WO 2005/057318 A2 |||I|II|||I|I|||I|I||I||I||II|||II|I|I|||||||||II|I|I|||||IIII|||I|||II||I||I|I|I|||I|I||I||II|

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
23 June 2005 (23.06.2005)

(10) International Publication Number

WO 2005/057318 A2

GO6F

(51) International Patent Classification’:

(21) International Application Number:
PCT/IL.2003/001060

(22) International Filing Date:
11 December 2003 (11.12.2003)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): BLADE-
FUSION TECHNOLOGIES 2003 LTD. [IL/IL]; 46
Rothschild Blvd., 66883 Tel Aviv (IL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BARNEA, Amir
[IL/IL]; 7 Romanili Street, 69547 Tel Aviv (IL). ILANY,
Ran [IL/IL]; 17 Ira Mordechai Street, 69624 Tel Aviv (IL).

(74) Agent: REINHOLD COHN AND PARTNERS; P.O.Box
4060, 61040 Tel Aviv (IL).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BW, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
K7,LC,LK,LR,LS,LT, LU, LV,MA, MD, MG, MK, MN,
MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU,
SC,SD, SE, SG, SK, SL,SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US,UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: METHOD AND AN APPARATUS FOR CONTROLLING EXECUTABLES RUNNING ON BLADE SERVERS

(57) Abstract: A method and apparatus for controlling at least one exe-

115

Fof=—m————————
|

-
|

113/\E~|€%§)SERVERBLADE @.ﬂ |}
| |
112/\|{%§3ERVERBLADE%>| !
I |
/\}\[Q#SERVERBLADE@M !
1/ T al
[|

|

110/\H$SERVERBLADE€¥§>| |
|

|

l

|

|

|

|

|

|

|

|

|

)

|

|

|

I

|

|

|

|

/\‘{ SERVER BLADE @p I

/\k‘ SERVER BLADE { ; |

é; SERVER BLADE @J

107
106 @ SERVER BLADE ¢ ; l W
o
@ SERVER BLADE J -
105
T—L\HQ
/\~‘ & SWITCH J

|
|
|
|
t
|
|
!
|
|
|
|
|
|
|
i
|
|
|
|
|
1
|
|

b |
103/\|[\\ SWITCH ¢ \\
I___j, __________ — 1 \ 445

cutable on a blade server having a controller, which is accessible to the
blade server and to at least one blade having access to a storage device in
association with the controller. The controller has access to a source snap-
shot of at least one executable stored on the storage device An available
blade is selected for loading an instance of a running snapshot associated
with the source snapshot, and the instance of the running snapshot is loaded
to the available blade.

WO 2005/057318 A2 I} }1I0 A080H0 T 000 00

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

WO 2005/057318 PCT/1IL2003/001060

Method and an apparatus for controlling executables running on

blade servers

FIELD OF THE INVENTION

This invention relates to blade servers, in particular to controlling

executables running on blade servers.

BACKGROUND OF THE INVENTION

In many computer systems it is important to provide high reliability and
high capacity of operation. One way to provide such high reliability and high
performance is to design a system providing redundant resources, in a way that if
one component of the system fails, the system remains operational using the
redundant resources.

US 2003/0033365 (“Low cost computer system module interface”,
published February, 2003) discloses an information processing module in the
form of a blade server provided for a modular computer system, for example a
high density computer system. To enhance reliability, multiple redundant
information connections are provided from the information. To reduce the cost of
providing such multiple redundant information connections, a common
information protocol interface is shared between information connections. A
common physical layer interface can also be shared between information
connections. For example, switching logic can be provided between the common

physical layer interface and the information connections. Alternatively, a

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

common information protocol interface can be connected via switching logic to
multiple physical layer interfaces (e.g., one per information connection).

WO 0227469 (“Flow scheduling and architecture for network application
apparatus”, published April, 2002) discloses a method and system for distributing
flows between a multiple processors. The flows can be received from an external
source such as a network, by a front-end processor that recognizes the flow and
the associated request, and identifies at least one internal application processor to
process the request/flow. Applications processors can be understood to belong to
a group, wherein applications processors within a group can be configured
identically. A control processor can collect the intrinsic applications processor
data, compute the flow scheduling vectors, and transfer the flow scheduling
vectors to the frontend processor.

The above-mentioned prior art teach approaches requiring dedicated, non-

standard hardware.

SUMMARY OF THE INVENTION

It is an object of the invention to provide a method and apparatus for
controlling an executable on a blade server having a controller that is accessible
to the blade server and to at least one blade having access to a storage device in
association with the controller that is suitable for use with standard hardware.

This objective is realized in accordance with a first aspect of the invention
by method for controlling at least one executable on a blade server having a
controller accessible to the blade server and to at least one blade having access to
a storage device in association with said controller, said controller having access
to a source snapshot of the at least one executable stored on the storage device,
the method comprising:

selecting an available one of said blades for loading an instance of a running

snapshot associated with said source snapshot;

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

loading the instance of the running snapshot to the available one of said

blades.

According to another aspect of the invention, there is provided a method
for providing access to a blade associated with a blade server via at least one
virtual bridged Local Area Network (LAN), the method comprising:

configuring a switch coupled to said blade server for allowing access to said
at least one virtual bridged LAN; and
loading an agent to said blade being configured to provide access to said at

least one virtual bridged LAN.

According to another aspect of the invention, there is provided a method
for configuring a switch associated with a blade server for providing access to at
least one virtual bridged Local Area Network (LAN), the method comprising:

accessing configuration data stored on an accessible storage device; and
relaying said configuration data to said switch for providing access to said

at least one virtual bridged LAN.

According to another aspect of the invention, there is provided a switch
configuration apparatus for configuring a switch associated with a blade server
for providing access to at least one virtual bridged Local Area Network (LAN),
the apparatus compfising:

a configuration data access unit for accessing configuration data stored on
an accessible storage device; and

a switch configuration unit coupled to said configuration data access unit
for relaying said configuration data to said switch for providing access to said at

least one virtual bridged LAN.

According to another aspect of the invention, there is provided a method
for providing access to a blade associated with a blade server via at least one

virtual bridged Local Area Network (LAN), the method comprising:

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

configuring an image of agent for providing access to said at least one
virtual bridged LAN; and
loading an instance of said image to said blade for allowing said blade to

access said at least one virtual bridged LAN.

According to yet another aspect of the invention, there is provided a
method for providing access to a blade associated with a blade server via at least
one virtual bridged Local Area Network (LAN), the method comprising:

monitoring a Network Interface Card (NIC)coupled to said blade; and
encoding network packetsreceived on said NIC for providing said blade

with access to said at least one virtual bridged LAN.

According to another aspect of the invention, there is provided a method
for providing tolerance to at least one executable loaded to a blade accessible to a
blade server, the method comprising:
receiving data indicative of migration of said blade to a redundant NIC;
detecting the operating status of a switch accessible by said blade; and
if the detected operating status indicates that said switch is not operating for
a predetermined duration, bypassing a connection between said switch and said

blade.

In a further aspect the invention provides a controlling apparatus for
controlling at least one executable on a blade server having a controller
accessible to the blade server and to at least one blade having access to a storage
device in association with said controller, said controller having access to a
source snapshot of at least one executable stored on the storage device, the
controlling apparatus comprising:

a blade selector for selecting an available one of said blades for loading an

instance of a running snapshot associated with said source snapshot; and

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—5_

a snapshot loader for loading the instance of the running snapshot to the

available one of said blades selected by the blade selector.

According to another aspect of the invention, there is provided an access
configuration apparatus for providing access to a blade associated with a blade
server via at least one virtual bridged Local Area Network (LAN), the apparatus
comprising;:

a switch configuration device for configuring a switch coupled to said blade
server for allowing access to said at least one virtual bridged LAN; and

an agent loader for loading an agent to said blade, the agent being
configured to provide access to said at least one virtual bridged LAN, configured

on the switch by the switch configuration device.

According to another aspect of the invention, there is provided a blade
access configuration apparatus for providing access to a blade associated with a
blade server via at least one virtual bridged Local Area Network (LAN), the
apparatus comprising;:

an agent configuration device for configuring an image of an agent for
providing access to said at least one virtual bridged LAN; and

an agent loader for loading an instance of said image to said blade for
allowing said blade to access said at least one virtual bridged LAN, configured by

the agent configuration device.

According to another aspect of the invention, there is provided an
apparatus for providing access to a blade associated with a blade server via at
least one virtual bridged Local Area Network (LAN), the apparatus comprising:

a monitoring unit for monitoring a Network Interface Card (NIC) coupled to
said blade; and
packet encoder for encoding network packets received on said NIC for

providing said blade with access to said at least one virtual bridged LAN.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—6—

According to yet another aspect of the invention, there is provided an
apparatus for providing network fault tolerance to at least one instance loaded to
a blade installed in a blade server, the apparatus comprising:

a migration detector for receiving a migration indication from said blade;

a switch status detection unit for detecting status of a switch associated with
said blade server having access to said blade; and

a bypass generator for bypassing a connection between said switch and said

blade.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how it may be carried out
in practice, a preferred embodiment will now be described, by way of non-
limiting example only, with reference to the accompanying drawings, in which:

Fig. 1 is a block diagram illustrating a blade server, according to an
embodiment of the invention;

Fig. 2 is a detailed block diagram illustrating a blade server, according to
one embodiment of the invention;

Fig. 3 is a flow chart showing the principal operations carried out by a
controller for selecting an available blade for running an executable, according to
one embodiment of the invention;

Fig. 4 is a flow chart showing the principal operations catried out by a
controller for identifying whether a blade is an available blade for loading an
instance of an executable, according to one embodiment of the invention;

Fig. 5 is a block diagram illustrating a switch and two blades accessible
through multiple virtual bridged LAN’s access, according to one embodiment of

the invention;

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

Fig. 6 is a flow chart showing principal operations carried out by a
controller for configuring a switch for providing multiple virtual bridged LANs
access, according to one embodiment of the invention;

