleoutput_point[ c ][ i ].  

The semantics of rest of the syntax elements are similar to those described in Example 

1.  

Example 3 

[0190] This method described in Example 3 is similar to one of the alternatives 

described in Example 2, with the exception that the component scaling functions are 

allowed to be updated independently.
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Syntax of the component scaling SEI message 

component scaleinfo( payloadSize) { Descriptor 

compscale id ue(v) 

compscale cancelflag u(1) 

if( !compscale_cancel flag) { 

compscale persistence_flag u(1) 

compscale numcomps ue(v) 

compscale input bitdepth ue(v) 

compscale output bit depth ue(v) 

for( c = 0; c < compscale num_comps; c++) { 

compscalepersistcomponent flag[ c ] u(1) 

if( !compscalepersist component flag[ c]) 

compscale numscaleregions[ c ] ue(v) 

compscale globaloffset input val[ c] u(v) 

compscale globaloffset output val[ c] u(v) 

for( i = 0; i < compscalenum scale regions[ c]; i++) { 

compscaleoffsetval[ c ][ i] u(v) 

compscale val[ c ][ i] u(v) 

} 
} 

} 
} 

} 
Semantics of the component scaling SEI message 

The semantics is similar to Example 2, except for the following syntax elements.  

compscalenumscale regions[ c ] specifies the number of regions for which the 

syntax element compscale val[ c ][ i ] is signalled for the c-the component.  

compscalenum_scale regions[ c ] shall be in the range of 0 to (1 << 

compscale input bit depth) - 1, inclusive.  

compscalepersist component flag[ c ] equal to 0 specifies that component scaling 

parameters for the c-th component are explicitly signalled in the SEI message.  

compscalepersist component flag[ c ] equal to 1 specifies that component scaling 

parameters for the c-th component are not explicitly signalled in the SEI message, and it
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persists from the component scaling parameters of the c-th component of the component 

scaling SEI message that applies to previous picture, in output order.  

It is a requirement of bitstream conformance that when the component scaling SEI 

message is present in an IRAP access unit, the value of 

compscalepersist component flag[ c ], when present, shall be equal to 0.  

Alternatively, the following condition is added: 

It is a requirement of bitstream conformance that when the component scaling SEI 

message is present in an access unit that is not an IRAP access unit and 

compscalepersist component flag[ c ] is equal to 1, then there is at least one picture 

that precedes the current picture in output order and succeeds, in output order, the 

previous IRAP picture in decoding order, inclusive, such that the one picture is 

associated with a component scaling SEI message with comp scale-persistence flag 

equal to 1.  

compscale persistence_flag specifies the persistence of the component scaling 

information SEI message for the current layer.  

compscalepersistence flag equal to 0 specifies that the component scaling 

information applies to the current decoded picture only.  

Let picA be the current picture compscalepersistenceflag equal to 1 specifies that the 

component scaling information of the c-th component persists for the current layer in 

output order until any of the following conditions are true: 

- A new CLVS of the current layer begins.  

- The bitstream ends.  

- A picture picB in the current layer in an access unit containing a component 

scaling information SEI message with the same value of compscale-id and 

compscalepersist component flag[ c ] equal to 0, and applicable to the current layer 

is output for which PicOrderCnt( picB ) is greater than PicOrderCnt( picA ), where 

PicOrderCnt( picB ) and PicOrderCnt( picA ) are the PicOrderCntVal values of picB 

and picA, respectively, immediately after the invocation of the decoding process for 

picture order count for picB.  

Example 4 

[0191] In this Example 4, a different method to signal the scale regions is disclosed.
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Changes to component scaling SEI message syntax 

component scaleinfo( payloadSize) { Descriptor 

compscale id ue(v) 

compscalecancelflag u(1) 

if( !compscale_cancel flag) { 

compscale persistenceflag u(1) 

compscale num-comps ue(v) 

compscale input bitdepth ue(v) 

compscale output bit depth ue(v) 

for( c = 0; c < compscalenumcomps; c++) { 

compscale persistcomponent flag[ c ] u(1) 

if( !compscalepersist component flag[ c]) 

compscale globaloffset input val[ c] u(v) 

compscale globaloffsetoutput val[ c] u(v) 

compscale num scale regions[ c ] ue(v) 

for( i = 0; i < compscalenumscale regions[ c]; i++) { 

compscaleoffset begin val[ c ][ i] u(v) 

compscale offset end val[ c ][ i] u(v) 

compscale val[ c ][ i] u(v) 

} 
} 

} 
} 

} 

Changes to component scaling SEI message semantics 

The semantics of the syntax elements are similar to those described in previous 

examples, except for the following: 

compscaleoffset begin val[ c ][ i ] specifies the beginning of the sample value range 

for which the scale value compscale val[ c ][ i ] is applicable. The number of bits 

used to represent compscale_offsetbegin val[ c ] is equal to 

compscale input bit depth.
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compscale_offset_end_val[ c ][ i ] specifies the end of the sample value range for 

which the scale value compscale val[ c ][ i ] is applicable. The number of bits used to 

represent compscaleoffsetend val[ c ] is equal to compscale inputbitdepth.  

For regions that are not explicitly specified by compscale offsetbegin val and 

compscale_offsetendval, the compscalevalue[ c ][ i ] for those regions is inferred 

to be equal to 0.  

[0192] Alternatively, compscaleoffsetendval[ c ][ i ] is not signaled and instead the 

difference between compscaleoffsetend val[ c ][ i ] and 

compscale_offset begin val[ c ][ i ] is signaled, and the value of 

compscale_offset end val[ c ][ i ] derived at the decoder-side.  

[0193] In another alternative, the total number of regions in to which the output sample 

range is split is specified, and the number of regions is signaled for which the scale 

regions are explicitly signaled.  

... u(v) 

compscale global_offsetoutput val[ c] u(v) 

compscaletot_scaleregions[ c ] ue(v) 

compscalenum_scaleregions[ c] ue(v) 

for( i = 0; i < comp scale numscale regions[ c]; i++) { 

compscaleregionidx[ c ][ i] u(v) 

compscaleval[ c ][ i] u(v) 

} 

compscale_tot_scaleregions[ c] specifies the total number of equal length sample 

value ranges in to which the sample values are split. The number of bits used to 

represent compscaletotscale regions[ c ] is equal to compscale input bit depth.  

In one alternative, the comp scaletotscale regions[ c ] sample value ranges may not 

be exactly equal in length but very nearly equal to account for the integer accuracy of 

the region lengths.  

compscaleregionidx[ c ][ i ] specifies the index of the sample value range for which 

the scale value compscale val[ c ][ i ] is applied. The length of the syntax element 

compscale region idx[ c ] is Ceil( Log2( comp_scaletot scale regions[ c ] ) ) bits.
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Alternatives 

Alternatively, region around the chroma neutral (511 for 10-bit data) have smaller size, 

p.e., half the size of the other regions.  

Example 5 

Syntax of the component scale SEI message 

component scaleinfo( payloadSize) { Descriptor 

compscale id ue(v) 

compscalecancelflag u(1) 

if( !compscale_cancel flag) { 

compscale persistenceflag u(1) 

compscale scale bitdepth u(4) 

compscale offset bit depth u(4) 

compscale scalefracbit depth u(4) 

compscale offsetfracbit depth u(4) 

compscale num comps_minus1 ue(v) 

for( c = 0; c <= compscale numcomps minus 1; c++) { 

compscale-numranges[ c ] ue(v) 

compscale equalrangesflag[ c] u(1) 

compscale global_offset-val[ c ] u(v) 

for( i = 0; i <= compscalenumranges[ c ]; i++) 

compscale scaleval[ c ][ i ] u(v) 

if( compscaleequal ranges[ c]) u(v) 

for( i = 0; i <= compscalenum ranges[ c ]; i++) 

compscaleoffsetval[ c ][ i] u(v) 

} 
} 

Semantics of the component scale SEI message 

The component scaling SEI message provides information to perform scaling operations 

on the various components of the decoded pictures. The colour space and the 

components on which the scaling operations should be performed are determined by the 

value of the syntax elements signalled in the SEI message.
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compscale_id contains an identifying number that may be used to identify the purpose 

of the component scaling SEI message. The value of compscale id shall be in the 

range of 0 to 232 - 2, inclusive. The value of compscale id may be used to specify the 

colour space at which the component scaling SEI message, or whether the component 

scaling SEI message is applied in the linear or the non-linear domain.  

In some examples, compscale id can specify the configuration of the HDR 

reconstruction process. In some examples, particular value of compscaleid may be 

associated with signaling of scaling parameters for 3 components. The scaling of the 

first components to be applied to samples of R',G', B' color space, and parameters of 

following 2 components are applied for scaling of Cr and Cb.  

For yet another compscale id value, hdr reconstruction process can utilize parameters 

for 3 components, and scaling is aplied to samples of Luma, Cr and Cb color 

components.  

