

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2012245439 B2

(54) Title
Endoglin polypeptides and uses thereof

(51) International Patent Classification(s)
C07K 14/515 (2006.01)

(21) Application No: **2012245439** (22) Date of Filing: **2012.04.19**

(87) WIPO No: **WO12/145539**

(30) Priority Data

(31) Number **61/477,585** (32) Date **2011.04.20** (33) Country **US**

(43) Publication Date: **2012.10.26**
(44) Accepted Journal Date: **2017.04.06**

(71) Applicant(s)
Acceleron Pharma, Inc.

(72) Inventor(s)
Grinberg, Asya;Castonguay, Roselyne;Werner, Eric;Kumar, Ravindra

(74) Agent / Attorney
Pizzeys Patent and Trade Mark Attorneys Pty Ltd, PO Box 291, WODEN, ACT, 2606, AU

(56) Related Art
WO 2008/151078 A1
Blanco, F.J. et al, Journal of Cellular Physiology, 2005, 204, 574-584

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2012/145539 A1

(43) International Publication Date
26 October 2012 (26.10.2012)

(51) International Patent Classification: [US/US]; 68 Emerson Road, Milton, MA 02186 (US).
C07K 14/515 (2006.01)

(21) International Application Number: PCT/US2012/034295 (74) Agent: EL-HAYEK, Roque; Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210-2206 (US).

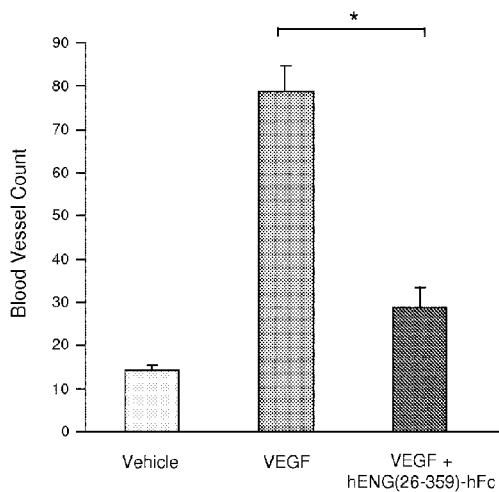
(22) International Filing Date: 19 April 2012 (19.04.2012) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 61/477,585 20 April 2011 (20.04.2011) US

(71) Applicant (for all designated States except US): ACCELERON PHARMA, INC. [US/US]; 128 Sidney St., Cambridge, MA 02139 (US).


(72) Inventors; and

(75) Inventors/Applicants (for US only): GRINBERG, Asya [RU/US]; 12468 Main Campus Drive, Lexington, MA 02421 (US). CASTONGUAY, Roselyne [CA/US]; 32 Grace Street, Malden, MA 02148 (US). WERNER, Eric (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,

[Continued on next page]

(54) Title: ENDOGLIN POLYPEPTIDES AND USES THEREOF

FIGURE 38. hENG(26-359)-hFc inhibits VEGF-stimulated angiogenesis in a CAM assay

(57) Abstract: In certain aspects, the present disclosure relates to the insight that a polypeptide comprising a truncated, ligand-binding portion of the extracellular domain of endoglin (ENG) polypeptide may be used to inhibit angiogenesis *in vivo*, particularly in mammals suffering angiogenesis-related disorders.

FIGURE 38

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Published:
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, — with international search report (Art. 21(3))
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, — with sequence listing part of description (Rule 5.2(a))
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

ENDOGLIN POLYPEPTIDES AND USES THEREOF

RELATED APPLICATIONS

This application claims the benefit of the filing date under 35 U.S.C. § 119(e) to
5 United States Provisional Patent Application Serial Number US 61/477,585, filed April
20, 2011, entitled "*Endoglin Polypeptides And Uses Thereof*," the entire contents of
which are incorporated herein by reference.

BACKGROUND

10 Angiogenesis, the process of forming new blood vessels, is critical in many normal and abnormal physiological states. Under normal physiological conditions, humans and animals undergo angiogenesis in specific and restricted situations. For example, angiogenesis is normally observed in wound healing, fetal and embryonic development and formation of the corpus luteum, endometrium and placenta.

15 Undesirable or inappropriately regulated angiogenesis occurs in many disorders, in which abnormal endothelial growth may cause or participate in the pathological process. For example, angiogenesis participates in the growth of many tumors. Deregulated angiogenesis has been implicated in pathological processes such as rheumatoid arthritis, retinopathies, hemangiomas, and psoriasis. The diverse pathological 20 disease states in which unregulated angiogenesis is present have been categorized as angiogenesis-associated diseases.

Both controlled and uncontrolled angiogenesis are thought to proceed in a similar manner. Capillary blood vessels are composed primarily of endothelial cells and pericytes, surrounded by a basement membrane. Angiogenesis begins with the erosion of 25 the basement membrane by enzymes released by endothelial cells and leukocytes. The endothelial cells, which line the lumen of blood vessels, then protrude through the basement membrane. Angiogenic factors induce the endothelial cells to migrate through the eroded basement membrane. The migrating cells form a "sprout" protruding from the parent blood vessel, where the endothelial cells undergo mitosis and proliferate.

Endothelial sprouts merge with each other to form capillary loops, creating the new blood vessel.

Agents that inhibit angiogenesis have proven to be effective in treating a variety of disorders. AvastinTM (bevacizumab), a monoclonal antibody that binds to vascular

5 endothelial growth factor (VEGF), is used in the treatment of a variety of cancers.

MacugenTM, an aptamer that binds to VEGF has proven to be effective in the treatment of neovascular (wet) age-related macular degeneration. Antagonists of the SDF/CXCR4

signaling pathway inhibit tumor neovascularization and are effective against cancer in mouse models (Guleng et al. *Cancer Res.* 2005 Jul 1;65(13):5864-71). A variety of so-

10 called multitargeted tyrosine kinase inhibitors, including vandetanib, sunitinib, axitinib, sorafenib, vatalanib, and pazopanib are used as anti-angiogenic agents in the treatment of various tumor types. Thalidomide and related compounds (including pomalidomide and

lenalidomide) have shown beneficial effects in the treatment of cancer, and although the molecular mechanism of action is not clear, the inhibition of angiogenesis appears to be

15 an important component of the anti-tumor effect (see, e.g., Dredge et al. *Microvasc Res.* 2005 Jan;69(1-2):56-63). Although many anti-angiogenic agents have an effect on

angiogenesis regardless of the tissue that is affected, other angiogenic agents may tend to have a tissue-selective effect.

It is desirable to have additional compositions and methods for inhibiting
20 angiogenesis. These include methods and compositions which can inhibit the unwanted growth of blood vessels, either generally or in certain tissues and/or disease states.

SUMMARY

In part, the present disclosure provides endoglin (ENG) polypeptides and the use
25 of such endoglin polypeptides as selective antagonists for BMP9 and/or BMP10. As described herein, polypeptides comprising part or all of the endoglin extracellular domain (ECD) bind to BMP9 and BMP10 while not exhibiting substantial binding to other members of the TGF-beta superfamily. This disclosure demonstrates that polypeptides comprising part or all of the endoglin ECD are effective antagonists of BMP9 and
30 BMP10 signaling and act to inhibit angiogenesis and tumor growth in vivo. Thus, in

certain aspects, the disclosure provides endoglin polypeptides as antagonists of BMP9 and/or BMP10 for use in inhibiting angiogenesis as well as other disorders associated with BMP9 or BMP10 described herein.

In certain aspects, the disclosure provides polypeptides comprising a truncated extracellular domain of endoglin for use in inhibiting angiogenesis and treating other BMP9 or BMP10-associated disorders. While not wishing to be bound to any particular mechanism of action, it is expected that such polypeptides act by binding to BMP9 and/or BMP10 and inhibiting the ability of these ligands to form signaling complexes with receptors such as ALK1, ALK2, ActRIIA, ActRIIB and BMPRII. In certain embodiments, an endoglin polypeptide comprises, consists of, or consists essentially of, an amino acid sequence that is at least 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the sequence of amino acids 42-333, 26-346, 26-359 or 26-378 of the human endoglin sequence of SEQ ID NO:1. An endoglin polypeptide may comprise, consist of, or consist essentially of an amino acid sequence that is at least 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the sequence of amino acids beginning at any of positions 26-42 of SEQ ID NO:1 and ending at any of positions 333-378 of the human endoglin sequence of SEQ ID NO:1. An endoglin polypeptide may comprise, consist of, or consist essentially of, a polypeptide encoded by a nucleic acid that hybridizes under less stringent, stringent or highly stringent conditions to a complement of a nucleotide sequence selected from a group consisting of: nucleotides 537-1412 of SEQ ID NO: 2, nucleotides 121-1035 of SEQ ID NO: 30, nucleotides 121-1074 of SEQ ID NO: 26, nucleotides 121-1131 of SEQ ID NO: 24, nucleotides 73-1035 of SEQ ID NO: 30, nucleotides 73-1074 of SEQ ID NO: 26, and nucleotides 73-1131 of SEQ ID NO: 24. In each of the foregoing, an endoglin polypeptide may be selected such that it does not include a full-length endoglin ECD (e.g., the endoglin polypeptide may be chosen so as to not include the sequence of amino acids 379-430 of SEQ ID NO:1, or a portion thereof or any additional portion of a unique sequence of SEQ ID NO:1). An endoglin polypeptide may be used as a monomeric protein or in a dimerized form. An endoglin polypeptide may also be fused to a second polypeptide portion to provide improved properties, such as an increased half-life or greater ease of production or purification. A fusion may be direct or a linker may be inserted between the endoglin

polypeptide and any other portion. A linker may be a structured or unstructured and may consist of 1, 2, 3, 4, 5, 10, 15, 20, 30, 50 or more amino acids, optionally relatively free of secondary structure. A linker may be rich in glycine and proline residues and may, for example, contain a sequence of threonine/serine and glycines (e.g., TGGG (SEQ ID NO: 31)) or simply one or more glycine residues, (e.g., GGG (SEQ ID NO: 32)). Fusions to an Fc portion of an immunoglobulin or linkage to a polyoxyethylene moiety (e.g., polyethylene glycol) may be particularly useful to increase the serum half-life of the endoglin polypeptide in systemic administration (e.g., intravenous, intraarterial and intra-peritoneal administration). In certain embodiments, an endoglin-Fc fusion protein

5 comprises a polypeptide comprising, consisting of, or consisting essentially of, an amino acid sequence that is at least 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to a sequence of amino acids starting at any of positions 26-42 of SEQ ID NO:1 and ending at any of positions 333-378 of the human endoglin sequence of SEQ ID NO:1, and optionally may not include a full-length endoglin ECD (e.g., the endoglin

10 polypeptide may be chosen so as to not include the sequence of amino acids 379-430 of SEQ ID NO:1, or a portion thereof, or so as not to include any 5, 10, 20, 30, 40, 50, 52, 60, 70, 100, 150 or 200 or more other amino acids of any part of endoglin or any part of amino acids 379 to 581 of SEQ ID NO:1), which polypeptide is fused, either with or without an intervening linker, to an Fc portion of an immunoglobulin. An endoglin

15 polypeptide, including an endoglin-Fc fusion protein, may bind to BMP9 and/or BMP10 with a K_D of less than $10^{-8}M$, $10^{-9}M$, $10^{-10}M$, $10^{-11}M$ or less, or a dissociation constant (k_d) of less than $10^{-3}s^{-1}$, $3 \times 10^{-3}s^{-1}$, $5 \times 10^{-3}s^{-1}$ or $1 \times 10^{-4}s^{-1}$. The endoglin polypeptide may be selected to have a K_D for BMP9 that is less than the K_D for BMP10, optionally less by 5-fold, 10-fold, 20-fold, 30-fold, 40-fold or more. The endoglin polypeptide may have

20 little or no substantial affinity for any or all of TGF- β 1, - β 2 or - β 3, and may have a K_D for any or all of TGF- β 1, - β 2 or - β 3 of greater than $10^{-9}M$, $10^{-8}M$, $10^{-7}M$ or $10^{-6}M$.

25 An Fc portion may be selected so as to be appropriate to the organism.

30 Optionally, the Fc portion is an Fc portion of a human IgG1. Optionally, the endoglin-Fc fusion protein comprises the amino acid sequence of any of SEQ ID NOs: 33, 34, 35, or 36. Optionally, the endoglin-Fc fusion protein is the protein produced by expression of a nucleic acid of any of SEQ ID Nos: 17, 20, 22, 24, 26, 28 or 30 in a mammalian cell line,

particularly a Chinese Hamster Ovary (CHO) cell line. An endoglin polypeptide may be formulated as a pharmaceutical preparation that is substantially pyrogen free. The pharmaceutical preparation may be prepared for systemic delivery (e.g., intravenous, intraarterial or subcutaneous delivery) or local delivery (e.g., to the eye).

5 The endoglin polypeptides disclosed herein may be used in conjunction or sequentially with one or more additional therapeutic agents, including, for example, anti-angiogenesis agents, VEGF antagonists, anti-VEGF antibodies, anti-neoplastic compositions, cytotoxic agents, chemotherapeutic agents, anti-hormonal agents, and growth inhibitory agents. Further examples of each of the foregoing categories of
10 molecules are provided herein.

In certain aspects, the disclosure provides methods for inhibiting angiogenesis in a mammal by administering any of the endoglin polypeptides described generally or specifically herein. The endoglin polypeptide may be delivered locally (e.g., to the eye) or systemically (e.g., intravenously, intraarterially or subcutaneously). In certain
15 embodiments, the disclosure provides a method for inhibiting angiogenesis in the eye of a mammal by administering an endoglin polypeptide to the mammal at a location distal to the eye, e.g. by systemic administration.

20 In certain aspects the disclosure provides methods for treating a tumor in a mammal. Such a method may comprise administering to a mammal that has a tumor an effective amount of an endoglin polypeptide. A method may further comprise administering one or more additional agents, including, for example, anti-angiogenesis agents, VEGF antagonists, anti-VEGF antibodies, anti-neoplastic compositions, cytotoxic agents, chemotherapeutic agents, anti-hormonal agents, and growth inhibitory agents. A tumor may also be one that utilizes multiple pro-angiogenic factors, such as a tumor that
25 is resistant to anti-VEGF therapy.

In certain aspects, the disclosure provides methods for treating patients having a BMP9 or BMP10 related disorder. Examples of such disorders are provided herein, and may include, generally, disorders of the vasculature, hypertension, and fibrotic disorders.

30 In certain aspects the disclosure provides ophthalmic formulations. Such formulations may comprise an endoglin polypeptide disclosed herein. In certain aspects,

the disclosure provides methods for treating an angiogenesis related disease of the eye. Such methods may comprise administering systemically or to said eye a pharmaceutical formulation comprising an effective amount of an endoglin polypeptide disclosed herein.

5 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the native amino acid sequence of human ENG, isoform 1 (L-ENG). The leader (residues 1-25) and predicted transmembrane domain (residues 587-611) are each underlined.

10 **Figure 2** shows the native nucleotide sequence encoding human ENG, isoform 1 (L-ENG). Sequences encoding the leader (nucleotides 414-488) and predicted transmembrane domain (nucleotides 2172-2246) are each underlined.

15 **Figure 3** shows the native amino acid sequence of human ENG, isoform 2 (S-ENG). The leader (residues 1-25) and predicted transmembrane domain (residues 587-611) are each underlined. Compared to isoform 1, isoform 2 has a shorter and distinct C-terminus, but the sequence of the extracellular domain (see Figure 9) is identical.

Figure 4 shows the native nucleotide sequence encoding human ENG, isoform 2 (S-ENG). Sequences encoding the leader (nucleotides 414-488) and predicted transmembrane domain (nucleotides 2172-2246) are each underlined.

20 **Figure 5** shows the native amino acid sequence of murine ENG, isoform 1 (L-ENG). The leader (residues 1-26) and predicted transmembrane domain (residues 582-606) are underlined and bracket the extracellular domain of the mature peptide (see Figure 10). Isoform 3 of murine ENG (GenBank accession NM_001146348) differs from the depicted sequence only in the leader, where the threonine at position 23 (highlighted) is deleted and there is a glycine-to-serine substitution at position 24 (also 25 highlighted).

Figure 6 shows the native nucleotide sequence encoding murine ENG, isoform 1 (L-ENG). Sequences encoding the leader (nucleotides 364-441) and predicted transmembrane domain (nucleotides 2107-2181) are underlined. The nucleotide sequence encoding isoform 3 of murine ENG (GenBank accession NM_001146348)

differs from the depicted sequence only in the leader, specifically at positions 430-433 (highlighted).

5 **Figure 7** shows the native amino acid sequence of murine ENG, isoform 2 (S-ENG). The leader (residues 1-26) and predicted transmembrane domain (residues 582-606) are underlined. Compared to isoform 1, isoform 2 has a shorter and distinct C-terminus, but the sequence of the extracellular domain (see Figure 10) is identical.

Figure 8 shows the native nucleotide sequence encoding murine ENG, isoform 2 (S-ENG). Sequences encoding the leader (nucleotides 364-441) and predicted transmembrane domain (nucleotides 2107-2181) are underlined.

10 **Figure 9** shows the amino acid sequence of the extracellular domain of human ENG. The extracellular domains of the two human isoforms are identical in both amino-acid and nucleotide sequence.

15 **Figure 10** shows the amino acid sequence of the extracellular domain of murine ENG, which is 69% identical to its human counterpart. The extracellular domains of the two murine isoforms are identical in both amino-acid and nucleotide sequence.

Figure 11 shows an amino acid sequence of the human IgG1 Fc domain. Underlined residues are optional mutation sites as discussed in the text.

Figure 12 shows an N-terminally truncated amino acid sequence of the human IgG1 Fc domain. Underlined residues are optional mutation sites as discussed in the text.

20 **Figure 13** shows the amino acid sequence of hENG(26-586)-hFc. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

Figure 14 shows a nucleotide sequence encoding hENG(26-586)-hFc. Nucleotides encoding the ENG domain are underlined, those encoding the TPA leader 25 sequence are double underlined, and those encoding linker sequences are bold and highlighted.

Figure 15 shows the amino acid sequence of hENG(26-586)-hFc with an N-terminally truncated Fc domain. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

Figure 16 shows the amino acid sequence of mENG(27-581)-mFc. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

Figure 17 shows a nucleotide sequence encoding mENG(27-581)-mFc.

5 Nucleotides encoding the ENG domain are underlined, those encoding the TPA leader sequence are double underlined, and those encoding linker sequences are bold and highlighted.

10 **Figure 18** shows characterization of BMP-9 binding to hENG(26-586)-hFc, as determined in a surface plasmon resonance (SPR)-based assay. BMP-9 binding to captured hENG(26-586)-hFc was assessed at ligand concentrations of 0 and 0.01-0.625 nM (in two-fold increments, excluding 0.3125 nM), and non-linear regression was used to determine the K_D as 29 pM.

15 **Figure 19** shows characterization of BMP-10 binding to hENG(26-586)-hFc, as determined in an SPR-based assay. BMP-10 binding to captured hENG(26-586)-hFc was assessed at ligand concentrations of 0 and 0.01-1.25 nM (in two-fold increments), and non-linear regression was used to determine the K_D as 400 pM.

20 **Figure 20** shows the effect of soluble human ENG extracellular domain, hENG(26-586), on binding of BMP-9 to ALK1. Concentrations of hENG(26-586) from 0-50 nM were premixed with a fixed concentration of BMP-9 (10 nM), and BMP-9 binding to captured ALK1 was determined by an SPR-based assay. The uppermost trace corresponds to no hENG(26-586), whereas the lowest trace corresponds to an ENG:BMP-9 ratio of 5:1. Binding of BMP-9 to ALK1 was inhibited by soluble hENG(26-586) in a concentration-dependent manner with an IC_{50} of 9.7 nM.

25 **Figure 21** shows the effect of soluble human ENG extracellular domain, hENG(26-586), on binding of BMP-10 to ALK1. Concentrations of hENG(26-586) from 0-50 nM were premixed with a fixed concentration of BMP-10 (10 nM), and BMP-10 binding to captured ALK1 was measured by an SPR-based assay. The uppermost trace corresponds to no hENG(26-586), and the lowest trace corresponds to an ENG:BMP-10 ratio of 5:1. Binding of BMP-10 to ALK1 was inhibited by soluble hENG(26-586) in a concentration-dependent manner with an IC_{50} of 6.3 nM.

Figure 22 shows the effect of mENG(27-581)-hFc on cord formation by human umbilical vein endothelial cells (HUVEC) in culture. Data are means of duplicate cultures \pm SD. The inducer endothelial cell growth substance (ECGS) doubled mean cord length compared to no treatment, and mENG(27-581)-hFc cut this increase by 5 nearly 60%. In the absence of stimulation (no treatment), mENG(27-581)-hFc had little effect.

Figure 23 shows the effect of mENG(27-581)-hFc on VEGF-stimulated angiogenesis in a chick chorioallantoic membrane (CAM) assay. Data are means \pm SEM; *, p < 0.05. The number of additional blood vessels induced by VEGF treatment was 10 decreased by 65% with concurrent mENG(27-581)-hFc treatment.

Figure 24 shows the effect of mENG(27-581)-mFc treatment for 11 days on angiogenesis stimulated by a combination of the growth factors (GF) vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) in a mouse angioreactor assay. Angiogenesis in units of relative fluorescence \pm SEM; *, p < 0.05. 15 mENG(27-581)-mFc completely blocked GF-stimulated angiogenesis in this in vivo assay.

Figure 25 shows the domain structure of hENG-Fc fusion constructs. Full-length ENG extracellular domain (residues 26-586 in top structure) consists of an orphan domain and N-terminal and C-terminal zona pellucida (ZP) domains. Below it are shown 20 structures of selected truncated variants and whether they exhibit high-affinity binding (+/-) to BMP-9 and BMP-10 in an SPR-based assay.

Figure 26 shows the amino acid sequence of hENG(26-437)-hFc. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

25 **Figure 27** shows a nucleotide sequence encoding hENG(26-437)-hFc. Nucleotides encoding the ENG domain are underlined, those encoding the TPA leader sequence are double underlined, and those encoding linker sequences are bold and highlighted.

Figure 28 shows the amino acid sequence of hENG(26-378)-hFc with an N-terminally truncated Fc domain. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

5 **Figure 29** shows a nucleotide sequence encoding hENG(26-378)-hFc with an N-terminally truncated Fc domain. Nucleotides encoding the ENG domain are underlined and those encoding linker sequences are bold and highlighted.

Figure 30 shows the amino acid sequence of hENG(26-359)-hFc. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

10 **Figure 31** shows a nucleotide sequence encoding hENG(26-359)-hFc. Nucleotides encoding the ENG domain are underlined, those encoding the TPA leader sequence are double underlined, and those encoding linker sequences are bold and highlighted.

15 **Figure 32** shows the amino acid sequence of hENG(26-359)-hFc with an N-terminally truncated Fc domain. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

20 **Figure 33** shows a nucleotide sequence encoding hENG(26-359)-hFc with an N-terminally truncated Fc domain. Nucleotides encoding the ENG domain are underlined, those encoding the TPA leader sequence are double underlined, and those encoding linker sequences are bold and highlighted.

Figure 34 shows the amino acid sequence of hENG(26-346)-hFc with an N-terminally truncated Fc domain. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

25 **Figure 35** shows a nucleotide sequence encoding hENG(26-346)-hFc with an N-terminally truncated Fc domain. Nucleotides encoding the ENG domain are underlined and those encoding linker sequences are bold and highlighted.

Figure 36 shows size-exclusion chromatograms for hENG(26-586)-hFc (A), hENG(26-359)-hFc (B), and hENG(26-346)-hFc (C) after the respective CHO-cell-derived proteins were purified by protein A affinity chromatography. Percent recovery of

monomeric hENG(26-346)-hFc was equal to that of hENG(26-586)-hFc. In contrast, recovery of monomeric hENG(26-359)-hFc was reduced by the presence of additional high-molecular-weight aggregates, thus requiring additional procedures to obtain purity equivalent to that of the other constructs.

5 **Figure 37** shows kinetic characterization of BMP-9 binding to hENG(26-586)-hFc (A), hENG(26-359)-hFc (B), and hENG(26-346)-hFc (C), as determined in an SPR-based assay. BMP-9 binding to captured CHO-cell-derived proteins was assessed at ligand concentrations of 0.0195-0.625 nM in two-fold increments. RU, response units. Note slower off-rates for the truncated variants compared to hENG(26-586)-hFc.

10 **Figure 38** shows the effect of hENG(26-359)-hFc on VEGF-stimulated angiogenesis in a CAM assay. Data are means \pm SEM; *, p < 0.05. The number of additional blood vessels induced by VEGF treatment was decreased by 75% with concurrent hENG(26-359)-hFc treatment, even though hENG(26-359)-hFc does not bind VEGF.

15 **Figure 39** shows the effect of hENG(26-346)-hFc treatment for 11 days on angiogenesis stimulated by a combination of the growth factors (GF) VEGF and FGF-2 in a mouse angioreactor assay. A. Angiogenesis in units of relative fluorescence \pm SEM; *, p < 0.05. B. Photographs of individual angioreactors (four per mouse) arranged by treatment group, with blood vessel formation visible as darkened contents. Although 20 unable to bind VEGF or FGF-2 itself, hENG(26-346)-hFc completely blocked GF-stimulated angiogenesis in this in vivo assay.

25 **Figure 40** shows the effect of mENG(27-581)-mFc on growth of 4T1 mammary tumor xenografts in mice. Data are means \pm SEM. By day 24 post implantation, tumor volume was 45% lower (p < 0.05) in mice treated with mENG(27-581)-mFc compared to vehicle.

Figure 41 shows the effect of mENG(27-581)-mFc on growth of Colon-26 tumor xenografts in mice. mENG(27-581)-mFc treatment inhibited tumor growth in a dose-dependent manner, with tumor volume in the high-dose group nearly 70% lower than vehicle by day 58 post implantation.

DETAILED DESCRIPTION

1. Overview

In certain aspects, the present invention relates to ENG polypeptides. ENG (also known as CD105) is referred to as a coreceptor for the transforming growth factor- β (TGF- β) superfamily of ligands and is implicated in normal and pathological angiogenesis. ENG expression is low in quiescent vascular endothelium but upregulated in endothelial cells of healing wounds, developing embryos, inflammatory tissues, and solid tumors (Dallas et al, 2008, Clin Cancer Res 14:1931-1937). Mice homozygous for null ENG alleles die early in gestation due to defective vascular development (Li et al, 10 1999, Science 284:1534-1537), whereas heterozygous null ENG mice display angiogenic abnormalities as adults (Jerkic et al, 2006, Cardiovasc Res 69:845-854). In humans, ENG gene mutations have been identified as the cause of hereditary hemorrhagic telangiectasia (Osler-Rendu-Weber syndrome) type-1 (HHT-1), an autosomal dominant form of vascular dysplasia characterized by arteriovenous malformations resulting in 15 direct flow (communication) from artery to vein (arteriovenous shunt) without an intervening capillary bed (McAllister et al, 1994, Nat Genet 8:345-351; Fernandez-L et al, 2006, Clin Med Res 4:66-78). Typical symptoms of patients with HHT include recurrent epistaxis, gastrointestinal hemorrhage, cutaneous and mucocutaneous telangiectases, and arteriovenous malformations in the pulmonary, cerebral, or hepatic 20 vasculature.

Although the specific role of ENG in angiogenesis remains to be determined, it is likely related to the prominent role of the TGF- β signaling system in this process (Cheifetz et al, 1992, J Biol Chem 267:19027-19030; Pardali et al, 2010, Trends Cell Biol 20:556-567). Significantly, ENG expression is upregulated in proliferating vascular endothelial cells within tumor tissues (Burrows et al, 1995, Clin Cancer Res 1:1623-1634; Miller et al, 1999, Int J Cancer 81:568-572), and the number of ENG-expressing blood vessels in a tumor is negatively correlated with survival for a wide range of human tumors (Fonsatti et al, 2010, Cardiovasc Res 86:12-19). Thus, ENG is a promising target for antiangiogenic therapy generally, and for cancer in particular (Dallas et al, 2008, Clin 25 Cancer Res 14:1931-1937; Bernabeu et al, 2009, Biochim Biophys Acta 1792:954-973).

Structurally, ENG is a homodimeric cell-surface glycoprotein. It belongs to the zona pelucida (ZP) family of proteins and consists of a short C-terminal cytoplasmic domain, a single hydrophobic transmembrane domain, and a long extracellular domain (ECD) (Gougos et al, 1990, *J Biol Chem* 265:8361-8364). As determined by electron microscopy, monomeric ENG ECD consists of two ZP regions and an orphan domain located at the N-terminus (Llorca et al, 2007, *J Mol Biol* 365:694-705). In humans, alternative splicing of the primary transcript results in two ENG isoforms, one consisting of 658 residues (long, L, SEQ ID NO: 1) and the other 625 residues (short, S, SEQ ID NO: 3), which differ only in their cytoplasmic domain (Bellon et al, 1993, *23:2340-2345*; ten Dijke et al, 2008, *Angiogenesis* 11:79-89). Murine ENG exists as three isoforms: L-ENG (SEQ ID NO: 5), S-ENG (SEQ ID NO: 7), and a third variant (isoform 3) of unknown functional significance identical to L-ENG except for changes at two positions within the leader sequence (Perez-Gomez et al, 2005, *Oncogene* 24:4450-4461). The ECD of murine ENG displays 69% amino acid identity with that of human ENG and lacks the Arg-Gly-Asp (RGD) integrin interaction motif found in the human protein. Recent evidence suggests that the L-ENG and S-ENG isoforms may play different functional roles *in vivo* (Blanco et al, 2008, *Circ Res* 103:1383-1392; ten Dijke et al, 2008, *Angiogenesis* 11:79-89).

As a coreceptor, ENG is thought to modulate responses of other receptors to TGF- β family ligands without direct mediation of ligand signaling by itself. Ligands in the TGF- β family typically signal by binding to a homodimeric type II receptor, which triggers recruitment and transphosphorylation of a homodimeric type I receptor, thereby leading to phosphorylation of Smad proteins responsible for transcriptional activation of specific genes (Massague, 2000, *Nat Rev Mol Cell Biol* 1:169-178). Based on ectopic cellular expression assays, it has been reported that ENG cannot bind ligands on its own and that its binding to TGF- β 1, TGF- β 3, activin A, bone morphogenetic protein-2 (BMP-2), and BMP-7 requires the presence of an appropriate type I and/or type II receptor (Barbara et al, 1999, *J Biol Chem* 274:584-594). Nevertheless, there is evidence that ENG expressed by a fibroblast cell line can bind TGF- β 1 (St.-Jacques et al, 1994, *Endocrinology* 134:2645-2657), and recent results in COS cells indicate that transfected

full-length ENG can bind BMP-9 in the absence of transfected type I or type II receptors (Scharpfenecker et al, 2007, J Cell Sci 120:964-972).

In addition to the foregoing, ENG can occur in a soluble form in vivo under certain conditions after proteolytic cleavage of the full-length membrane-bound protein 5 (Hawinkels et al, 2010, Cancer Res 70:4141-4150). Elevated levels of soluble ENG have been observed in the circulation of patients with cancer and preeclampsia (Li et al, 2000, Int J Cancer 89:122-126; Calabro et al, 2003, J Cell Physiol 194:171-175; Venkatesha et al, 2006, Nat Med 12:642-649; Levine et al, 2006, N Engl J Med 355:992-1005).

Although the role of endogenous soluble ENG is poorly understood, a protein 10 corresponding to residues 26-437 of the ENG precursor (amino acids 26-437 of SEQ ID NO: 1) has been proposed to act as a scavenger or trap for TGF- β family ligands (Venkatesha et al, 2006, Nat Med 12:642-649; WO-2007/143023), of which only TGF- β 1 and TGF- β 3 have specifically been implicated.

