Title: A DIGITAL TO ANALOGUE CONVERTER

Abstract: A digital/analogue converter (10) for converting an input n-bit digital code, where n is an integer greater than one, has an n-bit digital input and an output for connection to a load, and comprises: an array of (n-1) switched capacitors; and a switching arrangement. The switching arrangement is adapted, in a zeroing phase of operation, to connect a first reference voltage (V1) to the first plate of at least one capacitor (C1) of the array and to connect a second plate of the at least one capacitor to a voltage (V2, V3) that, for at least one value of the input digital code, is different from the first reference voltage (V1) and is further adapted, in a decoding phase of operation, to enable, dependent on the value of the input digital code, injection of charge into the at least one capacitor (C1). The converter may be a bufferless converter having an output for direct connection to a capacitive load.
DESCRIPTION

A DIGITAL TO ANALOGUE CONVERTER

TECHNICAL FIELD

The present invention relates to a digital/analogue converter, in particular to a digital/analogue converter capable of directly driving a load capacitance without the need to provide a buffer amplifier between the converter and the load. Such a converter is known as a "bufferless" converter. Such a converter may be used, for example, for driving matrix columns of a liquid crystal display. A particular application of such a converter is in small display panels for portable applications where it is particularly desirable to minimise power consumption. The invention also relates to a converter arrangement including such a digital/analogue converter, to a display driver including such a digital/analogue converter, and to a display including such a driver.

BACKGROUND ART

Figure 1 of the accompanying drawings illustrates a known type of switched capacitor digital/analogue converter (DAC) for converting an n-bit digital word (or n-bit digital "code") to a corresponding analogue output. The DAC
comprises n-capacitors C_1, \ldots, C_n. The DAC further comprises a terminating capacitor C_{TERM} connected between the input of a unity gain buffer 1 and ground. The first electrodes of the capacitors C_1, \ldots, C_n are connected together and to the first terminal of the terminating capacitor C_{TERM}. The second electrode of each of the capacitors C_1, \ldots, C_n is connected to a respective switch, such as 2, which selectively connects the second electrode to a first or second reference voltage input V_1 or V_2 in accordance with the state or value of a corresponding bit of the digital word. The output of the buffer 1 drives a capacitive load C_{LOAD}, for example in the form of a data line or column electrode of an active matrix of a liquid crystal device.

The DAC has two phases of operation, namely a resetting or "zeroing" phase and a converting or "decoding" phase, controlled by timing signals which are not illustrated in Figure 1. During the zeroing phase, the first and second electrodes of the capacitors C_1, \ldots, C_n and the first electrode of the terminating capacitor C_{TERM} are connected together by an electronic switch 3 and to the first reference voltage input V_1. The capacitors C_1, \ldots, C_n are therefore discharged so that the total charge stored in the DAC is equal to $V_1 C_{\text{TERM}}$.

During the decoding phase, the second electrode of each capacitor C_i is connected to the first reference voltage input V_1 or to the second reference voltage input V_2 according to the
value of the \(i \)th bit of the digital input word. The charge stored in the DAC is given by:

\[
Q = \sum_i b_i C_i (V_{DAC} - V_2) + \sum_i (1 - b_i) C_i (V_{DAC} - V_1) + V_{DAC} C_{TERM}
\]

(1)

where \(b_i \) is the \(i \)th bit of the input digital word and \(V_{DAC} \) is the voltage at the first electrodes of the capacitors \(C_1, \ldots, C_n \) and \(C_{TERM} \). The output voltage is therefore given by:

\[
V_{DAC} = V_{OUT} = \frac{\sum_i b_i C_i}{\sum_i C_i + C_{TERM}} (V_2 - V_1) + V_1
\]

(2)

In general, \(C_i = 2^{(i-1)} C_1 \) and \(C_1 = C_{TERM} \). This results in a set of output voltages which are linearly related to the input digital word.

In order to isolate the load capacitance from the DAC and to prevent it from affecting the conversion process, the unity gain buffer 1 is provided. However, such buffers are a substantial source of power consumption. If the buffer 1 were to be omitted, the terminating capacitance would be increased by the addition of the load capacitance so that the maximum output voltage from the DAC would be given by:
\[V_{\text{OUT(MAX)}} = \frac{\sum C_i}{\sum C_i + C_{\text{TERM}} + C_{\text{LOAD}}} (V_2 - V_1) + V_1 \] (3)

The effect of this may be reduced by increasing the value of the switched capacitors. However, this increases the power consumption of and the area of an integrated circuit occupied by the DAC. In order to achieve voltages near to the higher reference voltage, such as that supplied to the reference voltage input \(V_2 \), the capacitances must be increased substantially.

Another technique for compensating for this effect is to increase the higher reference voltage supplied to the input \(V_2 \). However, this also increases the power consumption of the DAC and may also require more complex or powerful circuitry to generate the higher reference voltage.

In some applications, DACs are required to generate an output voltage as a non-linear function of the input digital word. For example, Figure 2 illustrates the required transfer function of output voltage against the input digital code when a DAC is used as part of a driving arrangement for a liquid crystal display and Figure 3 of the accompanying drawing illustrates how such a transfer function is modified in order to provide gamma correction.

DISCLOSURE OF INVENTION
A first aspect of the present invention provides a digital/analogue converter for converting an input n-bit digital code, where n is an integer greater than one, the digital/analogue converter having an n-bit digital input and an output for connection to a load, and comprising: an array of (n-1) switched capacitors; and a switching arrangement; wherein the switching arrangement is adapted, in a zeroing phase of operation, to connect a first reference voltage to the first plate of at least one capacitor of the array and to connect a second plate of the at least one capacitor to a voltage that, for at least one value of the input digital code, is different from the first reference voltage and is further adapted, in a decoding phase of operation, to enable, dependent on the value of the input digital code, injection of charge into the at least one capacitor. For example, the switching arrangement may be arranged such that, in the zeroing phase, the second plate of the ith capacitor is, for at least one combination of the most significant bit of the input code and the ith bit of the input code, connected to a voltage that is different from the first reference voltage.