In yet another compscale id value, hdr reconstruction process can utilize signaling for 

4 components, 3 of which to be applied to Luma, Cr and Cb scaling, and 4th component 

to bring parameters of color correction.  

In some examples, certain range of comp scale-id values may be associated with HDR 

reconstruction conducted in SDR-backward compatible configuration, whereas another 

range of compscaleid values may be associated with HDR reconstruction conducted 

to non-backward compatible configuration.  

Values of compscaleid from 0 to 255, inclusive, and from 512 to 231 - 1, inclusive, 

may be used as determined by the application. Values of compscale-id from 256 to 

511, inclusive, and from 231 to 232 - 2, inclusive, are reserved for future use by ITU-T 

ISO/JEC. Decoders shall ignore all component scale information SEI messages 

containing a value of compscaleid in the range of 256 to 511, inclusive, or in the 

range of 231 to 232 - 2, inclusive, and bitstreams shall not contain such values.  

NOTE 1 - The compscale-id can be used to support component scaling processes that 

are suitable for different display scenarios. For example, different values of 

compscale id may correspond to different display bit depths or different colour spaces 

in which the scaling is applied.  

Alternatively, the compscale id may also be used to identify whether the scaling is 

performed for compatibility to certain types of displays or decoder, e.g. HDR, SDR.  

compscale_cancelflag equal to 1 indicates that the component scaling information 

SEI message cancels the persistence of any previous component information SEI
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messages in output order that applies to the current layer. compscalecancelflag equal 

to 0 indicates that component scaling information follows.  

compscale persistence_flag specifies the persistence of the component scaling 

information SEI message for the current layer.  

compscalepersistence flag equal to 0 specifies that the component scaling 

information applies to the current decoded picture only.  

Let picA be the current picture. compscalepersistenceflag equal to 1 specifies that 

the component scaling information persists for the current layer in output order until any 

of the following conditions are true: 

- A new CLVS of the current layer begins.  

- The bitstream ends.  

- A picture picB in the current layer in an access unit containing a component 

scaling information SEI message with the same value of compscale id and applicable 

to the current layer is output for which PicOrderCnt( picB ) is greater than 

PicOrderCnt( picA ), where PicOrderCnt( picB ) and PicOrderCnt( picA ) are the 

PicOrderCntVal values of picB and picA, respectively, immediately after the invocation 

of the decoding process for picture order count for picB.  

compscale_scalebit depth specifies the number of bits used to signal the syntax 

element compscalescaleval[ c ][ i ]. The value of comp_scalescalebitdepth shall 

be in the range of 0 to 15, inclusive.  

compscaleoffset bit depth specifies the number of bits used to signal the syntax 

elements compscaleglobal_offsetval[ c ] and comp scaleoffsetval[ c ][ i ]. The 

value of compscaleoffsetbit depth shall be in the range of 0 to 15, inclusive.  

compscalescalefracbitdepth specifies the number of LSBs used to indicate the 

fractional part of the scale parameter of the i-th partition of the c-th component. The 

value of compscalescalefracbitdepth shall be in the range of 0 to 15, inclusive.  

The value of comp_scale_scalefracbit depth shall be less than or equal to the value of 

compscale_scalebit depth.  

compscaleoffsetfracbit depth specifies the number of LSBs used to indicate the 

fractional part of the offset parameter of the i-th partition of the c-th component and 

global offset of the c-th component. The value of compscale_offsetfracbitdepth 

shall be in the range of 0 to 15, inclusive. The value of 

compscale_offsetfracbitdepth shall be less than or equal to the value of 

compscale_offset bit depth.
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compscale_num_compsminus1 plus 1 specifies the number of components for 

which the component scaling function is specified. compscalenumcomps-minusl 

shall be in the range of 0 to 2, inclusive.  

compscale_num_ranges[ c ] specifies the number of ranges in to which the output 

sample range is partitioned in to. The value of comp scale num ranges[ c ] shall be in 

the range of 0 to 63, inclusive..  

compscaleequalrangesflag[ c ] equal to 1 indicates that that output sample range 

is partitioned into compscalenumranges[ c ] nearly equal partitions, and the partition 

widths are not explicitly signalled. compscaleequal ranges flag[ c ] equal to 0 

indicates that that output sample range may be partitioned into 

compscalenumranges[ c ] partitions not all of which are of the same size, and the 

partitions widths are explicitly signalled.  

compscaleglobal_offset_val[ c ] is used to derive the offset value that is used to map 

the smallest value of the valid input data range for the c-th component. The length of 

compscaleglobaloffsetval[ c ] is compscale_offsetbit depth bits.  

compscalescaleval[ c ][ i ] is used to derive the offset value that is used to derive the 

width of the of the i-th partition of the c-th component. The length of 

compscaleglobaloffsetval[ c ] is compscale_offsetbit depth bits.  

The variable CompScaleScaleVal[ c ][ i ] is derived as follows .  

CompScaleScaleVal[ c ][ i ] = ( compscalescale val[ c ][ i ] >> 

compscale_scalefracbitdepth ) + 

(compscale_scaleval[ c ][ i ] & 

((1 << compscalescalefrac bit depth ) - 1) 

) 
(1 << compscale scalefracbit depth) 

compscale_offset-val[ c ][ i ] is used to derive the offset value that is used to derive 

the width of the of the i-th partition of the c-th component. The length of 

compscaleglobaloffsetval[ c ] is compscale_offsetbit depth bits.  

When compscaleoffsetval[ c ][ i ] is signalled, the value of 

CompScaleOffsetVal[ c ][ i ] is derived as follows: 

CompScaleOffsetVal[ c ][ i ] = ( comp_scaleoffset val[ c ][ i ] >> 

compscale_offset frac bit depth) + 

(compscale_offsetval[ c ][ i ] & 

((1 << compscaleoffsetfrac bit depth ) - 1)
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))+ 

(1 << compscale offsetfrac bit depth) 

Alternatively, the variable CompScaleScaleVal[ c ][ i ] and 

CompScaleOffsetVal[ c ][ i ] are derived as follows : 

CompScaleScaleVal[ c ][ i ]= compscale_scale val[ c ][ i ] & 

(1 << compscale scalefracbit depth) 

CompScaleOffsetVal[ c ][ i ] = compscale_offset val[ c ][ i] + 

(1 << compscale offsetfrac bit depth) 

When compscaleequal ranges flag[ c ] is equal to 1, compscale offsetval[ c ][ i] 

is not signalled, and the value of CompScaleOffsetVal[ c ][ i ] is derived as follows: 

CompScaleOffsetVal[ c ][ i ] = 1 + compscale num ranges[ c ] 

The variable CompScaleOutputRanges[ c ][ i ] and CompScaleOutputRanges[ c ][ i ] for 

i in the range of 0 to compscalenumranges[ c] is derived as follows: 

for( i = 0; i <= compscale num ranges[ c ]; i++) 

if(i == 0) 

CompScaleOutputRanges[ c ][ i ] = compscaleglobal offsetval[ c 

(1 << comp scaleoffsetfracbit depth) 

CompScaleInputRanges[ c ][ i ] = 0 

else 

CompScaleInputRanges[ c ][ i ] = CompScaleOffsetInputRanges[ c ][ i 

1I + 

(CompScaleOffsetVal[ c ][ i - 1] * 

CompScaleScaleVal[ c ][ i - 1 ] 

CompScaleOutputRanges[ c ][ i ] = CompScaleOutputRanges[ c ][ i - 1] + 

CompScaleOffsetVal[ c ][ i - 1] 

In one alternative, the values of CompScaleOutputRanges[ ][ ] and 

CompScaleOutputRanges[ ][ ] are derived as follows: 

for( i = 0; i <= compscale num ranges[ c]; i++) 

if(i == 0) 

CompScaleInputRanges[ c ][ i] = compscaleglobal offset val[ c 

(1 << comp scaleoffsetfracbit depth) 

CompScaleOutputRanges[ c ][ i ] = 0 

else 

CompScaleInputRanges[ c ][ i] = CompScaleOffsetInputRanges[ c ][ i -
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1]+ 

(CompScaleOffsetVal[ c ][ i - 1] * 

CompScaleScaleVal[ c ][ i - 1 ] 

CompScaleOutputRanges[ c ][ i ] = CompScaleOutputRanges[ c ][ i - 1] + 

CompScaleOffsetVal[ c ][ i - 1 ] 

The process of mapping an input signal representation (which may be used to cover 

both integer as well as floating point) x and an output signal representation y, where the 

sample values for both input representation is normalized in the range of 0 to 1, and 

output representation is in the range of and 0 to 1, is specified as follows: 

if( x <= CompScalelnputRanges[ c ][ 0 ] ) 

y = CompScaleOutputRanges[ c ][ 0] 

else if( x > CompScaleInputRanges[ c ][ compscalenumranges[ c] ]) 

y = CompScaleOutputRanges[ c ][ compscalenum ranges[ c];] 

else 

for( i = 1; i <= compscalenum ranges[ c ]; i++) 

if( CompScalelnputRanges[ i - 1] < x && x <= 

CompScalelnputRanges[ i ] ) 

y=(x 

CompScalelnputRanges[ i - 1 ] ) E compscale val[ c ][ i] + 

CompScaleOutputRanges[ c ][ i - 1] 

In one alternative, the value of CompScaleOutputRanges[ c ][ 0 ] is set based on the 

permitted sample value range.  