Fig. 7 is a flow chart showing principal operations carried out by a
controller for loading an gent providing multiple virtual bridged LANs access on
to a blade, according to one embodiment of the invention;

Fig. 8 is a flow chart showing principal operations carried out by an agent
for providing multiple virtual bridged LANs access to at least one executable
running on a blade, according to one embodiment of the invention;

Fig. 9 is a flow chart showing principal operatiohs carried out by a
controller for providing network fault tolerance, according to one embodiment of
the invention;

Fig. 10 is a flow chart showing principal operations carried out by a
controller for generating a running snapshot, for loading an instance of the
running snapshot to an available blade and for generating intermediate snapshots,
according to one embodiment of the invention;

Fig. 11 is a flow chart showing in detail the operations carried out by a
controller for loading an instance of at least one executable on an available blade,
according to one embodiment of the invention;

Fig. 12 is a flow chart showing the operations carried out by a controller
for storing an intermediate snapshot in a repository of snapshots, according to one
embodiment of the invention;

Fig. 13 is a flow chart showing the principal operations carried out by a
controller for installing an executable on the controller’s storage device,
according to one embodiment of the invention;

Fig. 14 is a flow chart showing the operations carried out by a master
controller for synchronizing at least one slave controller, according to one

embodiment of the invention;

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

_8—

Fig. 15 is a block diagram illustrating a switch configuration apparatus for
configuring a switch associated with a blade server providing access to at least
one virtual bridged LAN, according to one embodiment of the invention;

Fig. 16 is a block diagram illustrating modules comprising a controlling
apparatus accessible to a blade server, according to one embodiment of the
invention;

Fig. 17 is a block diagram illustrating an access configuration apparatus,
according to one embodiment of the invention;

Fig. 18 is a block diagram illustrating a blade access configuration
apparatus, according to one embodiment of the invention;

Fig. 19 is a block diagram illustrating a blade access apparatus, according
to one embodiment of the invention;

Fig. 20 is a block diagram illustrating a network fault tolerance apparatus,

according to one embodiment of the invention;

DETAILED DESCRIPTION OF THE INVENTION

In the following description, the same reference numerals are used in
different figures to refer to identical components.

Fig. 1 is a block diagram illustrating a blade server 101 according to an
embodiment of the invention. The illustrated blade server 101 includes one
chassis 102, to which 11 blades are coupled, out of which two (103 and 104) are
networking switch blades (hereinafter referred to shortly as “switches™) and the
other nine (105 - 113) are server blades (hereinafter referred to shortly as
“blades™). Each blade, according to this embodiment, is associated with at least
one Central Processing Unit (CPU, not shown), memory (such as RAM, not
shown) and two Network Interface Cards (NICs, 114 and 115). One NIC (114) is
intended to connect the blade to one switch 103, and the other is intended to

connect it to the other switch 104, Each switch (103, 104) is associated, therefore,

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

with at least nine NICs (in Fig. 1 represented together as 116, 117), one for each
blade.

The switches and the blades (103 - 113) are in association with the chassis
102 through a back plane 118 having at least one bus, such as a serial bus. The
bus is used, for example, for managing, controlling and monitoring the blades
(103 - 113). The switches and blades can also be connected by a computer
network 119 or a segment thereof connecting the blades’ NICs (114, 115) to the
to the switches’ NICs (116, 117).

Those versed in the art will readily appreciate that the block diagram of
Fig. 1 is by no means binding and accordingly one or more of the components
thereof may be modified and/or others may be added, all as required and
appropriate depending upon the particular application. For example, the blade
server 101 can include more than one chassis 102 (at least one), and can include
any number of networking switches (at least one) and any number of blades (at
least one) as appropriate to the case. When the blade server includes more than
one chassis, each switch can be installed on one chassis, or on several chasses.
Having multiple switches allows having networking fail-over, i.e., when one
switch fails to provide networking access, a different switch can take over and
provide access instead. When more then one switch is installed, the blade can
have at least one NIC, each NIC being mapped to a different switch.

It should also be noted that the description below discloses a blade server
with Ethernet switches. However, this is non-limiting, and any other suitable
networking protocol can also be applicable.

It should also be noted that the blades 105 - 113 can be substantially
identical. Therefore, unless specifically noted, when hereinafter reference is made
to a blade (such as blade 105), the disclosed embodiment is applicable to any of
the blades 105 - 113. In the same way, the switches 103 - 104 can also be

substantially identical, and therefore, unless specifically noted, when hereinafter

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—10 -

reference is made to a switch (such as switch 103), the disclosed embodiment is
applicable to any of the switches 103 - 104.

Initially, when installing a new blade server 101, new blades 105 and new
switches 103 are swapped in to the chassis, where these blades have no operating
systems and no software executables installed on them. Therefore such a blade is
referred to, hereinafter, as an unloaded blade. After loading at least a kernel and
after setting basic networking configurations, it is possible to load software
executables to run on the blades. Therefore, such a blade having at least a kernel
and basic networking configuration, and sometimes also an executable stored in
its memory is referred to, hereinafter, as a “loaded blade”. Examples of software
executables that can be loaded on to a blade are firewalls, web or mail servers etc.

According to an embodiment of the invention, a controller executable,
referred to hereinafter as a “controller”, can be loaded to a blade. Fig. 2 is a
detailed block diagram illustrating a blade server, according to one embodiment
of the invention. A controller 201 is loaded to a blade 105 in association with a
storage device 202, such as a Redundant Array of Independent Disks (RAID).
The controller 201 has access to other blades 105 accessible to the same blade
server, as well as to the switches 103 thereon (in the exemplary Fig. 2, two
switches 103 are illustrated). Access can be achieved, e.g., through the bus on the
back plane 118. Like any other blade 105, a blade on to which a controller 201 is
loaded can have network connections 203 through at least one NIC coupled to the
blade 105. The network connections 203 connect the blade 105 to the switches
103, providing access thereto. In Fig. 2 two NICs 114 and 115 are illustrated;
however, this is not limiting, and those versed in the art will appreciate that at any
number of NICs greater than zero can be used. The network connections 203 are
part of the server computers network 119 (not shown in Fig. 2). It is appreciated

that in a non-limiting manner, when more than one NIC is coupled to a blade 105,

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—11-

each of the multiple NICs can connect to a different switch, as illustrated in the
figure and as was previously explained with reference to Fig. 1.

According to one embodiment of the invention, one or more controllers
can be loaded to at least one blade 105 accessible to a blade server 101. The
embodiment relates to the case when each controller is loaded to a respective
blade. However, this is non-limiting, and multiple controllers can be loaded to the
same blade if applicable. In the figure, a second controller 204, redundant to the
first controller 201, provides fault tolerance when the first controller 201 fails.
Therefore, the first controller 201 is referred to, hereinafter as a “master
controller”, while the second controller 204 is referred to, hereinafter, as a “slave
controller”. In the case that more than one controller (201, 204) is provided, each
may be substantially identical, and therefore, unless specifically noted,
hereinafter reference will be made to the controller 201. It should be noted that
each of the controllers (201, 204) can have access to a different storage device
(202, 205 respectively). For example, each controller can be in association with a
local disc attached to its blade 105. The blade 105 can also have an external disc
or a RAID device associated therewith, as illustrated in Fig. 2. Those versed in
the art will appreciate that if the storage device is a RAID or any other storage
device providing fault tolerance and/or high availability, the at least two
controllers (201, 204) can both be coupled to the same storage device 202 (not
shown in Flg 2).

It should be appreciated that when the master controller fails, the slave
controller can become a master controller, thereby providing fault tolerance.
Generally, if there are more than one redundant controller in association with a
blade server, one of them is selected to be a master controller, while the others
become slaves. The selection of the master controller from the multiple
controllers can be random, on a first swapped-in criterion (i.e., the first controller

to be swapped in is the master) or according to any other criteria as appropriate.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—12-

When the master controller fails, one of the slave controllers can become a
master controller (therefore referred as a “replacing master”). Again, if there are
more than one slave controller, the selection of the replacing master can be done
according to any appropriate criteria.

It should be noted that unless specifically noted otherwise, whenever the
description below refers to an operation performed by a controller, the
description refers to the master controller. The master controller notifies each
slave controller of any change, in order to synchronize them and the storage
devices associated with them, using a mechanism described below with reference
to Fig. 14.

Being in association with a storage device 202, the controller 201 can store
data for other blades 105 and switches 103 accessible to the blade server 101.
The data can include, for example, executable code (such as software
executables), operating systems (such as UNIX, Linux or Microsoft Windows
etc.), configuration data and any other data such as information stored in a
database, files, etc. This way, the other switches 103 and blades 105 do not need
storage devices to be directly associated therewith. According to the described
embodiment, executables running on switches 103 and blades 105, including, for
example, operating systems, scripts and applications, can be stored on the
controller’s associated storage device 202. Mounting the controller’s associated
storage device 202 on a blade, the storage device 202 becomes accessible to the
blade, and therefore the blade can run an executable stored thereon. It should be
noted that the term “executable” embraces binary code, scripts, Java applets or
other software programs that can operate on a computer.

It can be realized, therefore, that according to the described embodiment,
where blades can run (i.e., execute) executables stored on the controller’s
associated storage device 202, installation of executables can take place on the

controller’s associated storage device, where data (the executables and their

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

— 13—

respective data) is stored, instead of being installed on a blade’s local storage
devices. An embodiment of installing executables on a controller’s associated
storage device is described below, with reference to Fig. 13.

Furthermore, having executables (including operating systems) stored on
the storage device, besides providing storage for the blades, the controller can
provide boot and set-up services therefor.

When swapping a blade into the blade server, or when re-starting a blade
accessible to a blade server, an operating system, or at least a kernel thereof is
required in order to boot the blade. When the blades 105 have no local storage
devices, or in those cases when no operating systems are loaded to their local
storage devices, a mechanism is required to enable boot, startup or basic
configuration thereof, referred to hereinafter as “pre-loading procedure”.