The present disclosure relates to the discovery that polypeptides comprising a 15 truncated portion of the extracellular domain of ENG bind selectively to BMP9 and/or BMP10 and can act as BMP9 and/or BMP10 antagonists, provide advantageous properties relative to the full-length extracellular domain, and may be used to inhibit angiogenesis mediated by multiple angiogenic factors in vivo, including VEGF and basic fibroblast growth factor (FGF-2). In part, the disclosure provides the identity of 20 physiological, high-affinity ligands for soluble ENG polypeptides. Surprisingly, soluble ENG polypeptides are shown herein to have highly specific, high affinity binding for BMP-9 and BMP-10 while not exhibiting any meaningful binding to TGF- β 1, TGF- β 2 or TGF- β 3, and moreover, soluble ENG polypeptides are shown herein to inhibit BMP9 and BMP10 interaction with type II receptors, thereby inhibiting cellular signal transduction.

25 The disclosure further demonstrates that ENG polypeptides inhibit angiogenesis. The data also demonstrate that an ENG polypeptide can exert an anti-angiogenic effect despite the finding that ENG polypeptide does not exhibit meaningful binding to TGF- β 1, TGF- β 3, VEGF, or FGF-2.

Thus, in certain aspects, the disclosure provides endoglin polypeptides as 30 antagonists of BMP-9 or BMP-10 for use in inhibiting any BMP-9 or BMP-10 disorder

generally, and particularly for inhibiting angiogenesis, including both VEGF-dependent angiogenesis and VEGF-independent angiogenesis. However, it should be noted that antibodies directed to ENG itself are expected to have different effects from an ENG polypeptide. A pan-neutralizing antibody against ENG (one that inhibits the binding of 5 all strong and weak ligands) would be expected to inhibit the signaling of such ligands through ENG but would not be expected to inhibit the ability of such ligands to signal through other receptors (e.g., ALK-1, ALK-2, BMPRII, ActRIIA or ActRIIB in the case of BMP-9 or BMP-10). It should further be noted that, given the existence of native, 10 circulating soluble ENG polypeptides that, based on the data presented here, presumably act as natural BMP-9/10 antagonists, it is not clear whether a neutralizing anti-ENG antibody would primarily inhibit the membrane bound form of ENG (thus acting as an ENG/BMP-9/10 antagonist) or the soluble form of ENG (thus acting as an ENG/BMP-9/10 agonist). On the other hand, based on this disclosure, an ENG polypeptide would be 15 expected to inhibit all of the ligands that it binds to tightly (including, for constructs such as those shown in the Examples, BMP-9 or BMP-10) but would not affect ligands that it binds to weakly. So, while a pan-neutralizing antibody against ENG would block BMP-9 and BMP-10 signaling through ENG, it would not block BMP-9 or BMP-10 signaling through another receptor. Also, while an ENG polypeptide may inhibit BMP-9 signaling 20 through all receptors (including receptors besides ENG) it would not be expected to inhibit a weakly binding ligand signaling through any receptor, even ENG.

Proteins described herein are the human forms, unless otherwise specified. Genbank references for the proteins are as follows: human ENG isoform 1 (L-ENG), NM_001114753; human ENG isoform 2 (S-ENG), NM_000118; murine ENG isoform 1 (L-ENG), NM_007932; murine ENG isoform 2 (S-ENG), NM_001146350; murine ENG 25 isoform 3, NM_001146348. Sequences of native ENG proteins from human and mouse are set forth in Figures 1-8.

The terms used in this specification generally have their ordinary meanings in the art, within the context of this disclosure and in the specific context where each term is used. Certain terms are discussed in the specification, to provide additional guidance to 30 the practitioner in describing the compositions and methods disclosed herein and how to

make and use them. The scope or meaning of any use of a term will be apparent from the specific context in which the term is used.

2. Soluble ENG Polypeptides

5 Except under certain conditions, naturally occurring ENG proteins are transmembrane proteins, with a portion of the protein positioned outside the cell (the extracellular portion) and a portion of the protein positioned inside the cell (the intracellular portion). Aspects of the present disclosure encompass polypeptides comprising a portion of the extracellular domain (ECD) of ENG.

10 In certain embodiments, the disclosure provides ENG polypeptides. ENG polypeptides may include a polypeptide consisting of, or comprising, an amino acid sequence at least 90% identical, and optionally at least 95%, 96%, 97%, 98%, 99%, or 100% identical to a truncated ECD domain of a naturally occurring ENG polypeptide, whose C-terminus occurs at any of amino acids 333-378 of SEQ ID NO: 1 and which 15 polypeptide does not include a sequence consisting of amino acids 379-430 of SEQ ID NO:1. Optionally, an ENG polypeptide does not include more than 5 consecutive amino acids, or more than 10, 20, 30, 40, 50, 52, 60, 70, 80, 90, 100, 150 or 200 or more consecutive amino acids from a sequence consisting of amino acids 379-586 of SEQ ID NO: 1 or from a sequence consisting of amino acids 379-581 of SEQ ID NO:1. The 20 unprocessed ENG polypeptide may either include or exclude any signal sequence, as well as any sequence N-terminal to the signal sequence. As elaborated herein, the N-terminus of the mature (processed) ENG polypeptide may occur at any of amino acids 26-42 of SEQ ID NO: 1. Examples of mature ENG polypeptides include amino acids 25-377 of SEQ ID NO: 23, amino acids 25-358 of SEQ ID NO: 25, and amino acids 25-345 of SEQ 25 ID NO: 29. Likewise, an ENG polypeptide may comprise a polypeptide that is encoded by nucleotides 73-1131 of SEQ ID NO: 24, nucleotides 73-1074 of SEQ ID NO: 26, or nucleotides 73-1035 of SEQ ID NO: 30, or silent variants thereof or nucleic acids that hybridize to the complement thereof under stringent hybridization conditions (generally, such conditions are known in the art but may, for example, involve hybridization in 50% 30 v/v formamide, 5x SSC, 2% w/v blocking agent, 0.1% N-lauroylsarcosine, and 0.3% SDS

at 65°C overnight and washing in, for example, 5x SSC at about 65°C). The term “ENG polypeptide” accordingly encompasses isolated extracellular portions of ENG polypeptides, variants thereof (including variants that comprise, for example, no more than 2, 3, 4, 5, 10, 15, 20, 25, 30, or 35 amino acid substitutions in the sequence 5 corresponding to amino acids 26-378 of SEQ ID NO: 1), fragments thereof, and fusion proteins comprising any of the preceding, but in each case preferably any of the foregoing ENG polypeptides will retain substantial affinity for BMP-9 and/or BMP-10. Generally, an ENG polypeptide will be designed to be soluble in aqueous solutions at biologically relevant temperatures, pH levels, and osmolarity.

10 Data presented here show that Fc fusion proteins comprising shorter C-terminally truncated variants of ENG polypeptides display no appreciable binding to TGF- β 1 and TGF- β 3 but instead display higher affinity binding to BMP-9, with a markedly slower dissociation rate, compared to either ENG(26-437)-Fc or an Fc fusion protein comprising the full-length ENG ECD. Specifically, C-terminally truncated variants ending at amino 15 acids 378, 359, and 346 of SEQ ID NO: 1 were all found to bind BMP-9 with substantially higher affinity (and to bind BMP-10 with undiminished affinity) compared to ENG(26-437) or ENG(26-586). However, binding to BMP-9 and BMP-10 was completely disrupted by more extensive C-terminal truncations to amino acids 332, 329, or 257. Thus, ENG polypeptides that terminate between amino acid 333 and amino acid 20 378 are all expected to be active, but constructs ending at, or between, amino acids 346 and 359 may be most active. Forms ending at, or between, amino acids 360 and 378 are predicted to trend toward the intermediate ligand binding affinity shown by ENG(26- 378). Improvements in other key parameters are expected with certain constructs ending at, or between, amino acids 333 and 378 based on improvements in protein expression 25 and elimination half-life observed with ENG(26-346)-Fc compared to fusion proteins comprising full-length ENG ECD (see Examples). Any of these truncated variant forms may be desirable to use, depending on the clinical or experimental setting.

30 At the N-terminus, it is expected that an ENG polypeptide beginning at amino acid 26 (the initial glutamate), or before, of SEQ ID NO: 1 will retain ligand binding activity. As disclosed herein, an N-terminal truncation to amino acid 61 of SEQ ID NO:

1 abolishes ligand binding, as do more extensive N-terminal truncations. However, as also disclosed herein, consensus modeling of ENG primary sequences indicates that ordered secondary structure within the region defined by amino acids 26-60 of SEQ ID NO: 1 is limited to a four-residue beta strand predicted with high confidence at positions 5 42-45 of SEQ ID NO: 1 and a two-residue beta strand predicted with very low confidence at positions 28-29 of SEQ ID NO: 1. Thus, an active ENG polypeptide will begin at (or before) amino acid 26, preferentially, or at any of amino acids 27-42 of SEQ ID NO: 1.

Taken together, an active portion of an ENG polypeptide may comprise amino acid sequences 26-333, 26-334, 26-335, 26-336, 26-337, 26-338, 26-339, 26-340, 26-341, 10 26-342, 26-343, 26-344, 26-345, or 26-346 of SEQ ID NO: 1, as well as variants of these sequences starting at any of amino acids 27-42 of SEQ ID NO: 1. Exemplary ENG polypeptides comprise amino acid sequences 26-346, 26-359, and 26-378 of SEQ ID NO: 1. Variants within these ranges are also contemplated, particularly those having at least 80%, 85%, 90%, 95%, or 99% identity to the corresponding portion of SEQ ID NO: 1. 15 An ENG polypeptide may not include the sequence consisting of amino acids 379-430 of SEQ ID NO:1.

As described above, the disclosure provides ENG polypeptides sharing a specified degree of sequence identity or similarity to a naturally occurring ENG polypeptide. To determine the percent identity of two amino acid sequences, the sequences are aligned for 20 optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The amino acid residues at corresponding amino acid positions are then compared. When a position in the first sequence is occupied by the same amino acid residue as the corresponding position in the 25 second sequence, then the molecules are identical at that position (as used herein amino acid "identity" is equivalent to amino acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

30 The comparison of sequences and determination of percent identity and similarity

between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991).

In one embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J Mol. Biol. (48):444-453 (1970))

10 algorithm which has been incorporated into the GAP program in the GCG software package (available at <http://www.gcg.com>). In a specific embodiment, the following parameters are used in the GAP program: either a Blosum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another embodiment, the percent identity between two nucleotide sequences 15 is determined using the GAP program in the GCG software package (Devereux, J., *et al.*, Nucleic Acids Res. 12(1):387 (1984)) (available at <http://www.gcg.com>). Exemplary parameters include using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. Unless otherwise specified, percent identity between two amino acid sequences is to be determined using the GAP program 20 using a Blosum 62 matrix, a GAP weight of 10 and a length weight of 3, and if such algorithm cannot compute the desired percent identity, a suitable alternative disclosed herein should be selected.

In another embodiment, the percent identity between two amino acid sequences is determined using the algorithm of E. Myers and W. Miller (CABIOS, 4:11-17 (1989)) 25 which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

Another embodiment for determining the best overall alignment between two amino acid sequences can be determined using the FASTDB computer program based on the algorithm of Brutlag *et al.* (Comp. App. Biosci., 6:237-245 (1990)). In a sequence 30 alignment the query and subject sequences are both amino acid sequences. The result of said global sequence alignment is presented in terms of percent identity. In one

embodiment, amino acid sequence identity is performed using the FASTDB computer program based on the algorithm of Brutlag *et al.* (*Comp. App. Biosci.*, 6:237-245 (1990)). In a specific embodiment, parameters employed to calculate percent identity and similarity of an amino acid alignment comprise: Matrix=PAM 150, k-tuple=2, Mismatch 5 Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5 and Gap Size Penalty=0.05.

In certain embodiments, an ENG polypeptide binds to BMP-9 and BMP-10, and the ENG polypeptide does not show substantial binding to TGF- β 1 or TGF- β 3. Binding may be assessed using purified proteins in solution or in a surface plasmon resonance 10 system, such as a BiacoreTM system. ENG polypeptides may be selected to exhibit an anti-angiogenic activity. Bioassays for angiogenesis inhibitory activity include the chick chorioallantoic membrane (CAM) assay, the mouse angioreactor assay, and assays for measuring the effect of administering isolated or synthesized proteins on implanted tumors. The CAM assay, the mouse angioreactor assay, and other assays are described in 15 the Examples.

ENG polypeptides may additionally include any of various leader sequences at the N-terminus. Such a sequence would allow the peptides to be expressed and targeted to the secretion pathway in a eukaryotic system. See, e.g., Ernst *et al.*, U.S. Pat. No. 5,082,783 (1992). Alternatively, a native ENG signal sequence may be used to effect 20 extrusion from the cell. Possible leader sequences include honeybee mellitin, TPA, and native leaders (SEQ ID NOs. 13-15, respectively). Examples of ENG-Fc fusion proteins incorporating a TPA leader sequence include SEQ ID NOs: 23, 25, 27, and 29. Processing of signal peptides may vary depending on the leader sequence chosen, the cell type used and culture conditions, among other variables, and therefore actual N-terminal 25 start sites for mature ENG polypeptides may shift by 1, 2, 3, 4 or 5 amino acids in either the N-terminal or C-terminal direction. Examples of mature ENG-Fc fusion proteins include SEQ ID NOs: 33-36, as shown below with the ENG polypeptide portion underlined.

Human ENG(26-378)-hFc (truncated Fc)

5 ETVHCD LQPVGPERDE VTYTTSQVSK GCVAQAPNAI LEVHVLFLEF
PTGPSQLELT LQASKQNGTW PREVLLVLSV NSSVFLHLQA LGIPLHLAYN
SSLVTFQEPP GVNTTELPSF PKTQILEWAA ERGPITSAAE LNDPQSILLR
LGQAQGSLSF CMLEASQDMG RTLEWRPRTP ALVRGCHLEG VAGHKEAHIL
RVLPGHSAGP RTVTVKVELS CAPGDLDAVL ILQGPPYVSW LIDANHNMQI
WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG EARMLNASIV ASFVELPLAS
IVSLHASSCG GRLQTSPAPI QTTPPKDTCS PELLMSLIQT KCADDAMTLV
LKKELVATGG GTHTCPPCPA PELLGGPSVF LFPPPKDTL MISRTPEVTC
 10 VVVDVSHEDP EVKFNWYVDG VEVHNAKTP REEQYNSTYR VVSVLTVLHQ
DWLNGKEYKC KVSNKALPAP IEKTISKAKG QPREPQVYTL PPSREEMTKN
QVSLTCLVKKG FYPSDIAVEW ESNGQPENNY KTPPVLDSD GSFFLYSKLT
VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPGK (SEQ ID NO: 33)

15 Human ENG(26-359)-hFc

20 ETVHCD LQPVGPERDE VTYTTSQVSK GCVAQAPNAI LEVHVLFLEF
PTGPSQLELT LQASKQNGTW PREVLLVLSV NSSVFLHLQA LGIPLHLAYN
SSLVTFQEPP GVNTTELPSF PKTQILEWAA ERGPITSAAE LNDPQSILLR
LGQAQGSLSF CMLEASQDMG RTLEWRPRTP ALVRGCHLEG VAGHKEAHIL
RVLPGHSAGP RTVTVKVELS CAPGDLDAVL ILQGPPYVSW LIDANHNMQI
WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG EARMLNASIV ASFVELPLAS
IVSLHASSCG GRLQTSPAPI QTTPPKDTCS PELLMSLITG GGPKSCDKTH
TCPPCPAPEL LGGPSVFLFP PKPKDTLMIS RTPEVTCVVV DVSHEDPEVK
FNWYVDGVEV HNAKTKPREE QYNSTYRVVS VLTVLHQDWL NGKEYKCKVS
 25 NKALPAPIEK TISKAKGQPR EPQVYTLPPS REEMTKNQVS LTCLVKGFYP
SDIAVEWESN QOPENNYKTT PPVLDSDGSF FLYSKLTVDK SRWQQGNVFS
CSVHEALHN HYTQKSLSL PGK (SEQ ID NO: 34)

Human ENG(26-359)-hFc (truncated Fc)

5 ETVHCD LQPVGPERDE VTYTTSQVSK GCVAQAPNAI LEVHVLFLEF
PTGPSQLELT LQASKQNGTW PREVLLVLSV NSSVFLHLQA LGIPLHLAYN
SSLVTFQEPP GVNTTELPNF PKTQILEWAA ERGPITSAAE LNDPQSILLR
LGQAQGSLSF CMLEASQDMG RTLEWRPRTP ALVRGCHLEG VAGHKEAHIL
RVLPGHSAGP RTVTVKVELS CAPGDLDAVL ILQGPPYVSW LIDANHNMQI
WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG EARMLNASIV ASFVELPLAS
IVSLHASSCG GRLQTSPAPI QTTPPKDTCs PELLMSLITG GGTHTCPPCP
APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD
 10 GVEVHNATK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA
PIEKTISKAK GQPREPQVYT LPPSREEMTK NQVSLTCLVK GFYPSDIAVE
WESNGQPENN YKTPPVLDs DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE
ALHNHYTQKS LSLSPGK (SEQ ID NO: 35)

15 Human ENG(26-346)-hFc (truncated Fc)

20 ETVHCD LQPVGPERDE VTYTTSQVSK GCVAQAPNAI LEVHVLFLEF
PTGPSQLELT LQASKQNGTW PREVLLVLSV NSSVFLHLQA LGIPLHLAYN
SSLVTFQEPP GVNTTELPNF PKTQILEWAA ERGPITSAAE LNDPQSILLR
LGQAQGSLSF CMLEASQDMG RTLEWRPRTP ALVRGCHLEG VAGHKEAHIL
RVLPGHSAGP RTVTVKVELS CAPGDLDAVL ILQGPPYVSW LIDANHNMQI
WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG EARMLNASIV ASFVELPLAS
IVSLHASSCG GRLQTSPAPI QTTPPTGGGT HTCPCPAPE LLGGPSVFLF
PPKPKDTLMI SRTPEVTCVV VDVSCHEDPEV KFNWYVDGVE VHNAKTKPRE
EQYNSTYRVV SVLTVLHQDW LNGKEYKCKV SNKALPAPIE KTISKAKGQP
 25 REPQVYTLPP SREEMTKNQV SLTCLVKGFY PSDIAVEWES NGQPENNYKT
TPPVLDSDGS FFLYSKLTVD KSRWQQGNVF SCSVMHEALH NHYTQKSLSL
SPGK (SEQ ID NO: 36)

30 In certain embodiments, the present disclosure contemplates specific mutations of
 the ENG polypeptides so as to alter the glycosylation of the polypeptide. Such mutations

may be selected so as to introduce or eliminate one or more glycosylation sites, such as O-linked or N-linked glycosylation sites. Asparagine-linked glycosylation recognition sites generally comprise a tripeptide sequence, asparagine-X-threonine (or asparagine-X-serine) (where "X" is any amino acid) which is specifically recognized by appropriate 5 cellular glycosylation enzymes. The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the wild-type ENG polypeptide (for O-linked glycosylation sites). A variety of amino acid substitutions or deletions at one or both of the first or third amino acid positions of a glycosylation recognition site (and/or amino acid deletion at the second position) results 10 in non-glycosylation at the modified tripeptide sequence. Another means of increasing the number of carbohydrate moieties on an ENG polypeptide is by chemical or enzymatic coupling of glycosides to the ENG polypeptide. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine; (b) free carboxyl groups; (c) free sulfhydryl groups such as those of cysteine; (d) free hydroxyl groups such as those of 15 serine, threonine, or hydroxyproline; (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan; or (f) the amide group of glutamine. These methods are described in WO 87/05330 published Sep. 11, 1987, and in Aplin and Wriston (1981) CRC Crit. Rev. Biochem., pp. 259-306, incorporated by reference herein. Removal of one or more carbohydrate moieties present on an ENG polypeptide may be 20 accomplished chemically and/or enzymatically. Chemical deglycosylation may involve, for example, exposure of the ENG polypeptide to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the amino acid sequence intact. Chemical deglycosylation is further described by 25 Hakimuddin et al. (1987) Arch. Biochem. Biophys. 259:52 and by Edge et al. (1981) Anal. Biochem. 118:131. Enzymatic cleavage of carbohydrate moieties on ENG polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al. (1987) Meth. Enzymol. 138:350. The sequence of an ENG 30 polypeptide may be adjusted, as appropriate, depending on the type of expression system used, as mammalian, yeast, insect and plant cells may all introduce differing glycosylation patterns that can be affected by the amino acid sequence of the peptide. In

general, ENG polypeptides for use in humans will be expressed in a mammalian cell line that provides proper glycosylation, such as HEK293 or CHO cell lines, although other mammalian expression cell lines, yeast cell lines with engineered glycosylation enzymes, and insect cells are expected to be useful as well.

5 This disclosure further contemplates a method of generating mutants, particularly sets of combinatorial mutants of an ENG polypeptide, as well as truncation mutants; pools of combinatorial mutants are especially useful for identifying functional variant sequences. The purpose of screening such combinatorial libraries may be to generate, for example, ENG polypeptide variants which can act as either agonists or antagonist, or 10 alternatively, which possess novel activities all together. A variety of screening assays are provided below, and such assays may be used to evaluate variants. For example, an ENG polypeptide variant may be screened for ability to bind to an ENG ligand, to prevent binding of an ENG ligand to an ENG polypeptide or to interfere with signaling caused by an ENG ligand. The activity of an ENG polypeptide or its variants may also 15 be tested in a cell-based or in vivo assay, particularly any of the assays disclosed in the Examples.

Combinatorially-derived variants can be generated which have a selective or generally increased potency relative to an ENG polypeptide comprising an extracellular domain of a naturally occurring ENG polypeptide. Likewise, mutagenesis can give rise 20 to variants which have serum half-lives dramatically different than the corresponding wild-type ENG polypeptide. For example, the altered protein can be rendered either more stable or less stable to proteolytic degradation or other processes which result in destruction of, or otherwise elimination or inactivation of, a native ENG polypeptide. Such variants, and the genes which encode them, can be utilized to alter ENG 25 polypeptide levels by modulating the half-life of the ENG polypeptides. For instance, a short half-life can give rise to more transient biological effects and can allow tighter control of recombinant ENG polypeptide levels within the patient. In an Fc fusion protein, mutations may be made in the linker (if any) and/or the Fc portion to alter the half-life of the protein.

A combinatorial library may be produced by way of a degenerate library of genes encoding a library of polypeptides which each include at least a portion of potential ENG polypeptide sequences. For instance, a mixture of synthetic oligonucleotides can be enzymatically ligated into gene sequences such that the degenerate set of potential ENG 5 polypeptide nucleotide sequences are expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display).

There are many ways by which the library of potential ENG polypeptide variants can be generated from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be carried out in an automatic DNA synthesizer, and the 10 synthetic genes then be ligated into an appropriate vector for expression. The synthesis of degenerate oligonucleotides is well known in the art (see for example, Narang, SA (1983) Tetrahedron 39:3; Itakura et al., (1981) Recombinant DNA, Proc. 3rd Cleveland Sympos. Macromolecules, ed. AG Walton, Amsterdam: Elsevier pp273-289; Itakura et al., (1984) Annu. Rev. Biochem. 53:323; Itakura et al., (1984) Science 198:1056; Ike et al., (1983) Nucleic Acid Res. 11:477). Such techniques have been employed in the 15 directed evolution of other proteins (see, for example, Scott et al., (1990) Science 249:386-390; Roberts et al., (1992) PNAS USA 89:2429-2433; Devlin et al., (1990) Science 249: 404-406; Cwirla et al., (1990) PNAS USA 87: 6378-6382; as well as U.S. Patent Nos: 5,223,409, 5,198,346, and 5,096,815).

20 Alternatively, other forms of mutagenesis can be utilized to generate a combinatorial library. For example, ENG polypeptide variants can be generated and isolated from a library by screening using, for example, alanine scanning mutagenesis and the like (Ruf et al., (1994) Biochemistry 33:1565-1572; Wang et al., (1994) J. Biol. Chem. 269:3095-3099; Balint et al., (1993) Gene 137:109-118; Grodberg et al., (1993) Eur. J. Biochem. 218:597-601; Nagashima et al., (1993) J. Biol. Chem. 268:2888-2892; 25 Lowman et al., (1991) Biochemistry 30:10832-10838; and Cunningham et al., (1989) Science 244:1081-1085), by linker scanning mutagenesis (Gustin et al., (1993) Virology 193:653-660; Brown et al., (1992) Mol. Cell Biol. 12:2644-2652; McKnight et al., (1982) Science 232:316); by saturation mutagenesis (Meyers et al., (1986) Science 232:613); by 30 PCR mutagenesis (Leung et al., (1989) Method Cell Mol Biol 1:11-19); or by random mutagenesis, including chemical mutagenesis, etc. (Miller et al., (1992) A Short Course

in Bacterial Genetics, CSHL Press, Cold Spring Harbor, NY; and Greener et al., (1994) Strategies in Mol Biol 7:32-34). Linker scanning mutagenesis, particularly in a combinatorial setting, is an attractive method for identifying truncated (bioactive) forms of ENG polypeptides.

5 A wide range of techniques are known in the art for screening gene products of combinatorial libraries made by point mutations and truncations, and, for that matter, for screening cDNA libraries for gene products having a certain property. Such techniques will be generally adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of ENG polypeptides. The most widely used techniques for 10 screening large gene libraries typically comprises cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates relatively easy isolation of the vector encoding the gene whose product was detected. Preferred assays include ENG ligand binding assays and ligand-mediated 15 cell signaling assays.

In certain embodiments, the ENG polypeptides of the disclosure may further comprise post-translational modifications in addition to any that are naturally present in the ENG polypeptides. Such modifications include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, pegylation (polyethylene glycol) and acylation. As a result, the modified ENG polypeptides may contain non- 20 amino acid elements, such as polyethylene glycols, lipids, poly- or mono-saccharide, and phosphates. Effects of such non-amino acid elements on the functionality of an ENG polypeptide may be tested as described herein for other ENG polypeptide variants. When 25 an ENG polypeptide is produced in cells by cleaving a nascent form of the ENG polypeptide, post-translational processing may also be important for correct folding and/or function of the protein. Different cells (such as CHO, HeLa, MDCK, 293, WI38, NIH-3T3 or HEK293) have specific cellular machinery and characteristic mechanisms for such post-translational activities and may be chosen to ensure the correct modification and processing of the ENG polypeptides.

In certain aspects, functional variants or modified forms of the ENG polypeptides include fusion proteins having at least a portion of the ENG polypeptides and one or more fusion domains. Well known examples of such fusion domains include, but are not limited to, polyhistidine, Glu-Glu, glutathione S transferase (GST), thioredoxin, protein A, protein G, an immunoglobulin heavy chain constant region (Fc), maltose binding protein (MBP), or human serum albumin. A fusion domain may be selected so as to confer a desired property. For example, some fusion domains are particularly useful for isolation of the fusion proteins by affinity chromatography. For the purpose of affinity purification, relevant matrices for affinity chromatography, such as glutathione-, amylase-, and nickel- or cobalt- conjugated resins are used. Many of such matrices are available in “kit” form, such as the Pharmacia GST purification system and the QIAexpress™ system (Qiagen) useful with (HIS₆) fusion partners. As another example, a fusion domain may be selected so as to facilitate detection of the ENG polypeptides. Examples of such detection domains include the various fluorescent proteins (e.g., GFP) as well as “epitope tags,” which are usually short peptide sequences for which a specific antibody is available. Well known epitope tags for which specific monoclonal antibodies are readily available include FLAG, influenza virus haemagglutinin (HA), and c-myc tags. In some cases, the fusion domains have a protease cleavage site, such as for Factor Xa or Thrombin, which allows the relevant protease to partially digest the fusion proteins and thereby liberate the recombinant proteins therefrom. The liberated proteins can then be isolated from the fusion domain by subsequent chromatographic separation. In certain preferred embodiments, an ENG polypeptide is fused with a domain that stabilizes the ENG polypeptide in vivo (a “stabilizer” domain). By “stabilizing” is meant anything that increases serum half life, regardless of whether this is because of decreased destruction, decreased clearance by the kidney, or other pharmacokinetic effect. Fusions with the Fc portion of an immunoglobulin are known to confer desirable pharmacokinetic properties on a wide range of proteins. Likewise, fusions to human serum albumin can confer desirable properties. Other types of fusion domains that may be selected include multimerizing (e.g., dimerizing, tetramerizing) domains and functional domains.

As specific examples, the present disclosure provides fusion proteins comprising variants of ENG polypeptides fused to one of two Fc domain sequences (e.g., SEQ ID

NOs: 11, 12). Optionally, the Fc domain has one or more mutations at residues such as Asp-265, Lys-322, and Asn-434 (numbered in accordance with the corresponding full-length IgG). In certain cases, the mutant Fc domain having one or more of these mutations (e.g., Asp-265 mutation) has reduced ability of binding to the Fc γ receptor relative to a wildtype Fc domain. In other cases, the mutant Fc domain having one or more of these mutations (e.g., Asn-434 mutation) has increased ability of binding to the MHC class I-related Fc-receptor (FcRN) relative to a wildtype Fc domain.

It is understood that different elements of the fusion proteins may be arranged in any manner that is consistent with the desired functionality. For example, an ENG 10 polypeptide may be placed C-terminal to a heterologous domain, or, alternatively, a heterologous domain may be placed C-terminal to an ENG polypeptide. The ENG polypeptide domain and the heterologous domain need not be adjacent in a fusion protein, and additional domains or amino acid sequences may be included C- or N-terminal to either domain or between the domains.

15 As used herein, the term "immunoglobulin Fc domain" or simply "Fc" is understood to mean the carboxyl-terminal portion of an immunoglobulin chain constant region, preferably an immunoglobulin heavy chain constant region, or a portion thereof. For example, an immunoglobulin Fc region may comprise 1) a CH1 domain, a CH2 domain, and a CH3 domain, 2) a CH1 domain and a CH2 domain, 3) a CH1 domain and 20 a CH3 domain, 4) a CH2 domain and a CH3 domain, or 5) a combination of two or more domains and an immunoglobulin hinge region. In a preferred embodiment the immunoglobulin Fc region comprises at least an immunoglobulin hinge region a CH2 domain and a CH3 domain, and preferably lacks the CH1 domain.

25 In one embodiment, the class of immunoglobulin from which the heavy chain constant region is derived is IgG (Ig γ) (γ subclasses 1, 2, 3, or 4). Other classes of immunoglobulin, IgA (Ig α), IgD (Ig δ), IgE (Ig ϵ) and IgM (Ig μ), may be used. The choice of appropriate immunoglobulin heavy chain constant region is discussed in detail in U.S. Pat. Nos. 5,541,087, and 5,726,044. The choice of particular immunoglobulin heavy chain constant region sequences from certain immunoglobulin classes and 30 subclasses to achieve a particular result is considered to be within the level of skill in the

art. The portion of the DNA construct encoding the immunoglobulin Fc region preferably comprises at least a portion of a hinge domain, and preferably at least a portion of a CH₃ domain of Fc gamma or the homologous domains in any of IgA, IgD, IgE, or IgM.

5 Furthermore, it is contemplated that substitution or deletion of amino acids within the immunoglobulin heavy chain constant regions may be useful in the practice of the methods and compositions disclosed herein. One example would be to introduce amino acid substitutions in the upper CH₂ region to create an Fc variant with reduced affinity for Fc receptors (Cole *et al.* (1997) *J. Immunol.* 159:3613).

10 In certain embodiments, the present disclosure makes available isolated and/or purified forms of the ENG polypeptides, which are isolated from, or otherwise substantially free of (e.g., at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% free of), other proteins and/or other ENG polypeptide species. ENG polypeptides will generally be produced by expression from recombinant nucleic acids.