In general charge will be injected into at least one capacitor during the decoding phase. However, the converter may be arranged so that the first reference voltage is the output voltage of the DAC for one or more values of the input code – in which case, no charge would be injected into any of
the capacitors in the decoding phase when the input code has these values.

The converter may further comprise a first reference voltage input connectable to the first plate of each capacitor of the array; and second and third reference voltage inputs connectable to the second plate of each capacitor of the array; and the switching arrangement may be adapted, in the zeroing phase of operation, to connect the first, second and third reference voltage inputs to receive a respective one of first, second and third reference voltages, the second reference voltage being different from the third reference voltage, and is adapted to connect the second plate of each capacitor of the array to a respective one of the second and third reference voltage inputs.

The converter may comprise a plurality of switches, each switch connecting the second plate of an associated capacitor of the array to the second reference voltage input or to the third reference voltage input.

The switching arrangement may be adapted, in the decoding phase of operation, to isolate the first plate of each capacitor of the array from the first reference voltage and to connect the second plate of at least one capacitor of the array to the other of the second and third reference voltage inputs to which it was connected in the zeroing phase thereby to enable injection of charge into the capacitor.
The switching arrangement may be adapted to provide the first reference voltage as the output voltage for a pre-determined input code. The predetermined input code may be the mid-scale input code. The first reference voltage is the mid-scale output voltage, since the same DAC capacitors are used for upward movement of the output voltage during decoding as are used for downward movement of the output voltage during decoding. The first reference voltage is not, however, required to be the mean of the second reference voltage and third reference voltage (and the first reference voltage may not be between the second reference voltage and third reference voltage).

The switching arrangement may be adapted to connect, during the zeroing phase, the second plate of at least one capacitor to the second reference voltage input if the input code takes a first value or to the third reference voltage input if the input code takes a second value different from the first value. For example, the switching arrangement may be arranged such that, in the zeroing phase, the second plate of the ith capacitor is connected to the second reference voltage input for a first combination of the most significant bit of the input code and the ith bit of the input code, or is connected to the third reference voltage input for a second combination, different from the first combination, of the most significant bit of the input code and the ith bit of the input code.
The switching arrangement may be arranged to connect the second plate of the ith capacitor to one of the second and third reference voltages during the zeroing phase and to the other of the second and third reference voltages during the decoding phase if the ith bit of the input code takes the same value as the most significant bit of the input code thereby to inject charge into the ith capacitor.

The switching arrangement may be arranged to connect the second plate of the ith capacitor to one of the second and third reference voltages during the zeroing phase and to the same one of the second and third reference voltages during the decoding phase if the ith bit of the input code does not take the same value as the most significant bit of the input code.

The capacitance C_i of the ith capacitor of the array may be given by: $C_i = a^{(i-1)} C_1$. The coefficient a may be $a = 2$.

The sum of the capacitances of the capacitors of the array may be equal to the load capacitance.

One of the second and third reference voltages may be the minimum output voltage of the converter and the other of the second and third reference voltages may be the maximum output voltage of the converter.

One of the second and third reference voltages may be zero.

The converter may be a bufferless converter, and the
output of the converter may be for direct connection to a capacitive load.

Alternatively, the output of the converter may be connectable via a buffer amplifier to a load. In this case, the load is not limited to a capacitive load but may be, for example, a resistive load.

A second aspect of the present invention provides a digital/analogue converter arrangement comprising: a digital/analogue converter of the first aspect; and a look-up table for converting an input m-bit digital code to an n-bit digital code and supplying the n-bit digital code to the digital/analogue converter.

A third aspect of the present invention provides a display driver comprising a converter of the first aspect.

A fourth aspect of the present invention provides a display driver comprising a converter arrangement of the second aspect.

A fifth aspect of the invention provides a display comprising a driver of the third or fourth aspect. The display may comprise a liquid crystal device.

BRIEF DESCRIPTION OF DRAWINGS

The invention will be further described, by way of example, with reference to the accompanying drawings, in which:
Figure 1 is a simplified circuit diagram of a known DAC;

Figure 2 is a graph of DAC output voltage against input digital code illustrating a required transfer characteristic for driving a typical liquid crystal display;

Figure 3 is similar to Figure 2 but illustrates the use of gamma correction with a gamma value of 2.2;

Figure 4 is a simplified circuit diagram of another known DAC;

Figure 5 is a graph similar to Figure 2 but illustrating the rotational symmetry of the transfer function of the DAC of Figure 4;

Figure 6 is a circuit diagram of a further known DAC;

Figures 7 and 8 are graphs similar to Figure 2 illustrating typical transfer functions of the DAC of Figure 6;

Figure 9 is a block circuit diagram of a known bi-directional DAC;

Figure 10 is a simplified circuit diagram of part of the DAC of Figure 9;

Figure 11 is a graph illustrating the output range of the DAC of Figure 9;

Figure 12 is a block circuit diagram of a DAC according to an embodiment of the invention;

Figure 13 is a block circuit diagram of part of the DAC of Figure 12;

Figure 14 is a graph illustrating the output range of the
DAC of Figure 12;

Figure 15 is a block circuit diagram of a DAC according to a second embodiment of the invention;

Figure 16 is a block circuit diagram of part of the DAC of Figure 15;

Figure 17 is a block circuit diagram of a DAC arrangement according to a further embodiment of the invention; and

Figure 18 is a block circuit diagram of a DAC arrangement according to a further embodiment of the invention.

BEST MODE FOR CARRYING OUT THE INVENTION

Figure 12 is a block circuit diagram of a digital/analogue converter 10 according to a first embodiment of the present invention. The DAC of figure 12 is for converting an input n-bit digital code into an output voltage. In this embodiment the DAC is a "bufferless" DAC, and the output is suitable for connection direct to a load capacitance, shown in figure 12 as C_{term}. By the term "bufferless DAC" as used herein is meant a DAC in which the output buffer 1 having unity gain of figure 1 is not required to be present.