According to one embodiment of the invention, in order to be able to boot
the blade 105 and perform basic configuration on it, Preboot Execution
Environment (PXE) should be pre-installed, for example, on the blade’s ROM
chip or on the boot sector of a blade’s dedicated storage device, if one exists.
PXE provides a Dynamic Host Configuration Protocol (DHCP) client, which
allows the blade 105 to receive an IP address to gain access and to be accessible
by the controller 201. PXE also provides the blade’s Basic Input/Output
Operating System (BIOS) with a set of Application Program Interfaces (APIs),
used to automate the booting of the operating system and other configuration
steps. When the blade’s power supply is turned on, the blade uses DHCP to
receive an IP address from the controller 201 that operates as a DHCP server. The
blade 105 also notifies the controller 201 that it is booting, and receives a pointer
to a file (such as a file name) that can be used to download the kernel from the
controller’s associated storage device to the blade’s memory. The blade 105 then
downloads the file using, for example, Trivial File Transfer Protocol (TFTP) and

executes it, which loads the operating system’s kernel into the blade’s memory.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—14 -

With the kernel can be included also an agent to be running on the blade, where
the agent is responsible among other things for allowing the controller 201 to

monitor the blade’s status, for example. Another exemplary responsibility of the

‘agent is to provide networking services to the blade 105 on which it is running, as

explained below.

After the pre-loading procedures, i.e., after the kernel and the agent are
loaded to the blade 105, the blade is operating and ready for running at least one
executable. Such a blade is referred to as a pre-loaded blade. According to the
disclosed embodiment, executables are stored on the controller’s associated
storage device, and therefore the controller 201 can load at least one executable
on to the blade 105 in order for it to execute (or run) thereon. As was previously
mentioned, loading at least one executable can be done by mounting the
controller’s associated storage device 202 or a partition thereof on the blade 105.
Those versed in the art will appreciate that the controller 201 can identify blades
that have bassed at least the pre-loading procedures using the bus 118 or the
computer network 119. For example, the agent operating on a swapped-in pre-
loaded blade can convey, at a predetermined rate, a data packet indicative of its
status. The packets are considered as the blade’s heartbeat. By detecting the
heartbeat, the controller can monitor the status of the blade, and more
specifically, the controller can detect that the blade is swapped-in and operating.

Those versed in the art will appreciate that the blade’s heartbeat can be
used by the controller 201 also after loading the executable(s) to it, in order to
monitor the status of the blade 105 and verify that the blade is operating. Blades
whose heartbeat is monitored by the controller are referred to, hereinafter, as
“operating blades”. In the same way, switches can also have heartbeat, thereby
enabling the controller to monitor their status. Switches whose heartbeat is
monitored by the controller are referred to, hereinafter, as “operating switches”.

However, in many aspects there are similarities in handling and monitoring

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

_15-

operating switches and operating blades, and therefore, unless specifically noted,
the term “operating blades” will refer also to operating switches. Likewise, unless
specifically noted, the term “blade heartbeat” denotes also a switch’s heartbeat,
and “monitoring a blade’s heartbeat™ applies also to monitoring the heartbeat of a
switch etc.

In order to load on to a blade 105 an executable stored on the storage
device 202, the controller 201 has to select an available blade of the blades
accessible to the blade server, i.e., a blade that has enough resources to run the
executable, as will be explained below. Fig. 3 is a flowchart showing the
principal operations carried out by a controller 201 for selecting an available
blade for running an executable, according to one embodiment of the invention.
Operating blades 105 (excluding operating switches) accessible to a controller are
numbered b;, b;, ..., b,. The controller verifies at 302 if a blade b,, (I <=m <=n)
is available for running an executable. If b,, is found to be available for running
the executable, (at 303) the controller loads the executable on to the blade,
wherein the executable together with respective data are stored on the controller’s
associated storage device 202. However, if at 302 b,, is found to be unavailable
(i.e., the blade’s available resources such as CPU or memory are not enough to
run the executable) or the heartbeat of blade b, cannot be detected, m is
incremented by one (304), and next the controller returns to checking the next
blade b,,, unless all potential blades (n blades, at 305) have been tested.

Those versed in the art will readily appreciate that the flow chart of Fig. 3
is by no means limiting and accordingly one or more of the operations thereof
may be modified and/or others may be added, all as required and appropriate
depending upon the particular application. For example, it is possible to use
dynamic planning algorithms and other variations as apparent to those of average

skill in the art.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

_16—

One of the operations performed in Fig. 3 is checking whether a blade b,
is an available blade. Fig. 4 is a flow chart showing the principal operations
carried out by a controller 201 for identifying whether a blade 105 is an available
blade for loading an instance of an executable, according to one embodiment of
the invention.

In order to determine whether a blade 105 is an available blade for loading
an executable, the controller should have access to information about the
resources required by the executable (401), referred to, hereinafter, as the
executable’s “required resources”. According to one embodiment of the
invention, when installing an executable on the controller’s associated storage
device, it is possible to configure the required resources of the executable, storing
it, for example, on the controller’s storage device.

In order to determine whether a blade 105 is an available blade, the
controller also needs to find out at 402 what are the blade’s available resources. It
should be noted that a blade’s “available resources” are not necessarily the
resources available at the time when the controller makes this determination.
Thus, there may be occasions when an executable requires a certain amount of
resources, although there are times that it can use fewer resources. The available
resources are therefore the blade’s “intrinsic resources” (i.e., the resources
characteristic of the blade 105 before having any executable or operating system
loaded on it, that is, when it was an unloaded blade) less the required resources of
the operating system and executables that were pre-loaded (the agent, for
example, is considered here as an executable), i.e., less the pre-load required
resources. However, it is also possible that there are already other executables
running on the blade. Therefore, in order to find out what are the available
resources on 402, the controller also has to reduce the required resources of

executables that are already loaded on to the blade.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

-17-

If (at 403) the available resources are less than the required resources, then
the blade is considered unavailable for loading the executable. However, if at 403
the available resources are found to be substantially equal to or more than the
executable’s required resources, the blade is considered an available blade.
However, this is non-limiting and other embodiments may require that the
available resources be larger than the executable’s required resources in order to
establish a blade as an available blade

Those versed in the art will readily appreciate that the flow chart of Fig. 4
is by no means limiting and accordingly one or more of the operations thereof
may be modified and/or others may be added, all as required and appropriate
depending upon the particular application. For example, according to a different
exemplary embodiment, when installing an executable on the controller it is
possible to define a list of executables’ priorities used to allocate a blade for
loading an executable. When loading the executable, the controller first tries to
load it to a blade according to the lowest priority. If it fails, it tries the second
lowest priority etc. It is possible to define a “pre-loaded blade” or a “blade with
sufficient available resources” in the priority list.

The following simple example demonstrates loading and running three
executables (referred to as E,, E, and E,) on a blade server in association with
only two blades that are available to run executables (referred to as B, and B;). In
a priority list, “available blade” is the lowest priority, E, is the second lowest
priority, E, is the second highest, and E, is the highest priority. The required
resources of the three applications allow them to run on each of the two blades B,
and By, but none of the blades B, and B, has enough resources to run more than
one executable in parallel. First, according to the example, the controller tries to
load an instance of E,. As “available blade™ has the lowest priority in the priority
list and as B, is found to have enough available resources, the controller loads E,

to B, Afterwards the controller re-starts E,. Again, “available blade” is the

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

— 18-

lowest priority and Bb is available, therefore the controller loads E, to B;. Now
the controller tries to re-start E.. The controller cannot find an available blade and
therefore checks the second lowest priority in the priority list, which is A,. In this
case, the controller would terminate E, and load E, to B, instead, for example, by
sending a terminate signal to E, or by re-starting the blade. That is, by having a
higher priority, E. is determined to be “more important” than E,, and therefore if
it impossible to run both at the same time, the controller prefers E, to E,.

It should be noted that this example is non-limiting. Blade servers can be
in association with more than two blades and they can load more or less than
three executables. In addition, an opposite policy can be used when handling the
priority list, in a way that the highest priority can be considered first, then the
second highest priority etc.

Furthermore, many times executables running on blade servers require
access to computer communication networks such as access to Local Area
Networks (LANs). It was previously described (with reference to Figs. 1 and 2)
that a blade is associated with at least one Network Interface Card (NIC)
accessible thereby to at least one switch. In the exemplary embodiment of Fig. 1,
a blade 105 had two NICs (114 and 115). Those versed in the art can appreciate
that each NIC usually provides access to a single LAN, and therefore, a blade that
is in association with two NICs can have access to two LANs etc. However, in a
case when the two NICs provide fault tolerance to the blade and are redundant to
each other, that means that the blade has access to only one LAN, or more
general, to n/2 LANs, when # is the number of NICs associated with the blade
and connected to switches.

It is to be noted that having two NICs for providing network fault
tolerance is non-limiting, and it is possible to have a different number of NICs for

providing network fault tolerance, as required and appropriate for the case.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

~19—

Many executables exist that require access to a plurality of LANs. A
common, non-limiting example is a firewall. This is achieved in accordance with
an embodiment of the invention by an agent that runs on the blade and provides
access to multiple virtual bridged LANs.

Those versed in the art will appreciate that the agent can operate, for
example, in accordance with IEEE Standard 802.1Q (IEEE Standards for Local
and Metropolitan Area Networks: Virtual Bridged Local Area Networks,
Approved 8 December 1998) The standard describes, amongst others, Media
Access Control (MAC) Bridge management and MAC bridges. That is, the agent,
operating in accordance with IEEE 802.1Q can emulate the existence of several
NICs although only one NIC is actually in use.

Fig. 5 is a block diagram illustrating a switch and two blades accessible
through multiple virtual bridged LAN’s access, according to one embodiment of
the invention. A switch 103 is associated with a number of NICs of which there
are shown three (501, 502 and 503) by way of non-limiting example. In a general
manner, the switch 103 is in association with at least one NIC.