15 In certain embodiments, the disclosure includes nucleic acids encoding soluble ENG polypeptides comprising the coding sequence for an extracellular portion of an ENG protein. In further embodiments, this disclosure also pertains to a host cell comprising such nucleic acids. The host cell may be any prokaryotic or eukaryotic cell. For example, a polypeptide of the present disclosure may be expressed in bacterial cells 20 such as *E. coli*, insect cells (e.g., using a baculovirus expression system), yeast, or mammalian cells. Other suitable host cells are known to those skilled in the art. Accordingly, some embodiments of the present disclosure further pertain to methods of producing the ENG polypeptides. It has been established that ENG-Fc fusion proteins set forth in SEQ ID NOs: 25 and 29 and expressed in CHO cells have potent anti-angiogenic 25 activity.

3. Nucleic Acids Encoding ENG Polypeptides

In certain aspects, the disclosure provides isolated and/or recombinant nucleic acids encoding any of the ENG polypeptides, including fragments, functional variants 30 and fusion proteins disclosed herein. For example, SEQ ID NOs: 2 and 4 encode long

and short isoforms, respectively, of the native human ENG precursor polypeptide, whereas SEQ ID NO: 30 encodes one variant of ENG extracellular domain fused to an IgG1 Fc domain. The subject nucleic acids may be single-stranded or double stranded. Such nucleic acids may be DNA or RNA molecules. These nucleic acids may be used, 5 for example, in methods for making ENG polypeptides or as direct therapeutic agents (e.g., in an antisense, RNAi or gene therapy approach).

In certain aspects, the subject nucleic acids encoding ENG polypeptides are further understood to include nucleic acids that are variants of SEQ ID NOs: 24, 26, 28, or 30. Variant nucleotide sequences include sequences that differ by one or more 10 nucleotide substitutions, additions or deletions, such as allelic variants.

In certain embodiments, the disclosure provides isolated or recombinant nucleic acid sequences that are at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NOs: 24, 26, 28, or 30. One of ordinary skill in the art will appreciate that nucleic acid sequences complementary to SEQ ID NOs: 24, 26, 28, or 30, 15 and variants of SEQ ID NOs: 24, 26, 28, or 30 are also within the scope of this disclosure. In further embodiments, the nucleic acid sequences of the disclosure can be isolated, recombinant, and/or fused with a heterologous nucleotide sequence, or in a DNA library.

In other embodiments, nucleic acids of the disclosure also include nucleotide 20 sequences that hybridize under highly stringent conditions to the nucleotide sequences designated in SEQ ID NOs: 24, 26, 28, or 30, complement sequences of SEQ ID NOs: 24, 26, 28, or 30, or fragments thereof. As discussed above, one of ordinary skill in the art will understand readily that appropriate stringency conditions which promote DNA hybridization can be varied. For example, one could perform the hybridization at 6.0 x 25 sodium chloride/sodium citrate (SSC) at about 45°C, followed by a wash of 2.0 x SSC at 50°C. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0 x SSC at 50°C to a high stringency of about 0.2 x SSC at 50°C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22°C, to high stringency conditions at about 65°C. 30 Both temperature and salt may be varied, or temperature or salt concentration may be

held constant while the other variable is changed. In one embodiment, the disclosure provides nucleic acids which hybridize under low stringency conditions of 6 x SSC at room temperature followed by a wash at 2 x SSC at room temperature.

Isolated nucleic acids which differ from the nucleic acids as set forth in SEQ ID NOs: 24, 26, 28, or 30 due to degeneracy in the genetic code are also within the scope of the disclosure. For example, a number of amino acids are designated by more than one triplet. Codons that specify the same amino acid, or synonyms (for example, CAU and CAC are synonyms for histidine) may result in “silent” mutations which do not affect the amino acid sequence of the protein. However, it is expected that DNA sequence polymorphisms that do lead to changes in the amino acid sequences of the subject proteins will exist among mammalian cells. One skilled in the art will appreciate that these variations in one or more nucleotides (up to about 3-5% of the nucleotides) of the nucleic acids encoding a particular protein may exist among individuals of a given species due to natural allelic variation. Any and all such nucleotide variations and resulting amino acid polymorphisms are within the scope of this disclosure.

In certain embodiments, the recombinant nucleic acids of the disclosure may be operably linked to one or more regulatory nucleotide sequences in an expression construct. Regulatory nucleotide sequences will generally be appropriate to the host cell used for expression. Numerous types of appropriate expression vectors and suitable regulatory sequences are known in the art for a variety of host cells. Typically, said one or more regulatory nucleotide sequences may include, but are not limited to, promoter sequences, leader or signal sequences, ribosomal binding sites, transcriptional start and termination sequences, translational start and termination sequences, and enhancer or activator sequences. Constitutive or inducible promoters as known in the art are contemplated by the disclosure. The promoters may be either naturally occurring promoters, or hybrid promoters that combine elements of more than one promoter. An expression construct may be present in a cell on an episome, such as a plasmid, or the expression construct may be inserted in a chromosome. In a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selectable marker genes are well known in the art and will vary with the host cell used.

In certain aspects disclosed herein, the subject nucleic acid is provided in an expression vector comprising a nucleotide sequence encoding an ENG polypeptide and operably linked to at least one regulatory sequence. Regulatory sequences are art-recognized and are selected to direct expression of the ENG polypeptide. Accordingly, 5 the term regulatory sequence includes promoters, enhancers, and other expression control elements. Exemplary regulatory sequences are described in Goeddel; *Gene Expression Technology: Methods in Enzymology*, Academic Press, San Diego, CA (1990). For instance, any of a wide variety of expression control sequences that control the expression of a DNA sequence when operatively linked to it may be used in these vectors 10 to express DNA sequences encoding an ENG polypeptide. Such useful expression control sequences, include, for example, the early and late promoters of SV40, tet promoter, adenovirus or cytomegalovirus immediate early promoter, RSV promoters, the lac system, the trp system, the TAC or TRC system, T7 promoter whose expression is directed by T7 RNA polymerase, the major operator and promoter regions of phage 15 lambda, the control regions for fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase, e.g., Pho5, the promoters of the yeast α -mating factors, the polyhedron promoter of the baculovirus system and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and various combinations thereof. It should be 20 understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed. Moreover, the vector's copy number, the ability to control that copy number and the expression of any other protein encoded by the vector, such as antibiotic markers, should also be considered.

25 A recombinant nucleic acid included in the disclosure can be produced by ligating the cloned gene, or a portion thereof, into a vector suitable for expression in either prokaryotic cells, eukaryotic cells (yeast, avian, insect or mammalian), or both. Expression vehicles for production of a recombinant ENG polypeptide include plasmids and other vectors. For instance, suitable vectors include plasmids of the types: pBR322- 30 derived plasmids, pEMBL-derived plasmids, pEX-derived plasmids, pBTac-derived plasmids and pUC-derived plasmids for expression in prokaryotic cells, such as *E. coli*.

Some mammalian expression vectors contain both prokaryotic sequences to facilitate the propagation of the vector in bacteria, and one or more eukaryotic transcription units that are expressed in eukaryotic cells. The pcDNA1/amp, pcDNA1/neo, pRc/CMV, pSV2gpt, pSV2neo, pSV2-dhfr, pTk2, pRSVneo, pMSG, 5 pSVT7, pko-neo and pHyg derived vectors are examples of mammalian expression vectors suitable for transfection of eukaryotic cells. Some of these vectors are modified with sequences from bacterial plasmids, such as pBR322, to facilitate replication and drug resistance selection in both prokaryotic and eukaryotic cells. Alternatively, derivatives of viruses such as the bovine papilloma virus (BPV-1), or Epstein-Barr virus 10 (pHEBo, pREP-derived and p205) can be used for transient expression of proteins in eukaryotic cells. Examples of other viral (including retroviral) expression systems can be found below in the description of gene therapy delivery systems. The various methods employed in the preparation of the plasmids and in transformation of host organisms are well known in the art. For other suitable expression systems for both prokaryotic and 15 eukaryotic cells, as well as general recombinant procedures, see *Molecular Cloning A Laboratory Manual*, 3rd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press, 2001). In some instances, it may be desirable to express the recombinant polypeptides by the use of a baculovirus expression system. Examples of such baculovirus expression systems include pVL-derived vectors (such as pVL1392, 20 pVL1393 and pVL941), pAcUW-derived vectors (such as pAcUW1), and pBlueBac-derived vectors (such as the β-gal containing pBlueBac III).

In a preferred embodiment, a vector will be designed for production of the subject ENG polypeptides in CHO cells, such as a Pcmv-Script vector (Stratagene, La Jolla, Calif.), pcDNA4 vectors (Invitrogen, Carlsbad, Calif.) and pCI-neo vectors (Promega, 25 Madison, Wisc.). As will be apparent, the subject gene constructs can be used to cause expression of the subject ENG polypeptides in cells propagated in culture, e.g., to produce proteins, including fusion proteins or variant proteins, for purification.

This disclosure also pertains to a host cell transfected with a recombinant gene including a coding sequence (e.g., SEQ ID NOs: 24, 26, 28, or 30) for one or more of the 30 subject ENG polypeptides. The host cell may be any prokaryotic or eukaryotic cell. For example, an ENG polypeptide disclosed herein may be expressed in bacterial cells such

as *E. coli*, insect cells (e.g., using a baculovirus expression system), yeast, or mammalian cells. Other suitable host cells are known to those skilled in the art.

Accordingly, the present disclosure further pertains to methods of producing the subject ENG polypeptides. For example, a host cell transfected with an expression vector 5 encoding an ENG polypeptide can be cultured under appropriate conditions to allow expression of the ENG polypeptide to occur. The ENG polypeptide may be secreted and isolated from a mixture of cells and medium containing the ENG polypeptide. Alternatively, the ENG polypeptide may be retained cytoplasmically or in a membrane fraction and the cells harvested, lysed and the protein isolated. A cell culture includes 10 host cells, media and other byproducts. Suitable media for cell culture are well known in the art. The subject ENG polypeptides can be isolated from cell culture medium, host cells, or both, using techniques known in the art for purifying proteins, including ion-exchange chromatography, gel filtration chromatography, ultrafiltration, electrophoresis, immunoaffinity purification with antibodies specific for particular epitopes of the ENG 15 polypeptides and affinity purification with an agent that binds to a domain fused to the ENG polypeptide (e.g., a protein A column may be used to purify an ENG-Fc fusion). In a preferred embodiment, the ENG polypeptide is a fusion protein containing a domain which facilitates its purification. As an example, purification may be achieved by a series of column chromatography steps, including, for example, three or more of the following, 20 in any order: protein A chromatography, Q sepharose chromatography, phenylsepharose chromatography, size exclusion chromatography, and cation exchange chromatography. The purification could be completed with viral filtration and buffer exchange.

In another embodiment, a fusion gene coding for a purification leader sequence, such as a poly-(His)/enterokinase cleavage site sequence at the N-terminus of the desired 25 portion of the recombinant ENG polypeptide, can allow purification of the expressed fusion protein by affinity chromatography using a Ni²⁺ metal resin. The purification leader sequence can then be subsequently removed by treatment with enterokinase to provide the purified ENG polypeptide (e.g., see Hochuli et al., (1987) *J. Chromatography* 411:177; and Janknecht et al., *PNAS USA* 88:8972).

Techniques for making fusion genes are well known. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, 5 filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene 10 fragments which can subsequently be annealed to generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel et al., John Wiley & Sons: 1992).

Examples of categories of nucleic acid compounds that are antagonists of ENG, BMP-9, or BMP-10 include antisense nucleic acids, RNAi constructs and catalytic 15 nucleic acid constructs. A nucleic acid compound may be single or double stranded. A double stranded compound may also include regions of overhang or non-complementarity, where one or the other of the strands is single stranded. A single stranded compound may include regions of self-complementarity, meaning that the compound forms a so-called “hairpin” or “stem-loop” structure, with a region of double 20 helical structure. A nucleic acid compound may comprise a nucleotide sequence that is complementary to a region consisting of no more than 1000, no more than 500, no more than 250, no more than 100 or no more than 50, 35, 30, 25, 22, 20 or 18 nucleotides of the full-length ENG nucleic acid sequence or ligand nucleic acid sequence. The region of complementarity will preferably be at least 8 nucleotides, and optionally at least 10 or at 25 least 15 nucleotides, and optionally between 15 and 25 nucleotides. A region of complementarity may fall within an intron, a coding sequence, or a noncoding sequence of the target transcript, such as the coding sequence portion. Generally, a nucleic acid compound will have a length of about 8 to about 500 nucleotides or base pairs in length, and optionally the length will be about 14 to about 50 nucleotides. A nucleic acid may be 30 a DNA (particularly for use as an antisense), RNA, or RNA:DNA hybrid. Any one strand may include a mixture of DNA and RNA, as well as modified forms that cannot

readily be classified as either DNA or RNA. Likewise, a double stranded compound may be DNA:DNA, DNA:RNA or RNA:RNA, and any one strand may also include a mixture of DNA and RNA, as well as modified forms that cannot readily be classified as either DNA or RNA. A nucleic acid compound may include any of a variety of modifications, 5 including one or modifications to the backbone (the sugar-phosphate portion in a natural nucleic acid, including internucleotide linkages) or the base portion (the purine or pyrimidine portion of a natural nucleic acid). An antisense nucleic acid compound will preferably have a length of about 15 to about 30 nucleotides and will often contain one or more modifications to improve characteristics such as stability in the serum, in a cell or in 10 a place where the compound is likely to be delivered, such as the stomach in the case of orally delivered compounds and the lung for inhaled compounds. In the case of an RNAi construct, the strand complementary to the target transcript will generally be RNA or modifications thereof. The other strand may be RNA, DNA, or any other variation. The duplex portion of double stranded or single stranded "hairpin" RNAi construct will 15 preferably have a length of 18 to 40 nucleotides in length and optionally about 21 to 23 nucleotides in length, so long as it serves as a Dicer substrate. Catalytic or enzymatic nucleic acids may be ribozymes or DNA enzymes and may also contain modified forms. Nucleic acid compounds may inhibit expression of the target by about 50%, 75%, 90%, or more when contacted with cells under physiological conditions and at a concentration 20 where a nonsense or sense control has little or no effect. Preferred concentrations for testing the effect of nucleic acid compounds are 1, 5 and 10 micromolar. Nucleic acid compounds may also be tested for effects on, for example, angiogenesis.

4. Alterations in Fc-fusion proteins

25 The application further provides ENG-Fc fusion proteins with engineered or variant Fc regions. Such antibodies and Fc fusion proteins may be useful, for example, in modulating effector functions, such as, antigen-dependent cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Additionally, the modifications may improve the stability of the antibodies and Fc fusion proteins. Amino acid sequence 30 variants of the antibodies and Fc fusion proteins are prepared by introducing appropriate nucleotide changes into the DNA, or by peptide synthesis. Such variants include, for

example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the antibodies and Fc fusion proteins disclosed herein. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The 5 amino acid changes also may alter post-translational processes of the antibodies and Fc fusion proteins, such as changing the number or position of glycosylation sites.

Antibodies and Fc fusion proteins with reduced effector function may be produced by introducing changes in the amino acid sequence, including, but are not limited to, the Ala-Ala mutation described by Bluestone et al. (see WO 94/28027 and 10 WO 98/47531; also see Xu et al. 2000 Cell Immunol 200; 16-26). Thus in certain embodiments, antibodies and Fc fusion proteins of the disclosure with mutations within the constant region including the Ala-Ala mutation may be used to reduce or abolish effector function. According to these embodiments, antibodies and Fc fusion proteins may comprise a mutation to an alanine at position 234 or a mutation to an alanine at 15 position 235, or a combination thereof. In one embodiment, the antibody or Fc fusion protein comprises an IgG4 framework, wherein the Ala-Ala mutation would describe a mutation(s) from phenylalanine to alanine at position 234 and/or a mutation from leucine to alanine at position 235. In another embodiment, the antibody or Fc fusion protein comprises an IgG1 framework, wherein the Ala-Ala mutation would describe a mutation(s) from leucine to alanine at position 234 and/or a mutation from leucine to 20 alanine at position 235. The antibody or Fc fusion protein may alternatively or additionally carry other mutations, including the point mutation K322A in the CH2 domain (Hezareh et al. 2001 J Virol. 75: 12161-8).

In particular embodiments, the antibody or Fc fusion protein may be modified to 25 either enhance or inhibit complement dependent cytotoxicity (CDC). Modulated CDC activity may be achieved by introducing one or more amino acid substitutions, insertions, or deletions in an Fc region (see, e.g., U.S. Pat. No. 6,194,551). Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus 30 generated may have improved or reduced internalization capability and/or increased or decreased complement-mediated cell killing. See Caron et al., J. Exp Med. 176:1191-

1195 (1992) and Shope, B. J. Immunol. 148:2918-2922 (1992), WO99/51642, Duncan & Winter Nature 322: 738-40 (1988); U.S. Pat. No. 5,648,260; U.S. Pat. No. 5,624,821; and WO94/29351.

5 5. Therapeutic Uses

The disclosure provides methods and compositions for treating or preventing conditions of dysregulated angiogenesis, including both neoplastic and non-neoplastic disorders. Also provided are methods and compositions for treating or preventing certain cardiovascular disorders. In addition, the disclosure provides methods and compositions 10 for treating or preventing fibrotic disorders and conditions. In addition the disclosure provides methods for treating disorders associated with BMP9 and/or BMP10 activity.

The disclosure provides methods of inhibiting angiogenesis in a mammal by administering to a subject an effective amount of a an ENG polypeptide, including an ENG-Fc fusion protein or nucleic acid antagonists (e.g., antisense or siRNA) of the 15 foregoing, hereafter collectively referred to as "therapeutic agents". The data presented indicate specifically that the anti-angiogenic therapeutic agents disclosed herein may be used to inhibit tumor-associated angiogenesis. It is expected that these therapeutic agents will also be useful in inhibiting angiogenesis in the eye.

Angiogenesis-associated diseases include, but are not limited to, angiogenesis-dependent cancer, including, for example, solid tumors, blood born tumors such as 20 leukemias, and tumor metastases; benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; rheumatoid arthritis; psoriasis; rubeosis; Osler-Webber Syndrome; myocardial angiogenesis; plaque neovascularization; telangiectasia; hemophiliac joints; and angiofibroma.

In particular, polypeptide therapeutic agents of the present disclosure are useful 25 for treating or preventing a cancer (tumor), and particularly such cancers as are known to rely on angiogenic processes to support growth. Unlike most anti-angiogenic agents, ENG polypeptides affect angiogenesis induced by multiple factors. This is highly relevant in cancers, where a cancer will frequently acquire multiple factors that support tumor angiogenesis. Thus, the therapeutic agents disclosed herein will be particularly 30 effective in treating tumors that are resistant to treatment with a drug that targets a single

angiogenic factor (e.g., bevacizumab, which targets VEGF), and may also be particularly effective in combination with other anti-angiogenic compounds that work by a different mechanism.

Dysregulation of angiogenesis can lead to many disorders that can be treated by compositions and methods of the invention. These disorders include both neoplastic and non-neoplastic conditions. The terms "cancer" and "cancerous" refer to, or describe, the physiological condition in mammals that is typically characterized by unregulated cell growth/proliferation. Examples of cancer, or neoplastic disorders, include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, gastric cancer, melanoma, and various types of head and neck cancer, including squamous cell head and neck cancer. Other examples of neoplastic disorders and related conditions include esophageal carcinomas, thecomas, arrhenoblastomas, endometrial hyperplasia, endometriosis, fibrosarcomas, choriocarcinoma, nasopharyngeal carcinoma, laryngeal carcinomas, hepatoblastoma, Kaposi's sarcoma, skin carcinomas, hemangioma, cavernous hemangioma, hemangioblastoma, retinoblastoma, astrocytoma, glioblastoma, Schwannoma, oligodendrogloma, medulloblastoma, neuroblastomas, rhabdomyosarcoma, osteogenic sarcoma, leiomyosarcomas, urinary tract carcinomas, Wilm's tumor, renal cell carcinoma, prostate carcinoma, abnormal vascular proliferation associated with phakomatoses, and Meigs' syndrome. A cancer that is particularly amenable to treatment with the therapeutic agents described herein may be characterized by one or more of the following: the cancer has angiogenic activity, elevated ENG levels detectable in the tumor or the serum, increased BMP-9 or BMP-10 expression levels or biological activity, is metastatic or at risk of becoming metastatic, or any combination thereof.

Non-neoplastic disorders with dysregulated angiogenesis that are amenable to treatment with ENG polypeptides useful in the invention include, but are not limited to, undesired or aberrant hypertrophy, arthritis, rheumatoid arthritis, psoriasis, psoriatic plaques, sarcoidosis, atherosclerosis, atherosclerotic plaques, diabetic and other

5 proliferative retinopathies including retinopathy of prematurity, retrothalental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinal/choroidal neovascularization, neovascularization of the angle (rubeosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM),

10 meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, chronic inflammation, lung inflammation, acute lung injury/ ARDS, sepsis, primary pulmonary hypertension, malignant pulmonary effusions, cerebral edema (e.g., associated with acute stroke/ closed head injury/ trauma), synovial inflammation, pannus formation in RA, myositis

15 ossificans, hypertrophic bone formation, osteoarthritis, refractory ascites, polycystic ovarian disease, endometriosis, 3rd spacing of fluid diseases (pancreatitis, compartment syndrome, burns, bowel disease), uterine fibroids, premature labor, chronic inflammation such as IBD (Crohn's disease and ulcerative colitis), renal allograft rejection, inflammatory bowel disease, nephrotic syndrome, undesired or aberrant tissue mass

20 growth (non-cancer), hemophilic joints, hypertrophic scars, inhibition of hair growth, Osler-Weber syndrome, pyogenic granuloma retrothalental fibroplasias, scleroderma, trachoma, vascular adhesions, synovitis, dermatitis, preeclampsia, ascites, pericardial effusion (such as that associated with pericarditis), and pleural effusion. Further examples of such disorders include an epithelial or cardiac disorder.

25 In certain embodiments of such methods, one or more polypeptide therapeutic agents can be administered, together (simultaneously) or at different times (sequentially). In addition, polypeptide therapeutic agents can be administered with another type of compounds for treating cancer or for inhibiting angiogenesis.

In certain embodiments, the subject methods of the disclosure can be used alone.

30 Alternatively, the subject methods may be used in combination with other conventional

anti-cancer therapeutic approaches directed to treatment or prevention of proliferative disorders (e.g., tumor). For example, such methods can be used in prophylactic cancer prevention, prevention of cancer recurrence and metastases after surgery, and as an adjuvant of other conventional cancer therapy. The present disclosure recognizes that the 5 effectiveness of conventional cancer therapies (e.g., chemotherapy, radiation therapy, phototherapy, immunotherapy, and surgery) can be enhanced through the use of a subject polypeptide therapeutic agent.

A wide array of conventional compounds have been shown to have anti-neoplastic activities. These compounds have been used as pharmaceutical agents in 10 chemotherapy to shrink solid tumors, prevent metastases and further growth, or decrease the number of malignant cells in leukemic or bone marrow malignancies. Although chemotherapy has been effective in treating various types of malignancies, many anti-neoplastic compounds induce undesirable side effects. It has been shown that when two or more different treatments are combined, the treatments may work synergistically and 15 allow reduction of dosage of each of the treatments, thereby reducing the detrimental side effects exerted by each compound at higher dosages. In other instances, malignancies that are refractory to a treatment may respond to a combination therapy of two or more different treatments.

When a therapeutic agent disclosed herein is administered in combination with 20 another conventional anti-neoplastic agent, either concomitantly or sequentially, such therapeutic agent may enhance the therapeutic effect of the anti-neoplastic agent or overcome cellular resistance to such anti-neoplastic agent. This allows decrease of dosage of an anti-neoplastic agent, thereby reducing the undesirable side effects, or restores the effectiveness of an anti-neoplastic agent in resistant cells.

25 According to the present disclosure, the antiangiogenic agents described herein may be used in combination with other compositions and procedures for the treatment of diseases. For example, a tumor may be treated conventionally with surgery, radiation or chemotherapy combined with the ENG polypeptide, and then the ENG polypeptide may be subsequently administered to the patient to extend the dormancy of micrometastases 30 and to stabilize any residual primary tumor.

Many anti-angiogenesis agents have been identified and are known in the arts, including those listed herein and, e.g., listed by Carmeliet and Jain, *Nature* 407:249-257 (2000); Ferrara et al., *Nature Reviews:Drug Discovery*, 3:391- 400 (2004); and Sato Int. *J. Clin. Oncol.*, 8:200-206 (2003). See also, US Patent Application US20030055006. In 5 one embodiment, an ENG polypeptide is used in combination with an anti-VEGF neutralizing antibody (or fragment) and/or another VEGF antagonist or a VEGF receptor antagonist including, but not limited to, for example, soluble VEGF receptor (e.g., VEGFR-1, VEGFR-2, VEGFR-3, neuropillins (e.g., NRPI, NRP2)) fragments, aptamers capable of blocking VEGF or VEGFR, neutralizing anti-VEGFR antibodies, low 10 molecule weight inhibitors of VEGFR tyrosine kinases (RTK), antisense strategies for VEGF, ribozymes against VEGF or VEGF receptors, antagonist variants of VEGF; and any combinations thereof. Alternatively, or additionally, two or more angiogenesis inhibitors may optionally be co-administered to the patient in addition to VEGF antagonist and other agent. In certain embodiment, one or more additional therapeutic 15 agents, e.g., anti-cancer agents, can be administered in combination with an ENG polypeptide, the VEGF antagonist, and an anti-angiogenesis agent.

The terms "VEGF" and "VEGF-A" are used interchangeably to refer to the 165-amino acid vascular endothelial cell growth factor and related 121-, 145-, 183-, 189-, and 206- amino acid vascular endothelial cell growth factors, as described by Leung et al. 20 *Science*, 246:1306 (1989), Houck et al. *Mol Endocrinol*, 5:1806 (1991), and, Robinson & Stringer, *J Cell Sci*, 144(5):853-865 (2001), together with the naturally occurring allelic and processed forms thereof.

A "VEGF antagonist" refers to a molecule capable of neutralizing, blocking, inhibiting, abrogating, reducing or interfering with VEGF activities including its binding 25 to one or more VEGF receptors. VEGF antagonists include anti-VEGF antibodies and antigen-binding fragments thereof, receptor molecules and derivatives which bind specifically to VEGF thereby sequestering its binding to one or more receptors, anti-VEGF receptor antibodies and VEGF receptor antagonists such as small molecule inhibitors of the VEGFR tyrosine kinases, and fusions proteins, e.g., VEGF-Trap 30 (Regeneron), VEGF121-gelonin (Peregrine). VEGF antagonists also include antagonist

variants of VEGF, antisense molecules directed to VEGF, RNA aptamers, and ribozymes against VEGF or VEGF receptors.

An "anti-VEGF antibody" is an antibody that binds to VEGF with sufficient affinity and specificity. The anti-VEGF antibody can be used as a therapeutic agent in targeting and interfering with diseases or conditions wherein the VEGF activity is involved. See, e.g., U.S. Patents 6,582,959, 6,703,020; WO98/45332; WO 96/30046; WO94/10202, WO2005/044853; ; EP 0666868B1; US Patent Applications 20030206899, 20030190317, 20030203409, 20050112126, 20050186208, and 20050112126; Popkov et al, *Journal of Immunological Methods* 288:149-164 (2004); and WO2005012359. An anti-VEGF antibody will usually not bind to other VEGF homologues such as VEGF-B or VEGF-C, nor other growth factors such as PIGF, PDGF or bFGF. The anti-VEGF antibody "Bevacizumab (BV)", also known as "rhuMAb VEGF" or "Avastin®", is a recombinant humanized anti-VEGF monoclonal antibody generated according to Presta et al. *Cancer Res.* 57:4593-4599 (1997). It comprises mutated human IgG1 framework regions and antigen-binding complementarity-determining regions from the murine anti-hVEGF monoclonal antibody A.4.6.1 that blocks binding of human VEGF to its receptors. Approximately 93% of the amino acid sequence of Bevacizumab, including most of the framework regions, is derived from human IgG1, and about 7% of the sequence is derived from the murine antibody A4.6.1. Bevacizumab has a molecular mass of about 149,000 daltons and is glycosylated. Bevacizumab and other humanized anti-VEGF antibodies, including the anti-VEGF antibody fragment "ranibizumab", also known as "Lucentis®", are further described in U.S. Pat. No. 6,884,879 issued February 26, 2005.

The term "anti-neoplastic composition" refers to a composition useful in treating cancer comprising at least one active therapeutic agent, e.g., "anti-cancer agent". Examples of therapeutic agents (anti-cancer agents, also termed "anti-neoplastic agent" herein) include, but are not limited to, e.g., chemotherapeutic agents, growth inhibitory agents, cytotoxic agents, agents used in radiation therapy, anti-angiogenesis agents, apoptotic agents, anti-tubulin agents, toxins, and other-agents to treat cancer, e.g., anti-VEGF neutralizing antibody, VEGF antagonist, anti-HER-2, anti-CD20, an epidermal

growth factor receptor (EGFR) antagonist (e.g., a tyrosine kinase inhibitor), HER1/EGFR inhibitor, erlotinib, a COX-2 inhibitor (e.g., celecoxib), interferons, cytokines, antagonists (e.g., neutralizing antibodies) that bind to one or more of the ErbB2, ErbB3, ErbB4, or VEGF receptor(s), inhibitors for receptor tyrosine kinases for platelet-derived 5 growth factor (PDGF) and/or stem cell factor (SCF) (e.g., imatinib mesylate (Gleevec ® Novartis)), TRAIL/ Apo2L, and other bioactive and organic chemical agents, etc.

An "angiogenic factor or agent" is a growth factor which stimulates the development of blood vessels, e.g., promotes angiogenesis, endothelial cell growth, stability of blood vessels, and/or vasculogenesis, etc. For example, angiogenic factors, 10 include, but are not limited to, e.g., VEGF and members of the VEGF family, PIGF, PDGF family, fibroblast growth factor family (FGFs), TIE ligands (Angiopoietins), ephrins, ANGPTL3, ALK-1, etc. It would also include factors that accelerate wound healing, such as growth hormone, insulin-like growth factor-I (IGF-I), VIGF, epidermal growth factor (EGF), CTGF and members of its family, and TGF- α and TGF- β . See, 15 e.g., Klagsbrun and D'Amore, *Annu. Rev. Physiol.*, 53:217-39 (1991); Streit and Detmar, *Oncogene*, 22:3172-3179 (2003); Ferrara & Alitalo, *Nature Medicine* 5(12): 1359-1364 (1999); Tonini et al., *Oncogene*, 22:6549-6556 (2003) (e.g., Table 1 listing angiogenic factors); and, Sato *Int. J. Clin. Oncol.*, 8:200-206 (2003).

An "anti-angiogenesis agent" or "angiogenesis inhibitor" refers to a small 20 molecular weight substance, a polynucleotide (including, e.g., an inhibitory RNA (RNAi or siRNA)), a polypeptide, an isolated protein, a recombinant protein, an antibody, or conjugates or fusion proteins thereof, that inhibits angiogenesis, vasculogenesis, or undesirable vascular permeability, either directly or indirectly. For example, an anti-angiogenesis agent is an antibody or other antagonist to an angiogenic agent as defined above, e.g., antibodies to VEGF, antibodies to VEGF receptors, small molecules that 25 block VEGF receptor signaling (e.g., PTK787/ZK2284, SU6668, SUTENT®/SU 11248 (sunitinib malate), AMG706, or those described in, e.g., international patent application WO 2004/113304). Anti-angiogenesis agents also include native angiogenesis inhibitors, e.g., angiostatin, endostatin, etc. See, e.g., Klagsbrun and D'Amore, *Annu. Rev. Physiol.*, 30 53:217-39 (1991); Streit and Detmar, *Oncogene*, 22:3172-3179 (2003) (e.g., Table 3

listing anti-angiogenic therapy in malignant melanoma); Ferrara & Alitalo, *Nat Med* 5(12): 1359-1364 (1999); Tonini et al, *Oncogene*, 22:6549-6556 (2003) (e.g., Table 2 listing antiangiogenic factors); and, Sato *Int. J. Clin. Oncol.*, 8:200-206 (2003) (e.g., Table 1 lists Anti-angiogenesis agents used in clinical trials).