If the DAC of figure 12 is incorporated in a display driver for driving a display device the load capacitance may, for example, comprise a data line of an active matrix liquid
crystal device.

The n-bit DAC of figure 12 comprises an array of (n-1) capacitors C₁,C₂...Cₙ₋₁, each capacitor being connected to a respective switch 11 controlled by two timing signals φ₁, φ₂ and the ith bit bᵢ and the most significant bit bₙ of an n-bit input digital code b.

One plate of each capacitor Cᵢ of the DAC (for consistency with figure 12 this plate will be referred to as the “upper plate”, although this wording is used purely for convenience and does not limit the DAC to any specific orientation in use) is connected to a first reference voltage input 12. The first reference voltage input 12 may be connected to a first reference voltage source V₁ by means of a switch 13 controlled by the first timing signal φ₁.

The other (“lower”) plate of each capacitor Cᵢ of the DAC is connectable by a respective one of the switches 11 to either a second reference voltage input 14 or a third reference voltage input 15. The second and third reference voltage inputs 14, 15 are connectable, in use, to sources of second and third reference voltages V₂, V₃ respectively. The second reference voltage V₂ is different from the third reference voltage V₃.

The switches 11 associated with the lower plates of the capacitors Cᵢ are controlled by the outputs from respective logic circuits L₁, L₂...Lₙ₋₁. Each logic circuit Lᵢ receives as
inputs the two timing signals ϕ_1, ϕ_2, and the ith bit b_i and the most significant bit b_n of the n-bit input digital code. That is, although the array of capacitors in the DAC has only $(n-1)$ capacitors $C_1, C_2, \ldots C_{n-1}$ the DAC has an n-bit input, since the most significant bit b_n of the input code is input to each logic circuit L_i.

The DAC of figure 12 operates in a zeroing phase followed by a decoding phase. In the zeroing phase, the switch 13 is closed by the first timing signal ϕ_1, so that the upper plate of each capacitor C_i of the DAC, and the upper plate of the load capacitor C_{term} are held at the potential of the first reference voltage V_1. Since the top plates of the DAC capacitors C_i and of the load capacitor C_{term} are charged to the first reference voltage V_1, the output voltage of the DAC, V_{DAC}, is charged to the first reference voltage V_1.

In the decoding phase, the switch 13 is opened by the first timing signal ϕ_1, so that the first reference voltage input 12 is isolated from the first reference voltage source V_1. The output voltage V_{DAC} floats to a voltage that is dependent upon the input code.

The connection of the lower plate of each capacitor C_i of the DAC 10 during the zeroing phases and the decoding phase is dependent on the respective bit b_i of the input data code, and on the most significant bit (MSB), b_n, of the input data code. There are essentially two possibilities for the
connection of the lower plate of each capacitor C_i — either (a) the voltage applied to the lower plate of the capacitor C_i during the decoding phase is different from the voltage that was applied to the lower plate of the capacitor C_i during the zeroing phase, so that charge is injected across the ith capacitor C_i in the decoding phase or (b) the voltage applied to the lower plate of the capacitor C_i during the decoding phase is the same as the voltage that was applied to the lower plate of the capacitor C_i during the zeroing phase, so that no charge is injected across the ith capacitor C_i in the decoding phase.

If charge is injected across the ith capacitor C_i, the sign of the injected charge is preferably determined by the most significant bit b_n of the input data code.

In the embodiment of figure 12, in which the lower plate of the ith capacitor C_i may be connected to either the second reference voltage V_2 or to the third reference voltage V_3, option (a) above may be implemented by controlling the switch 11 associated with the ith capacitor C_i to connect the lower plate to the second reference voltage V_2 in the zeroing phase and to the third reference voltage V_3 in the decoding phase, or by controlling the switch 11 associated with the ith capacitor C_i to connect the lower plate to the third reference voltage V_3 in the zeroing phase and to the second reference voltage V_2 in the decoding phase. Option (b) may be implemented by
connecting the lower plate of the ith capacitor C_i to the second reference voltage V_2 for the duration of both the zeroing and decoding phases or by connecting the lower plate of the ith capacitor C_i to the third reference voltage V_3 for the duration of both the zeroing and decoding phases.

In a preferred embodiment, the switching arrangement of the DAC of figure 12 operates as follows:

If the most significant bit (MSB) and the ith bit of the input code are both logic zero ($b_n = 0$, $b_i = 0$), the switch 11 connects the lower plate of the capacitor C_i to the third reference voltage V_3 in the zeroing phase, and connects the lower plate of the capacitor C_i to the second reference voltage V_2 in the decoding phase. The voltage applied to the lower plate of the capacitor C_i thus changes between the zeroing phase (V_3) and the decoding phase (V_2) so that charge is injected across the capacitor C_i. The injected charge is given by $Q_i = (V_2 - V_3)C_i$.

If the MSB and the ith bit of the input code are both logic one ($b_n = 1$, $b_i = 1$), the switch 11 connects the lower plate of the capacitor C_i to the second reference voltage V_2 in the zeroing phase, and connects the lower plate of the capacitor C_i to the third reference voltage V_3 in the decoding phase. Charge is again injected across the capacitor C_i, and the injected charge is given by $Q_i = (V_3 - V_2)C_i$.

It will be seen that the sign of charge injected across the
ith capacitor when \(b_n = 1 \), \(b_i = 1 \) is opposite to the sign of charge injected when \(b_n = 0 \), \(b_i = 0 \).

If the MSB of the input code has a different logic state to the ith bit of the input code (\(b_n \neq b_i \)), the connection of the lower plate of the capacitor \(C_i \) remains unchanged between the zeroing phase and the decoding phase. No charge is therefore injected across the capacitor \(C_i \). If the lower plate was connected to the second reference voltage source during the zeroing phase it remains connected to the second reference voltage source during the decoding phase and, similarly, if the lower plate is connected to the third reference voltage source during the zeroing phase it remains connected to the third reference voltage source during the decoding phase. (Whether the lower plate is connected to the second reference voltage \(V_2 \) or to the third reference voltage \(V_3 \) is a matter of design choice, and will be determined by the particular form of the logic circuits \(L_i \) and the switches 11.)