Alternatively, the process of mapping an input value valln to output value valOut is 

defined as follows: 

m_pAtfRangeln[ 0 ]= 0; 

m_pAtfRangeOut[ 0 ]= -moffset2 *m_pAtfScale2[c][0]; 

for (int j = 1; j < matfNumberRanges + 1; j++) 

{ 

m_pAtfRangeln[ j ]= mpAtfRangeInj - 1] + mpAtfDeltaj - 1]; 

m_pAtfRangeOut[ j ]= mpAtfRangeOutj - 1] + mpAtfScale2[ c ][ j 

m_pAtfDelta[ j - 1]; 

}
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for (int j = 0; j < numRanges && skip = = 0;j++) 

{ 
if (valln <= pAtfRangeln[ j + 1]) 

{ 
valOut = (valIn - pOffset[comp jj])* 

pScale[copnn][j; 

skip = 1; 

} 
] 

In one alternative, m_offset2 is equal to 

compscale global_offset_val[ c ]+( 1 << comp_scaleoffsetfracbit depth), 

m_pAtfScale[ c][ i ] is equal to CompScaleScaleVal[ c ][ i ] and mpAtfDelta[ i ] is 

equal to CompScaleOffsetVal[ c ][ i ] for the c-th component, and pScale and pOffset 

are scale and offset parameter derived from mAtfScale and mpAtfDelta.  

An inverse operation would be defined accordingly.  

Example 6 

In some examples, some of signaling methods described above, e.g. in example 5, can 

be utilized as shown in following pseudo code.  

m_atfNumberRanges is a term for syntax elements compscalenum ranges[ c ] for a 

given c, that specifies number of dynamic range partitioning for mapped data.  

m_pAtfRangeIn is a term for CompScaleInputRanges, is an arrays size of 

m_atfNumberRanges+1 that includes input sample value specifying the border between 

two concatenated partitions, e.g., i and i+1.  

m_pAtfRangeOut is a term for CompScaleOutputRanges, is an arrays size of 

m_atfNumberRanges+1 that includes output sample value specifying the border 

between two concatenated partitions, e.g. i and i+1.  

m_pAtfScale2 is a term for variable CompScaleScaleVal [ c ] is an arrays size of 

m_atfNumberRanges that includes scale values for each partitions.  

m_pAtfOffset2 is an array arrays size of matfNumberRanges that includes offset 

values for each partition.  

m_offset2 is a term for compscaleglobaloffsetval.  

In this example, parameters of piece-wise linear model can be determined form syntax 

elements as in Algorithm 1:
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Algorithm 1: 

m_pAtfRangeIn[0] = 0; 

m_pAtfRangeOut[O] = -moffset2 *m_pAtfScale2[c][0]; 

for (int j = 1; j < matfNumberRanges + 1; j++) 

{ 
m_pAtfRangeInj] = mpAtfRangeInj - 1] + mpAtfDeltaj - 1]; 

m_pAtfRangeOutj] = mpAtfRangeOutj - 1] + mpAtfScale2[c]U - 1] 

* mpAtfDeltaj - 1]; 

} 

for (int j = 0; j < matfNumberRanges; j++) 

{ 

temp = mpAtfRangeInj + 1] - mpAtfRangeOutj + 1] / 

m_pAtfScale2[c][]; 

m_pAtfOffset2[c][] = temp; 

} 

Once determined, piece-wise linear model can be applied to input samples value 

inValue to determine output sample value outValue as in Algorithm 2: 

Algorithm 2: 

for (int j = 0; j < matfNumberRanges && skip == 0; j++) 

{ 
if (inValue <= mpAtfRangeInj + 1]) 

{ 
outValue = (inValue - mpAtfOffset2 U]) * 

m_pAtfScale2 U]; 

skip = 1; 

} 
} 

Inverse process to be conducted as in Algorithm 3: 

Algorithm 3: 

for (int j = 0; j < matfNumberRanges && skip == 0; j++) 

{
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if (inValue <= mpAtfRangeOut[j + 1]) 

{ 
outValue = inValue / mpAtfScale2 [j] + mpAtfOffset2 

[j]; 
skip = 1; 

} 
} 

[0194] In some examples, border sample value (an entry of mpAtfRangeIn or 

m_pAtfRangeOut ) between two concatenated partitions i and i+1 can be interpreted 

differently, as belonging to i+1, instead of belonging to i partition as it is shown in 

Algorithm 2 and 3.  

[0195] In some examples, inverse process shown in Algorithm 3, can be implemented 

with a multiplication by mpAtflnverseScale2 value, instead of division by 

m_pAtfScale2[j]. In such examples, a value of mpAtfScale2[j] is determined from 

m_pAtfScale2 [j] in advance.  

[0196] In some examples, mpAtfinverseScale2 [j] is determined at the decoder side as 

1/m pAtfScale2[j].  

[0197] In some examples, mpAtfinverseScale2 [j] can be computed at the encoder 

side, and signalled through bitstream. In such examples, operation given in Algorithms 

1, 2 and 3 will be adjusted accordingly.  

[0198] Various examples 

[0199] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be utilized to enable dynamical range adjustment for samples of 

input signal, e.g. to improve compression efficiency of video coding systems.  

[0200] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to codewords (non-linear representation of R,G,B 

samples) produced by an OETF, e.g. by PQ TF of ST.2084, or others.  

[0201] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to samples of YCbCr color representation.  

[0202] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be utilized to HDR/WCG solutions with SDR compatibility.  

[0203] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to samples in floating point representation. In yet
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another example, proposed signaling mechanism and resulting function can be applied 

to samples in integer representation, e.g. 10 bits.  

[0204] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to samples in a form of Look Up Tables. In yet 

another examples, proposed signaling can be used to model function that can be applied 

to a sample in a form of multiplier.  

Combinations and Extensions 

[0205] In the examples above, a linear model is assumed for each region (i.e., scale plus 

offset); the techniques of this disclosure also may be applicable for higher-order 

polynomial models, for example, with a polynomial of 2nd degree requiring three 

parameters instead of two. The signaling and syntax would be properly extended for 

this scenario.  

[0206] Combinations of aspects described above are possible and part of the techniques 

of this disclosure.  

[0207] Toolbox combination: there are several HDR methods that can target somewhat 

similar goals to those of the SEIs described in this disclosure. In order to accommodate 

more than one of them but, at the same time, limiting the number of applicable SEI 

processing per frame, it is proposed to combine (one or more of) these methods in a 

single SEI. A proposed syntax element would indicate the specific method to apply in 

each instance. For example, if there are two possible methods in the SEI, the syntax 

element would be a flag indicating the one to be used.  

Example 7 

[0208] In this example, the signaling of scale parameters is modified such that negative 

scales can be transmitted, and the signaled scale parameters indicate the variation of 

scale to be applied for different ranges of the various components. The changes with 

respect to example 5 are below.
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Changes to syntax of the SEI message 

component scaleinfo( payloadSize) { Descriptor 

compscale id ue(v) 

compscalecancelflag u(1) 

if( !compscale_cancel flag) { 

compscale persistenceflag u(1) 

compscale scale bitdepth u(4) 

compscale offset-bit-depth u(4) 

compscale scalefracbit depth u(4) 

compscale offsetfracbit depth u(4) 

compscale negative_scalespresent flag u(1) 

compscale depcomponentid ue(v) 

compscale num comps_minus1 ue(v) 

for( c = 0; c <= compscalenum_comps minus 1; c++) { 

compscale-numranges[ c ] ue(v) 

compscale equalrangesflag[ c] u(1) 

compscale global_offset val[ c ] u(v) 

for( i = 0; i <= compscalenumranges[ c ]; i++) 

compscale scaleval[ c ][ i ] u(v) 

if( compscaleequal ranges[ c]) u(v) 

for( i = 0; i <= compscalenum ranges[ c ]; i++) 

compscale offset_val[ c ][ i] u(v) 

} 
} 

Changes to semantics of the SEI message 

compscale negativescalespresent flag equal to 1 specifies that the integer part of 

the scale parameters derived from compscale scale val[ c ][ i ] is represented as a 

signed integer. compscale negative scalespresent flag equal to 0 specifies that the 

integer part scale parameters derived from compscale_scale val[ c ][ i ] is represented 

as an unsigned integer.
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[0209] In one alternative, another set of offset parameters are signaled along with 

compscale_scaleval that are used to define the offset that is applied along with the 

scale on a first component as a function of the value of a second component.  