5 In certain aspects of the invention, other therapeutic agents useful for combination tumor therapy with an ENG polypeptide include other cancer therapies: e.g., surgery, cytotoxic agents, radiological treatments involving irradiation or administration of radioactive substances, chemotherapeutic agents, anti-hormonal agents, growth inhibitory agents, anti-neoplastic compositions, and treatment with anti-cancer agents listed herein
10 and known in the art, or combinations thereof.

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., At²¹¹, I¹³¹, I¹²⁵, Y⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi²¹², P³² and radioactive isotopes of Lu), chemotherapeutic agents e.g. methotrexate, adriamycin, vinca
15 alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents, enzymes and fragments thereof such as nucleolytic enzymes, antibiotics, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof, and the various antitumor or anticancer agents
20 disclosed below. Other cytotoxic agents are described below. A tumoricidal agent causes destruction of tumor cells.

A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN® cyclophosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide and trimethylololomelamine; acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARINOL®); beta-lapachone; lapachol; colchicines; betulinic acid; a

camptothecin (including the synthetic analogue topotecan (HYCAMTIN®), CPT-11 (irinotecan, CAMPTOSAR®), acetylcamptothecin, scopolectin, and 9-aminocamptothecin); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); podophyllotoxin; podophyllinic acid; 5 teniposide; cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CBI-TMI); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, 10 prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimustine; antibiotics such as the enedyne antibiotics (e. g., calicheamicin, especially calicheamicin gammall and calicheamicin omegall (see, e.g., Agnew, Chem Intl. Ed. Engl., 33: 183-186 (1994)); dynemicin, including dynemicin A; an esperamicin; as well as neocarzinostatin 15 chromophore and related chromoprotein enedyne antibiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and 20 deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, 25 trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprime, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as 30 frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone;

elfornithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; 2-ethylhydrazide; procarbazine; PSK® polysaccharide complex (JHS Natural Products, 5 Eugene, OR); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2',2"-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine (ELDISINE®, FILDESIN®); dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); thiotepa; taxoids, e.g., TAXOL® paclitaxel (Bristol-Myers 10 Squibb Oncology, Princeton, N.J.), ABRAXANE™ Cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, Illinois), and TAXOTERE® doxetaxel (Rhône-Poulenc Rorer, Antony, France); chlorambucil; gemcitabine (GEMZAR®); 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine 15 (VELBAN®); platinum; etoposide (VP- 16); ifosfamide; mitoxantrone; vincristine (ONCOVIN®); oxaliplatin; leucovovin; vinorelbine (NAVELBINE®); novantrone; edatrexate; daunomycin; aminopterin; ibandronate; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as retinoic acid; capecitabine (XELODA®); pharmaceutically acceptable salts, acids or derivatives of any of the above; 20 as well as combinations of two or more of the above such as CHOP, an abbreviation for a combined therapy of cyclophosphamide, doxorubicin, vincristine, and prednisolone, and FOLFOX, an abbreviation for a treatment regimen with oxaliplatin (ELOXATINTM) combined with 5 -FU and leucovovin.

Also included in this definition are anti-hormonal agents that act to regulate, 25 reduce, block, or inhibit the effects of hormones that can promote the growth of cancer, and are often in the form of systemic, or whole-body treatment. They may be hormones themselves. Examples include anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including NOLVADEX® tamoxifen), EVISTA® raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY1 30 17018, onapristone, and FARESTON® toremifene; anti-progesterones; estrogen receptor

down-regulators (ERDs); agents that function to suppress or shut down the ovaries, for example, leutinizing hormone-releasing hormone (LHRH) agonists such as LUPRON® and ELIGARD® leuprolide acetate, goserelin acetate, buserelin acetate and triptorelin; other anti-androgens such as flutamide, nilutamide and bicalutamide; and aromatase

5 inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminoglutethimide, MEGASE® megestrol acetate, AROMASIN® exemestane, formestane, fadrozole, RIVIS OR® vorozole, FEMARA® letrozole, and ARIMIDEX® anastrozole. In addition, such definition of chemotherapeutic agents includes bisphosphonates such as clodronate (for

10 example, BONEFOS® or OSTAC®), DIDROC AL® etidronate, NE-58095, ZOMET A® zoledronic acid/zoledronate, FOSAMAX® alendronate, AREDIA® pamidronate, SKELID® tiludronate, or ACTONEL® risedronate; as well as troxacicabine (a 1,3-dioxolane nucleoside cytosine analog); antisense oligonucleotides, particularly those that inhibit expression of genes in signaling pathways implicated in aberrant cell

15 proliferation, such as, for example, PKC-alpha, Raf, H-Ras, and epidermal growth factor receptor (EGF-R); vaccines such as THERATOPE® vaccine and gene therapy vaccines, for example, ALLOVECTIN® vaccine, LEUVECTIN® vaccine, and VAXID® vaccine; LURTOTECAN® topoisomerase 1 inhibitor; ABARELIX® rmRH; lapatinib ditosylate (an ErbB-2 and EGFR dual tyrosine kinase small-molecule inhibitor also known as

20 GW572016); and pharmaceutically acceptable salts, acids or derivatives of any of the above.

A "growth inhibitory agent" when used herein refers to a compound or composition which inhibits growth of a cell either in vitro or in vivo. Thus, the growth inhibitory agent may be one which significantly reduces the percentage of cells in S phase. Examples of growth inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vincas (vincristine and vinblastine), taxanes, and topoisomerase II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine,

mechllorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in *The Molecular Basis of Cancer*, Mendelsohn and Israel, eds., Chapter 1, entitled "Cell cycle regulation, oncogenes, and antineoplastic drugs" by Murakami et al. (WB Saunders: Philadelphia, 1995), especially p. 13. The taxanes (paclitaxel and docetaxel) are anticancer drugs both derived from the yew tree. Docetaxel (TAXOTERE®, Rhone -Poulenc Rorer), derived from the European yew, is a semisynthetic analogue of paclitaxel (TAXOL®, Bristol-Myers Squibb). Paclitaxel and docetaxel promote the assembly of microtubules from tubulin dimers and stabilize microtubules by preventing depolymerization, which results in the inhibition of mitosis in cells.

Angiogenesis-inhibiting agents can also be given prophylactically to individuals known to be at high risk for developing new or re-current cancers. Accordingly, an aspect of the disclosure encompasses methods for prophylactic prevention of cancer in a subject, comprising administrating to the subject an effective amount of an ENG 15 polypeptide and/or a derivative thereof, or another angiogenesis-inhibiting agent of the present disclosure.

Certain normal physiological processes are also associated with angiogenesis, for example, ovulation, menstruation, and placentation. The angiogenesis inhibiting proteins of the present disclosure are useful in the treatment of disease of excessive or abnormal 20 stimulation of endothelial cells. These diseases include, but are not limited to, intestinal adhesions, atherosclerosis, scleroderma, and hypertrophic scars, i.e., keloids. They are also useful in the treatment of diseases that have angiogenesis as a pathologic consequence such as cat scratch disease (*Rochele minalia quintosa*) and ulcers (*Helicobacter pylori*).

General angiogenesis-inhibiting proteins can be used as birth control agents by reducing or preventing uterine vascularization required for embryo implantation. Thus, the present disclosure provides an effective birth control method when an amount of the inhibitory protein sufficient to prevent embryo implantation is administered to a female. In one aspect of the birth control method, an amount of the inhibiting protein sufficient to 30 block embryo implantation is administered before or after intercourse and fertilization

have occurred, thus providing an effective method of birth control, possibly a "morning after" method. While not wanting to be bound by this statement, it is believed that inhibition of vascularization of the uterine endometrium interferes with implantation of the blastocyst. Similar inhibition of vascularization of the mucosa of the uterine tube

5 interferes with implantation of the blastocyst, preventing occurrence of a tubal pregnancy. Administration methods may include, but are not limited to, pills, injections (intravenous, subcutaneous, intramuscular), suppositories, vaginal sponges, vaginal tampons, and intrauterine devices. It is also believed that administration of angiogenesis inhibiting agents of the present disclosure will interfere with normal enhanced

10 vascularization of the placenta, and also with the development of vessels within a successfully implanted blastocyst and developing embryo and fetus.

In the eye, angiogenesis is associated with, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, and retrolental fibroplasias. The therapeutic agents disclosed herein may be

15 administered intra-ocularly or by other local administration to the eye. Other diseases associated with angiogenesis in the eye include, but are not limited to, epidemic keratoconjunctivitis, vitamin A deficiency, contact lens overwear, atopic keratitis, superior limbic keratitis, pterygium keratitis sicca, sjogrens, acne rosacea, phylectenulosis, syphilis, mycobacteria infections, lipid degeneration, chemical burns,

20 bacterial ulcers, fungal ulcers, herpes simplex infections, herpes zoster infections, protozoan infections, Kaposi sarcoma, Mooren ulcer, Terrien's marginal degeneration, marginal keratolysis, rheumatoid arthritis, systemic lupus, polyarteritis, trauma, Wegeners sarcoidosis, Scleritis, Steven's Johnson disease, periphigoid radial keratotomy, corneal graft rejection, sickle cell anemia, sarcoid, pseudoxanthoma elasticum, Pagets

25 disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uveitis/vitritis, mycobacterial infections, Lyme disease, systemic lupus erythematosis, retinopathy of prematurity, Eales disease, Bechets disease, infections causing a retinitis or choroiditis, presumed ocular histoplasmosis, Bests disease, myopia, optic pits, Stargarts disease, pars planitis, chronic retinal detachment, hyperviscosity syndromes,

30 toxoplasmosis, trauma and post-laser complications. Other diseases include, but are not limited to, diseases associated with rubeosis (neovasculariation of the angle) and diseases

caused by the abnormal proliferation of fibrovascular or fibrous tissue including all forms of proliferative vitreoretinopathy.

Conditions of the eye can be treated or prevented by, e.g., systemic, topical, intraocular injection of a therapeutic agent, or by insertion of a sustained release device 5 that releases a therapeutic agent. A therapeutic agent may be delivered in a pharmaceutically acceptable ophthalmic vehicle, such that the compound is maintained in contact with the ocular surface for a sufficient time period to allow the compound to penetrate the corneal and internal regions of the eye, as for example the anterior chamber, posterior chamber, vitreous body, aqueous humor, vitreous humor, cornea, iris/ciliary, 10 lens, choroid/retina and sclera. The pharmaceutically-acceptable ophthalmic vehicle may, for example, be an ointment, vegetable oil or an encapsulating material. Alternatively, the therapeutic agents of the disclosure may be injected directly into the vitreous and aqueous humour. In a further alternative, the compounds may be administered systemically, such as by intravenous infusion or injection, for treatment of 15 the eye.

One or more therapeutic agents can be administered. The methods of the disclosure also include co-administration with other medicaments that are used to treat conditions of the eye. When administering more than one agent or a combination of agents and medicaments, administration can occur simultaneously or sequentially in time. 20 The therapeutic agents and/or medicaments may be administered by different routes of administration or by the same route of administration. In one embodiment, a therapeutic agent and a medicament are administered together in an ophthalmic pharmaceutical formulation.

In one embodiment, a therapeutic agent is used to treat a disease associated with 25 angiogenesis in the eye by concurrent administration with other medicaments that act to block angiogenesis by pharmacological mechanisms. Medicaments that can be concurrently administered with a therapeutic agent of the disclosure include, but are not limited to, pegaptanib (MacugenTM), ranibizumab (LucentisTM), squalamine lactate (EvizorTM), heparinase, and glucocorticoids (e.g. Triamcinolone). In one embodiment, a 30 method is provided to treat a disease associated with angiogenesis is treated by

administering an ophthalmic pharmaceutical formulation containing at least one therapeutic agent disclosed herein and at least one of the following medicaments: pegaptanib (MacugenTM), ranibizumab (LucentisTM), squalamine lactate (EvizorTM), heparinase, and glucocorticoids (e.g. Triamcinolone).

5 In other embodiments, ENG polypeptides can be used to treat a patient who suffers from a cardiovascular disorder or condition associated with BMP-9 or BMP-10 but not necessarily accompanied by angiogenesis. Exemplary disorders of this kind include, but are not limited to, heart disease (including myocardial disease, myocardial infarct, angina pectoris, and heart valve disease); renal disease (including chronic 10 glomerular inflammation, diabetic renal failure, and lupus-related renal inflammation); disorders of blood pressure (including systemic and pulmonary types); disorders associated with atherosclerosis or other types of arteriosclerosis (including stroke, cerebral hemorrhage, subarachnoid hemorrhage, angina pectoris, and renal arteriosclerosis); thrombotic disorders (including cerebral thrombosis, pulmonary 15 thrombosis, thrombotic intestinal necrosis); complications of diabetes (including diabetes-related retinal disease, cataracts, diabetes-related renal disease, diabetes-related neuropathology, diabetes-related gangrene, and diabetes-related chronic infection); vascular inflammatory disorders (systemic lupus erythematosus, joint rheumatism, joint arterial inflammation, large-cell arterial inflammation, Kawasaki disease, Takayasu 20 arteritis, Churg-Strauss syndrome, and Henoch-Schoenlein pupura); and cardiac disorders such as congenital heart disease, cardiomyopathy (e.g., dilated, hypertrophic, restrictive cardiomyopathy), and congestive heart failure. The ENG polypeptide can be administered to the subject alone, or in combination with one or more agents or therapeutic modalities, e.g., therapeutic agents, which are useful for treating BMP-9/10 25 associated cardiovascular disorders and/or conditions. In one embodiment, the second agent or therapeutic modality is chosen from one or more of: angioplasty, beta blockers, anti-hypertensives, cardiotonics, anti-thrombotics, vasodilators, hormone antagonists, endothelin antagonists, calcium channel blockers, phosphodiesterase inhibitors, angiotensin type 2 antagonists and/or cytokine blockers/inhibitors.

30 In still other embodiments, ENG polypeptides may be useful in the treatment or prevention of fibrosis. As used herein, the term "fibrosis" refers to the aberrant formation

or development of excess fibrous connective tissue by cells in an organ or tissue.

Although processes related to fibrosis can occur as part of normal tissue formation or repair, dysregulation of these processes can lead to altered cellular composition and excess connective tissue deposition that progressively impairs to tissue or organ function.

- 5 The formation of fibrous tissue can result from a reparative or reactive process. Fibrotic disorders or conditions include, but are not limited to, fibroproliferative disorders associated with vascular diseases, such as cardiac disease, cerebral disease, and peripheral vascular disease, as well as tissues and organ systems including the heart, skin, kidney, lung, peritoneum, gut, and liver (as disclosed in, e.g., Wynn, 2004, *Nat Rev* 4:583-594, incorporated herein by reference). Exemplary disorders that can be treated include, but are not limited to, renal fibrosis, including nephropathies associated with injury/fibrosis, e.g., chronic nephropathies associated with diabetes (e.g., diabetic nephropathy), lupus, scleroderma, glomerular nephritis, focal segmental glomerular sclerosis, and IgA nephropathy; lung or pulmonary fibrosis, e.g., idiopathic pulmonary fibrosis, radiation induced fibrosis, chronic obstructive pulmonary disease (COPD), scleroderma, and chronic asthma; gut fibrosis, e.g., scleroderma, and radiation-induced gut fibrosis; liver fibrosis, e.g., cirrhosis, alcohol-induced liver fibrosis, biliary duct injury, primary biliary cirrhosis, infection or viral induced liver fibrosis, congenital hepatic fibrosis and autoimmune hepatitis; and other fibrotic conditions, such as cystic fibrosis, endomyocardial fibrosis, mediastinal fibrosis, pleural fibrosis, sarcoidosis, scleroderma, spinal cord injury/fibrosis, myelofibrosis, vascular restenosis, atherosclerosis, cystic fibrosis of the pancreas and lungs, injection fibrosis (which can occur as a complication of intramuscular injections, especially in children), endomyocardial fibrosis, idiopathic pulmonary fibrosis of the lung, mediastinal fibrosis,
- 10 mylcofibrosis, retroperitoneal fibrosis, progressive massive fibrosis, a complication of coal workers' pneumoconiosis, and nephrogenic systemic fibrosis.
- 15
- 20
- 25

As used herein, the terms "fibrotic disorder", "fibrotic condition," and "fibrotic disease," are used interchangeably to refer to a disorder, condition or disease characterized by fibrosis. Examples of fibrotic disorders include, but are not limited to vascular fibrosis, pulmonary fibrosis (e.g., idiopathic pulmonary fibrosis), pancreatic fibrosis, liver fibrosis (e.g., cirrhosis), renal fibrosis, musculoskeletal fibrosis, cardiac

fibrosis (e.g., endomyocardial fibrosis, idiopathic cardiomyopathy), skin fibrosis (e.g., scleroderma, post-traumatic, operative cutaneous scarring, keloids and cutaneous keloid formation), eye fibrosis (e.g., glaucoma, sclerosis of the eyes, conjunctival and corneal scarring, and pterygium), progressive systemic sclerosis (PSS), chronic graft-versus-host disease, Peyronie's disease, post-cystoscopic urethral stenosis, idiopathic and pharmacologically induced retroperitoneal fibrosis, mediastinal fibrosis, progressive massive fibrosis, proliferative fibrosis, and neoplastic fibrosis.

As used herein, the term "cell" refers to any cell prone to undergoing a fibrotic response, including, but not limited to, individual cells, tissues, and cells within tissues and organs. The term cell, as used herein, includes the cell itself, as well as the extracellular matrix (ECM) surrounding a cell. For example, inhibition of the fibrotic response of a cell, includes, but is not limited to the inhibition of the fibrotic response of one or more cells within the lung (or lung tissue); one or more cells within the liver (or liver tissue); one or more cells within the kidney (or renal tissue); one or more cells within muscle tissue; one or more cells within the heart (or cardiac tissue); one or more cells within the pancreas; one or more cells within the skin; one or more cells within the bone, one or more cells within the vasculature, one or more stem cells, or one or more cells within the eye.

The methods and compositions of the present invention can be used to treat and/or prevent fibrotic disorders. Exemplary types of fibrotic disorders include, but are not limited to, vascular fibrosis, pulmonary fibrosis (e.g., idiopathic pulmonary fibrosis), pancreatic fibrosis, liver fibrosis (e.g., cirrhosis), renal fibrosis, musculoskeletal fibrosis, cardiac fibrosis (e.g., endomyocardial fibrosis, idiopathic cardiomyopathy), skin fibrosis (e.g., scleroderma, post-traumatic, operative cutaneous scarring, keloids and cutaneous keloid formation), eye fibrosis (e.g., glaucoma, sclerosis of the eyes, conjunctival and corneal scarring, and pterygium), progressive systemic sclerosis (PSS), chronic graft versus-host disease, Peyronie's disease, post-cystoscopic urethral stenosis, idiopathic and pharmacologically induced retroperitoneal fibrosis, mediastinal fibrosis, progressive massive fibrosis, proliferative fibrosis, neoplastic fibrosis, Dupuytren's disease, strictures, and radiation induced fibrosis. In a particular embodiment, the fibrotic disorder is not myelofibrosis.

The present invention contemplates the use of ENG polypeptides in combination with one or more other therapeutic modalities. Thus, in addition to the use of ENG polypeptides, one may also administer to the subject one or more "standard" therapies for treating fibrotic disorders. For example, the ENG polypeptides can be administered in combination with (i.e., together with) cytotoxins, immunosuppressive agents, radiotoxic agents, and/or therapeutic antibodies. Particular co-therapeutics contemplated by the present invention include, but are not limited to, steroids (e.g., corticosteroids, such as Prednisone), immune-suppressing and/or anti-inflammatory agents (e.g., gamma-interferon, cyclophosphamide, azathioprine, methotrexate, penicillamine, cyclosporine, colchicines, antithymocyte globulin, mycophenolate mofetil, and hydroxychloroquine), cytotoxic drugs, calcium channel blockers (e.g., nifedipine), angiotensin converting enzyme inhibitors (ACE) inhibitors, para-aminobenzoic acid (PABA), dimethyl sulfoxide, transforming growth factor-beta (TGF- β) inhibitors, interleukin-5 (IL-5) inhibitors, and pan caspase inhibitors.

Additional anti-fibrotic agents that may be used in combination with ENG polypeptides include, but are not limited to, lectins (as described in, for example, U.S. Patent No.: 7,026,283, the entire contents of which is incorporated herein by reference), as well as the anti-fibrotic agents described by Wynn et al (2007, *J Clin Invest* 117:524-529, the entire contents of which is incorporated herein by reference). For example, additional anti-fibrotic agents and therapies include, but are not limited to, various anti-inflammatory/ immunosuppressive/ cytotoxic drugs (including colchicine, azathioprine, cyclophosphamide, prednisone, thalidomide, pentoxifylline and theophylline), TGF- β signaling modifiers (including relaxin, SMAD7, HGF, and BMP7, as well as TGF- β 1, TGF β RI, TGF β RII, EGR-I, and CTGF inhibitors), cytokine and cytokine receptor antagonists (inhibitors of IL-1 β , IL-5, IL-6, IL-13, IL-21, IL-4R, IL-13R α 1, GM-CSF, TNF- α , oncostatin M, WISP-I, and PDGFs), cytokines and chemokines (IFN- γ , IFN- α/β , IL-12, IL-10, HGF, CXCL10, and CXCL11), chemokine antagonists (inhibitors of CXCL1, CXCL2, CXCL12, CCL2, CCL3, CCL6, CCL17, and CCL18), chemokine receptor antagonists (inhibitors of CCR2, CCR3, CCR5, CCR7, CXCR2, and CXCR4), TLR antagonists (inhibitors of TLR3, TLR4, and TLR9), angiogenesis antagonists (VEGF-specific antibodies and adenosine deaminase replacement therapy),

antihypertensive drugs (beta blockers and inhibitors of ANG 11, ACE, and aldosterone), vasoactive substances (ET-1 receptor antagonists and bosetan), inhibitors of the enzymes that synthesize and process collagen (inhibitors of prolyl hydroxylase), B cell antagonists (rituximab), integrin/adhesion molecule antagonists (molecules that block $\alpha 1\beta 1$ and $\alpha v\beta 6$ 5 integrins, as well as inhibitors of integrin-linked kinase, and antibodies specific for ICAM-I and VCAM-I), proapoptotic drugs that target myofibroblasts, MMP inhibitors (inhibitors of MMP2, MMP9, and MMP12), and TIMP inhibitors (antibodies specific for TIMP-1).

The ENG polypeptide and the co-therapeutic agent or co-therapy can be 10 administered in the same formulation or separately. In the case of separate administration, the ENG polypeptide can be administered before, after, or concurrently with the co-therapeutic or co-therapy. One agent may precede or follow administration of the other agent by intervals ranging from minutes to weeks. In embodiments where two or more different kinds of therapeutic agents are applied separately to a subject, one 15 would generally ensure that a significant period of time did not expire between the time of each delivery, such that these different kinds of agents would still be able to exert an advantageously combined effect on the target tissues or cells.

In still other embodiments, ENG polypeptides may be useful in the treatment of inflammatory disorders or conditions likely to be BMP9-related but not already noted 20 above. Exemplary disorders include liver disease (including acute hepatitis, chronic hepatitis, and cirrhosis); thoracic or abdominal edema; chronic pancreatic disease; allergies (including nasal allergy, asthma, bronchitis, and atopic dermatitis); Alzheimer's disease; Raynaud's syndrome; and diffuse sclerosis.

25 6. Formulations and Effective Doses

The therapeutic agents described herein may be formulated into pharmaceutical compositions. Pharmaceutical compositions for use in accordance with the present disclosure may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients. Such formulations will generally be substantially 30 pyrogen free, in compliance with most regulatory requirements.

In certain embodiments, the therapeutic method of the disclosure includes administering the composition systemically, or locally as an implant or device. When administered, the therapeutic composition for use in this disclosure is in a pyrogen-free, physiologically acceptable form. Therapeutically useful agents other than the ENG 5 signaling antagonists which may also optionally be included in the composition as described above, may be administered simultaneously or sequentially with the subject compounds (e.g., ENG polypeptides) in the methods disclosed herein.

Typically, protein therapeutic agents disclosed herein will be administered parentally, and particularly intravenously or subcutaneously. Pharmaceutical 10 compositions suitable for parenteral administration may comprise one or more ENG polypeptides in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which 15 render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents. Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the disclosure include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, 20 such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.

In one embodiment, the ENG polypeptides disclosed herein are administered in an ophthalmic pharmaceutical formulation. In some embodiments, the ophthalmic 25 pharmaceutical formulation is a sterile aqueous solution, preferable of suitable concentration for injection, or a salve or ointment. Such salves or ointments typically comprise one or more ENG polypeptides disclosed herein dissolved or suspended in a sterile pharmaceutically acceptable salve or ointment base, such as a mineral oil-white petrolatum base. In salve or ointment compositions, anhydrous lanolin may also be 30 included in the formulation. Thimerosal or chlorobutanol are also preferably added to such ointment compositions as antimicrobial agents. In one embodiment, the sterile

aqueous solution is as described in U.S. Pat. No. 6,071,958.

The disclosure provides formulations that may be varied to include acids and bases to adjust the pH; and buffering agents to keep the pH within a narrow range. Additional medicaments may be added to the formulation. These include, but are not limited to, pegaptanib, heparinase, ranibizumab, or glucocorticoids. The ophthalmic pharmaceutical formulation according to the disclosure is prepared by aseptic manipulation, or sterilization is performed at a suitable stage of preparation.

The compositions and formulations may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

EXAMPLES:

The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain embodiments and embodiments of the present invention, and are not intended to limit the invention.

20 Example 1: Expression of fusion protein comprising full-length extracellular domain of human ENG

Applicants constructed a soluble endoglin (ENG) fusion protein (hENG(26-586)-hFc) in which the full-length extracellular domain (ECD) of human ENG (**Figure 9**, SEQ ID NO: 9) was attached to a human IgG₁ Fc domain (**Figure 11**, SEQ ID NO: 11) with a minimal linker between these domains. hENG(26-586)-hFc was expressed by transient transfection in HEK 293 cells. In brief, HEK 293 cells were set up in a 500-ml spinner at 6x10⁵ cells/ml in a 250 ml volume of Freestyle media (Invitrogen) and grown overnight. Next day, these cells were treated with DNA:PEI (1:1) complex at 0.5 ug/ml final DNA concentration. After 4 hrs, 250 ml media was added and cells were grown for 7 days. Conditioned media was harvested by spinning down the cells and concentrated. For

expression in CHO cells, ENG polypeptide constructs were transfected into a CHO DUKX B11 cell line. Clones were selected in methotrexate (MTX), typically at an initial concentration of 5 nM or 10 nM, and optionally followed by amplification in 50nM MTX to increase expression. A high expressing clone could be identified by dilution cloning 5 and adapted to serum-free suspension growth to generate conditioned media for purification. Optionally, a ubiquitous chromatin opening element (UCOE) may be included in the vector to facilitate expression. See, e.g., *Cytotechnology*. 2002 Jan;38(1-3):43-6.

Three different leader sequences may be used:

10 (i) Honey bee mellitin (HBML): MKFLVNVALVFMVVYISYIYA (SEQ ID NO: 13)
(ii) Tissue plasminogen activator (TPA): MDAMKRGGLCCVLLCGAVFVSP (SEQ ID NO: 14)
(iii) Native human ENG: MDRGTLPLAVALLASCSLSPTSLA (SEQ ID NO: 15)

The selected form of hENG(26-586)-hFc uses the TPA leader, has the 15 unprocessed amino acid sequence shown in **Figure 13** (SEQ ID NO: 16), and is encoded by the nucleotide sequence shown in **Figure 14** (SEQ ID NO: 17). Applicants also envision an alternative hENG(26-586)-hFc sequence with TPA leader (**Figure 15**, SEQ ID NO: 18) comprising an N-terminally truncated hFc domain (**Figure 12**, SEQ ID NO: 12) attached to hENG(26-586) by a TGGG linker. Purification was achieved using a 20 variety of techniques, including, for example, filtration of conditioned media, followed by protein A chromatography, elution with low-pH (3.0) glycine buffer, sample neutralization, and dialysis against PBS. Purity of samples was evaluated by analytical size-exclusion chromatography, SDS-PAGE, silver staining, and Western blot. Analysis of mature protein confirmed the expected N-terminal sequence.

25

Example 2: Expression of fusion protein comprising full-length extracellular domain of murine ENG

Applicants constructed a soluble murine ENG fusion protein (mENG(27-581)-mFc) in which the full-length extracellular domain of murine ENG (**Figure 10**, SEQ ID

NO: 10) was fused to a murine IgG_{2a} Fc domain with a minimal linkers between these domains. mENG(27-581)-mFc was expressed by transient transfection in HEK 293 cells.

The selected form of mENG(27-581)-mFc uses the TPA leader, has the unprocessed amino acid sequence shown in **Figure 16** (SEQ ID NO: 19), and is encoded 5 by the nucleotide sequence shown in **Figure 17** (SEQ ID NO: 20). Purification was achieved by filtration of conditioned media from transfected HEK 293 cells, followed by protein A chromatography. Purity of samples was evaluated by analytical size-exclusion chromatography, SDS-PAGE, silver staining, and Western blot analysis.

10 **Example 3: Selective binding of BMP-9 / BMP-10 to proteins comprising full-length extracellular ENG domain**

Considered a co-receptor, ENG is widely thought to function by facilitating the binding of TGF- β 1 and -3 to multiprotein complexes of type I and type II receptors. To investigate the possibility of direct ligand binding by isolated ENG, Applicants used 15 surface plasmon resonance (SPR) methodology (BiacoreTM instrument) to screen for binding of captured proteins comprising the full-length extracellular domain of ENG to a variety of soluble human TGF- β family ligands.

Ligand	Construct Binding		
	hENG(26-586)- hFc*	hENG(26-586)**	mENG(27-581)- hFc***
hBMP-2	—	—	—
hBMP-2/7	—	—	—
hBMP-7	—	—	—
hBMP-9	++++	++++	++++
hBMP-10	++++	++++	++++
hTGF- β 1	—	—	—
hTGF- β 2	—	—	—
hTGF- β 3	—	—	—
hActivin A	—	—	—

* [hBMP-9], [hBMP-10] = 2.5 nM; all other ligands tested at 100 nM

20 ** [hBMP-9], [hBMP-10] = 2.5 nM; all other ligands tested at 25 nM

*** [hBMP-9], [hBMP-10] = 0.5 nM; [hTGF- β 1], [hTGF- β 2], [hTGF- β 3] = 10 nM; all other ligands tested at 25 nM

As shown in this table, binding affinity to hENG(26-586)-hFc was high (+++), $K_D < 1$ nM for hBMP-9 and hBMP-10 as evaluated at low ligand concentrations. Even at concentrations 40-fold higher, binding of TGF- β 1, TGF- β 2, TGF- β 3, activin A, BMP-2, and BMP-7 to hENG(26-586)-hFc was undetectable (-). For this latter group of 5 ligands, lack of direct binding to isolated ENG fusion protein is noteworthy because multiprotein complexes of type I and type II receptors have been shown to bind most of them better in the presence of ENG than in its absence. As also shown in the table above, similar results were obtained when ligands were screened for their ability to bind immobilized hENG(26-586) (R&D Systems, catalog #1097-EN), a human variant with 10 no Fc domain, or their ability to bind captured mENG(27-581)-hFc (R&D Systems, catalog #1320-EN), consisting of the extracellular domain of murine ENG (residues 27-581) attached to the Fc domain of human IgG₁ via a six-residue linker sequence 15 (IEGRMD). Characterization by SPR (**Figures 18, 19**) determined that captured hENG(26-586)-hFc binds soluble BMP-9 with a K_D of 29 pM and soluble BMP-10 with a K_D of 400 pM. Thus, selective high-affinity binding of BMP-9 and BMP-10 is a 20 previously unrecognized property of the ENG extracellular domain that is generalizable across species.