In the following description it will be assumed, for the purpose of explanation, that the second reference voltage \(V_2 \) is less than the third reference voltage \(V_3 \).

At the end of the zeroing phase, the DAC output voltage was charged to \(V_1 \), as explained above. In the decoding phase, the upper plates of the capacitors \(C_i \) and the load capacitor \(C_{term} \) are disconnected from the first reference voltage source, and charge is injected across at least some of
the DAC capacitors as described above (with the exception that if the input code is 100...00 or 011...11 no charge is injected since \(b_n \neq b_i \) for all values of \(i \neq n \)). As a result of the injection of charge, the DAC output voltage floats to a voltage that is determined by the input digital code, as follows:

\[
V_{DAC} = V_1 - \frac{\sum_{i=1}^{n-1} (1-b_i)C_i}{\sum_{i=1}^{n-1} C_i + C_{TERM}} (V_3 - V_2) \quad (5)
\]

\[
V_{DAC} = V_1 + \frac{\sum_{i=1}^{n-1} b_iC_i}{\sum_{i=1}^{n-1} C_i + C_{TERM}} (V_3 - V_2) \quad (6)
\]

Figure 14 shows the output characteristic of the DAC of figure 12. Input codes of 011...111 and 100...00 each produce an output voltage of \(V_1 \), since no charge is injected in the decoding phase for either of these input codes. As the input code increases above 100...00 the DAC output voltage increases from \(V_1 \) to a maximum output voltage \(V_H \). Similarly, as the input code decreases from 011...111, the DAC output voltage decreases from \(V_1 \) to a minimum output
voltage V_L. If the sum of the DAC capacitances is equal to the load capacitance (that is, if $\Sigma C_i = C_{TERM}$), the maximum and minimum voltages are given by $V_H = V_1 + \frac{1}{2}(V_3 - V_2)$, and the minimum output voltage is given by $V_L = V_1 - \frac{1}{2}(V_3 - V_2)$.

The output characteristic of figure 14 again contains two "arms". However, the two arms start at the mid level of the output voltage, and move away from the mid-level voltage. This is in contrast to the prior art output characteristic of figure 11, in which the two arms of the characteristic converge at a common point.

As a result, the output characteristic of the present invention does not suffer from a mis-match at the point where the two arms meet in the event that the load capacitance is not correctly matched to the internal capacitance of the DAC.

Any errors in the output characteristic arising as the result of a mis-match between the load capacitance and the internal capacitance of the DAC will occur at the ends of the arms, for output voltages close to the minimum output voltage V_L or for output voltages close to the maximum output voltage V_H. In the case where the DAC is driving pixels of a display, this means that errors in the output characteristic will affect the near-black and near-white tones – and, as mentioned above, the human eye is less sensitive to errors at the black or white ends of the grey-scale. The output characteristic of figure 14 ensures good matching of the two arms where they meet at
the midpoint of the characteristic so that, when a DAC of the invention is used to drive pixels in a display, the mid-grey tones will be correctly reproduced leading to improved display quality.

The required accuracy of the matching between the internal DAC capacitance and the load capacitance is therefore reduced.

A further example is that the DAC does not have to dominate the load capacitance. This means that the area occupied by the DAC, and the power consumed by the DAC, may both be reduced. At the same time, the speed of operation of the DAC is increased. In the prior art DAC of figure 1, in contrast, the lowest DAC capacitor typically has a capacitance that is equal to the load capacitance and higher DAC capacitors have capacitances that are much higher than the load capacitance. This makes it hard to reduce the area of the prior art DAC.

The DAC of the present invention also shares many of the advantages of the DAC of figure 9. The DAC of the invention can be used without an output buffer amplifier. This allows a DAC of the invention to have a low power consumption, since the buffer amplifier is a major source of power consumption in the DAC of figure 1.

A DAC of the invention can be arranged to have a linear output or a non-linear output. A DAC with a linear output
can be used to model any desired output, by using a DAC of higher resolution in connection with a look-up table, as described in relation to the prior art DAC of figure 1 above.

The output voltage range of a DAC of the invention is, as can be seen from equations (5) and (6) above, given by

\[
\text{Output Voltage Range} = 2 \frac{\sum_{i=1}^{n-1} C_i}{\sum_{i}^{n-1} C_i + C_{TERM}} |V_3 - V_2| \quad (7)
\]

In a simple implementation, \(\Sigma C_i = C_{load}\) and \(V_2\) and \(V_3\) then correspond to the minimum and maximum output voltages – so that any desired minimum and maximum output voltages can be obtained by appropriate choice of \(V_2\) and \(V_3\). In this implementation, the second and third reference voltages \(V_2\) and \(V_3\) are as simple as possible to generate, and the power consumed in generating the second and third reference voltages \(V_2\), \(V_3\) is reduced compared to the power required to generate reference voltages in the prior art bufferless converter of figure 4.

In this implementation, the reference voltages \(V_2\), \(V_3\) can also be used to give a simple three-output DAC, for example for use in a low-power mode where the DAC is disabled.

In an alternative implementation, the absolute difference between \(V_3\) and \(V_2\), \(|V_3 - V_2|\), may be made greater than the
required output voltage range. As shown by equation (7), this makes it possible to reduce ΣC_i below C_{load}, and this makes possible a further reduction in the size of the DAC.

In a preferred embodiment, one of the second and third reference voltages V_2, V_3 may be set to zero, and this further simplifies generation of the reference voltages.