[0210] The signed-integer representation includes, but is not limited to, twos

complement notation and signed magnitude representation (one bit for sign and the 

remaining bits in the integer-part). The derivation below is given for the signed 

magnitude representation. The derivation can be similarly defined for other forms of 

signed representations.  

The variable CompScaleScaleVal[ c ][ i ] is derived as follows 

compScaleScaleFracPart = ( compscale_scale_val[ c ][ i ] & 

((1 << compscalescalefrac bit depth ) - 1) 

) 
(1 << compscale scalefracbit depth) 

if( compscale negativescalespresent flag ) { 

compScaleSignPart = compscale_scale_val[ c ][ i ] >> 

(compscale_scale bit depth - 1) 

compScaleIntegerPart = compscalescale val[ c ][ i] - (compScaleSignPart 

<< (comp scalescalebit depth - 1)) 

compScaleIntegerVal = ((compScaleSignPart = = 1): -1 : 1) * 

compScaleIntegerPart 

} else 

compScaleIntegerVal = compscale_scale val[ c ][ i] > 

compscale_scalefracbitdepth 

CompScaleScaleVal[ c ][ i ] = compScaleIntegerVal + compScaleScaleFracPart 

It is a requirement of bitstream conformance that when 

compscale negative scalepresentflag is equal to 1, the value of 

compscale_scalebit depth shall be greater than or equal to 

compscale_scalefracbitdepth 

compscale dependentcomponent id specifies the application of scale and offset 

parameters to the various components of the video. When 

compscaledependentcomponent id is equal to 0, the syntax elements 

compscaleglobaloffsetval[ c ], comp scale scale val[ c ][ i ] and 

compscale_offset val[ c ][ i ] are used to identify mapping of input and output values 

of the c-th component. When compscaledependentcomponent id is greater than 0,
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compscaledependentcomponent id - 1 specifies the index of the component such 

that the syntax elements compscaleglobaloffset val[ c ], 

compscale_scale_val[ c ][ i ] and compscale offset val[ c ][ i ] specify the mapping 

of a scale parameter to be applied to the c-th component of a sample as a function of the 

value of ( compscaledependentcomponent id - 1 )-th component of the sample.  

The rest of the semantics are similar to those described in Example 5.  

Example 8 

[0211] In this example, the bit depth of the ATF parameters depend on the component.  

For each component, the bit depth of the syntax elements is explicitly signal. In 

addition, there are default bit-depth for those syntax elements. The default value is 

assigned when the bit depth is not explicitly signaled. A flag might indicate whether the 

default values are applied or they are explicitly signaled.  

[0212] The table below shows an example of these concepts. Syntax elements of the 

ATF parameters are the scale hdrreconscale_val[ ][ ] and range 

hdrrecon range val[ ][ ]. The syntax elements indicating the corresponding bit depth 

(integer and fractional part) are the following ones: 

* hdrreconscalebitdepth[c], 

* hdrreconoffsetbit depth[c], 

* hdrreconscalefrac bit depth[c], 

* hdrreconoffsetfrac bit depth[ c], 

where c is the component index. The default bit-depths for scale and offset (range) can 

be set to: 

* hdrreconscalebitdepth[c]= 8, 

* hdrreconoffsetbit depth[c]= 8, 

* hdrreconscalefrac bit depth[c]= 6, 

* hdrreconoffsetfrac bit depth[ c = 8.  

[0213] The accuracy of the parameters might also be different for the ATF parameters 

and the color adjustment parameters. Also, the default might be different per 

component and for the color adjustment parameters. In this example, the defaults are 

assumed to be the same.
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hdrreconstruction info( payloadSize) { Descriptor 

hdrrecon id ue(v) 

hdrrecon cancel_flag u(1) 

if( !hdr reconcancel flag) { 

hdr reconpersistenceflag u(1) 

if (hdr recon id = = 1 ) { 

hdroutput fullrangeflag 

hdroutput colour primaries 

hdroutput transfercharacteristics 

hdroutput matrixcoeffs 

} 
SYNTAX FOR THE MAPPING LUTs 

hdr-recon-num_comps-minusl ue(v) 

for( c = 0; c <= hdrreconnumcomps minus; 

c++ ) { 

hdrrecon defaultbit depth [ c] u(1) 

if ( hdr recondefault bit depth [c] == 0) { 

hdr recon scalebit depth[ c] u(4) 

hdr recon offsetbit depth[ c ] u(4) 

hdr recon scalefracbitdepth[ c] u(4) 

hdrrecon offsetfracbit-depth[ c] u(4) 

} 
hdr recon-numranges[ c] ue(v) 

hdrreconequalrangesflag[ c] u(1) 

hdrreconglobaloffset-val[ c ] u(v) 

for( i = 0; i <= hdrreconnum ranges[ c]; i++ 

) 
hdrrecon-scaleval[ c ][ i] u(v) 

if( !hdr recon equal ranges[ c]) u(v) 

for( i = 0; i <= hdrreconnum ranges[ c]; i++ 

) 
hdr reconrange val [ c l[i u(v) 

} u(v)
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SYNTAX FOR THE COLOR CORRECTION PART 

if (hdrrecon id = = 1) { Params related to Colour 

correction 

hdr_ colorcorrectiontype 0: on U,V - 1: on R,G,B 

hdrcoloraccuracyflag Syntax for coding the 

colour 

if( ! hdr reconcoloraccuracy flag) { correction LUT 

hdr color _scalebit depth u(4) 

hdrcolor _offsetbit depth u(4) 

hdrcolor _scalefrac bit depth u(4) 

hdrcolor _offsetfracbitdepth u(4) 

} 

color correctionnum ranges 

color correction equallenranges flag 

color correctionzerooffsetval 

for( i = 0; i < colorcorrectionnum ranges; 

i++) 

color-correctionscale val[ i ] 

if( ! colorcorrectionequal len ranges flag) 

for( i = 0; i < colorcorrectionnum ranges; 

i++) 

color-correctionrange val[ i ] 

} 
} 

} 
} 

Example 9 

[0214] A desirable property of a new HDR solution is that it is backward compatible to 

previous HDR solutions, like HDR1O. A syntax element may indicate that this is the 

case. This indicates a characteristic of the bitstream, and an HDR decoder might decide 

not to spend computational resources on the inverse ATF processing under some 

circumstances if the non ATF version is already viewable.
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[0215] In one example, some values of the hdrrecon id syntax element are reserved to 

indicate HDR10 backward compatibility, or to what degree there is backward 

compatibility.  

[0216] In another example, a flag (hdr reconhdrl0_bc) indicates this situation.  

[0217] In one example, the signaled HDR1O backward compatibility indicates that the 

bitstream is viewable. Alternatively, it might indicate some specific properties of the 

signaled values: for example, that they are a range of values that guarantees this 

property. For instance, a constraint could be that the scale is between 0.9 and 1.1.  

[0218] FIG. 10 is a block diagram illustrating an example of video encoder 20 that may 

implement the techniques of this disclosure. Video encoder 20 may perform intra- and 

inter-coding of video blocks within video slices in a target color container that have 

been processed by video pre-processor unit 19. Intra-coding relies on spatial prediction 

to reduce or remove spatial redundancy in video within a given video frame or picture.  

Inter-coding relies on temporal prediction to reduce or remove temporal redundancy in 

video within adjacent frames or pictures of a video sequence. Intra-mode (I mode) may 

refer to any of several spatial based coding modes. Inter-modes, such as uni-directional 

prediction (P mode) or bi-prediction (B mode), may refer to any of several temporal

based coding modes.  

[0219] As shown in FIG. 10, video encoder 20 receives a current video block within a 

video frame to be encoded. In the example of FIG. 10, video encoder 20 includes mode 

select unit 40, a video data memory 41, decoded picture buffer 64, summer 50, 

transform processing unit 52, quantization unit 54, and entropy encoding unit 56. Mode 

select unit 40, in turn, includes motion compensation unit 44, motion estimation unit 42, 

intra prediction processing unit 46, and partition unit 48. For video block 

reconstruction, video encoder 20 also includes inverse quantization unit 58, inverse 

transform processing unit 60, and summer 62. A deblocking filter (not shown in FIG.  

10) may also be included to filter block boundaries to remove blockiness artifacts from 

reconstructed video. If desired, the deblocking filter would typically filter the output of 

summer 62. Additional filters (in loop or post loop) may also be used in addition to the 

deblocking filter. Such filters are not shown for brevity, but if desired, may filter the 

output of summer 50 (as an in-loop filter).  