In Fig. 5 the switch 103 is configured to provide multiple virtual bridged
LANs access through the NICs 501 and 502, whereas NIC 503 is configured to
provide a single LAN access. That is, amongst the NICs associated with a switch,
zero or more can be configured to provide virtual bridged LANs access. Also in
the figure, the NIC 501 provides access to the virtual NICs 504, 505, 506 and 507
representing four virtual bridged LANSs.

The NIC 501 is associated with a trunk 511. The trunk 511 is also
associated with a blade 105, associated with a NIC 512. By such means, the
switch 103 and the blade 105 are mutually accessible through NICs 501 and 512,
and via the trunk 511.

As mentioned before, with association to the pre-loading procedures, an

agent 513 runs on the blade 105, and is coupled to the NIC 512. The agent 513

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—20—

operates as a switch configured to provide multiple (four, according to this
example) virtual bridged LANs through the NIC 512. In Fig. 5 the agent 513 is
configured therefore to provide four virtual NICs (504, 505', 506’ and 507),
each in respect of the four accessible virtual NICs (504, 505, 506 and 507) on the
switch 103.

In the figure, the virtual NICs 504 and 504’ together give rise to a virtual
bridged LAN. The virtual NICs 505 and 505’ give rise to a second virtual bridged
LAN, 506 and 506’ to a third etc.

As was mentioned before, with reference to Figs. 1 and 2, a blade can be
coupled to more than one NIC providing fault tolerance thereby. In Fig. 5, the
blade 105 is coupled also to NIC 514 accordingly, that is, the agent 513 is
coupled also to NIC 514. As before, this example is non-limiting, and the agent
may be coupled to any plurality of NICs on the blade to provide fault tolerance.
The redundant NIC 514 is coupled via a trunk 515 to a second switch 104 that is
redundant with respect to switch 103, and is associated with a NIC 516. In order
to provide fault tolerance to NIC 501, the NIC 516 should be configured in
accordance with NIC 501, i.e., it should also provide access to the virtual NICs
504, 505, 506 and 507 (this is not illustrated in the figure). In the same way, in
order for switch 104 to provide fault tolerance to switch 103, it should be in
association with three NICs (only NIC 516 being illustrated in the figure)
corresponding to the NICs 501, 502 and 503, and each should be configured in a
way that provides fault tolerance to its corresponding NIC.

Fig. 6 is a flow chart showing principal operations carried out by a
controller 201 for configuring a switch 103 for providing multiple virtual bridged
LANSs access, according to one embodiment of the invention. When configuring a
switch 103 accessible to the controller 201, the controller should have access to
data indicative of the multiple virtual bridged LANs configuration, if such

configuration should exist on the switch. At 601 the controller accesses the

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—21-—

configuration data. By relaying the configuration data to the switch (602), the
switch is configured for providing the blade 105 with access to the multiple
virtual bridged LANs. “Relaying data” will be understood by a person versed in
the art to include loading the data to the switch’s memory. However, this is non-
limiting and other embodiments are also applicable, such as commanding the
switch to perform configuration settings in accordance with the configuration
data as if commanded via a terminal. It should be noted that if redundant switches
provide fault tolerance, the controller configures the redundant switches to be
identical.

The configuration data can be stored in a storage accessible by the
controller, such as the controller’s associated storage device 202. The
configuration data can include data such as identification of the switch’s NIC
(such as NIC 501 in Fig. 5) to be configured, identification of the trunk (such as
trunk 511 in Fig. 5) associated with the NIC, the virtual NICs (for example, in
Fig. 5 these are 504, 505, 506 and 507) corresponding to the configured NIC, and
configuration of the virtual bridged LANs as required by the application that
should run on an accessible blade (105 in the example of Fig. 5).

As was previously explained, the controller also runs the agent 513 on a
blade, therefore the controller 201 can configure the agent 513 to provide access
to at least one virtual bridged LAN, corresponding to the accessible virtual
bridged LANs configured on the switch 103. Fig. 7 is a flow chart showing
principal operations carried out by a controller for loading an agent 513 providing
multiple virtual bridged LANs access on to a blade, according to one embodiment
of the invention. The controller 201 accesses an image of the agent stored on its
associated storage device (701). The agent provides multiple virtual bridged
LANs access, and its image stored on a storage device accessible by the
controller, such as the controller’s associated storage device 202. Then, the

controller 201 loads an instance of the agent’s image on to the blade (702),

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

22

providing access to the blade via at least one virtual bridged LAN. It will be
appreciated that loading the agent can include running (or starting) the agent,
giving rise to an operating agent on the blade.

Before turning to an embodiment of the invention showing principal
operations carried out by an agent for providing multiple virtual bridged LANs
access to at least one application running on a blade, it should be remembered
that in the exemplary embodiment of Fig. 5, the agent 513 is associated with a
NIC 512 and with a second, redundant NIC 514 that provides network fault
tolerance to the blade and to the executables running on it. Being redundant to
NIC 512 and providing fault tolerance to it, the NIC 514 should not operate as
long as NIC 512 provides communication services to blade 105. However, if
there are redundant switches and redundant NICs, all the switches may provide
communication in parallel, whereby the multiple NICs operate in parallel in order
to provide network fault tolerance.

Fig. 8 is a flow chart showing principal operations carried out by an agent
for providing multiple virtual bridged LANs access to at least one executable
running on a blade, according to one embodiment of the invention. The agent 513
monitors (801) NIC 512. When the agent detects a network packet that is
received on the NIC (802) it encodes the packets (803) to identify the virtual
NICs from where the packets were sent (504, 505, 506 or 507 in the exemplary
embodiment of Fig. 5), referred to as a “source virtual NIC”. After identifying
the source virtual NIC (thereby identifying the virtual bridged LAN), the agent
recognizes (804) the respective destination virtual NIC (504°, 505°, 506° or 507°
in the example) accordingly. The agent then forwards the packet to the
appropriate destination virtual NIC, in accordance with the standard (IEEE
802.1Q), providing access to the blade via virtual bridged LAN.

As explained above, the agent 513 detects and encodes the network

packets received on the NIC 512 in order to route them to the appropriate virtual

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

-23—

bridged NICs. It should be appreciated, that in parallel to routing the packets, the
agent can also monitor networking traffic on the NIC 512, i.e., traffic to and from
the blade. The agent can also tap communication to and from the blade, and
provide the information, or part thereof, to any other application on the same
blade or on a different, accessible blade.

As mentioned above, the agent, when running on a blade, can also provide
network fault tolerance to at least one application running on the blade. Together
with monitoring the NIC 512 (802), the agent observes idle durations (806) of the
NIC, i.e. if on 806 the agent finds that the NIC is idle for duration substantially
longer than a “predefined idle duration”, i.e., no network packets (no traffic) are
detected during the predefined idle duration or longer, the agent S15 suspects a
network fault. One way to provide network fault tolerance is by migrating (807)
to the redundant NIC 514 associated with the redundant switch 104, which is also
accessible to the blade server. If the network fault occurred in the switch 103, in
the trunk 511 or in NIC 512, migrating to the redundant NIC 514, and therefore
also to the redundant switch 104, would bypass the switch 103 so as to provide
access to the blade via the virtual bridged LANS.

After rﬁigrating to the redundant NIC and switch, the agent communicates
with the controller at 808, conveying an indication of the migration to the
controller.

Those versed in the art will appreciate that migrating can be done locally
by the agent (wherein the agent is coupled to the NIC, as described with reference
to Fig. 5), wherein the agent conveys the indication to the controller, or by a
different process, external to the agent, that instructs the agent to migrate, and
therefore this external process can also convey the indication to the controller
instead of the agent.

The description turns now to an exemplary embodiment for providing

network fault tolerance for a blade server. Fig. 9 is a flow chart showing principal

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

_24 —

operations carried out by the controller 201 for providing network fault tolerance,
according to one embodiment of the invention.

When the controller receives data indicative of migration from a blade
(901), for example, data indicating that an agent running on the blade migrated to
a redundant NIC and switch, the controller checks the heartbeat (i.e. the operating
status) of the switch 103, i.e., (902). Detecting on 903 that the switch 103 is idle
(i.e. not operating) at least for a predetermined switch idle duration (963), the
controller bypasses a connection between the switch and the blade (904). A
bypass can be achieved by turning the switch off, for example by sending a
termination signal over the bus turning the switch off or rebooting it thereby. The
controller can also alert fault in the switch (905).

However, if the controller finds (on 903) that the switch is operating, it
deduces that the fault occurred in the NIC 512 (coupled to blade 105.) or in trunk
511. In this case, according to one embodiment, the controller turns the blade 105
off (906), reloads instances of the executables that previously operated on the
blade on to a different available blade (906). Then the controller can alert the
fault in the blade (907).

However, according to the embodiment described above, services
provided by the blade 105 are characterized by downtime: the time required to
turn the blade 105 off and to load instances of the executables that previously ran
on it on a different available blade. Yet another embodiment (not shown) can
reduce the downtime during which the at least one executable is not operating by
identifying an available blade before turning off blade 105. One should recall that
blade 105 is operating and communicating via the redundant NIC 514 and switch
104. Therefore, the controller can locate an available blade to run the executables
before it turn blade 105 off, reducing the downtime thereby.

As can be realized from the description above, the controller should

configure the agent to provide the required network configuration in order to be

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—25—

able to run an application on a blade. After loading the kernel and the agent on to
the blade (and more accurately, on to the blade’s memory) and after configuring
the agent, the blade is considered as a pre-loaded blade, where the kernel and the
agent consume part of the blade’s intrinsic resources, therefore leaving available
resources which are smaller than the blade’s intrinsic resources. The available
resources can be utilized for loading at least one executable.