As with the DAC of figure 9, the internal capacitance of a DAC of the invention may be “tuned” during the design and manufacturing process to suit a particular intended use of the DAC. The DAC may also be “re-tuned” after manufacture to allow it to operate with a variety of load capacitances, for example in the manner described in co-pending UK patent application No 0423397.9 (although this would require comparing the output of one or more DACs with a reference voltage rather than comparing the outputs of one DAC with the output of another DAC as described in UK patent application No 0423397.9.

Figure 14 shows the output voltage characteristic of the DAC of figure 12 for the case where the second and third reference voltages V_2, V_3 are set to the upper and lower limits of the required output voltage range. That is, the second reference voltage $V_2 = V_L$, and the third reference voltage $V_3 = V_H$, where V_L and V_H are the upper and lower required voltage limits of the voltage characteristic. In this case, as explained above, the DAC capacitances are arranged such
that $\Sigma C_i = C_{load}$.

In a preferred embodiment, the DAC capacitors may be weighted, so that $C_i = a^{(i-1)}C_1$. In a particularly preferred embodiment $a = 2$ so that the DAC capacitors are binary weighted. In this case, the output voltage characteristic of the DAC is linear, as shown in figure 14.

Figure 13 shows one possible implementation of a logic circuit L_i of the DAC of figure 12. In this embodiment of the logic circuit L_i, the most significant bit of an input data code b_n and the ith bit of the input data code, b_i, are input to an AND gate 16. The MSB and the ith bit, b_n and b_i, are also input via inverters 17, 17' to a second AND gate 18. The outputs of the two AND gates are passed to the output 21 of the logic circuit L_i, via respective switches 19, 20.

The switch 20 that selects the output of the second AND gate 18 is controlled by the first timing signal ϕ_1. This takes a logic one value in the zeroing phase, and a logic zero value in the decoding phase, so that the switch 20 is closed in the zeroing phase and is open in the decoding phase. The switch 19 that selects the output of the first AND gate 16 is controlled by a second timing signal ϕ_2 which takes a logic zero value during the zeroing phase and takes a logic one value in the decoding phase. Thus, in the zeroing phase the output from the second AND gate 18 is selected and in the decoding phase the output from the first AND gate 16 is
selected.

The output from the logic circuit \(L_i \) controls the switch 11 that connects the lower plate of the capacitor \(C_i \) to either the second reference voltage \(V_2 \) or the third reference voltage \(V_3 \). In figure 13, during the zeroing phase the switch 11 is controlled by the value of \((b_i \cdot !b_n) \), and during the decoding phase, the switch 11 is controlled by the value of \((b_i \cdot b_n) \). Thus, if \(b_i = b_n \), the logic circuit \(L_i \) of figure 13 is effective to connect the lower plate of the capacitor \(C_i \) to one of the second and third reference voltages \(V_2, V_3 \) during the zeroing phase and to the other of the second and third reference voltages \(V_2, V_3 \) during the decoding phase. If \(b_i \neq b_n \), each AND gate 16, 18 will always give a logic zero output, so that the lower plate of the capacitor \(C_i \) will be connected to the same one of the second and third reference voltages \(V_2, V_3 \) in both the zeroing phase and the decoding phase, so that no charge is injected across the capacitor \(C_i \).

In the embodiment of figure 12, it is assumed that the switch 11 connects the lower plate of the capacitor \(C_i \) to the second reference voltage \(V_2 \) if the logic circuit \(L_i \) outputs logic value 0, and connects the lower plate of the capacitor \(C_i \) to the third reference voltage \(V_3 \) if the logic circuit \(L_i \) outputs a logic value 1.

Figure 15 shows a DAC 22 according to a second embodiment of the present invention. The DAC 22 of figure
15 corresponds generally to the DAC 10 of figure 12, and the
description of features common to both embodiments will not
be repeated. The DAC 22 of figure 15 differs from the DAC
10 of figure 12 essentially in the form of the logic circuits \(L_i \).
As shown in figure 15, the logic circuits \(L_i \) of figure 15 are
controlled by only one of the timing signals.

The logic circuit \(L_i \) of the DAC 22 of figure 15 is shown
in figure 16. As shown in figure 16, the input to the logic
circuit \(L_i \) are the MSB \((b_n) \) of the input data code, the \(i \)th bit
of the input data code \((b_i) \), and the second timing signal \(\phi_2 \)
(which is logic zero during the zeroing phase and logic one
during the decoding phase). The MSB of the input data code,
the \(i \)th bit of the input data code, and the second timing
signal \(\phi_2 \) are input to a first AND gate 23, and are also input
via inverters 24 to a second AND gate 25. The outputs of the
first and second AND gates 23, 25 are input to an OR gate 26.

The switch 11 is controlled by the output from the OR gate 26.

It can be seen that if the input data code has \(b_n = b_i = 1 \),
the logic circuit \(L_i \) will produce an output of logic zero in the
zeroing phase, since the input bits to the logic circuit \(L_i \) will
be \((1,1,0) \) so that both AND gates will give an output of logic
zero. In the decoding phase, however, the timing signal \(\phi_2 \)
will have a value of logic one, so that the input bits to the
logic circuit \(L_i \) will be \((1,1,1) \) and the first AND gate 23 will
provide an output of logic 1. The logic circuit L_i will thus produce an output of logic one in the decoding phase.

Conversely, if the input data code has $b_n = b_i = 0$, the second AND gate 25 will produce an output of logic one in the zeroing phase, and both AND gates 23, 25 will produce an output of logic zero in the decoding phase. The logic circuit L_i will thus produce an output of logic one in the zeroing phase and logic zero in the decoding phase. In both the cases $b_n = b_i = 1$ and $b_n = b_i = 0$, therefore, the switch 11 connects the capacitor C_i to one of the second and third voltage sources in the zeroing phase and to the other of the second and third reference voltages V_2, V_3 in the decoding phase. (In the embodiment of figures 15 and 16 the switch 11 is controlled to connect the lower plate of the capacitor C_i to the second reference voltage V_2 if the output from the OR gate 26 is logic zero, and to connect the lower plate of the capacitor C_i to the third reference voltage V_3 if the output of the OR gate 26 is logic one.)