[0220] Video data memory 41 may store video data to be encoded by the components of 

video encoder 20. The video data stored in video data memory 41 may be obtained, for 

example, from video source 18. Decoded picture buffer 64 may be a reference picture
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memory that stores reference video data for use in encoding video data by video 

encoder 20, e.g., in intra- or inter-coding modes. Video data memory 41 and decoded 

picture buffer 64 may be formed by any of a variety of memory devices, such as 

dynamic random access memory (DRAM), including synchronous DRAM (SDRAM), 

magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory 

devices. Video data memory 41 and decoded picture buffer 64 may be provided by the 

same memory device or separate memory devices. In various examples, video data 

memory 41 may be on-chip with other components of video encoder 20, or off-chip 

relative to those components.  

[0221] During the encoding process, video encoder 20 receives a video frame or slice to 

be coded. The frame or slice may be divided into multiple video blocks. Motion 

estimation unit 42 and motion compensation unit 44 perform inter-predictive coding of 

the received video block relative to one or more blocks in one or more reference frames 

to provide temporal prediction. Intra prediction processing unit 46 may alternatively 

perform intra-predictive coding of the received video block relative to one or more 

neighboring blocks in the same frame or slice as the block to be coded to provide spatial 

prediction. Video encoder 20 may perform multiple coding passes, e.g., to select an 

appropriate coding mode for each block of video data.  

[0222] Moreover, partition unit 48 may partition blocks of video data into sub-blocks, 

based on evaluation of previous partitioning schemes in previous coding passes. For 

example, partition unit 48 may initially partition a frame or slice into LCUs, and 

partition each of the LCUs into sub-CUs based on rate-distortion analysis (e.g., rate

distortion optimization). Mode select unit 40 may further produce a quadtree data 

structure indicative of partitioning of an LCU into sub-CUs. Leaf-node CUs of the 

quadtree may include one or more PUs and one or more TUs.  

[0223] Mode select unit 40 may select one of the coding modes, intra or inter, e.g., 

based on error results, and provides the resulting intra- or inter-coded block to summer 

50 to generate residual block data and to summer 62 to reconstruct the encoded block 

for use as a reference frame. Mode select unit 40 also provides syntax elements, such as 

motion vectors, intra-mode indicators, partition information, and other such syntax 

information, to entropy encoding unit 56.  

[0224] Motion estimation unit 42 and motion compensation unit 44 may be highly 

integrated, but are illustrated separately for conceptual purposes. Motion estimation, 

performed by motion estimation unit 42, is the process of generating motion vectors,
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which estimate motion for video blocks. A motion vector, for example, may indicate 

the displacement of a PU of a video block within a current video frame or picture 

relative to a predictive block within a reference picture (or other coded unit) relative to 

the current block being coded within the current picture (or other coded unit). A 

predictive block is a block that is found to closely match the block to be coded, in terms 

of pixel difference, which may be determined by sum of absolute difference (SAD), sum 

of square difference (SSD), or other difference metrics. In some examples, video 

encoder 20 may calculate values for sub-integer pixel positions of reference pictures 

stored in decoded picture buffer 64. For example, video encoder 20 may interpolate 

values of one-quarter pixel positions, one-eighth pixel positions, or other fractional 

pixel positions of the reference picture. Therefore, motion estimation unit 42 may 

perform a motion search relative to the full pixel positions and fractional pixel positions 

and output a motion vector with fractional pixel precision.  

[0225] Motion estimation unit 42 calculates a motion vector for a PU of a video block 

in an inter-coded slice by comparing the position of the PU to the position of a 

predictive block of a reference picture. The reference picture may be selected from a 

first reference picture list (List 0) or a second reference picture list (List 1), each of 

which identify one or more reference pictures stored in decoded picture buffer 64.  

Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit 

56 and motion compensation unit 44.  

[0226] Motion compensation, performed by motion compensation unit 44, may involve 

fetching or generating the predictive block based on the motion vector determined by 

motion estimation unit 42. Again, motion estimation unit 42 and motion compensation 

unit 44 may be functionally integrated, in some examples. Upon receiving the motion 

vector for the PU of the current video block, motion compensation unit 44 may locate 

the predictive block to which the motion vector points in one of the reference picture 

lists. Summer 50 forms a residual video block by subtracting pixel values of the 

predictive block from the pixel values of the current video block being coded, forming 

pixel difference values, as discussed below. In general, motion estimation unit 42 

performs motion estimation relative to luma components, and motion compensation unit 

44 uses motion vectors calculated based on the luma components for both chroma 

components and luma components. Mode select unit 40 may also generate syntax 

elements associated with the video blocks and the video slice for use by video decoder 

30 in decoding the video blocks of the video slice.
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[0227] Intra prediction processing unit 46 may intra-predict a current block, as an 

alternative to the inter-prediction performed by motion estimation unit 42 and motion 

compensation unit 44, as described above. In particular, intra prediction processing unit 

46 may determine an intra-prediction mode to use to encode a current block. In some 

examples, intra prediction processing unit 46 may encode a current block using various 

intra-prediction modes, e.g., during separate encoding passes, and intra prediction 

processing unit 46 (or mode select unit 40, in some examples) may select an appropriate 

intra-prediction mode to use from the tested modes.  

[0228] For example, intra prediction processing unit 46 may calculate rate-distortion 

values using a rate-distortion analysis for the various tested intra-prediction modes, and 

select the intra-prediction mode having the best rate-distortion characteristics among the 

tested modes. Rate-distortion analysis generally determines an amount of distortion (or 

error) between an encoded block and an original, unencoded block that was encoded to 

produce the encoded block, as well as a bit rate (that is, a number of bits) used to 

produce the encoded block. Intra prediction processing unit 46 may calculate ratios 

from the distortions and rates for the various encoded blocks to determine which intra

prediction mode exhibits the best rate-distortion value for the block.  

[0229] After selecting an intra-prediction mode for a block, intra prediction processing 

unit 46 may provide information indicative of the selected intra-prediction mode for the 

block to entropy encoding unit 56. Entropy encoding unit 56 may encode the 

information indicating the selected intra-prediction mode. Video encoder 20 may 

include in the transmitted bitstream configuration data, which may include a plurality of 

intra-prediction mode index tables and a plurality of modified intra-prediction mode 

index tables (also referred to as codeword mapping tables), definitions of encoding 

contexts for various blocks, and indications of a most probable intra-prediction mode, 

an intra-prediction mode index table, and a modified intra-prediction mode index table 

to use for each of the contexts.  

[0230] Video encoder 20 forms a residual video block by subtracting the prediction data 

from mode select unit 40 from the original video block being coded. Summer 50 

represents the component or components that perform this subtraction operation.  

Transform processing unit 52 applies a transform, such as a discrete cosine transform 

(DCT) or a conceptually similar transform, to the residual block, producing a video 

block comprising residual transform coefficient values. Transform processing unit 52 

may perform other transforms which are conceptually similar to DCT. Wavelet
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transforms, integer transforms, sub-band transforms or other types of transforms could 

also be used. In any case, transform processing unit 52 applies the transform to the 

residual block, producing a block of residual transform coefficients. The transform may 

convert the residual information from a pixel value domain to a transform domain, such 

as a frequency domain. Transform processing unit 52 may send the resulting transform 

coefficients to quantization unit 54.  

[0231] Quantization unit 54 quantizes the transform coefficients to further reduce bit 

rate. The quantization process may reduce the bit depth associated with some or all of 

the coefficients. The degree of quantization may be modified by adjusting a 

quantization parameter. In some examples, quantization unit 54 may then perform a 

scan of the matrix including the quantized transform coefficients. Alternatively, entropy 

encoding unit 56 may perform the scan.  

[0232] Following quantization, entropy encoding unit 56 entropy codes the quantized 

transform coefficients. For example, entropy encoding unit 56 may perform context 

adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding 

(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability 

interval partitioning entropy (PIPE) coding or another entropy coding technique. In the 

case of context-based entropy coding, context may be based on neighboring blocks.  

Following the entropy coding by entropy encoding unit 56, the encoded bitstream may 

be transmitted to another device (e.g., video decoder 30) or archived for later 

transmission or retrieval.  

[0233] Inverse quantization unit 58 and inverse transform processing unit 60 apply 

inverse quantization and inverse transformation, respectively, to reconstruct the residual 

block in the pixel domain, e.g., for later use as a reference block. Motion compensation 

unit 44 may calculate a reference block by adding the residual block to a predictive 

block of one of the frames of decoded picture buffer 64. Motion compensation unit 44 

may also apply one or more interpolation filters to the reconstructed residual block to 

calculate sub-integer pixel values for use in motion estimation. Summer 62 adds the 

reconstructed residual block to the motion compensated prediction block produced by 

motion compensation unit 44 to produce a reconstructed video block for storage in 

decoded picture buffer 64. The reconstructed video block may be used by motion 

estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a 

block in a subsequent video frame.
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[0234] FIG. 11 is a block diagram illustrating an example of video decoder 30 that may 

implement the techniques of this disclosure. In particular, video decoder 30 may decode 

video data into a target color container that may then be processed by video post

processor unit 31, as described above. In the example of FIG. 11, video decoder 30 

includes an entropy decoding unit 70, a video data memory 71, motion compensation 

unit 72, intra prediction processing unit 74, inverse quantization unit 76, inverse 

transform processing unit 78, decoded picture buffer 82 and summer 80. Video decoder 

30 may, in some examples, perform a decoding pass generally reciprocal to the 

encoding pass described with respect to video encoder 20 (FIG. 10). Motion 

compensation unit 72 may generate prediction data based on motion vectors received 

from entropy decoding unit 70, while intra prediction processing unit 74 may generate 

prediction data based on intra-prediction mode indicators received from entropy 

decoding unit 70.  