It should further be noted that while loading an executable on to a blade,
the executable (including binary code, scripts etc.) and respective data
(constituting together an instance) are usually copied to the blade’s memory.
When the executable is operating, the data sometimes changes to reflect
modifying states of the executable. And more specifically, when an executable is
operating, data such as configuration data, information stored in data bases, files
or sometimes even the executable itself might change. If the computer is turned
off and then turned on, for example, it is sometimes preferred that the executable
will start from the state that characterized it when the computer turned off, and
not from the state characterized it immediately after the loading, this being
referred to as recovery. Alternatively, instead of recovery, it is sometimes
preferred to run the executable in the state that characterized it after the initial
loading, at some time point in the past, or before the occurrence of the last
changés. This is required, for example, when it is suspected that the changes
caused the executable’s failure. Loading an instance of the executable
representative of the executable’s state at some point in the past is referred to
below as rollback. A recovery policy to be explained below can be used to define
what instance should be loaded in the different situations requiring the controller
to re-load an executable.

When installing an application on the controller’s storage device, an image
of the executable, referred to as a “snapshot” can be stored on the controller’s

storage device. The snapshot associates data such as an operating system and/or

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

26—

kernel, the executable code (such as binary code, script or any other form of
executable) and other data such as configuration data (including the agent’s
network configuration), files, data stored in databases etc, all referred to as
snapshot data. Those versed in the art will appreciate that being in association
with the snapshot data, a snapshot can include data, it can point (by reference) to
data stored, for example, on the controller’s associated storage device, or a
combination thereof. After the creation of a snapshot, the snapshot reflects the
image of the executable as it was at the time of saving, before undergoing further
changes.

It was previously mentioned that sometimes it is desirable to provide
recovery and/or rollback capabilities when restarting an application. Rollback can
go as far as to the point in the past when the executable was installed (before
loading it on to a blade on the first time). Therefore, before loading the
executable for the first time the controller can store an initial snapshot of the
executable. The controller can also store intermediate snapshots of an executable,
being images of the executable each saved at a certain time-point in the past, after
loading the executable for the first time. Storing a set of intermediate snapshots at
different time points while an executable is operating, provides an evolution of
the executable, since the intermediate snapshots reflect the changes to the
executable.

A snapshot from which an instance is instantiated is referred to,
hereinafter, as a “running snapshot”. It will be realized that when loading an
instance on to an available blade, this instance can undergo changes such as in
state, configuration or even in the executable code, etc. Normally, when an
executable undergoes changes, the changes are reflected on the storage device
from where this executable was started, or on other associated storage devices.
Likewise, according to the embodiment, the changes are reflected by the running

snapshot that changes whenever the instance changes.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

27—

A running snapshot can be generated from any other snapshot (referenced
hereinafter as a “source snapshot™) for example by copying the source snapshot.
In addition, it is possible to generate intermediate snapshots from the running
snapshot at different time points, for example by copying it.

It should be noted that sometimes more that one instance of an executable
can run at the same time on a blade server. It will readily be appreciated that if
there are at least two instances of the same executable, the instances can start
from a similar intermediate snapshot, but undergo different, independent changes,
giving rise to further dissimilar running snapshots. These different running
snapshots can then be used to generate different intermediate snapshots of the
same executable.

It was previously mentioned that a running instance of an executable
reflects the current state of the executable and that it is possible to generate
intermediate instances from the running instance. Fig. 10 is a flow chart showing
principal operations carried out by a controller for generating a running snapshot,
for loading an instance of the running snapshot to an available blade and for
generating intermediate snapshots, according to one embodiment of the
invention. Generation of intermediate snapshots can be done, for example, on a
cyclic basis as illustrated in Fig. 10, or as an event triggered mechanism further
suggested below.

In order to understand the snapshot generation and storage process, one
should recall that a running snapshot can be generated from any source snapshot,
or in other words, the running snapshot is associated with the source snapshot.
Those versed in the art can appreciate that “associated with” can mean that the
running snapshot is a copy of the source snapshot. However, this is non-limiting
and according to other embodiments the source snapshot itself can be used as a
running snapshot. Any other form of association that can be used is also

applicable.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

_28 —

It is also possible to keep a pointer (such as a file name) to the source
snapshot, to serve as a reference snapshot (1002). In order to load an instance of
the running snapshot to an available blade (1003), instantiation is made (for
example, by mounting the partition on the blade and starting operation of the
executable, as explained above).

By comparing the reference snapshot to the running snapshot (1004) on
the first cycle after loading, the controller compares the source snapshot to the
running snapshot. If the running snapshot had undergone changes, the two
snapshots will be different. Therefore, if (on 1004) the two snapshots are found to
be different, an intermediate snapshot is generated from the running snapshot
(1005), and the reference snapshot is changed to point to this intermediate
snapshot (1006). Those versed in the art can appreciate that generating an
intermediate snapshot from a running snapshot can be done, for example, by
copying the running snapshot, wherein the copy is the intermediate snapshot.
Therefore, on the following cycles, when comparing the reference snapshot to the
running snapshot (1004) the controller will compare the last generated
intermediate snapshot to the running snapshot, detecting changes to the running
snapshot, and generating intermediate snapshots when changes are detected.

Those versed in the art can also appreciate that storing snapshots can also
be done in an event triggered mechanism. For example, the controller can use for
interrupts signaling modifications to files or disk partitions in order to detect
changes to instance referenced by the running snapshot. For example, in the
UNIX operating system, whenever changes occur, signals are raised and the
controller can use them in order to generate an intermediate snapshot by copying
the running snapshot.

The controller can maintain a repository adapted to store an initial

snapshot and one or more intermediate snapshots, referred to hereinafter as a

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—29 -

“repository of snapshots”, the snapshots reflect the changes that occurred in the
past in instances of the application and allow rollback thereby.

It was previously mentioned that recovery policies can be used to select an
intermediate snapshot that should serve as a source snapshot for generating a
running snapshot. That way, the recovery policy can determine, for example, that
in re-load after normal termination the controller should perform normal
recovery, i.e., it should load the most recent snapshot stored in the repositdry of
snapshots. But in any case of failure the policy can determine that the controller
should select at least one snapshot older then the most recent snapshot. It should
be noted that this example is non-limiting and any other policy can be used
whenever required and appropriate.

It is possible to provide a management utility that provides the ability to
delete old intermediate snapshots, to store them on external storage devices such
as tapes, or to perform any other management activity, as can be appreciated by a
person skilled in the art. The management utility can operate on a cyclic basis,
performing its tasks once in a certain time interval, it can also be event-triggered
(for example, started when a certain predetermined percentage of the storage
device’s capacity is consumed) or it can be operated by a system operator.

It should be noted that storing and/or deleting snapshots from the
repository of snapshots can be affected by the recovery policy of an application.
For example, if the recovery policy determines that it is always the most recent
intermediate snapshot that is used for recovery, and the controller should never
perform roll-back to older intermediate snapshots, the management utility can
delete intermediate snapshots, leaving only the latest one in the repository of
snapshots, saving storage space thereby. In other embodiments the controller can
ignore recovery policies when managing the repository of snapshots.

After having described how intermediate snapshots can provide the

options of recovery and rollback, there will now be described with reference to

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—30-

Fig. 11 a flow chart showing in detail the operations carried out by a controller
for loading an instance of at least one executable on an available blade. The
controller selects a source snapshot (1101) of at least one executable, stored on a
partition of the controller’s associated storage device, as described with reference
to Fig. 10. Then the controller accesses the source snapshot (1102). If the
controller cannot access the source snapshot (1103), for example, because of
storage device faults), and if there are other selectable snapshots (1104, i.e.,
different intermediate snapshot of the same at least one executable or the initial
snapshot thereof) it can nevertheless select a source snapshot out of the selectable
snapshots (1105) and try to access this source snapshot (1102). The controller can
use a recovery policy in order to select a source snapshot and/or alternative
source snapshots, as was explained above. This can be répeated as long as there
are more selectable snapshots.

After selecting a source snapshot and accessing this selected source
snapshot, the controller generates a running snapshot associated with the source
snapshot (1106).

The controller also selects an available blade (1107) from among the
operating blades accessible to the blade server. This can be done, for example in
accordance with the operations described with reference to Fig. 3. The controller
can then instantiate an instance of the running snapshot, loading the instance to
the available blade (1108).

Fig. 12 is a flow chart showing the operations carried out by a controller
for storing an intermediate snapshot in a repository of snapshots, according to one
embodiment of the invention. After generating an intermediate snapshot from a
running snapshot, it a repository of snapshots exists for the snapshot, the
intermediate snapshot is stored therein.

It will be appreciated in light of the above description, that when restarting

an application (for providing recovery or rollback) the controller can load it on

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—31-—

any available blade, and not necessarily on the same blade where it was
previously loaded. That is, if, for example, a blade stops operating because of
some fault, when the controller detects that the application (or blade) is not
operating it can reload the application to a different blade and restart it thereon,
providing fault tolerance. In the same way, if the controller monitors the
resources available on a blade running instances of at least one application, when
the controller notices that the blade’s resources (for example: memory) are about
to be exhausted it can load new instances of the application(s) to other available
blades. The new instances can be generated either from snapshot or from any
other intermediate or running snapshots of the running instances. By running
multiple instances of the same application at the same time, the controller can
provide load balancing.

It was previously mentioned, with reference to Fig. 2, that according to
one embodiment of the invention executables are installed on a controller’s
storage device. Fig. 13 is a flow chart showing the principal operations carried
out by a controller for installing an executable on the controller’s storage device,
according to one embodiment of the invention. It will be noted that different
blades accessible to a blade server can run different executables, when on each
blade the executables require a different operating system, or at least a different
kernel. Therefore, in order to install an application, the controller should identify
the required operating system (or kernel) required for the installed executable
(1301). If (on 1302) the executable requires an operating system not supported by
the controller, the installation fails as the controller cannot provide the
installation and the executable with the required operating system.