Example 4: Soluble extracellular domain of hENG inhibits binding of BMP-9 / 20 BMP-10 to ALK1 and other cognate receptors

BMP-9 and BMP-10 are high-affinity ligands at the type I receptor ALK1 (activin receptor-like kinase 1). An SPR-based assay was used to determine the effect of soluble hENG(26-586) (R&D Systems, catalog #1097-EN) on binding of BMP-9 and BMP-10 to ALK1. ALK1-hFc was captured and then exposed to solutions containing soluble 25 hENG(26-586) premixed with BMP-9 in various ratios. As shown in **Figure 20**, soluble hENG(26-586) inhibited binding of BMP-9 to ALK1-Fc in a concentration-dependent manner with an IC_{50} less than 10 nM. Similar results were obtained with BMP-10 (**Figure 21**). Separate experiments have demonstrated that soluble hENG(26-586) does 30 not bind ALK1 and therefore does not inhibit ligand binding to ALK1 by this mechanism. Indeed, additional SPR-based experiments indicate that soluble hENG(26-

586) binds neither type I receptors ALK2-ALK7 nor type II receptors such as activin receptor IIA, activin receptor IIB, bone morphogenetic protein receptor II, and TGF- β receptor II. These results provide further evidence that ENG inhibits binding of BMP-9 and BMP-10 to ALK1 primarily through a direct interaction with these ligands.

5 Taken together, these data demonstrate that soluble ENG-Fc chimeric proteins as well as non-chimeric soluble ENG can be used as antagonists of BMP-9 and BMP-10 signaling through multiple signaling pathways, including ALK1.

10 **Example 5: Effect of mENG(27-581)-hFc on human umbilical vein endothelial cells (HUVEC) in culture**

Applicants investigated the angiogenic effect of mENG(27-581)-hFc in a HUVEC-based culture system. HUVECs were cultured on a polymerized Matrigel substrate, and the effect of test articles on formation of endothelial-cell tubes (cords) was assessed by phase-contrast microscopy after 12 h exposure. Cords possessing single-cell width and at least three branches were identified visually, and computer-assisted image analysis was used to determine the total length of such cords. Mean values are based on duplicate culture wells per experimental condition, with each well characterized as the average of three fields of observation. Compared to basal conditions (no treatment), the strong inducing agent endothelial cell growth substance (ECCS, 0.2 μ g/ml) doubled 15 mean cord length (**Figure 22**). mENG(27-581)-hFc (R&D Systems, catalog #1320-EN; 10 μ g/ml) cut this increase by nearly 60%, an effect specific for stimulated conditions because the same concentration of mENG(27-581)-hFc had little effect in the absence of ECCS (**Figure 22**). These results demonstrate that ENG-Fc fusion protein can inhibit 20 endothelial cell aggregation under otherwise stimulated conditions in a cell-culture model of angiogenesis.

Example 6: ENG-Fc inhibits VEGF-inducible angiogenesis in a chick chorioallantoic membrane (CAM) assay

A chick chorioallantoic membrane (CAM) assay system was used to investigate effects of ENG-Fc fusion protein on angiogenesis. In brief, nine-day-old fertilized chick embryos were maintained in an egg incubator at controlled temperature (37°C) and humidity (60%). The egg shell was softened with alcohol, punctured with a tiny hole to create a “blister” between the shell membrane and CAM, and removed to create a window overlying prominent blood vessels. Small filter disks were treated with VEGF (50 ng daily) in the presence or absence of mENG(27-581)-hFc protein (R&D Systems, catalog #1320-EN; 14 µg daily) dissolved in buffer (pH 7.4) containing 0.01 M HEPES, 0.5 M NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20, and 0.5 mg/ml bovine serum albumin. Filter disks containing test article were then inserted through the opening and apposed to the CAM. Eggs (n = 8 per group) were treated with fresh test article daily for three days, and on the fourth day the number of blood vessels associated with the filter disk was determined by visual inspection with the assistance of an egg lamp.

As expected, VEGF treatment in the CAM assay system increased the number of blood vessels markedly over that of vehicle. The number of additional blood vessels induced by VEGF treatment was decreased by 65% with concurrent mENG(27-581)-hFc treatment (**Figure 23**). SPR-based studies indicate that VEGF does not bind mENG(27-581)-mFc, and thus effects of mENG(27-581)-hFc on angiogenesis in the present CAM experiment were not due to a direct interaction between the fusion protein and VEGF. The foregoing results indicate that ENG-Fc can significantly inhibit the well-established angiogenic effect of VEGF in an in vivo model without contacting VEGF itself.

25 Example 7: Effect of mENG(27-581)-mFc on angiogenesis in a mouse angioreactor assay

Effects of ENG-Fc fusion protein on angiogenesis were further investigated in a mouse angioreactor assay, also known as a directed in vivo angiogenesis assay (DIVAATM; Guedez et al., 2003, Am J Pathol 162:1431-1439), which was performed according to instructions of the manufacturer (Trevigen[®]). In brief, hollow cylinders

made of implant-grade silicone and closed at one end were filled with 20 μ l of basement membrane extract (BME) premixed with or without a combination of basic fibroblast growth factor (FGF-2, 1.8 g) and VEGF (600 ng). After the BME had gelled, angioreactors were implanted subcutaneously in athymic nude mice (four per mouse).

5 Mice were treated daily with mENG(27-581)-mFc (10 mg/kg, s.c.) or vehicle (Tris-buffered saline) for 11 days, at which time mice were injected with fluorescein isothiocyanate (FITC)-labeled dextran (20 mg/kg, i.v.) and euthanized 20 min later. Angioreactors were removed, and the amount of FITC-dextran contained in each was quantified with a fluorescence plate reader (Infinite® M200, Tecan) at 485 nm excitation / 520 nm emission as an index of blood vessel formation. As shown in **Figure 24**, addition of FGF-2 and VEGF to the BME led to a significant increase in vascularization within the angioreactors at study completion, whereas the concurrent administration of mENG(27-581)-mFc prevented this increase completely. These results obtained in a mammalian system complement those obtained with the CAM assay described above and

10 demonstrate the *in vivo* anti-angiogenic activity of ENG-Fc fusion proteins incorporating a full-length ENG extracellular domain.

15

Example 8: Expression of variants with truncated hENG extracellular domain

Applicants generated soluble ENG fusion proteins in which truncated variants of the human ENG ECD were fused to a human IgG₁ Fc domain with a minimal linker. These variants are listed below, and the structures of selected variants are shown schematically in **Figure 25**.

	Human Construct	Transient Expression	Purified	Stable Expression (CHO Cells)
Full Length	hENG(26-586)-hFc	HEK 293	Yes	Yes
Carboxy-Terminal Truncations	hENG(26-581)-hFc	HEK 293	Yes	No
	hENG(26-437)-hFc	HEK 293	Yes	No
	hENG(26-378)-hFc	HEK 293	Yes	No
	hENG(26-359)-hFc	HEK 293	Yes	Yes
	hENG(26-346)-hFc	HEK 293	Yes	Yes
	hENG(26-332)-hFc	HEK 293	Yes	No

	hENG(26-329)-hFc	HEK 293	Yes	No
	hENG(26-257)-hFc	HEK 293	Yes	No
Amino-Terminal	hENG(360-586)-hFc	HEK 293	Yes	No
Truncations	hENG(438-586)-hFc	HEK 293	Yes	No
Double	hENG(458-586)-hFc	COS	No	No
Truncations	hENG(61-346)-hFc	HEK 293	Yes	No
	hENG(129-346)-hFc	HEK 293	Yes	No
	hENG(133-346)-hFc	HEK 293	Yes	No
	hENG(166-346)-hFc	HEK 293	Yes	No
	hENG(258-346)-hFc	HEK 293	Yes	No
	hENG(360-581)-hFc	HEK 293	Yes	No
	hENG(360-457)-hFc	COS	No	No
	hENG(360-437)-hFc	COS	No	No
	hENG(458-581)-hFc	COS	No	No

These variants were expressed by transient transfection in HEK 293 cells or COS cells, as indicated.

The selected form of hENG(26-437)-hFc uses the TPA leader, has the unprocessed amino acid sequence shown in **Figure 26** (SEQ ID NO: 21), and is encoded by the nucleotide sequence shown in **Figure 27** (SEQ ID NO: 22). The selected form of hENG(26-378)-hFc also uses the TPA leader, has the unprocessed amino acid sequence shown in **Figure 28** (SEQ ID NO: 23), and is encoded by the nucleotide sequence shown in **Figure 29** (SEQ ID NO: 24). The selected form of hENG(26-359)-hFc also uses the TPA leader, has the unprocessed amino acid sequence shown in **Figure 30** (SEQ ID NO: 25), and is encoded by the nucleotide sequence shown in **Figure 31** (SEQ ID NO: 26). Applicants also envision an alternative hENG(26-359)-hFc sequence with TPA leader (**Figure 32**, SEQ ID NO: 27) comprising an N-terminally truncated hFc domain (**Figure 12**, SEQ ID NO: 12) attached to hENG(26-359) by a TGGG linker. The nucleotide sequence encoding this alternative hENG(26-359)-hFc protein is shown in **Figure 33** (SEQ ID NO: 28). The selected form of hENG(26-346)-hFc uses the TPA leader, has the unprocessed amino acid sequence shown in **Figure 34** (SEQ ID NO: 29) comprising an N-terminally truncated hFc domain, and is encoded by the nucleotide sequence shown in **Figure 35** (SEQ ID NO: 30).

20 Selected hENG-hFc variants, each with an N-terminally truncated Fc domain (SEQ ID NO: 12), were stably expressed in CHO cells (using methodology described

above) and purified from conditioned media by filtration and protein A chromatography. Analysis of mature protein expressed in CHO cells confirmed the N-terminal sequences of hENG(26-359)-hFc and hENG(26-346)-hFc to be as expected. On the basis of protein yield (uncorrected for differences in theoretical molecular weight), hENG(26-346)-hFc (90 mg/liter) was superior to both hENG(26-359)-hFc (9 mg/liter) and full-length hENG(26-586)-hFc (31 mg/liter). As shown in **Figure 36**, analysis of these purified samples by size-exclusion chromatography revealed the quality of hENG(26-346)-hFc protein (96% monomeric) to be superior to that of hENG(26-359)-hFc protein (84% monomeric) and equivalent to that of hENG(26-586)-hFc protein (96% monomeric).

10 Thus, greater levels of high-molecular-weight aggregates require the use of additional purification steps for hENG(26-359)-hFc compared to hENG(26-346)-hFc.

Example 9: High-affinity binding of BMP-9 / BMP-10 to truncated hENG-hFc variants

15 Applicants used SPR methodology to screen the following hENG-hFc protein variants for high-affinity binding to human BMP-9 and BMP-10. In these experiments, captured hENG-hFc proteins were exposed to soluble BMP-9 or BMP-10 at 100 nM each.

	Human Construct	Binding to hBMP-9 and hBMP-10
Full Length	hENG(26-586)-hFc	++++
Carboxy-Terminal Truncations	hENG(26-581)-hFc	++++
	hENG(26-437)-hFc	++++
	hENG(26-378)-hFc	++++
	hENG(26-359)-hFc	++++
	hENG(26-346)-hFc	++++
	hENG(26-332)-hFc	-
	hENG(26-329)-hFc	-
	hENG(26-257)-hFc	-
Amino-Terminal Truncations	hENG(360-586)-hFc	-
	hENG(438-586)-hFc	-
	hENG(458-586)-hFc	-
Double Truncations	hENG(61-346)-hFc	-
	hENG(129-346)-hFc	-
	hENG(133-346)-hFc	-
	hENG(166-346)-hFc	-

hENG(258-346)-hFc	—
hENG(360-581)-hFc	—
hENG(360-457)-hFc	—
hENG(360-437)-hFc	—
hENG(458-581)-hFc	—

++++ KD < 1 nM
— Binding undetectable

As indicated in the table above, high-affinity binding to BMP-9 and BMP-10 was
5 observed only for the full-length construct and for C-terminally truncated variants as
short as hENG(26-346)-hFc. High-affinity binding to BMP-9 and BMP-10 was lost for
all N-terminal truncations of greater than 61 amino acids that were tested.

A panel of ligands were screened for potential binding to the C-terminal truncated
variants hENG(26-346)-hFc, hENG(26-359)-hFc, and hENG(26-437)-hFc. High-affinity
10 binding of these three proteins was selective for BMP-9 and BMP-10. Neither hENG(26-
346)-hFc, hENG(26-359)-hFc, nor hENG(26-437)-hFc displayed detectable binding to
BMP-2, BMP-7, TGF- β 1, TGF- β 2, TGF- β 3, or activin A, even at high ligand
concentrations.

Ligand	Construct Binding		
	hENG(26-346)-hFc*	hENG(26-359)-hFc**	hENG(26-437)-hFc***
hBMP-2	—	—	—
hBMP-2/7	—	—	—
hBMP-7	—	—	—
hBMP-9	++++	++++	++++
hBMP-10	++++	++++	++++
hTGF- β 1	—	—	—
hTGF- β 2	—	—	—
hTGF- β 3	—	—	—
hActivin A	—	—	—

15 * [hBMP-9], [hBMP-10] = 5 nM; [hTGF- β 3] = 50 nM; all other ligands tested at 100 nM

** [hBMP-9], [hBMP-10] = 5 nM; [hTGF- β 3] = 50 nM; all other ligands tested at 100 nM

++++ KD < 1 nM

— Binding undetectable

20 Applicants used SPR methodology to compare the kinetics of BMP-9 binding by
five constructs: hENG(26-586)-hFc, hENG(26-437)-hFc, hENG(26-378)-hFc, hENG(26-

359)-hFc, and hENG(26-346)-hFc. **Figure 37** shows binding curves for several of the constructs, and the table below lists calculated values for the equilibrium dissociation constants and dissociation rate constants (k_d). The affinity of human BMP-9 for hENG(26-359)-hFc or hENG(26-346)-hFc (with K_D s in the low picomolar range) was 5 nearly an order of magnitude stronger than for the full-length construct. It is highly desirable for ligand traps such as ENG-Fc to exhibit a relatively slow rate of ligand dissociation, so the ten-fold improvement (decrease) in the BMP-9 dissociation rate for hENG(26-346)-hFc compared to the full-length construct is particularly noteworthy.

Ligand	Construct	K_D (x 10 ⁻¹² M)	k_d (x 10 ⁻⁴ s ⁻¹)
hBMP-9	hENG(26-586)-hFc *	33	25
	hENG(26-437)-hFc **	19	14
	hENG(26-378)-hFc **	6.7	3.4
	hENG(26-359)-hFc *	4.2	3.5
	hENG(26-346)-hFc *	4.3	2.4

* CHO-cell-derived protein

10 ** HEK293-cell-derived protein

As shown below, each of the truncated variants also bound BMP-10 with higher affinity, and with better kinetics, compared to the full-length construct. Even so, the truncated variants differed in their degree of preference for BMP-9 over BMP-10 (based 15 on K_D ratio), with hENG(26-346)-hFc displaying the largest differential and hENG(26-437)-hFC the smallest. This difference in degree of ligand preference among the truncated variants could potentially translate into meaningful differences in their activity in vivo.

Ligand	Construct	K_D (x 10 ⁻¹² M)	k_d (x 10 ⁻⁴ s ⁻¹)
hBMP-10	hENG(26-586)-hFc *	490	110
	hENG(26-437)-hFc **	130	28
	hENG(26-378)-hFc **	95	19
	hENG(26-359)-hFc *	86	23
	hENG(26-346)-hFc *	140	28

* CHO-cell-derived protein

20 ** HEK293-cell-derived protein

The foregoing results indicate that fusion proteins comprising certain C-terminally truncated variants of the hENG ECD display high-affinity binding to BMP-9 and BMP-10 but not to a variety of other TGF- β family ligands, including TGF- β 1 and

TGF- β 3. In particular, the truncated variants hENG(26-359)-hFc, hENG(26-346)-hFc, and hENG(26-378)-hFc display higher binding affinity at equilibrium and improved kinetic properties for BMP-9 compared to both the full-length construct hENG(26-586)-hFc and the truncated variant hENG(26-437)-hFc.

5

Example 10: Prediction of secondary structure for ENG N-terminal region

As disclosed above, N-terminal truncations as short as 36 amino acids (hENG(61-346)-hFc) were found to abolish ligand binding to ENG polypeptides. To anticipate the effect of even shorter N-terminal truncations on ligand binding, the secondary structure 10 for the human endoglin orphan domain was predicted computationally with a modified Psipred version 3 (Jones, 1999, J Mol Biol 292:195-202). The analysis indicates that ordered secondary structure within the ENG polypeptide region defined by amino acids 26-60 of SEQ ID NO: 1 is limited to a four-residue beta strand predicted with high confidence at positions 42-45 of SEQ ID NO: 1 and a two-residue beta strand predicted 15 with very low confidence at positions 28-29 of SEQ ID NO: 1. Accordingly, ENG polypeptide variants beginning at amino acids 27 or 28 and optionally those beginning at any of amino acids 29-42 of SEQ ID NO: 1 are likely to retain important structural elements and ligand binding.

20 **Example 11: Potency of ENG-Fc variants in a cell-based assay**

A reporter-gene assay in A204 cells was used to determine the potency with which hENG-hFc fusion proteins inhibit signaling by BMP-9 and BMP-10. This assay is based on a human rhabdomyosarcoma cell line transfected with a pGL3 BRE-luciferase reporter plasmid (Korchynskyi et al, 2002, J Biol Chem 277: 4883-4891), as well as a 25 Renilla reporter plasmid (pRLCMV-luciferase) to control for transfection efficiency. BRE motifs are present in BMP-responsive genes (containing a Id1 promoter), so this vector is of general use for factors signaling through Smad1 and/or Smad5. In the absence of ENG-Fc fusion proteins, BMP-9 and BMP-10 dose-dependently stimulate signaling in A204 cells.

On the first day of the assay, A204 cells (ATCC® number: HTB-82™; depositor: DJ Giard) were distributed in 48-well plates at 10^5 cells per well. On the next day, a solution containing 12 μ g pGL3 BRE-luciferase, 0.1 μ g pRLCMV-luciferase, 30 μ l Fugene 6 (Roche Diagnostics), and 970 μ l OptiMEM (Invitrogen) was preincubated for 5 30 min at room temperature before addition to 24 ml of assay buffer (McCoy's medium supplemented with 0.1% BSA). This mixture was applied to the plated cells (500 μ l/well) for incubation overnight at 37 °C. On the third day, medium was removed and replaced with test substances (250 μ l/well) diluted in assay buffer. After an overnight 10 incubation at 37°C, the cells were rinsed and lysed with passive lysis buffer (Promega E1941) and frozen at -70°C. Prior to assay, the plates were warmed to room temperature with gentle shaking. Cell lysates were transferred in duplicate to a chemoluminescence plate (96-well) and analyzed in a luminometer with reagents from a Dual-Luciferase Reporter Assay system (Promega E1980) to determine normalized luciferase activity.

Results indicate that hENG-hFc proteins are potent inhibitors of cellular signaling 15 mediated by BMP-9 and BMP-10. As shown in the table below, the full-length construct hENG(26-586)-hFc inhibits signaling by BMP-9 and BMP-10 with IC₅₀ values in the sub-nanomolar and low-nanomolar ranges, respectively. Moreover, truncated variants hENG(26-359)-hFc and hENG(26-346)-hFc were both more potent than hENG(26-586)-hFc.

Construct	IC ₅₀ (nM)	
	hBMP-9	hBMP-10
hENG(26-586)-hFc	0.26	7.9
hENG(26-359)-hFc	0.16	3.5
hENG(26-346)-hFc	0.19	4.6

20

Example 12: Truncated variant hENG(26-359)-hFc inhibits VEGF-inducible angiogenesis in a CAM assay

Applicants investigated effects of the truncated variant hENG(26-359)-hFc on 25 angiogenesis in the same CAM assay system described in Example 6, in which VEGF is used to induce angiogenesis. The number of additional blood vessels induced by VEGF treatment (50 ng daily) was decreased by 75% with concurrent hENG(26-359)-hFc (SEQ ID NO: 25; 20 μ g daily) (Figure 38). SPR-based studies confirmed that VEGF does not

bind hENG(26-359)-hFc, and thus effects of this variant on angiogenesis in the present CAM experiment were not due to a direct interaction between the fusion protein and VEGF. Note that, for hENG(26-359)-hFc, a dose of 10 µg corresponds to the dose of 14 µg used for the longer ENG-Fc constructs tested in Example 6, based on the theoretical 5 molecular weight of each construct. Thus, the truncated variant hENG(26-359)-hFc displayed equivalent, if not greater, effectiveness in inhibiting VEGF-inducible angiogenesis compared to ENG constructs with full-length ECD (**Figure 23**) in this same assay system.

10 **Example 13: Truncated variant hENG(26-346)-hFc inhibits angiogenesis in a mouse angioreactor assay**

Truncated variant hENG(26-346)-hFc was tested in the same mouse angioreactor assay described in Example 7. Angioreactors were implanted subcutaneously in athymic nude mice (four per mouse), and mice were treated daily with hENG(26-346)-hFc (10 mg/kg, s.c.) or vehicle (Tris-buffered saline) for 11 days, at which time the mice were 15 injected with fluorescein isothiocyanate (FITC)-labeled dextran (20 mg/kg, i.v.) and euthanized 20 min later. The quantity of FITC-dextran contained in each angioreactor was then measured as an index of blood vessel formation. As shown in **Figure 39**, addition of the growth factors (GF) FGF-2 and VEGF to the angioreactors led to a 20 significant increase in vascularization, whereas concurrent administration of hENG(26-346)-hFc prevented this increase completely. SPR-based studies confirmed that hENG(26-346)-hFc binds neither FGF-2 nor VEGF, thereby excluding the possibility that effects of hENG(26-346)-hFc on inducible angiogenesis in the present experiment 25 were due to a direct interaction between the fusion protein and either FGF-2 or VEGF. The present results in this mammalian assay system complement those obtained for the truncated variant hENG(26-359)-hFc in a CAM assay (Example 12). Together, they demonstrate anti-angiogenic activity *in vivo* of ENG-Fc fusion proteins incorporating preferred truncations of the ENG extracellular domain.

Example 14: Longer in vivo half-life of truncated variant hENG(26-346)-hFc

Applicants conducted a modified pharmacokinetic study to determine the whole-body elimination half-life of hENG(26-346)-hFc and compared it to that of the full-length protein mENG(27-581)-mFc. hENG(26-346)-hFc protein was fluorescently labeled with Alexa Fluor® 750 dye using a SAIVITM (small animal in vivo imaging) Rapid Antibody Labeling kit according to instructions of the manufacturer (InvitrogenTM). Labeled protein was separated from free label by size exclusion chromatography. Athymic nude mice (n = 3, 17-20 g) were injected with labeled hENG(26-346)-hFc (2 mg/kg, s.c.), and whole-body imaging was performed with an IVIS imaging system (Xenogen®/Caliper Life Sciences) to determine fusion protein levels at 2, 4, 6, 8, 24, 32, 48, and 72 h post injection. The mean elimination half-life of hENG(26-346)-hFc was 26.5 h, which is 20% longer than the 22 h half-life of mENG(27-581)-mFc determined in a similar study.

Example 15: Effect of ENG-Fc proteins on tumor growth in mouse xenograft**models**

ENG-Fc proteins were tested in two different mouse xenograft models to determine whether these proteins can inhibit tumor growth. In the first experiment, athymic nude mice were injected subcutaneously at 6 weeks of age with 10^6 4T1 mammary carcinoma cells (ATCC® number: CRL-2539TM; depositor: BA Pulaski). Mice (n = 10 per group) were dosed daily (s.c.) with mENG(27-581)-mFc (10 mg/kg) or vehicle (Tris-buffered saline). Tumors were measured manually with digital calipers, and tumor volume was calculated according to the formula: volume = 0.5(length)(width²). As shown in **Figure 40**, treatment with mENG(27-581)-mFc reduced tumor volume by 45% compared to vehicle by day 24 post implantation.

ENG-Fc fusion proteins were also tested in a Colon-26 carcinoma xenograft model. BALB/c mice were injected subcutaneously at 7 weeks of age with 1.5×10^6 Colon-26 carcinoma cells (ATCC® number: CRL-2638TM; depositor: N Restifo). Mice (n = 10 per group) were dosed daily (s.c.) with mENG(27-581)-mFc (at 1, 10, or 30 mg/kg) or vehicle (Tris-buffered saline). Tumor volume was determined as described above. As shown in **Figure 41**, mENG(27-581)-mFc treatment caused a dose-dependent

reduction in tumor volume, with decreases of 55% and nearly 70% compared to vehicle at doses of 10 mg/kg and 30 mg/kg, respectively, by day 58 post implantation. Thus, mENG(27-581)-mFc markedly slowed the growth of two different tumor types in mouse xenograft models, consistent with the aforementioned antiangiogenic activity of fusion proteins incorporating the full-length murine ENG extracellular domain (Examples 5-7).
 5 In a preliminary experiment, the truncated variant hENG(26-346) also slowed tumor growth compared to vehicle in the Colon-26 xenograft model, consistent with the antiangiogenic activity of this variant in the mouse angioreactor assay (Example 13).

Taken together, the aforementioned results demonstrate that fusion proteins
 10 comprising the full-length ENG ECD, and certain truncated variants thereof, display high-affinity binding to BMP-9 and BMP-10 but not a variety of other TGF β -family ligands, including TGF β -1 and TGF β -3. These ENG polypeptides can inhibit angiogenesis and tumor growth in model systems and thus have the potential to treat patients with unwanted angiogenesis, including those with cancer. Compared to
 15 constructs comprising the full-length ENG ECD, the truncated ENG polypeptides hENG(26-346)-hFc and/or hENG(26-359)-hFc displayed higher potency and improved performance on several other key parameters (see summary table below).

Parameter	ECD Polypeptide in Fusion Protein (CHO cell derived)		
	Full length ECD –	Human 26-359	Human 26-346
	Human 26-586 or Murine 27-581		
Expression	Quantity	31 mg/L	9 mg/L
	Quality	96% monomeric	84% monomeric
Binding affinity (K_D)	BMP-9	33 pM	4.2 pM
	BMP-10	490 pM	86 pM
Dissociation rate (k_d)	BMP-9	$25 \times 10^{-4} \text{ s}^{-1}$	$3.5 \times 10^{-4} \text{ s}^{-1}$
	BMP-10	$110 \times 10^{-4} \text{ s}^{-1}$	$23 \times 10^{-4} \text{ s}^{-1}$
Potency (cell-based IC_{50})	BMP-9	0.26 nM	0.16 nM
	BMP-10	7.9 nM	3.5 nM
Elimination half-life		22 h	---
Anti-angiogenesis activity	HUVEC	Yes	---
	CAM	65% inhibition	75% inhibition
	Angioreactor	100% inhibition	---
Anti-tumor activity	4T1 tumor	Yes	---
	Colon-26 tumor	Yes	Yes
		Dose-dependent	

--- Not investigated

Variant hENG(26-346)-hFc, in particular, possessed a superior combination of attributes, with higher potency, stronger binding affinity, slower dissociation rate, longer elimination half-life, and better protein production than full-length ENG ECD constructs. As ligand traps, truncated ENG polypeptides should preferably exhibit a slow rate of

5 ligand dissociation, so the ten-fold reduction in the BMP-9 dissociation rate for hENG(26-346)-hFc compared to the full-length construct is highly desirable. The variant hENG(26-378)-hFc displayed BMP-9 binding properties (affinity and dissociation rate) intermediate between hENG(26-346)-hFc and hENG(26-359)-hFc, on one hand, and hENG(26-437)-hFc, on the other, with hENG(26-378) more closely resembling the

10 shorter constructs.

INCORPORATION BY REFERENCE

All publications and patents mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and

15 individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.

EQUIVALENTS

While specific embodiments of the subject inventions are explicitly disclosed

20 herein, the above specification is illustrative and not restrictive. Many variations of the inventions will become apparent to those skilled in the art upon review of this specification and the claims below. The full scope of the inventions should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.

WE CLAIM:

1. An endoglin polypeptide comprising an amino acid sequence at least 95% identical to amino acids 42-333 of SEQ ID NO: 1, wherein the endoglin polypeptide does not include a sequence consisting of amino acids 379-430 of SEQ ID NO: 1.
- 5 2. The endoglin polypeptide of claim 1, wherein the endoglin polypeptide comprises an amino acid sequence at least 95% identical to a sequence beginning at an amino acid corresponding to any of positions 26-42 of SEQ ID NO: 1 and ending at an amino acid corresponding to any of positions 333-378 of SEQ ID NO: 1.
- 10 3. The endoglin polypeptide of any of claims 1-2, comprising an amino acid sequence at least 95% identical to a sequence selected from a group consisting of:
 - a. amino acids 26-346 of SEQ ID NO: 1,
 - b. amino acids 26-359 of SEQ ID NO: 1, and
 - c. amino acids 26-378 of SEQ ID NO: 1.
- 15 4. The endoglin polypeptide of any of claims 1-2, wherein the endoglin polypeptide consists of a first portion consisting of an amino acid sequence at least 95% identical to a sequence selected from a group consisting of:
 - a. amino acids 26-346 of SEQ ID NO: 1,
 - b. amino acids 26-359 of SEQ ID NO: 1, and
 - c. amino acids 26-378 of SEQ ID NO: 1
- 20 and a second portion that is heterologous to SEQ ID NO:1.
5. The endoglin polypeptide of claim 4, wherein the second portion comprises an Fc portion of an IgG.
6. The endoglin polypeptide of any of claims 1-4, wherein the endoglin polypeptide does not include more than 50 consecutive amino acids from a sequence consisting of amino acids 379-586 of SEQ ID NO: 1.

7. The endoglin polypeptide of any of claims 1-6, wherein the endoglin polypeptide binds human BMP-9 with an equilibrium dissociation constant (K_D) less than 1×10^{-9} M or a dissociation rate constant (k_d) less than 1×10^{-3} s $^{-1}$.
8. The endoglin polypeptide of any of claims 1-7, wherein the endoglin polypeptide binds human BMP-9 with an equilibrium dissociation constant (K_D) less than 1×10^{-9} M or a dissociation rate constant (k_d) less than 5×10^{-4} s $^{-1}$.
9. The endoglin polypeptide of any of claims 1-8, wherein the endoglin polypeptide binds human BMP-10 with an equilibrium dissociation constant (K_D) less than 1×10^{-9} M or a dissociation rate constant (k_d) less than 5×10^{-3} s $^{-1}$.
10. The endoglin polypeptide of any of claims 1-9, wherein the endoglin polypeptide binds human BMP-10 with an equilibrium dissociation constant (K_D) less than 1×10^{-9} M or a dissociation rate constant (k_d) less than 2.5×10^{-3} s $^{-1}$.
11. An endoglin polypeptide comprising an amino acid sequence encoded by a nucleic acid that hybridizes under stringent conditions to a complement of a nucleotide sequence selected from a group consisting of:
 - a. nucleotides 537-1412 of SEQ ID NO: 2 [encoding hENG(42-333)] ,
 - b. nucleotides 121-1035 of SEQ ID NO: 30 [encoding hENG(42-346)] ,
 - c. nucleotides 121-1074 of SEQ ID NO: 26 [encoding hENG(42-359)] ,
 - d. nucleotides 121-1131 of SEQ ID NO: 24 [encoding hENG(42-378)] ,
 - 15 e. nucleotides 73-1035 of SEQ ID NO: 30 [encoding hENG(26-346)] ,
 - f. nucleotides 73-1074 of SEQ ID NO: 26 [encoding hENG(26-359)] , and
 - 20 g. nucleotides 73-1131 of SEQ ID NO: 24 [encoding hENG(26-378)] ,wherein the endoglin polypeptide does not include a sequence consisting of amino acids 379-430 of SEQ ID NO: 1.
- 25 12. The endoglin polypeptide of any of claims 1-11, wherein the endoglin polypeptide does not bind human TGF- β 1, human TGF- β 3, human VEGF, or human basic fibroblast growth factor (FGF-2).