[0235] Video data memory 71 may store video data, such as an encoded video 

bitstream, to be decoded by the components of video decoder 30. The video data stored 

in video data memory 71 may be obtained, for example, from computer-readable 

medium 16, e.g., from a local video source, such as a camera, via wired or wireless 

network communication of video data, or by accessing physical data storage 

media. Video data memory 71 may form a coded picture buffer (CPB) that stores 

encoded video data from an encoded video bitstream. Decoded picture buffer 82 may 

be a reference picture memory that stores reference video data for use in decoding video 

data by video decoder 30, e.g., in intra- or inter-coding modes. Video data memory 71 

and decoded picture buffer 82 may be formed by any of a variety of memory devices, 

such as dynamic random access memory (DRAM), including synchronous DRAM 

(SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of 

memory devices. Video data memory 71 and decoded picture buffer 82 may be 

provided by the same memory device or separate memory devices. In various 

examples, video data memory 71 may be on-chip with other components of video 

decoder 30, or off-chip relative to those components.  

[0236] During the decoding process, video decoder 30 receives an encoded video 

bitstream that represents video blocks of an encoded video slice and associated syntax 

elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy 

decodes the bitstream to generate quantized coefficients, motion vectors or intra

prediction mode indicators, and other syntax elements. Entropy decoding unit 70
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forwards the motion vectors to and other syntax elements to motion compensation unit 

72. Video decoder 30 may receive the syntax elements at the video slice level and/or 

the video block level.  

[0237] When the video slice is coded as an intra-coded (I) slice, intra prediction 

processing unit 74 may generate prediction data for a video block of the current video 

slice based on a signaled intra prediction mode and data from previously decoded blocks 

of the current frame or picture. When the video frame is coded as an inter-coded (i.e., B 

or P) slice, motion compensation unit 72 produces predictive blocks for a video block of 

the current video slice based on the motion vectors and other syntax elements received 

from entropy decoding unit 70. The predictive blocks may be produced from one of the 

reference pictures within one of the reference picture lists. Video decoder 30 may 

construct the reference picture lists, List 0 and List 1, using default construction 

techniques based on reference pictures stored in decoded picture buffer 82. Motion 

compensation unit 72 determines prediction information for a video block of the current 

video slice by parsing the motion vectors and other syntax elements, and uses the 

prediction information to produce the predictive blocks for the current video block 

being decoded. For example, motion compensation unit 72 uses some of the received 

syntax elements to determine a prediction mode (e.g., intra- or inter-prediction) used to 

code the video blocks of the video slice, an inter-prediction slice type (e.g., B slice or P 

slice), construction information for one or more of the reference picture lists for the 

slice, motion vectors for each inter-encoded video block of the slice, inter-prediction 

status for each inter-coded video block of the slice, and other information to decode the 

video blocks in the current video slice.  

[0238] Motion compensation unit 72 may also perform interpolation based on 

interpolation filters. Motion compensation unit 72 may use interpolation filters as used 

by video encoder 20 during encoding of the video blocks to calculate interpolated values 

for sub-integer pixels of reference blocks. In this case, motion compensation unit 72 

may determine the interpolation filters used by video encoder 20 from the received 

syntax elements and use the interpolation filters to produce predictive blocks.  

[0239] Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized 

transform coefficients provided in the bitstream and decoded by entropy decoding unit 

70. The inverse quantization process may include use of a quantization parameter QPy 

calculated by video decoder 30 for each video block in the video slice to determine a 

degree of quantization and, likewise, a degree of inverse quantization that should be
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applied. Inverse transform processing unit 78 applies an inverse transform, e.g., an 

inverse DCT, an inverse integer transform, or a conceptually similar inverse transform 

process, to the transform coefficients in order to produce residual blocks in the pixel 

domain.  

[0240] After motion compensation unit 72 generates the predictive block for the current 

video block based on the motion vectors and other syntax elements, video decoder 30 

forms a decoded video block by summing the residual blocks from inverse transform 

processing unit 78 with the corresponding predictive blocks generated by motion 

compensation unit 72. Summer 80 represents the component or components that 

perform this summation operation. If desired, a deblocking filter may also be applied to 

filter the decoded blocks in order to remove blockiness artifacts. Other loop filters 

(either in the coding loop or after the coding loop) may also be used to smooth pixel 

transitions, or otherwise improve the video quality. The decoded video blocks in a 

given frame or picture are then stored in decoded picture buffer 82, which stores 

reference pictures used for subsequent motion compensation. Decoded picture buffer 

82 also stores decoded video for later presentation on a display device, such as display 

device 32 of FIG. 1.  

[0241] FIG. 12 is a flowchart showing one example video processing technique of the 

disclosure. The techniques of FIG. 12 may be performed by video encoder 20 and/or 

video pre-processor unit 19. In the example of FIG. 12, source device 12 may be 

configured to capture video data using a camera (1200). Video encoder 20 and/or video 

pre-processor unit 19 may be configured to perform a dynamic range adjustment 

process on video data using fixed-point computing (1210). Video encoder 20 and/or 

video pre-processor unit 19 may be further configured to generate one or more syntax 

elements that contain information specifying how to determine parameters for 

performing an inverse dynamic range adjustment process, relative to the dynamic range 

adjustment process, using fixed-point computing (1220).  

[0242] In one example, video encoder 20 and/or video pre-processor unit 19 may be 

configured to generate the one or more syntax elements by generating the one or more 

syntax elements in one or more supplemental enhancement information (SEI) messages.  

In one example, the parameters comprise one or more of a range parameter, a scale 

parameter, or an offset parameter. In another example, the information indicates one or 

more of a first number of fractional bits used for determining the range parameter, a 

second number of fractional bits used for determining the scale parameter, and a third
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number of fractional bits used for determining the offset parameter. In another example, 

the information includes a minimum value and a maximum value for one or more color 

components of the video data. In another example, the information includes an index to 

a predetermined range of sample values of the decoded video data.  

[0243] FIG. 13 is a flowchart showing another example video processing technique of 

the disclosure. The techniques of FIG. 13 may be performed by video decoder 30 

and/or video post-processor unit 31. In one example of the disclosure, video decoder 30 

and/or video post-processor unit 31 may be configured to receive one or more syntax 

elements that contain information specifying how to determine parameters for 

performing an inverse dynamic range adjustment process (1300), and receive decoded 

video data (1310).  

[0244] Video decoder 30 and/or video post-processor unit 31 may be further configured 

to determine parameters for an inverse dynamic range adjustment process from the 

received information (1320), and perform the inverse dynamic range adjustment process 

on the decoded video data using fixed-point computing in accordance with the 

information received and the determined parameters (1330). Destination device 14 may 

be further configured to display the decoded video data after performing the inverse 

dynamic range adjustment process on the decoded video data (1340).  

[0245] In one example of the disclosure, video decoder 30 and/or video post-processor 

unit 31 may be configured to receive the one or more syntax elements in one or more 

supplemental enhancement information (SEI) messages. In one example, the 

parameters comprise one or more of a range parameter, a scale parameter, or an offset 

parameter. In another example, the information indicates one or more of a first number 

of fractional bits used for determining the range parameter, a second number of 

fractional bits used for determining the scale parameter, and a third number of fractional 

bits used for determining the offset parameter.  

[0246] In another example of the disclosure, video decoder 30 and/or video post

processor unit 31 may be configured to determine the parameters, in the case that at 

least one of the first number of fractional bits, the second number of fractional bits, or 

the third number of fractional bits is different from one another, by accumulating any 

fractional bits during any intermediate calculation processes used to determine the 

parameters, and clip a final result for determining the parameters based on a 

predetermined fractional accuracy.
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[0247] In another example of the disclosure, video decoder 30 and/or video post

processor unit 31 may be configured to determine the parameters by truncating any 

fractional bits over a desired fractional accuracy during all intermediate calculation 

processes used to determine the parameters.  

[0248] In another example, the information includes a minimum value and a maximum 

value for one or more color components of the decoded video data, and video decoder 

30 and/or video post-processor unit 31 may be configured to determine the parameters 

based on the received minimum value and the received maximum value.  