After identifying the required operating system and verifying that the
required operating system is supported by the controller, the controller provides
an image (1303) to which associated is the required operating system and/or

kernel. With the image is associated also the agent. It should be noted that a

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

-32-

kernel or an operating system, in association with its configuration data (also
including for example script files) and in association with networking
configuration, can form a snapshot that can be loaded to a blade.

During installation (1304), the executable and the configuration data (if
such data exists, that is, if the executable is configured at all at (1305)) is also
stored in association with the image to form an initial snapshot. The initial
snapshot can also be in association with a fault repository listing faults and
required actions from the controller, in association with a list of relative
executables’ priorities (i.e., the priority list), used by the controller if re-start on a
different blade is required (for fail over recovery or for load balancing) and in
association with a recovery policy etc. When all these (the configuration data, the
faults repository, the executables’ priority list, the recovery policy or any other
data) are updated (1306, 1307) for the executable being installed, the controller
can store the initial snapshot, terminating the installation thereby. Later this initial
snapshot can be used to create running snapshots as was previously explained
above. That is, steps 1303 - 1308 can be considered together as storing the initial
snapshot (1309).

It should be noted that this embodiment and flow chart are non-limiting.
One or more of the steps can be absent, other steps can be added, and their order
can change, as appropriate to the case. For example, a snapshot need not
necessarily include the operating system and an agent. In such an embodiment
“storing an initial snapshot” (1309) can include only steps 1304 - 1308.

Reverting back again to Fig. 2 and its description, it was specified that
there can be more than one redundant synchronized controller serving as a master
controller and at least one slave controller, providing fault tolerance thereby. Fig.
14 is a flow chart showing the operations carried out by a master controller for
synchronizing at least one slave controller, according to one embodiment of the

invention.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—33-—

Before describing Fig. 14, it should be noted that it is possible to refer to
the current environment of the controller (i.e. the initial, intermediate and running
snapshots and their repositories, network configurations, executables’ priority list
etc.) as a model. A person skilled in the art will appreciate that it is possible to
have more than one model stored on a controller’s associated storage device, one
of them being active and the other are idle, thereby referred to as “active model”
and “idle model”.

When a change occurs in the active model (network configuration change,
data being stored in the controller’s storage device or any other change that is
reflected in the active model), the master controller can perform a two-phase
commit in order to certify that the slave controllers will also reflect the change.
When a change occurs, the master controller notifies the all slave controllers
(1401, 1402) about the change. Now the master controller waits for the slave
controllers to confirm the change (1403). For example, if the change is data that
should be stored on the controller’s storage device, a slave controller can confirm
the change after storing the data in its storage device, certifying the successful
storage thereby. If no confirmation arrives within a certain predefined time-out
(1404), the change fails (according to this example, when the change is data to be
stored, the master controller can fail to store the data). However, if the slaves’
confirmations arrive on time, the master controller performs the change (1405),
by storing the data in its storage device.

Understanding the invention as disclosed above, those versed in the art can
appreciate that by having a first controller (master or slave) in association with a
storage device where an active model exists, it is possible to duplicate the first
blade server by swapping the first controller and its associated storage device into
another blade server. On start-up, the first controller creates another, redundant
controller in association with the other blade server, wherein the redundant

controller synchronizes with the first controller and becomes identical thereto.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—34 —

Then one of the controllers become a master controller and loads the active
model onto the other blade server. Because the two controllers are identical, and
are the same as was on the first blade server, the other blade server becomes a
duplicate of the first blade server.

It is noted, however, that after loading the active model to the other blade
server, the active model (i.e., the images, the network configuration etc) on the
other blade server (and therefore on the first and other controllers) may change
and differentiate from the first blade server.

Fig. 15 is a block diagram illustrating a switch configuration apparatus
1501 for configuring a switch associated with a blade server providing access to
at least one virtual bridged LAN, according to one embodiment of the invention.
Those versed in the art can appreciate that the controller be coupled to such an
apparatus.

The switch configuration apparatus 1501 includes a configuration data
access unit 1502 and a switch configuration unit 1503. The configuration data
access unit can access configuration data stored on an accessible storage device
(as is shown at 601 in Fig. 6). The switch configuration unit can relay
configuration data to a switch for providing access to said at least one virtual
bridged LAN, thereby configuring the switch (as is shown at 602 in Fig. 6).

Fig. 16 is a block diagram illustrating modules comprising a controlling
apparatus 1601 accessible to a blade server, according to one embodiment of the
invention. The controlling apparatus 1601 includes a blade selector 1602, a
snapshot loader 1603, a snapshot generator 1604, a storage processor 1605 and an
instance generator 1606. The blade selector 1602 selects an available one of at
least one blades for loading an instance of a running snapshot (such as previously
described with reference to Fig. 3). The snapshot loader 1603 loads an instance

of a running snapshot to the available blade selected by the blade selector (1003

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—35—

in Fig. 10). The snapshot generator 1604 generates intermediate snapshots from
running snapshots (as described above with reference to Fig. 10).

The storage processor 1605 stores intermediate snapshots in a repository
of snapshots, adapted to store one or more intermediate snapshots. The instance
generator 1606 instantiates initial snapshots or intermediate snapshots, loading
them to an available blade thereby. One exemplary way to instantiate and load an
instance to an available blade is described with reference to Fig. 10 (see 1003).

Fig. 17 is a block diagram illustrating an access configuration apparatus
1701, according to one embodiment of the invention. The access configuration
apparatus 1701 includes a switch configuration device 1702 and an agent loader
1703. The switch configuration device 1702 configures switches coupled to a
blade server to allow access to at least one virtual bridged LAN. The agent loader
1703 loads agents to blades accessible to the blade server. A loaded agent is
configured to provide access to at least one virtual bridged LAN that was (or will
be) configured on a switch accessible to the blade by the switch configuration
device.

Fig. 18 is a block diagram illustrating a blade access configuration
apparatus 1801 including an agent configuration device 1802 and an agent loader
1803. The agent configuration device 1802 configures images of an agent, so that
the agent can provide access to at least one virtual bridged LAN. The agent
loader 1803 loads instances of agent images to blades for allowing the blades to
access at least one virtual bridged LAN, as was (or will be) configured by the
agent configuration device. It is noted ‘that the agent loader 1803 of the blade
access configuration apparatus 1801 and the agent loader 1703 of the access
configuration apparatus 1701 shown in Fig. 17 can be identical.

Fig. 19 is a block diagram illustrating a blade access apparatus 1901 that
runs on a blade accessible to a blade server and includes a monitoring unit 1902

and a packet encoder 1903. The monitoring unit 1902 monitors a NIC coupled to

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

~36—

the blade (for an example, see Fig. 5), and it can include a network failure
protection unit 1904 that observes idle durations of the NIC, and migrates to a
redundant NIC if an idle duration is substantially longer than a predefined
duration, thereby providing network failure protection. The packet encoder 1903
encodes network packets received on the NIC monitored by the monitoring unit
1902. That way the packet encoder provides the blade with access to at least one
virtual bridged LAN.

The network failure protection unit 1904 is coupled to an agent 1905,
which is adapted to convey indications to a controller coupled to the same blade
server when the network failure protection unit migrates to a redundant NIC. It
will be appreciated that the agent 1905 can be included in the blade access
apparatus 1901, the blade access apparatus 1901 can be included in the agent
1905, or they can be separate units coupled by any known means, such as pipes,
network connections or others, as illustrated in Fig. 19.

Fig. 20 is a block diagram illustrating a network fault tolerance apparatus
2001 that includes a migration detector 2002, a switch status detection unit 2003,
a bypass generator 2004, a switch fault alerts generator 2005, an instance fault
tolerance unit 2006 and a blade fault alerts generator 2007. It will be appreciated
that the network fault tolerance apparatus 2001 can be included, for example, in
the controller accessible to a blade server.

The migration detector 2002 receives migration indications from blades,
indicative that agents loaded to the blades migrated to redundant NICs. The
switch status detection unit 2003 checks the status of switches having access to
blades accessible to the blade server (and mainly to switches having access to the
migrating blades), for example by detecting their heartbeat.

‘The bypass generator 2004 bypasses a connection between the switch and
the blade having access to it. A bypass is generated, for example, when the switch

status detection unit 2003 detects that a switch is not operating. The switch fault

10

15

WO 2005/057318 PCT/IL2003/001060

-37 -

alerts generator 2005 alerts that one or more faults occurred in switches, for
example when the switch status detection unit 2003 detects faults in the switches’
operation.

However, if the network fault tolerance apparatus 2001 detect no faults in
the switches, it is most probable that migration detected by the migration detector
2002 was caused by faults in the trunks or in the blades. Therefore, the instance
fault tolerance unit 2006 can load at least one instance on to a different blade
accessible to the blade server. The blade fault alerts generator 2007 alerts one or
more faults in blades.

It will also be understood that the apparatus according to the invention
may be a suitably programmed computer. Likewise, the invention contemplates a
computer program being readable by a computer for executing the method of the
invention. The invention further contemplates a machine-readable memory
tangibly embodying a program of instructions executable by the machine for .

executing the method of the invention.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—38-—

CLAIMS:

1. A method for controlling at least one executable on a blade server having a
controller accessible to the blade server and to at least one blade having access to
a storage device in association with said controller, said controller having access
to a source snapshot of the at least one executable stored on the storage device ,
the method comprising:

selecting an available one of said blades for loading an instance of a
running snapshot associated with said source snapshot; and

loading the instance of the running snapshot to the available one of said

blades.

2. The method of Claim 1, further comprising:

generating an intermediate snapshot from the running snapshot.

3. The method of Claim 2, further comprising:
storing the intermediate snapshot in a repository adapted to store one or
more intermediate snapshots each generated from a respective running snapshot

and being further adapted to store an initial snapshot.

4. The method of Claim 3 further comprising:
instantiating the initial snapshot or one of the intermediate snapshots in the

repository.

5. The method of Claim 2, wherein the running snapshot associated with said

source snapshot is the source snapshot.