13. The endoglin polypeptide of any of claims 1-12, wherein the endoglin polypeptide is a fusion protein including, in addition to a portion comprising an endoglin amino acid sequence, one or more polypeptide portions that enhance one or more of: in vivo stability, in vivo half life, uptake/administration, tissue localization or distribution, formation of protein complexes, and/or purification.

5

14. The endoglin polypeptide of claim 13, wherein the endoglin polypeptide includes a portion selected from the group consisting of: a constant domain of an immunoglobulin and a serum albumin.

10

15. The endoglin polypeptide of claim 13, wherein the endoglin polypeptide comprises an immunoglobulin Fc domain.

16. The endoglin polypeptide of claim 15, wherein the immunoglobulin Fc domain is joined to the ENG polypeptide portion by a linker.

17. The endoglin polypeptide of claim 16, wherein the linker consists of an amino acid sequence consisting of SEQ ID NO: 31 (TGGG) or GGG.

15

18. The endoglin polypeptide of any of claims 1-17, wherein the endoglin polypeptide includes one or more modified amino acid residues selected from: a glycosylated amino acid, a PEGylated amino acid, a farnesylated amino acid, an acetylated amino acid, a biotinylated amino acid, an amino acid conjugated to a lipid moiety, and an amino acid conjugated to an organic derivatizing agent..

20

19. The endoglin polypeptide of any of claims 1-18, wherein the endoglin polypeptide inhibits angiogenesis in a mammal.

20. The endoglin polypeptide of any of claims 1-19, wherein the polypeptide is produced by expression in CHO cells.

21. A homodimer comprising two polypeptides of claims 1-20.

25

22. A pharmaceutical preparation comprising the polypeptide of any of claims 1-20 or the homodimer of claim 21 and a pharmaceutically acceptable excipient.

23. The pharmaceutical preparation of claim 22, wherein said preparation is substantially pyrogen free.

24. A recombinant polynucleotide comprising a heterologous promoter sequence operably linked to a polynucleotide comprising a coding sequence for the polypeptides of any one of claims 1 to 20.
25. A cell transformed with an isolated polynucleotide of claim 22 or a recombinant polynucleotide of claim 24.
26. The cell of claim 25, wherein the cell is a mammalian cell.
27. The cell of claim 26, wherein the cell is a CHO cell or a human cell.
28. A method of inhibiting angiogenesis in a patient in need thereof, the method comprising administering to the patient an effective amount of an endoglin polypeptide of any of claims 1-20 or the homodimer of claim 21.
29. The method of claim 28, wherein the patient has, or is at risk of having, a disease characterized by unwanted angiogenesis.
30. The method of claim 28, wherein the disease is cancer.
31. The method of claim 30, wherein the cancer includes types which express undesirably high levels of BMP-9, BMP-10, or endoglin.
32. The method of any of claims 28-31, wherein the patient has, or is at risk of having, elevated circulating levels of BMP-9 or BMP-10.
33. A method of treating a BMP-9 or BMP-10 associated disorder in a patient in need thereof, the method comprising administering to the patient an effective amount of an endoglin polypeptide of any of claims 1-20 or the homodimer of claim 21.

FIGURE 1. Amino acid sequence of human ENG, isoform 1 (L-ENG)
(GenBank NM_001114753)

1 MDRGTPLAV ALLLASCSLS PTSLAETVHC DLQPVGPERG EVTYTTSQVS KGCVAQAPNA
61 ILEVHVLFLE FPTGPSQLEL TLQASKQNGT WPREVLLVLS VNSSVFLHLQ ALGIPLHLAY
121 NSSLVTFQEP PGVNNTTELEPS FPKTQILEWA AERGPITSAA ELNDPQSILL RLGQAQGSLS
181 FCMLEASQDM GRTLEWRPRT PALVRGCHLE GVAGHKAEHI LRVLPGHSAG PRTVTVKVEL
241 SCAPGDLDAV LILQGPPYVS WLIDANHNMQ IWTTGEYSFK IFPEKNIRGF KLPDTPQGLL
301 GEARMLNASI VASFVELPLA SIVSLHASSC GGRLQTSPAP IQTTPPKDTC SPELLMSLIQ
361 TKCADDAMTL VLKKELVAHL KCTITGLTFW DPSCEAEDRG DKFVLRSAYS SCGMQVSASM
421 ISNEAVVNIL SSSSPQRKKV HCLNMDSLSF QLGLYLSPHF LQASNTIEPG QQSFVQVRVS
481 PSVSEFLLQL DSCHLDLGPE GGTVELIQGR AAKGNCVSSL SPSPEGDPRF SFLLHFYTVP
541 IPKTGTLSCT VALRPKTGSQ DQEvhRTVFM RLNIISPDLs GCTSKGLVLP AVLGITFGAF
601 LIGALLTAAL WYIYSHTRSP SKREPVVAVA APASSESSST NHSIGSTQST PCSTSSMA

(SEQ ID NO: 1)

FIGURE 1

FIGURE 2. Nucleotide sequence encoding human ENG, isoform 1 (L-ENG)

(GenBank NM_001114753)

```

361 CCTGCCACTG GACACAGGAT AAGGCCAGC GCACAGGCC CCACGTGGAC AGCATGGACC
421 GCGGCACGCT CCCTCTGGCT GTTGCCCTGC TGCTGGCCAG CTGCAGCCTC AGCCCCACAA
481 GTCTTGAGA AACAGTCCAT TGTGACCTTC AGCCTGTGGG CCCCGAGAGG GGCAGGGTGA
541 CATATACCAC TAGCCAGGTC TCGAAGGGCT GCGTGGCTCA GGCCCCAAT GCCATCCTG
601 AAGTCCATGT CCTCTTCCTG GAGTTCCCAA CGGGCCCGTC ACAGCTGGAG CTGACTCTCC
661 AGGCATCCAA GCAAAATGGC ACCTGGCCCC GAGAGGTGCT TCTGGTCCTC AGTGTAAACA
721 GCAGTGTCTT CCTGCATCTC CAGGCCCTGG GAATCCACT GCACTTGGCC TACAATTCCA
781 GCCTGGTCAC CTTCCAAGAG CCCCGGGGG TCAACACCAC AGAGCTGCCA TCCTTCCCCA
841 AGACCCAGAT CCTTGAGTGG GCAGCTGAGA GGGGCCCAT CACCTCTGCT GCTGAGCTGA
901 ATGACCCCCA GAGCATCTC CTCCGACTGG GCCAAGCCCA GGGGTCACTG TCCTTCTGCA
961 TGCTGGAAGC CAGCCAGGAC ATGGCCGCA CGCTCGAGTG GCGGCCGCGT ACTCCAGCCT
1021 TGGTCCGGGG CTGCCACTTG GAAGGCGTGG CCGGCCACAA GGAGGCGCAC ATCCTGAGGG
1081 TCCTGCCGGG CCACTCGGCC GGGCCCCGGA CGGTGACGGT GAAGGTGGAA CTGAGCTGCG
1141 CACCCGGGG A TCTCGATGCC GTCCTCATCC TGCAGGGTCC CCCCTACGTG TCCTGGCTCA
1201 TCGACGCCAA CCACAACATG CAGATCTGGA CCACTGGAGA ATACTCCTTC AAGATCTTC
1261 CAGAGAAAAA CATTCTGGC TTCAAGCTCC CAGACACACC TCAAGGCCTC CTGGGGAGG
1321 CCCGGATGCT CAATGCCAGC ATTGTGGCAT CCTTCGTGGA GCTACCGCTG GCCAGCATTG
1381 TCTCACTTCA TGCCCTCCAGC TGCGGTGGTA GGCTGCAGAC CTCACCCGCA CCGATCCAGA
1441 CCACTCCTCC CAAGGACACT TGTAGCCCG AGCTGCTCAT GTCCTTGATC CAGACAAAGT
1501 GTGCCGACGA CGCCATGACC CTGGTACTAA AGAAAGAGCT TGTGCGCAT TTGAAGTGCA
1561 CCATCACGGG CCTGACCTTC TGGGACCCCA GCTGTGAGGC AGAGGACAGG GGTGACAAGT
1621 TTGTCTTGC CAGTGCTTAC TCCAGCTGTG GCATGCAGGT GTCAGCAAGT ATGATCAGCA
1681 ATGAGGCGGT GGTCAATATC CTGTCGAGCT CATCACCACA GCGGAAAAAG GTGCACTGCC
1741 TCAACATGGA CAGCCTCTCT TTCCAGCTGG GCCTCTACCT CAGCCCACAC TTCCCTCCAGG
1801 CCTCCAACAC CATCGAGCCG GGGCAGCAGA GCTTGTGCA GGTCAAGAGTG TCCCCATCCG
1861 TCTCCGAGTT CCTGCTCCAG TTAGACAGCT GCCACCTGGA CTTGGGGCCT GAGGGAGGCA
1921 CCGTGGAACT CATCCAGGGC CGGGCGGCCA AGGGCAACTG TGTGAGCCTG CTGTCCCCAA
1981 GCCCCGAGGG TGACCCGCGC TTCAGCTTCC TCCTCCACTT CTACACAGTA CCCATACCCA
2041 AAACCGGCAC CCTCAGCTGC ACGGTAGCCC TGCGTCCCAA GACCGGGTCT CAAGACCAGG
2101 AAGTCCATAG GACTGTCTTC ATGCGCTTGA ACATCATCAG CCCTGACCTG TCTGGTTGCA
2161 CAAGCAAAGG CCTCGTCTG CCCGCCGTGC TGGGCATCAC CTTTGGTGCC TTCCCTCATCG
2221 GGGCCCTGCT CACTGCTGCA CTCTGGTACA TCTACTCGCA CACCGTTCC CCCAGCAAGC
2281 GGGAGCCCGT GGTGGCGGTG GCTGCCCGG CCTCCTCGGA GAGCAGCAGC ACCAACACAA
2341 GCATCGGGAG CACCCAGAGC ACCCCCTGCT CCACCAGCAG CATGGCATAG

```

(SEQ ID NO: 2)

FIGURE 2

FIGURE 3. Amino acid sequence of human ENG, isoform 2 (S-ENG)
(GenBank NM_000118)

1 MDRGTLPLAV ALLLASCSLS PTSLAETVHC DLQPVGPERG EVTYTTSQVS KGCVAQAPNA
61 ILEVHVLFLE FPTGPSQLEL TLQASKQNGT WPREVLLVLS VNSSVFLHLQ ALGIPLHLAY
121 NSSLVTFQEP PGVNNTTELPS FPKTQILEWA AERGPITSAA ELNDPQSILL RLGQAQGSLS
181 FCMLEASQDM GRTLEWRPRT PALVRGCHLE GVAGHKEAHI LRVLPGHSAG PRTVTVKVEL
241 SCAPGDLDAV LILQGPPYVS WLIDANHNMQ IWTTGEYSFK IFPEKNIRGF KLPDTPQGLL
301 GEARMLNASI VASFVELPLA SIVSLHASSC GGRLQTSPAP IQTTPPKDTC SPELLMSLIQ
361 TKCADDAMTL VLKKELVAHL KCTITGLTFW DPSCEAEDRG DKFVLRSAWS SCGMQVSASM
421 ISNEAVVNIL SSSSPQRKKV HCLNMDSLSF QLGLYLSPHF LQASNTIEPG QQSFVQVRVS
481 PSVSEFLLQL DSCHLDLGPE GGTVELIQGR AAKGNCVSSL SPSPEGDPRF SFLLHFYTVP
541 IPKTGTLSC VALRPKTGSQ DQEVTHTVFM RLNIISPDLs GCTSKGLVLP AVLGITFGAF
601 LIGALLTAAL WYIYSHREY PRPPQ

(SEQ ID NO: 3)

FIGURE 3

FIGURE 4. Nucleotide sequence encoding human ENG, isoform 2 (S-ENG)

(GenBank NM_000118)

```

361 CCTGCCACTG GACACAGGAT AAGGCCAGC GCACAGGCC CCACGTGGAC AGCATGGACC
421 GCGGCACGCT CCCTCTGGCT GTTGCCTGTC TGCTGGCCAG CTGCAGCCTC AGCCCCACAA
481 GTCTTGCAGA AACAGTCAT TGTGACCTTC AGCCTGTGGG CCCCCGAGAGG GGCGAGGTGA
541 CATATACCAC TAGCCAGGTC TCGAAGGGCT GCGTGGCTCA GGCCCCCAAT GCCATCCTG
601 AAGTCCATGT CCTCTTCTTG GAGTCCCAA CGGGCCCGTC ACAGCTGGAG CTGACTCTCC
661 AGGCATCCAA GCAAAATGGC ACCTGGCCCC GAGAGGTGCT TCTGGTCTC AGTGTAAACA
721 GCAGTGTCTT CCTGCATCTC CAGGCCCTGG GAATCCACT GCACTTGGCC TACAATTCCA
781 GCCTGGTCAC CTTCCAAGAG CCCCCGGGGG TCAACACCAC AGAGCTGCCA TCCTTCCCCA
841 AGACCCAGAT CCTTGAGTGG GCAGCTGAGA GGGGCCCCAT CACCTCTGCT GCTGAGCTGA
901 ATGACCCCCA GAGCATCCTC CTCCGACTGG GCCAAGCCCA GGGGTCACTG TCCTTCTGCA
961 TGCTGGAAGC CAGCCAGGAC ATGGGCCGCA CGCTCGAGTG GCGGCCGCGT ACTCCAGCCT
1021 TGGTCCGGGG CTGCCACTTG GAAGGCGTGG CCGGCCACAA GGAGGCGCAC ATCCTGAGGG
1081 TCCTGCCGGG CCACTCGGCC GGGCCCCGGA CGGTGACGGT GAAGGTGGAA CTGAGCTGCG
1141 CACCCGGGG A TCTCGATGCC GTCCTCATCC TGCAGGGTCC CCCCTACGTG TCCTGGCTCA
1201 TCGACGCCAA CCACAACATG CAGATCTGGA CCACTGGAGA ATACTCCTTC AAGATCTTC
1261 CAGAGAAAAA CATTCTGGC TTCAAGCTCC CAGACACACC TCAAGGCCTC CTGGGGAGG
1321 CCCGGATGCT CAATGCCAGC ATTGTGGCAT CCTTCGTGGA GCTACCGCTG GCCAGCATTG
1381 TCTCACTTCA TGCCCTCCAGC TGCGGTGGTA GGCTGCAGAC CTCACCCGCA CCGATCCAGA
1441 CCACTCCTCC CAAGGACACT TGTAGCCCGG AGCTGCTCAT GTCCTTGATC CAGACAAAGT
1501 GTGCCGACGA CGCCATGACC CTGGTACTAA AGAAAGAGCT TGTTGCGCAT TTGAAGTGCA
1561 CCATCACGGG CCTGACCTTC TGGGACCCCA GCTGTGAGGC AGAGGACAGG GGTGACAAGT
1621 TTGTCTTGCG CAGTGCTTAC TCCAGCTGTG GCATGCAGGT GTCAGCAAGT ATGATCAGCA
1681 ATGAGGCGGT GGTCAATATC CTGTCGAGCT CATCACCACA GCGGAAAAAG GTGCACTGCC
1741 TCAACATGGA CAGCCTCTCT TTCCAGCTGG GCCTCTACCT CAGCCCACAC TTCCCTCCAGG
1801 CCTCCAACAC CATCGAGCCG GGGCAGCAGA GCTTGTGCA GGTCAAGATG TCCCCATCCG
1861 TCTCCGAGTT CCTGCTCCAG TTAGACAGCT GCCACCTGGA CTTGGGGCCT GAGGGAGGCA
1921 CCGTGGAACT CATCCAGGGC CGGGCGGCCA AGGGCAACTG TGTGAGCCTG CTGTCCCCAA
1981 GCCCCGAGGG TGACCCGCGC TTCAGCTTCC TCCTCCACTT CTACACAGTA CCCATACCCA
2041 AAACCGGCAC CCTCAGCTGC ACGGTAGCCC TGCGTCCCAA GACGGGGTCT CAAGACCAGG
2101 AAGTCCATAG GACTGTCTTC ATGCGCTTGA ACATCATCAG CCCTGACCTG TCTGGTTGCA
2161 CAAGCAAAGG CCTCGTCTG CCCGCCGTGC TGGGCATCAC CTTTGGTGCC TTCCCTCATCG
2221 GGGCCCTGCT CACTGCTGCA CTCTGGTACA TCTACTCGCA CACGCGTGAG TACCCCAGGC
2281 CCCCCACAGTG A

```

(SEQ ID NO: 4)

FIGURE 4

FIGURE 5. Amino acid sequence of murine ENG, isoform 1 (L-ENG)
(GenBank NM_007932)

1 MDRGVLPLPI TLLFVIYSFV PTTGLAERVG CDLQPVDPTR GEVTFTTSQV SEGCVAQAAAN
61 AVREVHVLFL DFPGMLSHLE LTLQASKQNG TETQEVLFLV VSNKNVFVKF QAPEIPLHLA
121 YDSSLVIFQG QPRVNITVLP SLTSRKQILD WAATKGAITS IAALDDPQSI VLQLGQDPKA
181 PFLCLPEAHK DMGATLEWQP RAQTPVQSCR LEGVSGHKEA YILRILPGSE AGPRTVTVM
241 ELSCTSGDAI LILHGPPYVS WFIDINHSMQ ILTTGEYSVK IFPGSKVKGV ELPDTPQGLI
301 AEARKLNASI VTSFVELPLV SNVSLRASSC GGVFQTTPAP VVTTPPKDTC SPVLLMSLIQ
361 PKCGNQVMTL ALNKKHVQTL QCTITGLTFW DSSCQAEDTD DHLVLSSAYS SCGMKVTAHV
421 VSNEVIISFP SGSPLLRKKV QCIDMDSLSF QLGLYLSPHF LQASNTIELG QQAFVQVSVS
481 PLTSEVTVQL DSCHLDLGPE GDMVELIQR TAKGSCVTLL SPSPEGDPRF SFLLRVYMP
541 TPTAGTLSNCN LALRPSTLSQ EVYKTVSMRL NIVSPDLSGK GLVLPSVLGI TFGAFLIGAL
601 LTAALWYIYS HTRGPSKREP VVAVAAPASS ESSSTNHSIG STQSTPCSTS SMA

(SEQ ID NO: 5)

FIGURE 5

FIGURE 6. Nucleotide sequence encoding murine ENG, isoform 1 (L-ENG)
 (GenBank NM_007932)

```

361 AGCATGGACC GTGGCGTGCT CCCTCTGCC ATTACCCCTGC TGTTTGTCACT ATAGCTTT
421 GTACCCACAA CAGGTCTCGC AGAAAGAGTC GGCTGTGATC TACAGCCTGT GGACCCACA
481 AGGGGTGAGG TGACGTTTAC CACCAGCCAG GTCTCCGAGG GCTGTGTAGC TCAGGCTGCC
541 AATGCTGTGC GTGAAGTCCA CGTTCTCTTC CTGGATTTTC CCGGAATGCT GTCACATCTG
601 GAGCTGACTC TTCAGGCATC CAAGCAAAAT GGCACGGAGA CCCAGGAGGT GTTCCGGTC
661 CTCGTTCGA ACAAAAATGT CTTCGTGAAG TTCCAGGCC CGGAAATCCC ATTGCACTTG
721 GCCTACGACT CCAGCCTGGT CATCTTCAA GGACAGCCAA GAGTCACAT CACAGTGCTA
781 CCATCCCTTA CCTCCAGGAA ACAGATCCTC GACTGGGCAG CCACCAAGGG CGCCATCACC
841 TCGATAGCAG CACTGGATGA CCCCCAAAGC ATCGTCCCTCC AGTTGGCCA AGACCCAAAG
901 GCACCATTCT TGTGCTTGCC AGAAGCTCAC AAGGACATGG GCGCCACACT TGAATGGCAA
961 CCACGAGGCC AGACCCCAAGT CCAAAGCTGT CGCTTGGAAAG GTGTGTCTGG CCACAAGGAG
1021 GCCTACATCC TGAGGATCCT GCCAGGTCT GAGGCCGGGC CCCGGACGGT GACCGTAATG
1081 ATGGAACTGA GTTGCACATC TGGGGACGCC ATTCTCATCC TGCATGGTCC TCCATATGTC
1141 TCCTGGTTCA TCGACATCAA CCACAGCATG CAGATCTTGA CCACAGGTGA ATACTCCGTC
1201 AAGATTTTC CAGGAAGCAA GGTCAAAGGC GTGGAGCTCC CAGACACACC CCAAGGCCCTG
1261 ATAGCGGAGG CCCGCAAGCT CAATGCCAGC ATTGTACCT CCTTGTAGA GCTCCCTCTG
1321 GTCAGCAATG TCTCCCTGAG GGCCTCCAGC TGCAGTGGTG TGTTCCAGAC CACCCCTGCA
1381 CCCGTTGTGA CCACACCTCC CAAGGACACA TGCAGCCCCG TGCTACTCAT GTCCCTGATC
1441 CAGCCAAAGT GTGGCAATCA GGTCACTGACT CTGGCACTCA ATAAAAAAACA CGTGCAGACT
1501 CTCCAGTGCA CCATCACAGG CCTGACTTTC TGGGACTCCA GCTGCCAGGC TGAAGACACT
1561 GACGACCATC TTGTCCTGAG TAGGCCCTAC TCCAGCTGCG GCATGAAAGT GACAGCCCAT
1621 GTGGTCAGCA ATGAGGTGAT CATCAGTTTC CCGTCAGGCT CACCACCACT TCGGAAAAG
1681 GTACAGTGCA TCGACATGGA CAGCCTCTCC TTCCAGCTGG GCCTCTACCT CAGCCCGCAC
1741 TTCCCTCCAGG CATCCAACAC CATCGAACTA GGCCAGCAGG CCTTCGTACA GGTGAGCGTG
1801 TCTCCATTGA CCTCTGAGGT CACAGTCCAG CTAGATAGCT GCCATCTGGA CTTGGGGCCC
1861 GAAGGGGACA TGGTGGAACT CATCCAGAGC CGAACAGCCA AGGGCAGCTG TGTGACCTTG
1921 CTGTCTCCAA GCCCTGAAGG TGACCCACGC TTCAGCTTCC TCCTCCGGGT CTACATGGTG
1981 CCCACACCCA CCGCTGGCAC CCTCAGTTGC AACTTAGCTC TGCGCCCTAG CACCTTGTC
2041 CAGGAAGTCT ACAAGACAGT CTCCATGCGC CTGAACATCG TCAGCCCTGA CCTGTCTGGT
2101 AAAGGCCTTG TCCTGCCCTC TGTACTGGGT ATCACCTTG GTGCCTTCCCT GATTGGGGCC
2161 CTGCTCACAG CTGCACTCTG GTACATCTAT TCTCACACAC GTGGCCCCAG CAAGCGGGAG
2221 CCCGTGGTGG CAGTGGCTGC CCCGGCCTCC TCTGAGAGCA GCAGTACCAA CCACAGCATE
2281 GGGAGCACCC AGAGCACCCC CTGCTCCACC AGCAGCATGG CGTAG

```

(SEQ ID NO: 6)

FIGURE 6

FIGURE 7. Amino acid sequence of murine ENG, isoform 2 (S-ENG)
(GenBank NM_001146350)

1 MDRGVLPLPI TLLFVIYSFV PTTGLAERVG CDLQPVDPTR GEVTFTTSQV SEGCVAQAA
61 AVREHVHLFL DFPGMLSHLE LTLQASKQNG TETQEVFLVL VSNKNVFVKF QAPEIPLHLA
121 YDSSLVIFQG QPRVNITVLP SLTSRKQILD WAATKGAI TS IAALDDPQSI VLQLGQDPKA
181 PFLCLPEAHK DMGATLEWQP RAQTPVQSCR LEGVSGHKEA YILRILPGSE AGPRTVTVM
241 ELSCTSGDAI LILHGPPYVS WFIDINHSMQ ILTTGEYSVK IFPGSKVKGV ELPDTPQGLI
301 AEARKLNASI VTSFVELPLV SNVSLRASSC GGVFQTTPAP VVTPPKDTC SPVLLMSLIQ
361 PKCGNQVMTL ALNKKHVQTL QCTITGLTFW DSSCQAEDTD DHLVLSSAYS SCGMKVTAHV
421 VSNEVIISFP SGSPLLRKKV QCIDMDSLSF QLGLYLSPHF LQASNTIELG QQAFVQVSVS
481 PLTSEVTVQL DSCHLDLGPE GDMVELIQSR TAKGSCVTLL SPSPEGDPRF SFLLRVYMP
541 TPTAGTLSCN LALRPSTLSQ EVYKTVSMRL NIVSPDLSGK GLVLPSVLGI TFGAFLIGAL
601 LTAALWYIYS HTREYPKPPP HSHSKRSGPV HTTPGHTQWS L

(SEQ ID NO: 7)

FIGURE 7

FIGURE 8. Nucleotide sequence encoding murine ENG, isoform 2 (S-ENG)

(GenBank NM_001146350)

```

361 AGCATGGACC GTGGCGTGCT CCCTCTGCC ATTACCCCTGC TGTTTGTCACT CTATAGCTTT
421 GTACCCACAA CAGGTCTCGC AGAAAGAGTC GGCTGTGATC TACAGCCTGT GGACCCCCACA
481 AGGGGTGAGG TGACGTTTAC CACCAGCCAG GTCTCCGAGG GCTGTGTAGC TCAGGCTGCC
541 AATGCTGTGC GTGAAGTCCA CGTTCTCTTC CTGGATTTTC CCGGAATGCT GTCACATCTG
601 GAGCTGACTC TTCAGGCATC CAAGCAAAAT GGCACGGAGA CCCAGGAGGT GTTCCTGGTC
661 CTCGTTCGA ACAAAAATGT CTTCGTGAAG TTCCAGGCCCG CGGAAATCCC ATTGCACTTG
721 GCCTACGACT CCAGCCTGGT CATCTTCCAA GGACAGCCAA GAGTCACAT CACAGTGCTA
781 CCATCCCTTA CCTCCAGGAA ACAGATCCTC GACTGGGCAG CCACCAAGGG CGCCATCACC
841 TCGATAGCAG CACTGGATGA CCCCCAAAGC ATCGTCCTCC AGTTGGGCCA AGACCCAAAG
901 GCACCATTCT TGTGCTTGCC AGAAGCTCAC AAGGACATGG GCGCCACACT TGAATGGCAA
961 CCACGAGGCC AGACCCCAAGT CCAAAGCTGT CGCTTGGAAAG GTGTGTCTGG CCACAAGGAG
1021 GCCTACATCC TGAGGATCCT GCCAGGTCT GAGGCCGGGC CCCGGACGGT GACCGTAATG
1081 ATGGAACTGA GTTGCACATC TGGGGACGCC ATTCTCATCC TGCATGGTCC TCCATATGTC
1141 TCCTGGTTCA TCGACATCAA CCACAGCATG CAGATCTTGA CCACAGGTGA ATACTCCGTC
1201 AAGATTTTC CAGGAAGCAA GGTCAAAGGC GTGGAGCTCC CAGACACACC CCAAGGCCCTG
1261 ATAGCGGAGG CCCGCAAGCT CAATGCCAGC ATTGTACCT CCTTTGTAGA GCTCCCTCTG
1321 GTCAGCAATG TCTCCCTGAG GGCCTCCAGC TGCAGTGGTG TGTTCCAGAC CACCCCTGCA
1381 CCCGTTGTGA CCACACCTCC CAAGGACACA TGCAGCCCCG TGCTACTCAT GTCCCTGATC
1441 CAGCCAAAGT GTGGCAATCA GGTCACTGACT CTGGCACTCA ATAAAAAAACA CGTGCAGACT
1501 CTCCAGTGCA CCATCACAGG CCTGACTTTC TGGGACTCCA GCTGCCAGGC TGAAGACACT
1561 GACGACCATC TTGTCCTGAG TAGGCCCTAC TCCAGCTGCG GCATGAAAGT GACAGCCCAT
1621 GTGGTCAGCA ATGAGGTGAT CATCAGTTTC CCGTCAGGCT CACCACCACT TCGGAAAAG
1681 GTACAGTGCA TCGACATGGA CAGCCTCTCC TTCCAGCTGG GCCTCTACCT CAGCCCGCAC
1741 TTCCCTCCAGG CATCCAACAC CATCGAACTA GGCCAGCAGG CCTTCGTACA GGTGAGCGTG
1801 TCTCCATTGA CCTCTGAGGT CACAGTCCAG CTAGATAGCT GCCATCTGGA CTTGGGGCCC
1861 GAAGGGGACA TGGTGGAACT CATCCAGAGC CGAACAGCCA AGGGCAGCTG TGTGACCTTG
1921 CTGTCTCCAA GCCCTGAAGG TGACCCACGC TTCAGCTTCC TCCTCCGGGT CTACATGGTG
1981 CCCACACCCA CGCCTGGCAC CCTCAGTTGC AACTTAGCTC TGCGCCCTAG CACCTTGTC
2041 CAGGAAGTCT ACAAGACAGT CTCCATGCGC CTGAACATCG TCAGCCCTGA CCTGTCTGGT
2101 AAAGGCCTTG TCCTGCCCTC TGTACTGGGT ATCACCTTG GTGCCTTCCCT GATTGGGGCC
2161 CTGCTCACAG CTGCACTCTG GTACATCTAT TCTCACACAC GTGAGTATCC CAAGCCTCCA
2221 CCCCATTCCC ACAGCAAGCG CTCAGGCCCG GTCCACACCA CCCCCGGGGCA CACCCAGTGG
2281 AGCCTCTGA

```

(SEQ ID NO: 8)

FIGURE 8

FIGURE 9. Amino acid sequence for human ENG extracellular domain

ETVHC DLQPVGPERG EVTYTTSQVS KGCVAQAPNA
ILEVHVLFLE FPTGPSQLEL TLQASKQNGT WPREVLLVLS VNSSVFLHLQ ALGIPLHLAY
NSSLVTFQEP PGVNNTTELPS FPKTQILEWA AERGPITSAA ELNDPQSILL RLGQAQGSLS
FCMLEASQDM GRTLEWRPRT PALVRGCHLE GVAGHKEAHI LRVLPGHSAG PRTVTVKVEL
SCAPGDLDLAV LILQGPPYVS WLIDANHNMQ IWTTGEYSFK IFPEKNIRGF KLPDTPQGLL
GEARMLNASI VASFVELPLA SIVSLHASSC GGRLQTSPAP IQTTPPKDTC SPELLMSLIQ
TKCADDAMTL VLKKELVAHL KCTITGLTFW DPSCEAEDRG DKFVLRSAYS SCGMQVSASM
ISNEAVVNIL SSSSPQRKKV HCLNMDSL SF QLGLYLSPHF LQASNTIEPG QQSFVQVRVS
PSVSEFLLQL DSCHLDLGPE GGTVELIQGR AAKGNCVSLL SPSPEGDPRF SFLLHFYTVP
IPKTGTLSCT VALRPKTGSQ DQEvhRTVFM RLNIISPDLs GCTSKG