For any bit of the input data code for which $b_i \neq b_n$, the logic circuit L_i will output logic zero in both the zeroing and decoding phases. No charge will therefore be injected across the capacitor C_i.

More formally, the output of the logic circuit L_i of figure 16 is given by $\left(b_i \cdot b_n \cdot \phi_2 \right) + \left(\overline{b}_i \cdot \overline{b}_n \cdot \overline{\phi}_2 \right)$. In the embodiment of figure 15 the switch 11 connects the lower
plate of the ith capacitor to the second reference voltage V_2 if
$(b_i \cdot b_n \cdot \phi_2) + (\neg b_i \cdot \neg b_n \cdot \neg \phi_2) = 0$ and connects the lower
plate of the ith capacitor to the third reference voltage V_3 if
the output of the logic circuit L_i is logic one.

The logic circuits L_i of a DAC of the present invention
are not limited to the two examples shown in figures 13 and
16. In principle, any logic circuit that satisfied the following
requirements may be used:

- if $b_i = b_n = 1$: output logic zero (or logic one) in the
 zeroing phase and logic one (or logic zero) in the decoding
 phase;

- if $b_i = b_n = 0$: output logic one (or logic zero) in the
 zeroing phase and logic zero (or logic one) in the decoding
 phase; and

- if $b_i \neq b_n$, output the same logic value in both the zeroing
 phase and the decoding phase.

As explained above, the second and third reference
voltages V_2, V_3 in the embodiments of figures 12 or 15 are not
required to be the upper and lower limits of the required
output voltage range of the DAC (that is, V_L and V_H). As an
example, one of the second and third reference voltages V_2, V_3
may be set as the ground (zero) voltage, thereby simplifying
the circuits required to provide the reference voltages.

As a further alternative, the second and third reference
voltages V_2, V_3 may be set either further apart or closer
together, so that $|V_3-V_2|$ may be greater than or less than V_H-V_L. The required voltage output range is then obtained by choosing the sum of the DAC capacitances (ΣC_i) accordingly, according to equation (3). For example, if the second and third reference voltages V_2, V_3 are set further apart, the sum of the DAC capacitances may be reduced, thereby reducing the area required for the DAC. Alternatively, if the second and third reference voltages V_2, V_3 are set close together, the power consumption of the DAC will be reduced (in order to provide a specified output voltage range, the sum of the DAC capacitances must be increased, the power stored in a capacitor is proportional to CV^2, but in a DAC the capacitance C is proportional to V^{-1}).

As mentioned above, the capacitors C_i of the DAC may be binary-weighted, or weighted according to $C_i = a^{(i-1)}C_1$. The invention is not, however, limited to this, and the DAC capacitors may have any suitable weighting. For example, the DAC capacitors may be weighted such that the capacitances of the DAC capacitors are not uniform multiples of one another, or such that all DAC capacitors have the same capacitance (known as "thermometer coding").

Figure 17 shows a DAC arrangement 27 that incorporates a bi-directional DAC of the present invention. The DAC arrangement 27 comprises a look-up table 28 having an m-bit input and an n-bit output; the output from the
look-up tables 28 is input to an n-bit bi-directional DAC 29 of the present invention. The DAC 29 of figure 17 may be, for example, the DAC 10 of figure 12 or the DAC 22 of figure 15. The look-up table 28 maps an m-bit digital input code to an n-bit code which is input to the n-bit DAC 29. The DAC arrangement 27 of figure 17 may be implemented in one of three ways:

m < n. This would allow a selection from the range of possible output voltages of the DAC 29 to be used. This would commonly be used in order to obtain a non-linear output voltage characteristic from a linear DAC.

m = n. In this case, the look-up table would re-order and/or combine some input codes.

m > n. In this case, use of the look-up table would allow the use of a low resolution DAC in a higher resolution system (although with a loss of resolution).

The invention has been described above on the assumption that the first, second and third reference voltages are all different from one another, i.e. on the assumption that $V_1 \neq V_2$, $V_2 \neq V_3$ and $V_1 \neq V_3$. This is not necessary, however, and it is possible for the first reference voltage V_1 to be equal to one of the second and third reference voltages V_2, V_3. Making the first reference voltage V_1 equal to one of the second and third reference voltages V_2, V_3 simplifies generation of the reference voltages, as only two non-zero
reference voltages must be generated. Moreover, making the first reference voltage V_1 and one of the second or third reference voltages V_2, V_3 equal to zero (ground) further simplifies generation of the reference voltages since it is required to generate only one non-zero reference voltage.

A DAC required to output a voltage that could be either positive or negative may have the first reference voltage V_1 and one of the second or third reference voltages V_2, V_3 set to zero (ground). As an example, consider the preferred embodiment described above for operation of the DAC of figure 12 with the first and second reference voltages V_1, V_2 set to zero, $V_1 = V_2 = 0$, and the third reference voltage V_3 set to a positive voltage. In this case, if the MSB b_n and the ith bit b_i of the input code were both equal to logic one ($b_n = b_i = 1$), the upper and lower plates of the ith capacitor would both be connected to zero potential during the zeroing phase, as both the first reference voltage V_1 (applied to the upper plate) and the second reference voltage V_2 (applied to the lower plate) are zero, so that the same voltage would applied to both plates of the ith capacitor. However, if the MSB b_n and the ith bit b_i of the input code were both equal to logic zero ($b_n = b_i = 0$), during the zeroing phase, the upper plate of the ith capacitor would be connected to zero potential and the lower plate of the ith capacitor would be connected to the third reference voltage V_3 - so that the two plates of the ith
capacitor would be connected to different voltages during the zeroing phase. The change in potential of the lower plate of the ith capacitor would be as previously described, and the output voltages would be as given by equations (5) and (6) but with $V_1 = V_2 = 0$.