[0249] In another example, the information includes an index to a predetermined range 

of sample values for one or more color components of the decoded video data, and 

video decoder 30 and/or video post-processor unit 31 may be configured to determine a 

minimum value and a maximum value for the one or more color components of the 

decoded video data based on the received index, and determine the parameters based on 

the determined minimum value and the determined maximum value.  

[0250] In another example of the disclosure, video decoder 30 and/or video post

processor unit 31 may be configured to receive a syntax element indicating if the 

parameters are signed or unsigned, and perform a parsing process on the information in 

the SEI message, wherein the parsing process is the same regardless of the value of the 

syntax element.  

[0251] Certain aspects of this disclosure have been described with respect to extensions 

of the HEVC standard for purposes of illustration. However, the techniques described 

in this disclosure may be useful for other video coding processes, including other 

standard or proprietary video coding processes not yet developed.  

[0252] A video coder, as described in this disclosure, may refer to a video encoder or a 

video decoder. Similarly, a video coding unit may refer to a video encoder or a video 

decoder. Likewise, video coding may refer to video encoding or video decoding, as 

applicable.  

[0253] It is to be recognized that depending on the example, certain acts or events of 

any of the techniques described herein can be performed in a different sequence, may be 

added, merged, or left out altogether (e.g., not all described acts or events are necessary 

for the practice of the techniques). Moreover, in certain examples, acts or events may 

be performed concurrently, e.g., through multi-threaded processing, interrupt 

processing, or multiple processors, rather than sequentially.
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[0254] In one or more examples, the functions described may be implemented in 

hardware, software, firmware, or any combination thereof. If implemented in software, 

the functions may be stored on or transmitted over as one or more instructions or code 

on a computer-readable medium and executed by a hardware-based processing unit.  

Computer-readable media may include computer-readable storage media, which 

corresponds to a tangible medium such as data storage media, or communication media 

including any medium that facilitates transfer of a computer program from one place to 

another, e.g., according to a communication protocol. In this manner, computer

readable media generally may correspond to (1) tangible computer-readable storage 

media which is non-transitory or (2) a communication medium such as a signal or 

carrier wave. Data storage media may be any available media that can be accessed by 

one or more computers or one or more processors to retrieve instructions, code and/or 

data structures for implementation of the techniques described in this disclosure. A 

computer program product may include a computer-readable medium.  

[0255] By way of example, and not limitation, such computer-readable storage media 

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic 

disk storage, or other magnetic storage devices, flash memory, or any other medium that 

can be used to store desired program code in the form of instructions or data structures 

and that can be accessed by a computer. Also, any connection is properly termed a 

computer-readable medium. For example, if instructions are transmitted from a 

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted 

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and 

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless 

technologies such as infrared, radio, and microwave are included in the definition of 

medium. It should be understood, however, that computer-readable storage media and 

data storage media do not include connections, carrier waves, signals, or other transitory 

media, but are instead directed to non-transitory, tangible storage media. Disk and disc, 

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc 

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically, 

while discs reproduce data optically with lasers. Combinations of the above should also 

be included within the scope of computer-readable media.  

[0256] Instructions may be executed by one or more processors, such as one or more 

digital signal processors (DSPs), general purpose microprocessors, application specific 

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
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equivalent integrated or discrete logic circuitry. Accordingly, the term "processor," as 

used herein may refer to any of the foregoing structure or any other structure suitable for 

implementation of the techniques described herein. In addition, in some aspects, the 

functionality described herein may be provided within dedicated hardware and/or 

software modules configured for encoding and decoding, or incorporated in a combined 

codec. Also, the techniques could be fully implemented in one or more circuits or logic 

elements.  

[0257] The techniques of this disclosure may be implemented in a wide variety of 

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of 

ICs (e.g., a chip set). Various components, modules, or units are described in this 

disclosure to emphasize functional aspects of devices configured to perform the 

disclosed techniques, but do not necessarily require realization by different hardware 

units. Rather, as described above, various units may be combined in a codec hardware 

unit or provided by a collection of interoperative hardware units, including one or more 

processors as described above, in conjunction with suitable software and/or firmware.  

[0258] Various examples have been described. These and other examples are within the 

scope of the following claims.
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WHAT IS CLAIMED IS: 

1 A method of processing video data, the method comprising: 

receiving one or more syntax elements that contain information specifying how 

to determine parameters for performing an inverse dynamic range adjustment process; 

receiving decoded video data; and 

performing the inverse dynamic range adjustment process on the decoded video 

data using fixed-point computing in accordance with the information received.  

2. The method of claim 1, wherein receiving the one or more syntax elements 

comprises receiving the one or more syntax elements in one or more supplemental 

enhancement information (SEI) messages, and wherein the parameters comprise one or 

more of a range parameter, a scale parameter, or an offset parameter.  

3. The method of claim 2, wherein the information indicates one or more of a first 

number of fractional bits used for determining the range parameter, a second number of 

fractional bits used for determining the scale parameter, and a third number of fractional 

bits used for determining the offset parameter.  

4. The method of claim 3, further comprising: 

determining the parameters using the first number of fractional bits, the second 

number of fractions bits, and the third number of fractional bits.  

5. The method of claim 4, wherein determining the parameters further comprises: 

determining the parameters, in the case that at least one of the first number of 

fractional bits, the second number of fractional bits, or the third number of fractional 

bits is different from one another, by accumulating any fractional bits during any 

intermediate calculation processes used to determine the parameters; and 

clipping a final result for determining the parameters based on a predetermined 

fractional accuracy.
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6. The method of claim 4, wherein determining the parameters further comprises: 

determining the parameters by truncating any fractional bits over a desired 

fractional accuracy during all intermediate calculation processes used to determine the 

parameters.  

7. The method of claim 1, wherein the information includes a minimum value and 

a maximum value for one or more color components of the decoded video data, the 

method further comprising: 

determining the parameters based on the received minimum value and the 

received maximum value.  

8. The method of claim 1, wherein the information includes an index to a 

predetermined range of sample values for one or more color components of the decoded 

video data, the method further comprising: 

determining a minimum value and a maximum value for the one or more color 

components of the decoded video data based on the received index; and 

determining the parameters based on the determined minimum value and the 

determined maximum value.  

9. The method of claim 1, further comprising: 

receiving a syntax element indicating if the parameters are signed or unsigned; 

and 

performing a parsing process on the information in the SEI message, wherein the 

parsing process is the same regardless of the value of the syntax element.  

10. The method of claim 1, further comprising: 

displaying the decoded video data after performing the inverse dynamic range 

adjustment process on the decoded video data.
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11. An apparatus configured to process video data, the apparatus comprising: 

a memory configured to store decoded video data; and 

one or more processors configured to: 

receive one or more syntax elements that contain information specifying 

how to determine parameters for performing an inverse dynamic range 

adjustment process; 

receive the decoded video data; and 

perform the inverse dynamic range adjustment process on the decoded 

video data using fixed-point computing in accordance with the information 

received.  

12. The apparatus of claim 11, wherein receiving the one or more processors are 

further configured to receive the one or more syntax elements in one or more 

supplemental enhancement information (SEI) messages, and wherein the parameters 

comprise one or more of a range parameter, a scale parameter, or an offset parameter.  

13. The apparatus of claim 12, wherein the information indicates one or more of a 

first number of fractional bits used for determining the range parameter, a second 

number of fractional bits used for determining the scale parameter, and a third number 

of fractional bits used for determining the offset parameter.  

14. The apparatus of claim 13, wherein the one or more processors are further 

configured to: 

determine the parameters using the first number of fractional bits, the second 

number of fractions bits, and the third number of fractional bits.  

15. The apparatus of claim 14, wherein to determine the parameters, the one or more 

processors are further configured to: 

determine the parameters, in the case that at least one of the first number of 

fractional bits, the second number of fractional bits, or the third number of fractional 

bits is different from one another, by accumulating any fractional bits during any 

intermediate calculation processes used to determine the parameters; and 

clip a final result for determining the parameters based on a predetermined 

fractional accuracy.
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16. The apparatus of claim 14, wherein to determine the parameters, the one or more 

processors are further configured to: 

determine the parameters by truncating any fractional bits over a desired 

fractional accuracy during all intermediate calculation processes used to determine the 

parameters.  

17. The apparatus of claim 11, wherein the information includes a minimum value 

and a maximum value for one or more color components of the decoded video data, and 

wherein the one or more processors are further configured to: 

determine the parameters based on the received minimum value and the received 

maximum value.  

18. The apparatus of claim 11, wherein the information includes an index to a 

predetermined range of sample values of one or more color components of the decoded 

video data, and wherein the one or more processors are further configured to: 

determine a minimum value and a maximum value for the one or more color 

components of the decoded video data based on the received index; and 

determine the parameters based on the determined minimum value and the 

determined maximum value.  

19. The apparatus of claim 11, wherein the one or more processors are further 

configured to: 

receive a syntax element indicating if the parameters are signed or unsigned; and 

perform a parsing process on the information in the SEI message, wherein the 

parsing process is the same regardless of the value of the syntax element.  