6. The method of Claim 2, wherein the running snapshot associated with said

source snapshot is generated from the source snapshot.

7. The method of Claim 3, wherein the running snapshot associated with said

source snapshot is an intermediate snapshot stored in the repository.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—39—

8. The method of Claim 3, wherein the running snapshot associated with said
source snapshot is generated from an intermediate snapshot or from an initial

snapshot stored in the repository.

9. A method for providing access to a blade associated with a blade server
via at least one virtual bridged Local Area Network (LAN), the method
comprising:

configuring a switch coupled to said blade server for allowing access to
said at least one virtual bridged LAN; and

loading an agent to said blade being configured to provide access to said at

least one virtual bridged LAN.

10. A method for configuring a switch associated with a blade server for
providing access to at least one virtual bridged Local Area Network (LAN), the
method comprising:
accessing configuration data stored on an accessible storage device; and
relaying said configuration data to said switch for providing access to said

at least one virtual bridged LAN.

11. A switch configuration apparatus for configuring a switch associated with
a blade server for providing access to at least one virtual bridged Local Area
Network (LAN), the apparatus comprising:

a configuration data access unit for accessing configuration data stored on
an accessible storage device; and

a switch configuration unit coupled to said configuration data access unit
for relaying said configuration data to said switch for providing access to said at

least one virtual bridged LAN.

12. A method for providing access to a blade associated with a blade server
via at least one virtual bridged Local Area Network (LAN), the method

comprising:

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—40 -

configuring an image of agent for providing access to said at least one
virtual bridged LAN; and
loading an instance of said image to said blade for allowing said blade to

access said at least one virtual bridged LAN.

13. A method for providing access to a blade associated with a blade server
via at least one virtual bridged Local Area Network (LAN), the method
comprising:
monitoring a Network Interface Card (NIC) coupled to said blade; and
encoding network packets received on said NIC for providing said blade

with access to said at least one virtual bridged LAN.

14. The method of Claim 13, wherein said monitoring includes:
observing idle duration of said NIC; and
migrating to a redundant NIC for providing network fault tolerance if said

idle duration is substantially longer than a predefined duration.

15. The method of Claim 14, wherein:
the migrating is performed locally by an agent coupled to the NIC; and
the agent is adapted to convey data indicative of said migrating to a

controller coupled to the blade server.

16. A method for providing tolerance to at least one executable loaded to a
blade accessible to a blade server, the method comprising:

receiving data indicative of migration of said blade to a redundant NIC;

detecting the operating status of a switch accessible by said blade; and

if the detected operating status indicates that said switch is not operating
for a predetermined duration, bypassing a connection between said switch and

said blade.

WO 2005/057318 PCT/IL2003/001060

10

15

20

25

_4]1 -

17. The method of Claim 16, wherein if said detected operating status
indicates that said switch is not operating for a predetermined duration the
method further comprises:

alerting fault in said switch.

18. The method of Claim 16, wherein if said detected operating status
indicates that said switch is operating the method further comprises:
loading an instance of said at least one executable on to a different blade

accessible to said blade server.

19. The method of Claim 18 wherein if said detected operating status indicates
that said switch is operating, the method further comprising:

alerting fault in said blade.

20. A controlling apparatus for controlling at least one executable on a blade
server having a controller accessible to the blade server and to at least one blade
having access to a storage device in association with said controller, said
controller having access to a source snapshot of at least one executable stored on
the storage device, the controlling apparatus comprising:

a blade selector for selecting an available one of said blades for loading an
instance of a running snapshot associated with said source snapshot; and

a snapshot loader for loading the instance of the running snapshot to the

available one of said blades selected by the blade selector.

21. The controlling apparatus of Claim 20, further comprising:
a snapshot generator for generating an intermediate snapshot from the

running snapshot.

22. The controlling apparatus of Claim 21 further comprising:
an instance generator for instantiating initial snapshots or intermediate

snapshots.

23. The controlling apparatus of Claim 21, further comprising:

10

15

20

WO 2005/057318 PCT/IL2003/001060

—42 -

a storage processor for storing the intermediate snapshot in a repository
adapted to store one or more intermediate snapshots each generated from a

respective running snapshot and being further adapted to store an initial snapshot.

24. The controlling apparatus of Claim 23 further comprising:
an instance generator for instantiating the initial snapshot or one of the

intermediate snapshots in the repository.

25. The controlling apparatus of Claim 21, wherein the running snapshot

associated with said snapshot is the source snapshot.

26. The controlling apparatus of Claim 21, wherein the running snapshot

associated with said snapshot is generated from the source snapshot.

27. The controlling apparatus of Claim 23, wherein the running snapshot
associated with said source snapshot is an intermediate snapshot stored in the

repository.

28. The controlling apparatus of Claim 23, wherein the running snapshot
associated with said source snapshot is generated from an intermediate snapshot

stored in the repository.

29. An access configuration apparatus for providing access to a blade
associated with a blade server via at least one virtual bridged Local Area Network
(LAN), the apparatus comprising;:

a switch configuration device for configuring a switch coupled to said
blade server for allowing access to said at least one virtual bridged LAN; and

an agent loader for loading an agent to said blade, the agent being
configured to provide access to said at least one virtual bridged LAN, configured

on the switch by the switch configuration device.

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

— 43—

30. A blade access configuration apparatus for providing access to a blade
associated with a blade server via at least one virtual bridged Local Area Network
(LAN), the apparatus comprising:

an agent configuration device for configuring an image of an agent for
providing access to said at least one virtual bridged LAN; and

an agent loader for loading an instance of said image to said blade for
allowing said blade to access said at least one virtual bridged LAN, configured by

the agent configuration device.

31. An apparatus for providing access to a blade associated with a blade server
via at least one virtual bridged Local Area Network (LAN), the apparatus
comprising:

a monitoring unit for monitoring a Network Interface Card (NIC) coupled
to said blade; and

packet encoder for encoding network packets received on said NIC for

providing said blade with access to said at least one virtual bridged LAN.

32. The apparatus of Claim 31, wherein said monitoring unit includes:

a network failure protection unit coupled to said NIC, for observing idle
duration of the NIC, and migrating to a redundant NIC for providing network
failure protection if said idle duration is substantially longer than a predefined

duration.

33. The apparatus of Claim 32, wherein:
the network failure protection unit is coupled to an agent, which is adapted
to convey an indication of said migrating to a controller coupled to the blade

SErver.

34. An apparatus for providing network fault tolerance to at least one instance
loaded to a blade installed in a blade server, the apparatus comprising:

a migration detector for receiving a migration indication from said blade;

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—44 —

a switch status detection unit for detecting status of a switch associated
with said blade server having access to said blade; and
a bypass generator for bypassing a connection between said switch and

said blade.

35. The apparatus of Claim 34 further comprising;:
a switch fault alerts generator for alerting one or more faults in said

switch.

36. The apparatus of Claim 34 further comprising:
an instance fault tolerance unit loading said at least one instance on to a

different blade in said blade server.

37. The apparatus of Claim 36 further comprising:

a blade fault alerts generator for alerting one or more faults in said blade.

38. A program storage device readable by machine, tangibly embodying a
program of instructions executable by the machine to perform method steps for
controlling at least one executable on a blade server having a controller
accessible to the blade server and to at least one blade having access to a storage
device in association with said controller, said controller having access to a
source snapshot of the at least one executable stored on the storage device, the
method comprising:

selecting an available one of said blades for loading an instance of a
running snapshot associated with said source snapshot; and

loading the instance of the running snapshot to the available one of said

blades.

39. A computer program product comprising a computer useable medium
having computer readable program code embodied therein for controlling at least
one executable on a blade server having a controller accessible to the blade server

and to at least one blade having access to a storage device in association with said

WO 2005/057318 PCT/IL2003/001060

10

15

20

25

— 45—

controller, said controller having access to a source snapshot of the at least one
executable stored on the storage device, the computer program product
comprising:

computer readable program code for causing the computer to select an
available one of said blades for loading an instance of a running snapshot
associated with said source snapshot; and

computer readable program code for causing the computer to load the

instance of the running snapshot to the available one of said blades.

40. A program storage device readable by machine, tangibly embodying a
program of instructions executable by the machine to perform method steps for
configuring a switch associated with a blade server for providing access to at
least one virtual bridged Local Area Network (LAN), the method comprising:
accessing configuration data stored on an accessible storage device; and
relaying said configuration data to said switch for providing access to said

at least one virtual bridged LAN.

41. A computer program product comprising a computer useable medium
having computer readable program code embodied therein for configuring a
switch associated with a blade server for providing access to at least one virtual
bridged Local Area Network (LAN), the computer program product comprising:

computer readable program code for causing the computer to access
configuration data stored on an accessible storage device; and

computer readable program code for causing the computer to relay said
configuration data to said switch for providing access to said at least one virtual

bridged LAN.

42. A program storage device readable by machine, tangibly embodying a

program of instructions executable by the machine to perform method steps for

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

— 46—

providing access to a blade associated with a blade server via at least one virtual
bridged Local Area Network (LAN), the method comprising:

configuring an image of agent for providing access to said at least one
virtual bridged LAN; and

loading an instance of said image to said blade for allowing said blade to

access said at least one virtual bridged LAN.

43. A computer program product comprising a computer useable medium
having computer readable program code embodied therein for providing access to
a blade associated with a blade server via at least one virtual bridged Local Area
Network (LAN), the computer program product comprising:

computer readable program code for causing the computer to configure
an image of agent for providing access to said at least one virtual bridged LAN;
and

computer readable program code for causing the computer to load an
instance of said image to said blade for allowing said blade to access said at least

one virtual bridged LAN.

44. A program storage device readable by machine, tangibly embodying a
program of instructions executable by the machine to perform method steps for
providing access to a blade associated with a blade server via at least one virtual
bridged Local Area Network (LAN), the method comprising:
monitoring a Network Interface Card (NIC) coupled to said blade; and
encoding network packets received on said NIC for providing said blade

with access to said at least one virtual bridged LAN.