The embodiments of figures 12 to 17 relate to a digital/analogue converter comprising a bufferless switched capacitor digital/analogue converter having an output for direct connection to a capacitive load. The invention is not however limited to this and may in principle be applied to a digital/analogue converter in which the output is connected to a load via a buffer amplifier; in such an embodiment the load is not limited to a capacitive load, and the load may be, for example, a resistive load.

Figure 18 is a block circuit diagram of a digital/analogue converter 10' according to a further embodiment of the present invention. The DAC 10' of figure 18 is for converting an input n-bit digital code into an output voltage. The output 30 of the DAC 10' is connected to the input of a unity gain buffer amplifier 1. A terminating capacitor C_{TERM} is connected between the input of the buffer 1 and ground. The output of the buffer 1 drives a load. In figure 18 the load is shown as a mixed capacitive and resistive load with a capacitive component C_{LOAD} and a resistive component R_{LOAD}. However, the load may
alternatively be a purely resistive load or a purely capacitive load.

The DAC 10' of figure 18 corresponds to the DAC 10 of figure 12, and its description will not be repeated.

Other digital/analogue converters of the present invention may also be used to drive a load via a buffer in the manner shown in figure 18.

INDUSTRIAL APPLICABILITY

A converter or converter arrangement of the invention may be incorporated in a display driver for driving a display device, for example in a display driver for driving a data line of an active matrix liquid crystal device.
1. A digital/analogue converter for converting an input n-bit digital code, where n is an integer greater than one, the digital/analogue converter having an n-bit digital input and an output for connection to a load, and comprising: an array of (n-1) switched capacitors; and a switching arrangement;

wherein the switching arrangement is adapted, in a zeroing phase of operation, to connect a first reference voltage to the first plate of at least one capacitor of the array and to connect a second plate of the at least one capacitor to a voltage that, for at least one value of the input digital code, is different from the first reference voltage and is further adapted, in a decoding phase of operation, to enable, dependent on the value of the input digital code, injection of charge into the at least one capacitor.

2. A converter as claimed in claim 1 and further comprising a first reference voltage input connectable to the first plate of each capacitor of the array; and second and third reference voltage inputs connectable to the second plate of each capacitor of the array;

wherein the switching arrangement is adapted, in the zeroing phase of operation, to connect the first, second and third reference voltage inputs to receive a respective one of
first, second and third reference voltages, the second reference voltage being different from the third reference voltage, and is adapted to connect the second plate of each capacitor of the array to a respective one of the second and third reference voltage inputs.

3. A converter as claimed in claim 2 and comprising a plurality of switches, each switch connecting the second plate of an associated capacitor of the array to the second reference voltage input or to the third reference voltage input.

4. A converter as claimed in claim 2 or 3 wherein the switching arrangement is adapted, in the decoding phase of operation, to isolate the first plate of each capacitor of the array from the first reference voltage and to connect the second plate of at least one capacitor of the array to the other of the second and third reference voltage inputs to which it was connected in the zeroing phase thereby to enable injection of charge into the capacitor.

5. A converter as claimed in claim 1, 2 or 3 wherein the switching arrangement is adapted to provide the first reference voltage as the output voltage for a pre-determined input code.
6. A converter as claimed in claim 5 wherein the predetermined input code is the mid-scale input code.

7. A converter as claimed in claim 1, 2 or 3 wherein the switching arrangement is adapted to connect, during the zeroing phase, the second plate of at least one capacitor to the second reference voltage input if the input code takes a first value or to the third reference voltage input if the input code takes a second value different from the first value.

8. A converter as claimed in claim 7 wherein the switching arrangement is arranged to connect the second plate of the ith capacitor to one of the second and third reference voltages during the zeroing phase and to the other of the second and third reference voltages during the decoding phase if the ith bit of the input code takes the same value as the most significant bit of the input code thereby to inject charge into the ith capacitor.

9. A converter as claimed in claim 7 wherein the switching arrangement is arranged to connect the second plate of the ith capacitor to one of the second and third reference voltages during the zeroing phase and to the same one of the second and third reference voltages during the decoding phase if the ith bit of the input code does not take
the same value as the most significant bit of the input code.

10. A converter as claimed in claim 1, 2 or 3 in which the capacitance C_i of the ith capacitor of the array is given by

$$C_i = a^{i-1} C_1.$$

11. A converter as claimed in claim 10 wherein $a = 2$.

12. A converter as claimed in claim 2 or 3 in which the sum of the capacitances of the capacitors of the array is equal to the load capacitance.

13. A converter as claimed in claim 12, wherein one of the second and third reference voltages is the minimum output voltage of the converter and the other of the second and third reference voltages is the maximum output voltage of the converter.

14. A converter as claimed in claim 1, 2 or 3, wherein one of the second and third reference voltages is zero.

15. A converter as claimed in claim 1, 2 or 3 wherein the converter is a bufferless converter, the output of the
converter being for direct connection to a capacitive load.

16. A converter as claimed in claim 1, 2 or 3 wherein the converter output is for connection to a load via a buffer amplifier.

17. A digital/analogue converter arrangement comprising: a digital/analogue converter as defined in any of claims 1, 2 or 3; and a look-up table for converting an input m-bit digital code to an n-bit digital code and supplying the n-bit digital code to the digital/analogue converter.

18. A display driver comprising a digital/analogue converter for converting an input n-bit digital code, where n is an integer greater than one, the digital/analogue converter having an n-bit digital input and an output for connection to a load, and comprising: an array of (n-1) switched capacitors; and a switching arrangement;

and wherein the switching arrangement is adapted, in a zeroing phase of operation, to connect a first reference voltage to the first plate of at least one capacitor of the array and to connect a second plate of the at least one capacitor to a voltage that, for at least one value of the input digital code, is different from the first reference voltage and is further adapted, in a decoding phase of operation, to enable,
dependent on the value of the input digital code, injection of charge into the at least one capacitor.