20. The apparatus of claim 11, the apparatus further comprising: 

a display configured to display the decoded video data after the one or more 

processors perform the inverse dynamic range adjustment process on the decoded video 

data.  

21. The apparatus of claim 11, wherein the apparatus comprises one or more of a 

camera, a computer, a mobile device, a broadcast receiver device, or a set-top box.
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22. An apparatus configured to process video data, the apparatus comprising: 

means for receiving one or more syntax elements that contain information 

specifying how to determine parameters for performing an inverse dynamic range 

adjustment process; 

means for receiving decoded video data; and 

means for performing the inverse dynamic range adjustment process on the 

decoded video data using fixed-point computing in accordance with the information 

received.  

23. The apparatus of claim 22, wherein the means for receiving the one or more 

syntax elements comprises means for receiving the one or more syntax elements in one 

or more supplemental enhancement information (SEI) messages, and wherein the 

parameters comprise one or more of a range parameter, a scale parameter, or an offset 

parameter.  

24. The apparatus of claim 23, wherein the information indicates one or more of a 

first number of fractional bits used for determining the range parameter, a second 

number of fractional bits used for determining the scale parameter, and a third number 

of fractional bits used for determining the offset parameter.  

25. The apparatus of claim 24, further comprising: 

means for determining the parameters using the first number of fractional bits, 

the second number of fractions bits, and the third number of fractional bits.  

26. The apparatus of claim 25, wherein the means for determining the parameters 

further comprises: 

means for determining the parameters, in the case that at least one of the first 

number of fractional bits, the second number of fractional bits, or the third number of 

fractional bits is different from one another, by accumulating any fractional bits during 

any intermediate calculation processes used to determine the parameters; and 

means for clipping a final result for determining the parameters based on a 

predetermined fractional accuracy.
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27. The apparatus of claim 25, wherein the means for determining the parameters 

further comprises: 

means for determining the parameters by truncating any fractional bits over a 

desired fractional accuracy during all intermediate calculation processes used to 

determine the parameters.  

28. The apparatus of claim 22, wherein the information includes a minimum value 

and a maximum value for one or more color components of the decoded video data, the 

apparatus further comprising: 

means for determining the parameters based on the received minimum value and 

the received maximum value.  

29. The apparatus of claim 22, wherein the information includes an index to a 

predetermined range of sample values or one or more color components of the decoded 

video data, the apparatus further comprising: 

means for determining a minimum value and a maximum value for the one or 

more color components of the decoded video data based on the received index; and 

means for determining the parameters based on the determined minimum value 

and the determined maximum value.  

30. The apparatus of claim 22, further comprising: 

means for receiving a syntax element indicating if the parameters are signed or 

unsigned; and 

means for performing a parsing process on the information in the SEI message, 

wherein the parsing process is the same regardless of the value of the syntax element.  

31. The apparatus of claim 22, further comprising: 

means for displaying the decoded video data after performing the inverse 

dynamic range adjustment process on the decoded video data.
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32. A computer-readable storage medium storing instructions that, when executed, 

cause one or more processors of a device configured to process video data to: 

receive one or more syntax elements that contain information specifying how to 

determine parameters for performing an inverse dynamic range adjustment process; 

receive the decoded video data; and 

perform the inverse dynamic range adjustment process on the decoded video 

data using fixed-point computing in accordance with the information received.  

33. The computer-readable storage medium of claim 32, wherein the instructions 

further cause the one or more processors to receive the one or more syntax elements in 

one or more supplemental enhancement information (SEI) messages, and wherein the 

parameters comprise one or more of a range parameter, a scale parameter, or an offset 

parameter.  

34. The computer-readable storage medium of claim 33, wherein the information 

indicates one or more of a first number of fractional bits used for determining the range 

parameter, a second number of fractional bits used for determining the scale parameter, 

and a third number of fractional bits used for determining the offset parameter.  

35. The computer-readable storage medium of claim 34, wherein the instructions 

further cause the one or more processors to: 

determine the parameters using the first number of fractional bits, the second 

number of fractions bits, and the third number of fractional bits.  

36. The computer-readable storage medium of claim 35, wherein the instructions 

further cause the one or more processors to: 

determine the parameters, in the case that at least one of the first number of 

fractional bits, the second number of fractional bits, or the third number of fractional 

bits is different from one another, by accumulating any fractional bits during any 

intermediate calculation processes used to determine the parameters; and 

clip a final result for determining the parameters based on a predetermined 

fractional accuracy.
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37. The computer-readable storage medium of claim 35, wherein the instructions 

further cause the one or more processors to: 

determine the parameters by truncating any fractional bits over a desired 

fractional accuracy during all intermediate calculation processes used to determine the 

parameters.  

38. The computer-readable storage medium of claim 32, wherein the information 

includes a minimum value and a maximum value for one or more color components of 

the decoded video data, and wherein the instructions further cause the one or more 

processors to: 

determine the parameters based on the received minimum value and the received 

maximum value.  

39. The computer-readable storage medium of claim 32, wherein the information 

includes an index to a predetermined range of sample values of one or more color 

components of the decoded video data, wherein the instructions further cause the one or 

more processors to: 

determine a minimum value and a maximum value for the one or more color 

components of the decoded video data based on the received index; and 

determine the parameters based on the determined minimum value and the 

determined maximum value.  

40. The computer-readable storage medium of claim 32, wherein the instructions 

further cause the one or more processors to: 

receive a syntax element indicating if the parameters are signed or unsigned; and 

perform a parsing process on the information in the SEI message, wherein the 

parsing process is the same regardless of the value of the syntax element.  

41. The computer-readable storage medium of claim 32, wherein the instructions 

further cause the one or more processors to: 

display the decoded video data after performing the inverse dynamic range 

adjustment process on the decoded video data.
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42. A method of processing video data, the method comprising: 

performing a dynamic range adjustment process on video data using fixed-point 

computing; and 

generating one or more syntax elements that contain information specifying how 

to determine parameters for performing an inverse dynamic range adjustment process, 

relative to the dynamic range adjustment process, using fixed-point computing.  

43. The method of claim 42, wherein generating the one or more syntax elements 

comprises generating the one or more syntax elements in one or more supplemental 

enhancement information (SEI) messages, and wherein the parameters comprise one or 

more of a range parameter, a scale parameter, or an offset parameter.  

44. The method of claim 43, wherein the information indicates one or more of a first 

number of fractional bits used for determining the range parameter, a second number of 

fractional bits used for determining the scale parameter, and a third number of fractional 

bits used for determining the offset parameter.  

45. The method of claim 42, wherein the information includes a minimum value and 

a maximum value for one or more color components of the video data.  

46. The method of claim 42, wherein the information includes an index to a 

predetermined range of sample values of the decoded video data.  

47. The method of claim 42, further comprising: 

capturing the video data with a camera.
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48. An apparatus configured to process video data, the apparatus comprising: 

a memory configured to store video data; and 

one or more processors configured to: 

perform a dynamic range adjustment process on the video data using 

fixed-point computing; and 

generate one or more syntax elements that contain information specifying 

how to determine parameters for performing an inverse dynamic range 

adjustment process, relative to the dynamic range adjustment process, using 

fixed-point computing.  

49. The apparatus of claim 48, wherein the one or more processors are further 

configured to generate the one or more syntax elements in one or more supplemental 

enhancement information (SEI) messages, and wherein the parameters comprise one or 

more of a range parameter, a scale parameter, or an offset parameter.  

50. The apparatus of claim 49, wherein the information indicates one or more of a 

first number of fractional bits used for determining the range parameter, a second 

number of fractional bits used for determining the scale parameter, and a third number 

of fractional bits used for determining the offset parameter.  

51. The apparatus of claim 48, wherein the information includes a minimum value 

and a maximum value for one or more color components of the video data.  

52. The apparatus of claim 48, wherein the information includes an index to a 

predetermined range of sample values of the decoded video data.  

53. The apparatus of claim 48, the apparatus further comprising: 

a camera configured to capture the video data.  

54. The apparatus of claim 48, wherein the apparatus comprises one or more of a 

camera, a computer, a mobile device, a broadcast receiver device, or a set-top box.
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55. An apparatus configured to process video data, the apparatus comprising: 

means for performing a dynamic range adjustment process on video data using 

fixed-point computing; and 

means for generating one or more syntax elements that contain information 

specifying how to determine parameters for performing an inverse dynamic range 

adjustment process, relative to the dynamic range adjustment process, using fixed-point 

computing.  

56. A computer-readable storage medium storing instructions that, when executed, 

cause one or more processors of a device configured to process video data to: 

perform a dynamic range adjustment process on the video data using fixed-point 

computing; and 

generate one or more syntax elements that contain information specifying how to 

determine parameters for performing an inverse dynamic range adjustment process, 

relative to the dynamic range adjustment process, using fixed-point computing.
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