45. A computer program product comprising a computer useable medium
having computer readable program code embodied therein for providing access to
a blade associated with a blade server via at least one virtual bridged Local Area

Network (LAN), the computer program product comprising:

10

15

20

25

WO 2005/057318 PCT/IL2003/001060

—47 -

computer readable program code for causing the computer to monitor a
Network Interface Card (NIC) coupled to said blade; and

computer readable program code for causing the computer to encode
network packets received on said NIC for providing said blade with access to

said at least one virtual bridged LAN.

46. A program storage device readable by machine, tangibly embodying a
program of instructions executable by the machine to perform method steps for
providing tolerance to at least one executable loaded to a blade accessible to a
blade server, the method comprising:

receiving data indicative of migration of said blade to a redundant NIC;

detecting the operating status of a switch accessible by said blade; and

if the detected operating status indicates that said switch is not operating
for a predetermined duration, bypassing a connection between said switch and

said blade.

47. A computer program product comprising a computer useable medium
having computer readable program code embodied therein for providing
tolerance to at least one executable loaded to a blade accessible to a blade server,
the computer program product comprising:

computer readable program code for causing the computer to receive data
indicative of migration of said blade to a redundant NIC;

computer readable program code for causing the computer to detect the
operating status of a switch accessible by said blade; and

computer readable program code for causing the computer to bypass a
connection between said switch and said blade, if the detected operating status

indicates that said switch is not operating for a predetermined duration.

WO 2005/057318

PCT/IL2003/001060
1114
(115 114 /102
5_""""""; =
13 /\:\) SERVER BLADE @ E
1 /\:h & SERVER BLADE & E
I |
111/ T|® SERVER BLADE ¢ |
| |
| |
/M@ SERVERBLADE @ | | |
110 : }
109 /@ SERVERBLADE @ | | | FIG. 1
| |
| |
08 /\E\ @ SERVER BLADE @& ':
| |
0r/] @ SERVER BLADE ¢ !
o /\I{\ @ SERVER BLADE @& ': \
| | 2
& SERVER BLADE @ | | | l
105/1K |
l SN
| |
} —;\119
RN ' \118
| |
103/\{
L

\ SWITCH 43 -\
|
__j __________ i 116

WO 2005/057318

202

2/14

105
/\ 115

§201 \\
CONTROLLER

"

PCT/IL2003/001060

205

105—\

114/

BLADE Iq
(204

CONTROLLER \

203

/]

03—

/
SWITCH m/ﬁ/

103

/
SWITCH [7] [7]

105—"

105—"

FIG. 2

118

WO 2005/057318 PCT/IL2003/001060

3/14
CsTART D
3017 M= 1
(»303
302 LOAD
1S m Yes
AVAILABLE? EXECUTABLE
No
3047 _M=M+1
305
Yes 4&
No
END FIG. 3
CSTART_D
(401

GET EXECUTABLE'S REQUIRED RESOURCES

402
(

AVAILABLE RESOURCES =

INTRINSIC RESOURCES -

PRE-INSTALLED RESOURCES -

ALREADY LOADED EXECUTABLES' REQUIRED RESOURCES

l

403

AVAILABLE
RESOURCES > REQUIRED
RESOURCES ?

UNAVAILABLE
BLADE

[AVBAL'/K’S%LE] FIG. 4

WO 2005/057318

PCT/IL2003/001060

| 105
513—\ /

4/14
104
/ 103
__7/___]
|
501 |
) I 511
NIC | TRUNK
516~ |
7 | 515
N,C-|L TRUNK |
| 514—
|
502 |
) |
|
NICH ! TRUNK
|
|
|
|
|
5037 {
|
|
|
]

FIG. 5

WO 2005/057318 PCT/IL2003/001060

5/14

START

ACCESS CONFIGURATION DATA [601

RELAYING CONFIGURATION
DATA TO THE SWITCH 602

TERMINATE

FIG. 6

START

ACCESS STORED IMAGE OF AN
AGENT " \-701

LOADING INSTANCE OF
THE IMAGE ON TO A BLADE

TERMINATE

FIG. 7

WO 2005/057318

6/14

PCT/IL2003/001060

801
s

MONITOR NIC

802

WAS PACKET
DETECTED ?

DID
PREDEFINED
IDLE DURATION
PASS ?

No

806 804L

807
o

803
(.

ENCODE PACKET TO
IDENTIFY SOURCE VIRTUAL
NIC

RECOGNIZE RESPECTIVE
DESTINATION VIRTUAL
NIC

ENCODE PACKET TO
PROVIDE ACCESS VIA THE

MIGRATE TO A REDUNDANT NIC

VIRTUAL BRIDGED LAN

\805

CONVEY AN INDICATION OF
THE MIGRATION TO THE
CONTROLLER

~—-808

FIG. 8

WO 2005/057318

PCT/IL2003/001060

RECEIVE DATA INDICATIVE OF
MIGRATION

CHECK OPERATION STATUS OF
SWITCH

902

IS SWITCH
IDLE FOR A DURATION LONGER
THEN A PREDETERMINED
SWITCH IDLE
DURATION 2

No

904
r

Yes BYPASS A

CONNECTION

ALERT FAULT IN THE

905 SWITCH

906
S

TURN OFF BLADE

RELOAD EXECUTABLES ON TO

A DIFFERENT BLADE ~—-907
ALERT FAULT IN THE
BLADE \g908

FIG. 9

WO 2005/057318

8/14

START

PCT/IL2003/001060

GENERATE A RUNNING SNAPSHOT

ASSOCIATED WITH A SOURCE SNAPSHOT

_—1001

SOURCE SNAPSHOT

REFERENCE SNAPSHOT = | _—1002

LOAD AN INSTANCE OF THE RUNNING | 4003
SNAPSHOT TO AN AVAILABLE BLADE

IS
REFERENCE
SNAPSHOT SIMILAR TO
RUNNING SNAPSHOT?

No

Yes

FROM THE RUNNING SNAPSHOT

GENERATE AN INTERMEDIATE SNAPSHOT | 4005

REFERENCE SNAPSHOT =
INTERMEDIATE SNAPSHOT

| _—1006

FIG. 10

WO 2005/057318 PCT/IL2003/001060

9/14

START

SELECT ASOURCE | —1101
f1 105 SNAPSHOT

SELECT (AN ALTERNATIVE)
SOURCE SNAPSHOT

ACCESS THE SOURCE | _—1102
SNAPSHOT

ARE
THERE ANYMORE
SELECTABLE

ACCESS FAILED ?

GENERATE A RUNNING
/\ SNAPSHOT ASSOCIATED WITH
1106 THE SOURCE SNAPSHOT

ﬁ SELECT AN AVAILABLE BLADE
1107

LOAD AN INSTANCE OF THE
/\ RUNNING SNAPSHOT ON TO
1108 THE AVAILABLE BLADE.

TERMINATE

FIG. 11

WO 2005/057318

PCT/IL2003/001060

10/14

START

GENERATE AN INTERMEDIATE —1005

SNAPSHOT FROM A RUNNING
SNAPSHOT

REPOSITORY
OF SNAPSHOTS
EXISTS ?

STORE INTERMEDIATE 1202
SNAPSHOT IN THE REPOSITORY

TERMINATE

FIG. 12

WO 2005/057318 PCT/IL2003/001060

11/14

1301
IDENTIFY EXECUTABLE'S OS \-/

EXECUTABLE OS
SUPPORTED ?

Yes

PROVIDE EXECUTABLE OS IMAGE
WITH AGENT ~—-1303

INSTALL EXECUTABLE 1304

CONFIGURE EXECUTABLE | ~__-1305

UPDATE FAULT REPOSITORY ~.__ -1306

UPDATE RELATIVE
EXECUTABLE'S REPOSITORY ~—1307

STORE INITIAL SNAPSHOT

UPDATE RECOVERY POLICY ~__-1308

END Q»] 309

FIG. 13

WO 2005/057318 PCT/IL2003/001060

12/14

1401 f1405
No [MASTER
UN-NOTIFIED SLAVE PERFORMS __.
CONTROLLERS? CHANGE
NOTIFY A SLAVE CONTROLLER ABOUT
THE CHANGE ~——1402

1403

DID THE
SLAVE CONTROLLER
CONFIRM?

Yes

WAS TIME-OUT
EXCEEDED?

FIG. 14

WO 2005/057318

13/14

1501—— SWITCH CONFIGURING APPARATUS
B CONFIGURATION DATA ACCESS UNIT
1503— SWITCH CONFIGURATION UNIT
1601~ CONTROLLING APPARATUS
1602—| | BLADE SELECTOR
1603— | SNAPSHOT LOADER
1604— T SNAPSHOT GENERATOR
1605— T STORAGE PROCESSOR
1606— T INSTANCE GENERATOR

1704 ACCESS CONFIGURATION APPARATUS
1702~ T SWITCH CONFIGURATION DEVICE
1703~ [| AGENT LOADER

1801—— BLADE ACCESS CONFIGURATION APPARATUS
1802— T~ AGENT CONFIGURATION DEVICE

1803 |

AGENT LOADER

PCT/IL2003/001060

FIG. 15

FIG. 16

FIG. 17

FIG. 18

WO 2005/057318 PCT/IL2003/001060

14/14
1901 BLADE ACCESS APPARATUS
A MONITORING UNIT
1902
/,—-——— CONFIGURATION DATA ACCESS UNIT
1904
1903— PACKET ENCODER
1905—"" AGENT
FIG. 19
20011 APPARATUS FOR NETWORK FAULT
TOLERANCE
P MIGRATION DETECTOR
2002
P SWITCH STATUS DETECTION UNIT
2003
P BYPASS GENERATOR
2004

|| SWITCH FAULT ALERTS GENERATOR

|| INSTANCE FAULT TOLERANCE UNIT

|| BLADE FAULT ALERTS GENERATOR

FIG. 20

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