(SEQ ID NO: 9)

FIGURE 9

FIGURE 10. Amino acid sequence of murine ENG extracellular domain

ERVG CDLQPVDPTR GEVTFTTSQV SEGCVAQAAN
AVREVHVLF DFPGMLSHLE LTLQASKQNG TETREVFLVL VSNKNVFVKF QAPEIPLHLA
YDSSLVIFQG QPRVNITVLP SLTSRKQILD WAATKGAITS IAALDDPQSI VLQLGQDPKA
PFLCLPEAHK DMGATLEWQP RAQTPVQSCR LEGVSGHKEA YILRILPGSE AGPRTVTVM
ELSCTSGDAI LILHGPPYVS WFIDINHSMQ ILTTGEYSVK IFPGSKVKGV ELPDTPQGLI
AEARKLNASI VTSFVELPLV SNVSLRASSC GGVFQTPAP VVTPPKDTC SPVLLMSLIQ
PKCGNQVMTL ALNKKHVQTL QCTITGLTFW DSSCQAEDTD DHLVLSSAYS SCGMKVTAHV
VSNEVIISFP SGSPPLRKKV QCIDMDSLSF QLGLYLSPHF LQASNTIELG QQAFVQVSVS
PLTSEVTVQL DSCHLDLGPE GDMVELIQSR TAKGSCVTLL SPSPEGDPRF SFLLRVYMP
TPTAGTLSNCN LALRPSTLSQ EVYKTVSMRL NVVSPDLSGK G
(SEQ ID NO: 10)

FIGURE 10

FIGURE 11. Amino acid sequence of human IgG1 Fc domain

1 GGPKSCDKTH TCPPCPAPEL LGGPSVFLFP PKPKDTLMIS RTPEVTCVVV DVSHEDPEVK
61 FNWYVDGVEV HNAKTKPREE QYNSTYRVVS VLTVLHQDWL NGKEYKCKVS NKALPAPIEK
121 TISKAKGQPR EPQVYTLPPS REEMTKNQVS LTCLVKGFYP SDIAVEWESN GQPENNYKTT
181 PPVLDSDGSF FLYSKLTVDK SRWQQGNVFS CSVMHEALHN HYTQKSLSL S PGK

(SEQ ID NO: 11)

FIGURE 11**FIGURE 12. Amino acid sequence of N-terminally truncated human IgG1 Fc domain**

1 THTCPPCPAP ELLGGPSVFL FPPPKDTLM ISRTPEVTCV VVDVSHEDPE VKFNWYVDGV
61 EVHNAKTKPR EEQYNSTYRV VSVLTVLHQD WLNGKEYKC VSNKALPAPI EKTISKAKGQ
121 PREPQVYTLPSR EEMTKNQ VSLTCLVKGF YPSDIAVEWE SNGQPENNYK TPPVLDSDG
181 SFFLYSKLTV DKS RWQQGNV FSC SVMHEAL HN HYTQKSLSL S PGK

(SEQ ID NO: 12)

FIGURE 12

FIGURE 13. Amino acid sequence of hENG(26-586)-hFc

1 MDAMKRLGLCC VLLLCGAVFV SP**GA**ETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPSF PKTQILEWAA
151 ERGPITSAAE LNDPQSILLR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLDAVL
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPPKDTCS
351 PELLMSLIQT KCADDAMTLV LKKELVAHLK CTITGLTFWD PSCEAEDRGD
401 KFVLRSAIYSS CGMQVSASMI SNEAVVNILS SSSPQRKKVH CLNMDSLSFQ
451 LGLYLSPHFL QASNTIEPGQ QSFVQVRVSP SVSEFLLQLD SCHLDLGPEG
501 GTVELIQGRA AKGNCSVLLS PSPEGDPRFS FLLHFYTVPI PKTGTLSCTV
551 ALRPKTGSQD QEvhRTVFMR LNIISPDL SG CTSKG**T**GGGP KSCDKTHTCP
601 PCPAPELLGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS HEDPEVKFNW
651 YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK EYKCKVSNKA
701 LPAPIEKTI S KAKGQPREPQ VYTLPPSREE MTKNQVSLTC LVKGFYPSDI
751 AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV
801 MHEALHNHYT QKSLSLSPGK

(SEQ ID NO: 16)

FIGURE 13

FIGURE 14. Nucleotide sequence encoding hENG(26-586)-hFc

1 ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC
AGTCTTCGTT TCGCCC**GGCG** CC**GAACAGT** CCATTGTGAC CTTCAGCCTG
 101 TGGGCCCCGA GAGGGACGAG GTGACATATA CCAACTAGCCA GGTCTCGAAG
GGCTGCGTGG CTCAGGCCCC CAATGCCATC CTTGAAGTCC ATGTCCTCTT
 201 CCTGGAGTTC CCAACGGGCC CGTCACAGCT GGAGCTGACT CTCCAGGCAT
CCAAGCAAAA TGGCACCTGG CCCCGAGAGG TGCTTCTGGT CCTCAGTGTA
 301 AACAGCAGTG TCTTCCTGCA TCTCCAGGCC CTGGGAATCC CACTGCACTT
GGCCTACAAT TCCAGCCTGG TCACCTTCCA AGAGCCCCG GGGGTCAACA
 401 CCACAGAGCT GCCATCCTTC CCCAAGACCC AGATCCTGA GTGGGCAGCT
GAGAGGGGCC CCATCACCTC TGCTGCTGAG CTGAATGACC CCCAGAGCAT
 501 CCTCCTCCGA CTGGGCCAAG CCCAGGGTC ACTGTCCTTC TGCAATGCTGG
AAGCCAGCCA GGACATGGGC CGCACGCTCG AGTGGCGGCC GCGTACTCCA
 601 GCCTTGGTCC GGGGCTGCCA CTTGGAAGGC GTGGCCGGCC ACAAGGAGGC
GCACATCCTG AGGGTCTGC CGGGCCACTC GGCCGGGCC CGGACGGTGA
 701 CGGTGAAGGT GGAACTGAGC TGCGCACCCG GGGATCTCGA TGCGTCCTC
ATCCTGCAGG GTCCCCCTA CGTGTCTGG CTCATCGACG CCAACCACAA
 801 CATGCAGATC TGGACCACTG GAGAATACTC CTTCAAGATC TTTCCAGAGA
AAAACATTG TGGCTCAAG CTCCCAGACA CACCTCAAGG CCTCCTGGGG
 901 GAGGCCCGGA TGCTCAATGC CAGCATTGTG GCATCCTCG TGGAGCTACC
GCTGGCCAGC ATTGTCTCAC TTCATGCCTC CAGCTGCGGT GGTAGGCTGC
 1001 AGACCTCACC CGCACCGATC CAGACCACTC CTCCCAAGGA CACTTGTAGC
CCGGAGCTGC TCATGTCCTT GATCCAGACA AAGTGTGCCG ACGACGCCAT
 1101 GACCCTGGTA CTAAAGAAAG AGCTTGTG GCATTGAAAG TGCACCATCA
CGGGCCTGAC CTTCTGGGAC CCCAGCTGTG AGGCAGAGGA CAGGGGTGAC
 1201 AAGTTTGTCT TGCGCAGTGC TTACTCCAGC TGTGGCATGC AGGTGTCAGC
AAAGTATGATC AGCAATGAGG CGGTGGTCAA TATCCTGTG AGCTCATCAC
 1301 CACAGCGGAA AAAGGTGCAC TGCCTCAACA TGGACAGCCT CTCTTCCAG
CTGGGCCCTC ACCTCAGCCC ACACTCCCTC CAGGCCTCCA ACACCATCGA
 1401 GCCGGGGCAG CAGAGCTTG TGCAGGTCAAG AGTGTCCCCA TCCGTCTCCG
AGTTCTGCT CCAGTTAGAC AGCTGCCACC TGGACTTGGG GCCTGAGGGGA
 1501 GGCACCGTGG AACTCATCCA GGGCCGGCG GCCAAGGGCA ACTGTGTGAG
CCTGCTGTC CCAAGCCCCG AGGGTGACCC GCGCTTCAGC TTCCCTCCTCC
 1601 ACTTCTACAC AGTACCCATA CCCAAAACCG GCACCCCTAG CTGCACGGTA
GCCCTGCGTC CCAAGACCGG GTCTCAAGAC CAGGAAGTCC ATAGGACTGT
 1701 CTTCATGCGC TTGAACATCA TCAGCCCTGA CCTGCTGGT TGCACAAGCA
AAGGCACGG TGGTGGACCC AAATCTTGTG ACAAAAACCA CACATGCCCA
 1801 CCGTGCCAG CACCTGAAC TCTGGGGGA CCGTCAGTCT TCCTCTTCCC
CCCAAAACCC AAGGACACCC TCATGATCTC CCGGACCCCT GAGGTCACAT

1901 GCGTGGTGGT GGACGTGAGC CACGAAGACC CTGAGGTCAA GTTCAACTGG
TACGTGGACG GCGTGGGAGGT GCATAATGCC AAGACAAAGC CGCGGGAGGA
2001 GCAGTACAAC AGCACGTACC GTGTGGTCAG CGTCCTCACC GTCCCTGCACC
AGGACTGGCT GAATGGCAAG GAGTACAAGT GCAAGGTCTC CAACAAAGCC
2101 CTCCCAGCCC CCATCGAGAA AACCATCTCC AAAGCCAAAG GGCAGCCCCG
AGAACACAG GTGTACACCC TGCCCCCATC CCGGGAGGAG ATGACCAAGA
2201 ACCAGGTAG CCTGACCTGC CTGGTCAAAG GCTTCTATCC CAGCGACATC
GCCGTGGAGT GGGAGAGCAA TGGGCAGCCG GAGAACAACT ACAAGACCAC
2301 GCCTCCCGTG CTGGACTCCG ACGGCTCCTT CTTCCCTAT AGCAAGCTCA
CCGTGGACAA GAGCAGGTGG CAGCAGGGGA ACGTCTCTC ATGCTCCGTG
2401 ATGCATGAGG CTCTGCACAA CCACTACACG CAGAAGAGCC TCTCCCTGTC
CCCGGGTAAA TGA

(SEQ ID NO: 17)

FIGURE 14 continued (Page 2 of 2)

FIGURE 15. Amino acid sequence of hENG(26-586)-hFc with N-terminally truncated Fc domain

1 MDAMKRLGCC VLLLCGAVFV SP**GA**ETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPNF PKTQILEWAA
151 ERGPITSAAE LNDPQSILLR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLDAVL
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPPKDTCS
351 PELLMSLIQT KCADDAMTLV LKKELVAHLK CTITGLTFWD PSCEAEDRGD
401 KFVLRSAVSS CGMQVSASMI SNEAVVNILS SSSPQRKKVH CLNMDSLSFQ
451 LGLYLSPHFL QASNTIEPGQ QSFVQVRVSP SVSEFLLQLD SCHLDLGPEG
501 GTVELIQGRA AKGNCVSLLS PSPEGDPRFS FLLHFYTVPI PKTGTLSCTV
551 ALRPKTGSQD QEvhRTVFMR LNIISPDLG CTSKG**TGGGT** HTCPPCPAPE
601 LLGGPSVFLF PPKPKDTLMI SRTPEVTCVV VDVSHEDEPEV KFNWYVDGVE
651 VHNAKTKPRE EQYNSTYRVV SVLTVLHQDW LNGKEYKCKV SNKALPAPIE
701 KTISKAKGQP REPQVYTLPP SREEMTKNQV SLTCLVKGFY PSDIAVEWES
751 NGQPENNYKT TPPVLDSDGS FFLYSKLTVD KSRWQQGNVF SCSVMHEALH
801 NHYTQKSLSL SPGK

(SEQ ID NO: 18)

FIGURE 15

FIGURE 16. Amino acid sequence of mENG(27-581)-mFc

1 MDAMKRLGCC VLLLCGAVFV SP**GG**ERVGCD LQPVDPTRGE VTFTTSQVSE
51 GCVAQAANAV REVHVLFLDF PGMLSHLELT LQASKQNGTE TQEVFVLVLVS
101 NKNVFVKFQA PEIPLHLAYD SSLVIFQGQP RVNITVLPSL TSRKQILDWA
151 ATKGAITSIA ALDDPQSIVL QLGQDPKAPF LCLPEAHKDM GATLEWQPR
201 QTPVQSCRLE GVSGHKEAYI LRILPGSEAG PRTVTVMME L SCTSGDAILI
251 LHGPPYVSWF IDINHSMQIL TTGEYSVKIF PGSKVKGVEL PDTPQGLIAE
301 ARKLNASIVT SFVELPLVSN VSLRASSCGG VFQTTPAPVV TPPPKDT CSP
351 VLLMSLIQPK CGNQVMTLAL NKKHVQTLQC TITGLTFWDS SCQAEDTDDH
401 LVLSAYSSC GMKVTAHVVS NEVIISFPSG SPPLRKVQC IDMDSLSFQL
451 GLYLSPHFLQ ASNTIELGQQ AFVQVSVSPL TSEVTVQLDS CHLDLGPEGD
501 MVELIQSRTA KGSCVTLLSP SPEGDPRFSF LLRVYMVPTP TAGTLSCNLA
551 LRPSTLSQEV YKTVSMRLNI VSPDLSGKG**T** GGGEPRVPI T QNPCPPLKEC
601 PPCAAPDLLG GPSVFIFPPK IKDVLMISLS PMVTCVVVDV SEDDPDVQIS
651 WFVNNVEVHT AQTQTHREDY NSTLRVVSAL PIQHQDWMSG KEFKCKVNNR
701 ALPSPIEKTI SKPRGPVRAP QVYVLPPPAE EMTKKEFSLT CMITGFLPAE
751 IAVDWTSNGR TEQNYKNTAT VLDSDGSYFM YSKLRVQKST WERGSLFACS
801 VVHEGLHNHL TTKTISRSLG K

(SEQ ID NO: 19)

FIGURE 16

FIGURE 17. Nucleotide sequence encoding mENG(27-581)-mFc

1 ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC
AGTCTCGTT TCGCCC**GGCG** GGGAAAGAGT CGGCTGTGAT CTACAGCCTG

101 TGGACCCCAC AAGGGGTGAG GTGACGTTA CCACCAGCCA GGTCTCCGAG
GGCTGTGTAG CTCAGGCTGC CAATGCTGTG CGTGAAGTCC ACGTTCTCTT

201 CCTGGATTTC CCCGGAATGC TGTCACATCT GGAGCTGACT CTTCAGGCAT
CCAAGCAAAA TGGCACGGAG ACCCAGGAGG TGTTCTGGT CCTCGTTTCG

301 AACAAAAATG TCTTCGTGAA GTTCCAGGCC CCGGAAATCC CATTGCAC
GGCCTACGAC TCCAGCCTGG TCATCTTCCA AGGACAGCCA AGAGTCAACA

401 TCACAGTGCT ACCATCCCTT ACCTCCAGGA AACAGATCCT CGACTGGGCA
GCCACCAAGG GCGCCATCAC CTCGATAGCA GCACTGGATG ACCCCCCAAAG

501 CATCGTCCTC CAGTTGGCC AAGACCCAAA GGCACCATTG TTGTGCTTGC
CAGAAGCTCA CAAGGACATG GGCGCCACAC TTGAATGGCA ACCACGAGCC

601 CAGACCCAG TCCAAAGCTG TCGCTTGGAA GGTGTGTCTG GCCACAAGGA
GGCCTACATC CTGAGGATCC TGCCAGGTTG TGAGGCCGGG CCCCAGACGG

701 TGACCGTAAT GATGGAAC TG AGTTGCACAT CTGGGGACGC CATTCTCATC
CTGCATGGTC CTCCATATGT CTCCTGGTTC ATCGACATCA ACCACAGCAT

801 GCAGATCTTG ACCACAGGTG AATACTCCGT CAAGATCTT CCAGGAAGCA
AGGTCAAAGG CGTGGAGCTC CCAGACACAC CCCAAGGCCT GATAGCGGAG

901 GCCCCGCAAGC TCAATGCCAG CATTGTCACC TCCTTGTAG AGCTCCCTCT
GGTCAGCAAT GTCTCCCTGA GGGCCTCCAG CTGCGGTGGT GTGTTCCAGA

1001 CCACCCCTGC ACCCGTTGTG ACCACACCTC CCAAGGACAC ATGCAGCCCC
GTGCTACTCA TGTCCCTGAT CCAGCCAAAG TGTGGCAATC AGGTCAATGAC

1101 TCTGGCACTC AATAAAAAAC ACGTGCAGAC TCTCCAGTGC ACCATCACAG
GCCTGACTTT CTGGGACTCC AGCTGCCAGG CTGAAGACAC TGACGACCAT

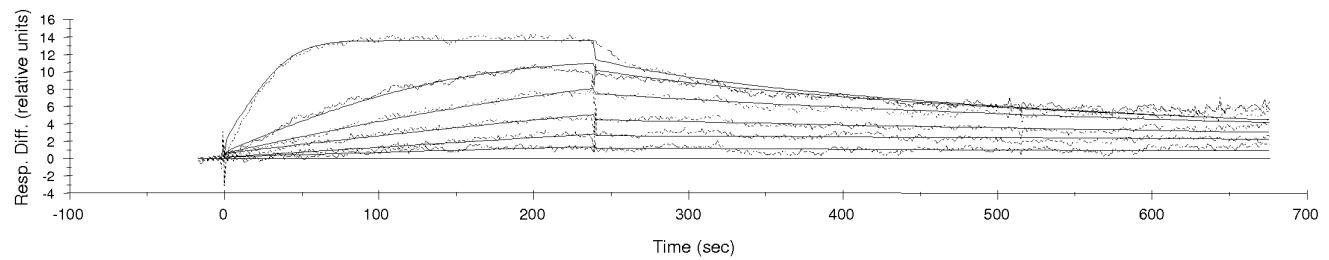
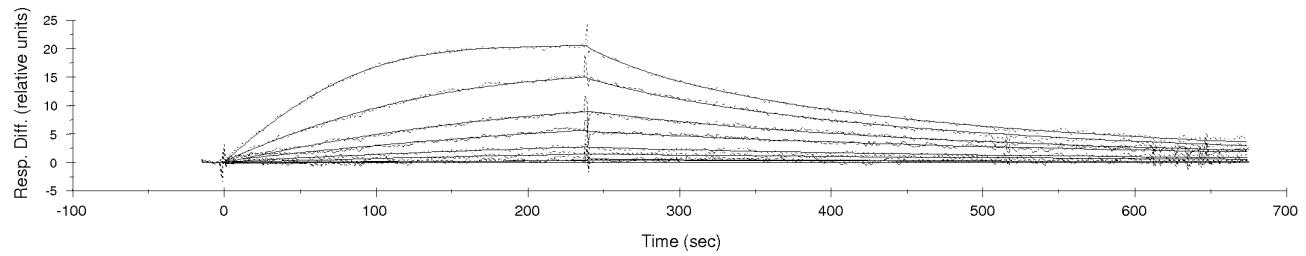
1201 CTTGTCCCTGA GTAGGCCCTA CTCCAGCTGC GGCATGAAAG TGACAGCCCC
TGTGGTCAGC AATGAGGTGA TCATCAGTTT CCCGTCAGGC TCACCAACAC

1301 TTTGGAAAAA GGTACAGTGC ATCGACATGG ACAGCCTCTC CTTCCAGCTG
GGCCTCTACC TCAGCCCGCA CTTCCTCCAG GCATCCAACA CCATCGAACT

1401 AGGCCAGCAG GCCITCGTAC AGGTGAGCGT GTCTCCATTG ACCTCTGAGG
TCACAGTCCA GCTAGATAGC TGCCATCTGG ACTTGGGGCC CGAAGGGGGAC

1501 ATGGTGGAAC TCATCCAGAG CCGAACAGCC AAGGGCAGCT GTGTGACCTT
GCTGTCTCCA AGCCCTGAAG GTGACCCACCG CTTCAGCTTC CTCCCTCCGGG

1601 TCTACATGGT GCCCACACCC ACCGCTGGCA CCCTCAGTTG CAACTTAGCT
CTGCGCCCTA GCACCTTGTC CCAGGAAGTC TACAAGACAG TCTCCATGCG



1701 CCTGAACATC GTCAGCCCTG ACCTGTCTGG TAAAGGC**ACC** **GGTGGGGGTG**
AGCCCAGAGT GCCCATAACA CAGAACCCCT GTCCCTCACT CAAAGAGTGT

1801 CCCCCATGCG CAGCTCCAGA CCTCTTGGGT GGACCATCCG TCTTCATCTT
CCCTCCAAAG ATCAAGGATG TACTCATGAT CTCCCTGAGC CCCATGGTCA

1901 CATGTGTGGT GGTGGATGTG AGCGAGGATG ACCCAGACGT CCAGATCAGC
TGGTTTGTGA ACAACGTGGA AGTACACACA GCTCAGACAC AAACCCATAG
2001 AGAGGATTAC AACAGTACTC TCCGGGTGGT CAGTGCCCTC CCCATCCAGC
ACCAGGACTG GATGAGTGGC AAGGAGTTCA AATGCAAGGT CAACAAACAGA
2101 GCCCTCCCAT CCCCATCGA GAAAACCATC TCAAAACCCA GAGGGCCAGT
AAGAGCTCCA CAGGTATATG TCTTGCCTCC ACCAGCAGAA GAGATGACTA
2201 AGAAAGAGTT CAGTCTGACC TGCATGATCA CAGGCTTCTT ACCTGCCGAA
ATTGCTGTGG ACTGGACCG CAATGGCGT ACAGAGCAAA ACTACAAGAA
2301 CACCGCAACA GTCCTGGACT CTGATGGTTC TTACTTCATG TACAGCAAGC
TCAGAGTACA AAAGAGCACT TGGGAAAGAG GAAGTCTTT CGCCTGCTCA
2401 GTGGTCCACG AGGGTCTGCA CAATCACCTT ACGACTAAGA CCATCTCCCCG
GTCTCTGGGT AAATGA

(SEQ ID NO: 20)

FIGURE 17 (Page 2 of 2)

FIGURE 18. High-affinity binding of hENG(26-586)-hFc to BMP-9**FIGURE 18****FIGURE 19. High-affinity binding of hENG(26-586)-hFc to BMP-10****FIGURE 19**

FIGURE 20. Effect of soluble hENG extracellular domain, hENG(26-586), on binding of BMP-9 to ALK1

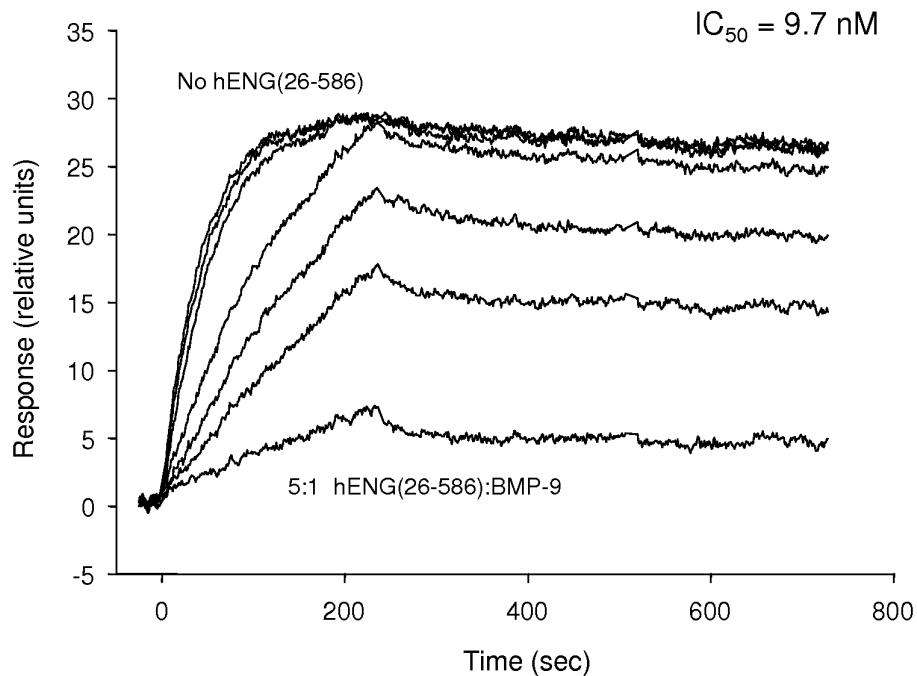
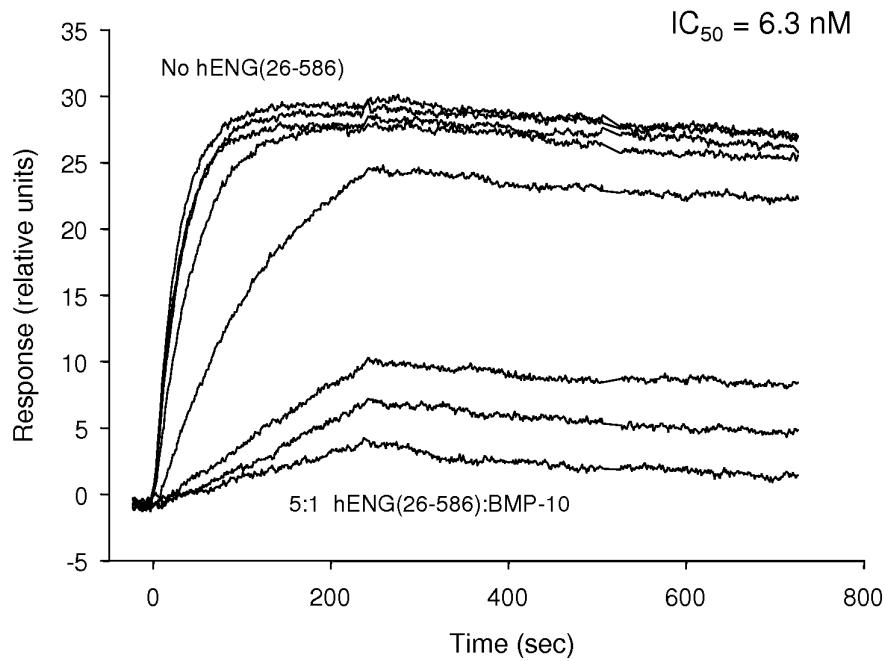
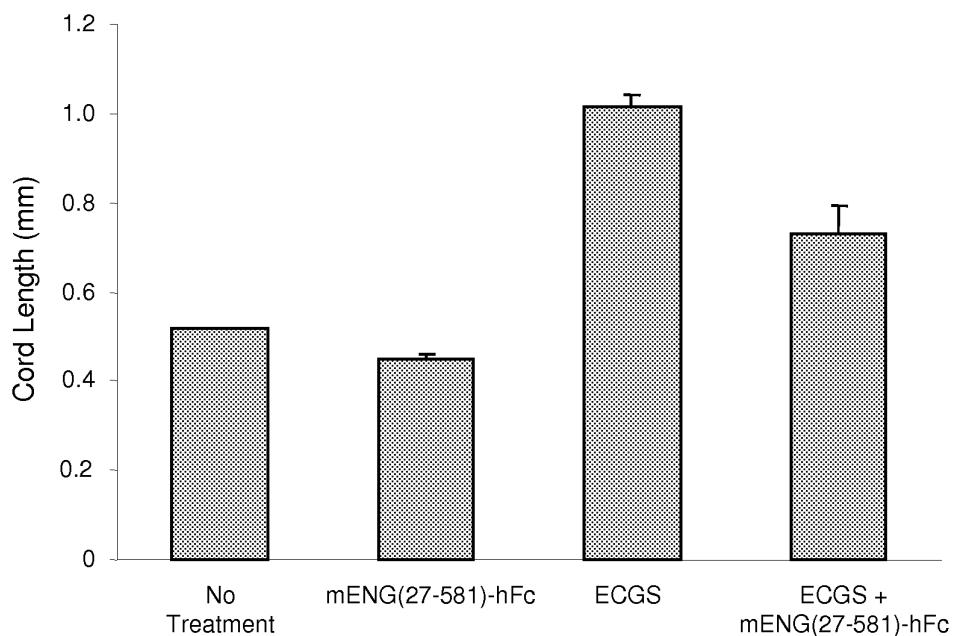


FIGURE 20

FIGURE 21. Effect of soluble hENG extracellular domain, hENG(26-586), on binding of BMP-10 to ALK1

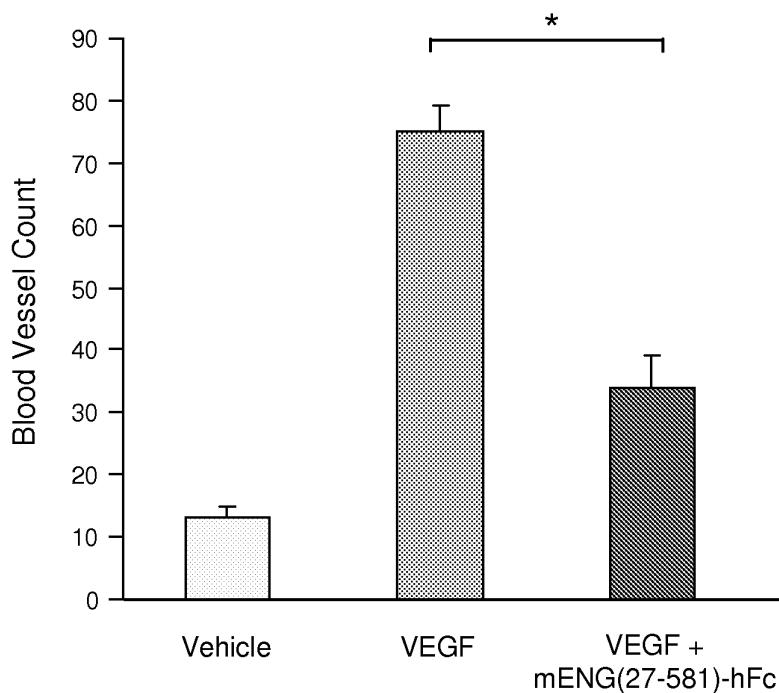

FIGURE 21

FIGURE 22. Effect of mENG(27-581)-hFc on cord formation by human umbilical vein endothelial cells (HUVEC) in culture

FIGURE 22

FIGURE 23. mENG(27-581)-hFc inhibits VEGF-stimulated angiogenesis in a CAM assay

FIGURE 23

FIGURE 24. Effect of mENG(27-581)-mFc on growth-factor stimulated angiogenesis in a mouse angioreactor assay