19. A display driver as claimed in claim 18 wherein the converter further comprises a first reference voltage input connectable to the first plate of each capacitor of the array; and second and third reference voltage inputs connectable to the second plate of each capacitor of the array; wherein the switching arrangement is adapted, in the zeroing phase of operation, to connect the first, second and third reference voltage inputs to receive a respective one of first, second and third reference voltages, the second reference voltage being different from the third reference voltage, and is adapted to connect the second plate of each capacitor of the array to a respective one of the second and third reference voltage inputs.

20. A display driver as claimed in claim 19 wherein the converter further comprises a plurality of switches, each switch connecting the second plate of an associated capacitor of the array to the second reference voltage input or to the third reference voltage input.

21. A display driver as claimed in claim 19 or 20 wherein the switching arrangement is adapted, in the
decoding phase of operation, to isolate the first plate of each capacitor of the array from the first reference voltage and to connect the second plate of at least one capacitor of the array to the other of the second and third reference voltage inputs to which it was connected in the zeroing phase thereby to enable injection of charge into the capacitor.

22. A display driver as claimed in claim 18, 19 or 20 wherein the switching arrangement is adapted to provide the first reference voltage as the output voltage for a pre-determined input code.

23. A display driver as claimed in claim 22 wherein the predetermined input code is the mid-scale input code.

24. A display driver as claimed in claim 18, 19 or 20 wherein the switching arrangement is adapted to connect, during the zeroing phase, the second plate of at least one capacitor to the second reference voltage input if the input code takes a first value or to the third reference voltage input if the input code takes a second value different from the first value.

25. A display driver as claimed in claim 24 wherein the switching arrangement is arranged to connect the second
plate of the ith capacitor to one of the second and third reference voltages during the zeroing phase and to the other of the second and third reference voltages during the decoding phase if the ith bit of the input code takes the same value as the most significant bit of the input code thereby to inject charge into the ith capacitor.

26. A display driver as claimed in claim 24 wherein the switching arrangement is arranged to connect the second plate of the ith capacitor to one of the second and third reference voltages during the zeroing phase and to the same one of the second and third reference voltages during the decoding phase if the ith bit of the input code does not take the same value as the most significant bit of the input code.

27. A display driver as claimed in claim 18, 19 or 20 in which the capacitance C_i of the ith capacitor of the array is given by

$$C_i = a^{(i-1)} C_1.$$

28. A display driver as claimed in claim 27 wherein $a = 2$.

25
29. A display driver as claimed in claim 19 or 20 in which the sum of the capacitances of the capacitors of the array is equal to the load capacitance.

30. A display driver as claimed in claim 29, wherein one of the second and third reference voltages is the minimum output voltage of the converter and the other of the second and third reference voltages is the maximum output voltage of the converter.

31. A display driver as claimed in claim 18, 19 or 20, wherein one of the second and third reference voltages is zero.

32. A display driver as claimed in claim 18, 19 or 20 wherein the converter is a bufferless converter, the output of the converter being for direct connection to a capacitive load.

33. A display driver as claimed in claim 18, 19 or 20 wherein the converter output is for connection to a load via a buffer amplifier.

34. A display driver comprising a converter arrangement as defined in claim 17.
35. A display comprising a driver as defined in claim 18 or 34.

36. A display as claimed in claim 35 and comprising a liquid crystal device.
Figure 2: Prior Art

Figure 3: Prior Art
Figure 4: Prior Art

Figure 5: Prior Art
If $D_5 = 0$ then $D_n = \text{True}$
If $D_5 = 1$ then $D_n = \text{Untrue}$
(from $n=0$ to 4)

 Capacitors
 reset
 V01
 V02

 Data line
 reset
 VC1
 VC2

 C_0 Data line capacitance

Figure 6: Prior Art
Figure 7: Prior Art

Combination of V01, V02, VC1, VC2 realizes three points γ-compensation

Figure 8: Prior Art
Figure 9: Prior Art

Switched Capacitor DAC

V_{cor}

V₁

V₂

C_{LOAD}

b₁

b₂

b₃

b_n

LSBs

MSB

V_H

V₁
Figure 10: Prior Art

Figure 11: Prior Art
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl. H03M1/74 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl. H03M1/74 (2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Published examined utility model applications of Japan 1982-1996
Published unexamined utility model applications of Japan 1971-2006
Registered utility model specifications of Japan 1998-2006
Published registered utility model applications of Japan 1984-2006

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 57-123732 A (Oki Electric Industry Co., Ltd.) 1982.08.02, Page 5, lower left column, line 1 to page 6 lower left column line 7; Figs.6, 5(d)-(f) (Family: none)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>GB 2217128 A (NEC Corporation) 1989.10.18, Figs.4-7; page 9, line 19 to page 15, line 21 (In particular, see figs.5a-5d; page 11, line 12 to page 14, line 15) & US 4937578 A & JP 01-233919 A</td>
<td></td>
</tr>
</tbody>
</table>

☑ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later documents published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search: 21.02.2006
Date of mailing of the international search report: 28.02.2006

Name and mailing address of the ISA/JP
Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer
Katsuyuki YAGISHITA
Telephone No. +81-3-3581-1101 Ext. 3596
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 57-073524 A (Fujitsu Limited) 1982.05.08, Figs.2,3(a),3(b),4(e),4(f); page 2, upper left column, line 19 to upper right column, line 7; page 2, lower right column, line 17 to page 3, upper left column, line 11 (Family: none)</td>
<td>1-16</td>
</tr>
<tr>
<td>Y</td>
<td>US 4853698 A (Bernward Roessler) 1989.08.01, Figs.1c,1d,2a,2b; column 4 lines 17-40; column 4, line 56 to column 5, line 14 & EP 217119 A2</td>
<td>17-36</td>
</tr>
<tr>
<td>Y</td>
<td>GB 2409777 A (Sharp Kabushiki Kaisha) 2005.07.06, Fig.12; Front page Abstract Title & US 2005/0171991 A1 & JP 2005-204306 A & CN 1658512 A</td>
<td>17-36</td>
</tr>
</tbody>
</table>