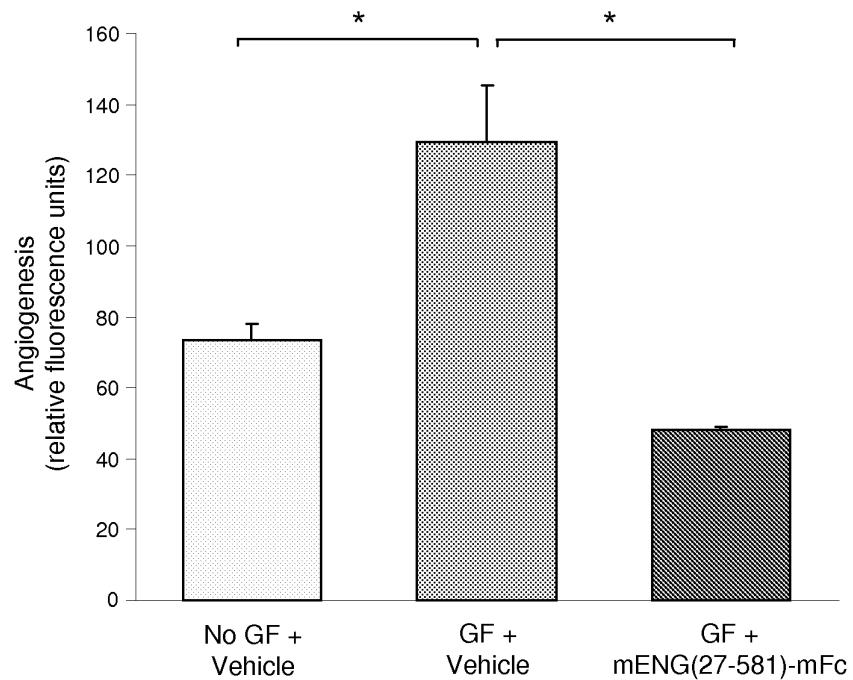


FIGURE 24

FIGURE 25. Schematic comparison of selected truncated hENG constructs

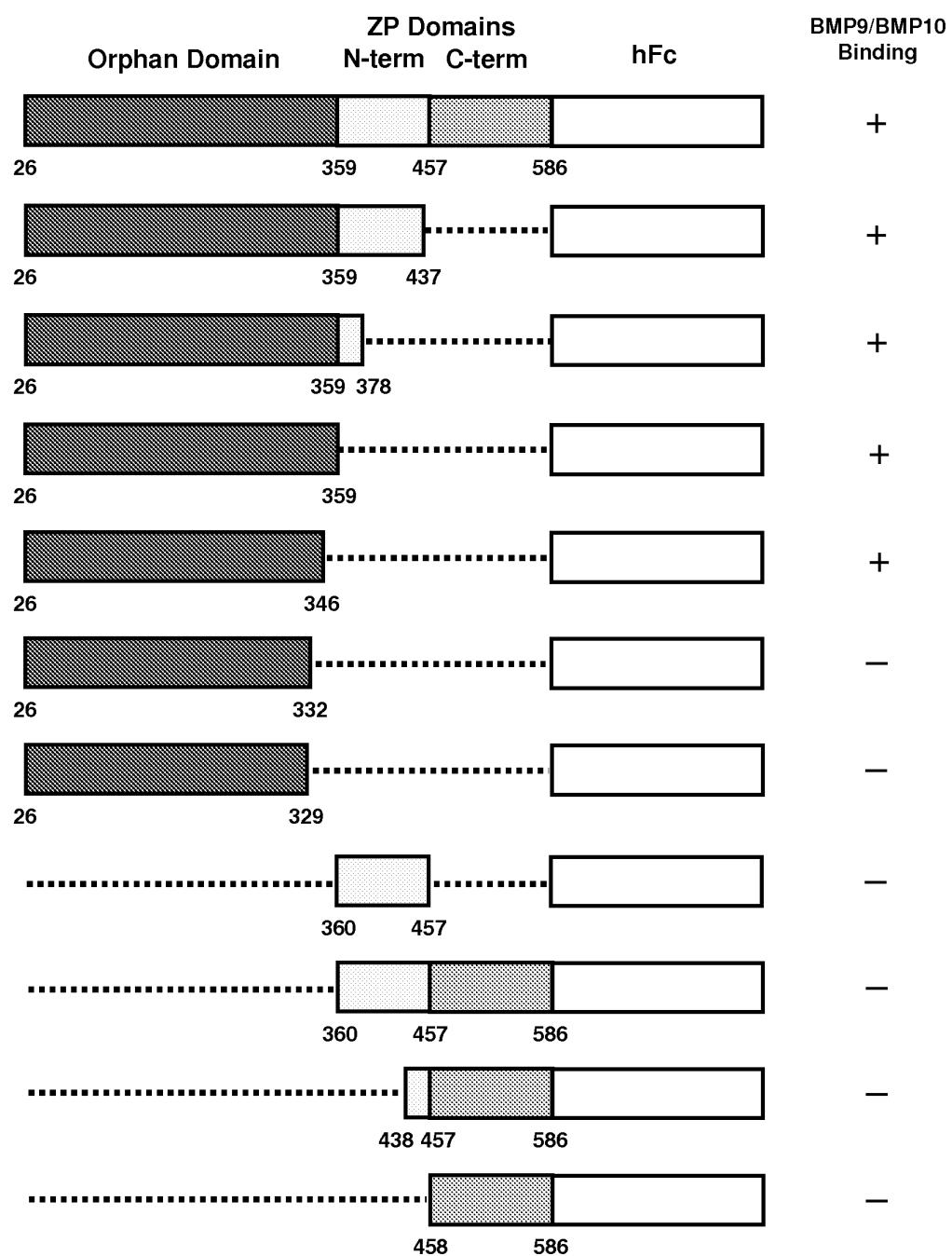


FIGURE 25

FIGURE 26. Amino acid sequence of hENG(26-437)-hFc

1 MDAMKRLGCC VLLLCGAVFV SP**G**AETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPSF PKTQILEWAA
151 ERGPITSAAE LNDPQSILLR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLDLAVL
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPPKDTCS
351 PELLMSLIQT KCADDAMTLV LKKELVAHLK CTITGLTFWD PSCEAEDRGD
401 KFVLRSAYSS CGMQVSASMI SNEAVVNILS SSSPQR**T**GGG PKSCDKTHTC
451 PPCPAPELLG GPSVFLFPPK PKDTLMISRT PEVTCVVVDV SHEDPEVKFN
501 WYVDGVEVHN AKTKPREEQY NSTYRVVSVL TVLHQDWLNG KEYKCKVSNK
551 ALPAPIEKTI SKAKGQPREP QVYTLPPSRE EMTKNQVSLT CLVKGFYPSD
601 IAVEWESNGQ PENNYKTTPP VLDSDGSFFL YSKLTVDKSR WQQGNVFSCS
651 VMHEALHNHY TQKSLSLSPG K

(SEQ ID NO: 21)

FIGURE 26

FIGURE 27. Nucleotide sequence encoding hENG(26-437)-hFc

1 ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC
AGTCTCGTT TCGCCC**GGCG** CCGAAACAGT CCATTGTGAC CTTCAGCCTG
 101 TGGGCCCCGA GAGGGACGAG GTGACATATA CCACTAGCCA GGTCTCGAAG
GGCTGCGTGG CTCAGGCCCA CAATGCCATC CTTGAAGTCC ATGTCCTCTT
 201 CCTGGAGTTC CCAACGGGCC CGTCACAGCT GGAGCTGACT CTCCAGGCAT
CCAAGCAAAA TGGCACCTGG CCCCGAGAGG TGCTTCTGGT CCTCAGTGTAA
 301 AACAGCAGTG TCTTCCTGCA TCTCCAGGCC CTGGGAATCC CACTGCAC
GGCCTACAAT TCCAGCCTGG TCACCTTCCA AGAGCCCCCG GGGGTCAACAA
 401 CCACAGAGCT GCCATCCTTC CCCAAGACCC AGATCCTTGA GTGGGCAGCT
GAGAGGGGCC CCATCACCTC TGCTGCTGAG CTGAATGACC CCCAGAGCAT
 501 CCTCCTCCGA CTGGGCCAAG CCCAGGGTC ACTGTCTTC TGATGCTGG
AAGCCAGCCA GGACATGGGC CGCACGCTCG AGTGGCGGCC GCGTACTCCA
 601 GCCTTGGTCC GGGGCTGCCA CTTGGAAAGGC GTGGCCGGCC ACAAGGAGGC
GCACATCCTG AGGGTCTGC CGGGCCACTC GGCGGGGCC CGGACGGTGA
 701 CGGTGAAGGT GGAACTGAGC TGCGCACCCCG GGGATCTCGA TGCGTCCTC
ATCCTGCAGG GTCCCCCTA CGTGTCTGG CTCATCGACG CCAACCACAA
 801 CATGCAGATC TGGACCACTG GAGAATACTC CTTCAAGATC TTTCCAGAGA
AAAACATTG TGGCTTCAAG CTCCCAGACA CACCTCAAGG CCTCCTGGGG
 901 GAGGCCCGGA TGCTCAATGC CAGCATTGTG GCATCCTTC TGAGCTTAC
GCTGGCCAGC ATTGTCTCAC TTCATGCCTC CAGCTGCGGT GGTAGGCTGC
 1001 AGACCTCACC CGCACCGATC CAGACCACTC CTCCAAGGA CACTTGTAGC
CCGGAGCTGC TCAATGCTT GATCCAGACA AAGTGTGCCG ACGACGCCAT
 1101 GACCCCTGGTA CTAAAGAAAG AGCTTGTG GCATTTGAAG TGCACCATCA
CGGGCCTGAC CTTCTGGGAC CCCAGCTGTG AGGCAGAGGA CAGGGGTGAC
 1201 AAGTTTGTCT TGCGCAGTGC TTACTCCAGC TGTGGCATGC AGGTGTCA
AGTATGATC AGCAATGAGG CGGTGGTCAA TATCCTGTG AGCTCATCAC
 1301 CACAGCGG**AC** CGGTGGTGA CCCAAATCTT GTGACAAAC TCACACATGC
CCACCGTGCC CAGCACCTGA ACTCCTGGGG GGACCGTCAG TCTTCCTCTT
 1401 CCCCCCAAAA CCCAAGGACA CCCTCATGAT CTCCCGGACC CCTGAGGTCA
CATGCGTGGT GGTGGACGTG AGCCACGAAG ACCCTGAGGT CAAGTTCAAC
 1501 TGGTACGTGG ACGGCGTGA GGTGCATAAT GCCAAGACAA AGCCGCGGGGA
GGAGCAGTAC AACAGCACGT ACCGTGTGGT CAGCGTCCTC ACCGTCTGC
 1601 ACCAGGACTG GCTGAATGGC AAGGAGTACA AGTGCAAGGT CTCCAACAAA
GCCCTCCAG CCCCCATCGA GAAAACCATC TCCAAAGCCA AAGGGCAGCC
 1701 CCGAGAACCA CAGGTGTACA CCCTGCCCCC ATCCCGGGAG GAGATGACCA
AGAACCCAGGT CAGCCTGACC TGCGTGGTCA AAGGCTTCTA TCCCAGCGAC
 1801 ATCGCCGTGG AGTGGGAGAG CAATGGGCAG CGGAGAACAA ACTACAAGAC
CACGCCTCCC GTGCTGGACT CGCACGGCTC CTTCTCCTC TATAGCAAGC
 1901 TCACCGTGA CAAGAGCAGG TGGCAGCAGG GGAACGTCTT CTCATGCTCC
GTGATGCATG AGGCTCTGCA CAACCAACTAC ACGCAGAAGA GCCTCTCCCT
 2001 GTCCCCGGGT AAATGA

(SEQ ID NO: 22)

FIGURE 27

FIGURE 28. Amino acid sequence of hENG(26-378)-hFc

1 MDAMKRLGCC VLLLCGAVFV SPGAETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPSF PKTQILEWAA
151 ERGPITSAAE LNDPQSILLR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLDAVL
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPPKDTCS
351 PELLMSLIQT KCADDAMTLV LKKELVATGGG GTHTCPPCPA PELLGGPSVF
401 LFPPPKPKDTL MISRTPEVTC VVVDVSHEDP EVKFNWYVDG VEVHNAKTKP
451 REEQYNSTYR VVSVLTVLHQ DWLNGKEYKC KVSNKALPAP IEKTISKAKG
501 QPREPQVYTL PPSREEMTKN QVSLTCLVKG FYPSDIAVEW ESNGQPENNY
551 KTTPPVLDSD GSFFFLYSKLT VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL
601 SLSPGK

(SEQ ID NO: 23)

FIGURE 28

FIGURE 29. Nucleotide sequence encoding hENG(26-378)-hFc

```

1 ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC AGTCTTCGTT
61 TCGCCCGGCG CCGAAACAGT CCATTGTGAC CTTCAGCCTG TGGGCCCCGA GAGGGACGAG
121 GTGACATATA CCACTAGCCA GGTCTCGAAG GGCTCGTGG CTCAGGCCCA CAATGCCATC
181 CTTGAAGTCC ATGTCTCTT CCTGGAGTTC CCAACGGGCC CGTCACAGCT GGAGCTGACT
241 CTCCAGGCAT CCAAGCAAAA TGGCACCTGG CCCCGAGAGG TGCTCTGGT CCTCAGTGTAA
301 AACAGCAGTG TCTTCTGCA TCTCCAGGCC CTGGGAATCC CACTGCACCTT GGCCTACAAAT
361 TCCAGCCTGG TCACCTTCCA AGAGCCCCCG GGGGTCAACA CCACAGAGCT GCCATCCTTC
421 CCCAAGACCC AGATCCTTGA GTGGGCAGCT GAGAGGGGCC CCATCACCTC TGCTGCTGAG
481 CTGAATGACC CCCAGAGCAT CCTCCTCCGA CTGGGCCAAG CCCAGGGGTC ACTGTCCTTC
541 TGCAATGCTGG AAGCCAGCCA GGACATGGGC CGCACGCTCG AGTGGCGGCC GCGTACTCCA
601 GCCTTGGTCC GGGGCTGCCA CTTGGAAGGC GTGGCCGGCC ACAAGGAGGC GCACATCCTG
661 AGGGTCCTGC CGGGCCACTC GGCGGGGCC CGGACGGTGA CGGTGAAGGT GGAACTGAGC
721 TGGCGACCCG GGGATCTCGA TGCCGTCTC ATCCTGCAGG GTCCCCCTTA CGTGTCTGG
781 CTCATCGACG CCAACCACAA CATGCAGATC TGGACCACTG GAGAATACTC CTTCAAGATC
841 TTTCCAGAGA AAAACATTG TGGCTTCAAG CTCCCAGACA CACCTCAAGG CCTCCTGGGG
901 GAGGCCCGGA TGCTCAATGC CAGCATTGTG GCATCCTTCG TGGAGCTACC GCTGGCCAGC
961 ATTGTCTCAC TTCATGCCTC CAGCTGCGGT GGTAGGCTGC AGACCTCACC CGCACCGATC
1021 CAGACCACTC CTCCAAGGA CACTTGTAGC CCGGAGCTGC TCATGTCTT GATCCAGACA
1081 AAGTGTGCCG ACGACGCCAT GACCCTGGTA CTAAAGAAAG AGCTTGTGC ACCGGTGGT
1141 GGAACTCACA CATGCCACC GTGCCAGCA CCTGAACCTCC TGGGGGGACC GTCAGTCTTC
1201 CTCTTCCCCC CAAACCCAA GGACACCCCTC ATGATCTCCC GGACCCCTGA GGTACATGC
1261 GTGGTGGTGG ACGTGAGCCA CGAAGACCCCT GAGGTCAAGT TCAACTGGTA CGTGGACGGC
1321 GTGGAGGTGC ATAATGCCAA GACAAAGCCG CGGGAGGAGC AGTACAACAG CACGTACCGT
1381 GTGGTCAGCG TCCTCACCGT CCTGCACCAAG GACTGGCTGA ATGGCAAGGA GTACAAGTGC
1441 AAGGTCTCCA ACAAAAGCCCT CCCAGCCCCC ATCGAGAAAA CCATCTCCAA AGCCAAAGGG
1501 CAGCCCCGAG AACCACAGGT GTACACCCCTG CCCCCCATCCC GGGAGGAGAT GACCAAGAAC
1561 CAGGTCAGCC TGACCTGCCT GGTCAAAGGC TTCTATCCCA GCGACATCGC CGTGGAGTGG
1621 GAGAGCAATG GGCAGCCGGA GAACAACTAC AAGACCACGC CTCCCGTGCT GGACTCCGAC
1681 GGCTCTTCT TCCCTCTATAG CAAGCTCACC GTGGACAAGA GCAGGTGGCA GCAGGGGAAC
1741 GTCTTCTCAT GCTCCGTGAT GCATGAGGCT CTGCACAAACC ACTACACGCA GAAGAGCCTC
1801 TCCCTGTCCC CGGGTAAATG A

```

(SEQ ID NO: 24)

FIGURE 29

FIGURE 30. Amino acid sequence of hENG(26-359)-hFc

1 MDAMKRLGCC VLLLCGAVFV SP**GA**ETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPSPF PKTQILEWAA
151 ERGPITSAAE LNDPQSILLR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLDAVL
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPPKDTCS
351 PELLMSLIT**TG** GGPKSCDKTH TCPPCPAPEL LGGPSVFLFP PKPKDTLMIS
401 RTPEVTCVVV DVSHEDEPEVK FNWYVDGVEV HNAKTKPREE QYNSTYRVVS
451 VLTVLHQDWL NGKEYKCKVS NKALPAPIEK TISKAKGQPR EPQVYTLPPS
501 REEMTKNQVS LTCLVKGFYP SDIAVEWESN GQPENNYKTT PPVLDSDGSF
551 FLYSKLTVDK SRWQQGNVFS CSVMHEALHN HYTQKSLSLS PGK

(SEQ ID NO: 25)

FIGURE 30

FIGURE 31. Nucleotide sequence encoding hENG(26-359)-hFc

1 ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC
 101 AGTCTTCGTT TCGCCCGGCG CCGAACAGT CCATTGTGAC CTTCAGCCTG
 201 GGGGCCCCGA GAGGGACGAG GTGACATATA CCACTAGCCA GGTCTCGAAG
 301 GGCTGCGTGG CTCAGGCCCC CAATGCCATC CTTGAAGTCC ATGTCCTCTT
 401 CCTGGAGTT CCAACGGGCC CGTCACAGCT GGAGCTGACT CTCCAGGCAT
 501 CCAAGCAAAA TGGCACCTGG CCCCCGAGAGG TGCTTCTGGT CCTCAGTGT
 601 AACAGCAGTG TCTTCCGTGCA TCTCCAGGCC CTGGGAATCC CACTGCAC
 701 GGCCTACAAT TCCAGCCTGG TCACCTTCCA AGAGCCCCCG GGGGTCAACA
 801 CCACAGAGCT GCCATCCTTC CCCAAGACCC AGATCCTGA GTGGGCAGCT
 901 GAGAGGGGCC CCATCACCTC TGCTGCTGAG CTGAATGACC CCCAGAGCAT
 1001 CTCTCTCCGA CTGGGCAAG CCCAGGGTC ACTGTCCTTC TGCATGCTGG
 1101 AAGCCAGCCA GGACATGGGC CGCACGCTCG AGTGGCGGCC GCGTACTCCA
 1201 GCCTTGGTCC GGGGCTGCCA CTGGGAAGGC GTGGCCGGCC ACAAGGAGGC
 1301 AGACATCCTG AGGGTCTGC CGGGCCACTC GGCGGGGCC CGGACGGTGA
 1401 CGGTGAAGGT GGAAC TGAGC TGCGCACCCG GGGATCTCGA TGCCGTCTC
 1501 ATCCTGCAGG GTCCCCCTA CGTGTCTGG CTCATCGACG CCAACCACAA
 1601 CATGCAGATC TGGACCACTG GAGAATACTC CTTCAAGATC TTTCCAGAGA
 1701 AAAACATTG TGGCTTCAAG CTCCCAGACA CACCTCAAGG CCTCCTGGGG
 1801 GAGGCCCGGA TGCTCAATGC CAGCATTGTG GCATCCTTC TGAGCTAC
 1901 GCTGGCCAGC ATTGTCAC TTCATGCCTC CAGCTGCGGT GGTAGGCTGC
 2001 AGACCTCAC CGCACCGATC CAGACCACTC CTCCCAAGGA CACTTGTAGC
 2101 CCGGAGCTGC TCATGTCCTT GATCACCGGT GGTGGACCCA AATCTGTGA
 2201 CAAAACTCAC ACATGCCAC CGTGCCAGC ACCTGAACTC CTGGGGGGAC
 2301 CGTCAGTCTT CCTCTCCCC CCAAAACCCA AGGACACCCCT CATGATCTCC
 2401 CGGACCCCTG AGGTACATG CGTGGTGGTG GACGTGAGCC ACGAAGACCC
 2501 TGAGGTCAAG TTCAACTGGT ACGTGGACGG CGTGGAGGTG CATAATGCCA
 2601 AGACAAAGCC GCGGGAGGAG CAGTACAACA GCACGTACCG TGTGGTCAGC
 2701 GTCCTCACCG TCCTGCACCA GGACTGGCTG AATGGCAAGG AGTACAAGTG
 2801 CAAGGTCTCC AACAAAGCCC TCCCAGCCCC CATCGAGAAA ACCATCTCCA
 2901 AAGCCAAAGG GCAGCCCCGA GAACCACAGG TGTACACCCCT GCCCCCCATCC
 3001 CGGGAGGAGA TGACCAAGAA CCAGGTCAAG CTGACCTGCC TGGTCAAAGG
 3101 CTTCTATCCC AGCGACATCG CGTGGAGTG GGAGAGCAAT GGGCAGCCGG
 3201 AGAACAACTA CAAGACCAACG CCTCCGTGC TGGACTCCGA CGGCTCCTTC
 3301 TTCCCTCTATA GCAAGCTCAC CGTGGACAAG AGCAGGTGGC AGCAGGGGAA
 3401 CGTCTTCTCA TGCTCCGTGA TGCAATGAGGC TCTGCACAAAC CACTACACGC
 3501 AGAAGAGCCT CTCCCTGTCC CCGGGTAAAT GA

(SEQ ID NO: 26)

FIGURE 31

FIGURE 32. Amino acid sequence of hENG(26-359)-hFc with N-terminally truncated Fc domain

1 MDAMKRLGCC VLLLCGAVFV SP**GA**ETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPSF PKTQILEWAA
151 ERGPITSAAE LNDPQSILLR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLDALV
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPPKDTCS
351 PELLMSLIT**TG GG**HTCPPCP APELLGGPSV FLFPPPKPKDT LMISRTPEVT
401 CVVVDVSHEDE PEVKFNWYVD GVEVHNNAKTK PREEQYNSTY RVVSVLTVLH
451 QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK
501 NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTPPPVLDS DGSFFLYSKL
551 TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK

(SEQ ID NO: 27)

FIGURE 32

FIGURE 33. Nucleotide sequence encoding hENG(26-359)-hFc with N-terminally truncated Fc domain

1	<u>ATGGATGCAA</u> TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC
	<u>AGTCTTCGTT</u> TCGCCC <u>GGCG</u> CCGAACAGT CCATTGTGAC CTTCAGCCTG
101	<u>TGGGCCCCGA</u> GAGGGACGAG GTGACATATA CCACTAGCCA GGTCTCGAAG
	<u>GGCTGCGTGG</u> CTCAGGCCCC CAATGCCATC CTTGAAGTCC ATGTCCTCTT
201	<u>CCTGGAGTT</u> CCAACGGGCC CGTCACAGCT GGAGCTGACT CTCCAGGCAT
	<u>CCAAGCAAA</u> TGGCACCTGG CCCCGAGAGG TGCTTCTGGT CCTCAGTGT
301	<u>AACAGCAGTG</u> TCTTCTTGCA TCTCCAGGCC CTGGGAATCC CACTGCACTT
	<u>GGCCTACAAT</u> TCCAGCCTGG TCACCTTCCA AGAGCCCCCG GGGGTCAACA
401	<u>CCACAGAGCT</u> GCCATCCTTC CCCAAGACCC AGATCCTGA GTGGGCAGCT
	<u>GAGAGGGGCC</u> CCATCACCTC TGCTGCTGAG CTGAATGACC CCCAGAGCAT
501	<u>CCTCCTCCGA</u> CTGGGCAAG CCCAGGGTC ACTGTCCTTC TGCATGCTGG
	<u>AAGCCAGCCA</u> GGACATGGGC CGCACGCTCG AGTGGCGGCC GCGTACTCCA
601	<u>GCCTTGGTCC</u> GGGGCTGCCA CTTGGAAAGGC GTGGCCGGCC ACAAGGAGGC
	<u>GCACATCCTG</u> AGGGTCTGC CGGGCCACTC GGCGGGGCC CGGACGGTGA
701	<u>CGGTGAAGGT</u> GGAACTGAGC TGCGCACCCG GGGATCTCGA TGCCGTCTC
	<u>ATCCTGCAGG</u> GTCCCCCTA CGTGTCTGG CTCATCGACG CCAACCACAA
801	<u>CATGCAGATC</u> TGGACCACTG GAGAATACTC CTTCAAGATC TTTCCAGAGA
	<u>AAAACATTG</u> TGGCTTCAAG CTCCCAGACA CACCTCAAGG CCTCCTGGGG
901	<u>GAGGCCCGGA</u> TGCTCAATGC CAGCATTGTG GCATCCTTCG TGGAGCTACC
	<u>GCTGGCCAGC</u> ATTGTCAC CTCATGCCTC CAGCTGCGGT GGTAGGCTGC
1001	<u>AGACCTCACC</u> CGCACCGATC CAGACCACTC CTCCCAAGGA CACTTGTAGC
	<u>CCGGAGCTGC</u> TCATGTCCTT GATC <u>ACCGGT</u> GGTGGAA ACTC ACACATGCC
1101	<u>ACCGTGCCCA</u> GCACCTGAAC TCCTGGGGGG ACCGTCAAGTC TTCTCTTCC
	<u>CCCCAAAAACC</u> CAAGGACACC CTCATGATCT CCCGGACCCC TGAGGTCACA
1201	<u>TGCGTGGTGG</u> TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG
	<u>GTACGTGGAC</u> GGCAGTGGAGG TGCTATAATGC CAAGACAAAG CCGCGGGAGG
1301	<u>AGCAGTACAA</u> CAGCACGTAC CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC
	<u>CAGGACTGGC</u> TGAATGGCAA GGAGTACAAG TGCAAGGTCT CCAACAAAGC
1401	<u>CCTCCCAGCC</u> CCCATCGAGA AAACCATCTC CAAAGCCAAA GGGCAGCCCC
	<u>GAGAACACACA</u> GGTGTACACC CTGCCCCCAT CCCGGGAGGA GATGACCAAG
1501	<u>AACCAGGTCA</u> GCCTGACCTG CCTGGTCAA GGCTTCTATC CCAGCGACAT
	<u>CGCCGTGGAG</u> TGGGAGAGCA ATGGGCAGGCC GGAGAACAAAC TACAAGACCA
1601	<u>CGCCTCCCGT</u> GCTGGACTCC GACGGCTCCT TCTTCCCTCA TAGCAAGCTC
	<u>ACCGTGGACA</u> AGAGCAGGTG GCAGCAGGGG AACGTCTTCT CATGCTCCGT
1701	<u>GATGCATGAG</u> GCTCTGCACA ACCACTACAC GCAGAAGAGC CTCTCCCTGT
	<u>CCCCGGGTAA</u> ATGA

(SEQ ID NO: 28)

FIGURE 33

FIGURE 34. Amino acid sequence of hENG(26-346)-hFc with N-terminally truncated hFc domain

1 MDAMKRLGCC VLLLCGAVFV SP**GA**ETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPSF PKTQILEWAA
151 ERGPITSAAE LNDPQSILLR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLDALV
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPP**TGGGT**
351 HTCPPCPAPE LLGGPSVFLF PPKPKDTLMI SRTPEVTCVV VDVSHEDEPV
401 KFNWYVDGVE VHNAKTKPRE EQYNSTYRVV SVLTVLHQDW LNGKEYKCKV
451 SNKALPAPIE KTISKAKGQP REPQVYTLPP SREEMTKNQV SLTCLVKGFY
501 PSDIAVEWES NGQPENNYKT TPPVLDSDGS FFLYSKLTVD KSRWQQGNVF
551 SCSVMHEALH NHYTQKSLSL SPGK

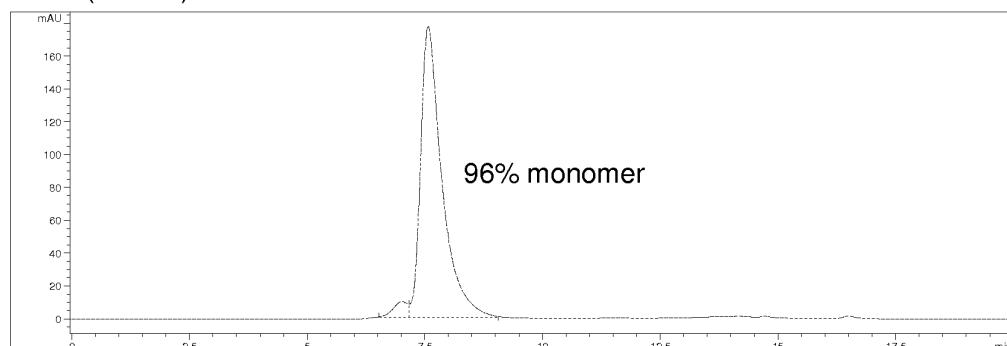
(SEQ ID NO: 29)

FIGURE 34

FIGURE 35. Nucleotide sequence encoding hENG(26-346)-hFc with N-terminally truncated hFc domain

```

1  ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC AGTCTTCGTT
61  TCGCCCGGCG CCGAAACAGT CCATTGTGAC CTTCAGCCTG TGGGCCCGA GAGGGACGAG
121  GTGACATATA CCACTAGCCA GGTCTCGAAG GGCTGCGTGG CTCAGGCCCC CAATGCCATC
181  CTTGAAGTCC ATGTCCTCTT CCTGGAGTTC CCAACGGGCC CGTCACAGCT GGAGCTGACT
241  CTCCAGGCAT CCAAGAAAA TGGCACCTGG CCCCAGAGGG TGCTTCTGGT CCTCAGTGTAA
301  AACAGCAGTG TCTTCCTGCA TCTCCAGGCC CTGGGAATCC CACTGCACCTT GGCCTACAAT
361  TCCAGCCTGG TCACCTTCCA AGAGCCCCCG GGGGTCAACA CCACAGAGCT GCCATCCTTC
421  CCCAAGACCC AGATCCTTGA GTGGGCAGCT GAGAGGGGCC CCATCACCTC TGCTGCTGAG
481  CTGAATGACC CCCAGAGCAT CCTCCTCCGA CTGGCCAAG CCCAGGGTC ACTGTCCTTC
541  TGCATGCTGG AAGCCAGCCA GGACATGGGC CGCACGCTCG AGTGGCGGCC GCGTACTCCA
601  GCCTTGGTCC GGGGCTGCCA CTTGGAAGGC GTGGCCGGCC ACAAGGAGGC GCACATCCTG
661  AGGGTCCTGC CGGGCCACTC GGCGGGGCC CGGACGGTGA CGGTGAAGGT GGAAGTGAGC
721  TGCGCACCCG GGGATCTCGA TGCCGTCTC ATCCTGCAGG GTCCCCCTA CGTGTCTGG
781  CTCATCGACG CCAACCACAA CATGCAGATC TGGACCACGT GAGAATACTC CTTCAAGATC
841  TTTCCAGAGA AAAACATTG TGGCTTCAAG CTCCCAGACA CACCTCAAGG CCTCCCTGGGG
901  GAGGCCCGGA TGCTCAATGC CAGCATTGTG GCATCCTTCG TGGAGCTACC GCTGGCCAGC
961  ATTGCTCAC TTCATGCCCTC CAGCTGCGGT GGTAGGCTGC AGACCTCACCC CGCACCGATC
1021  CAGACCACTC CTCCCACCGG TGGTGG ACT CACACATGCC CACCGTCCC AGCACCTGAA
1081  CTCCTGGGG GACCGTCAGT CTTCTCTTC CCCCCAAAC CCAAGGACAC CCTCATGATC
1141  TCCCAGACCC CTGAGGTCAC ATGCGTGGTG GTGGACGTGA GCCACGAAGA CCCTGAGGTC
1201  AAGTTCAACT GGTACGTGGA CGGCGTGGAG GTGCATAATG CCAAGACAAA GCGCGGGAG
1261  GAGCAGTACA ACAGCACGTA CCGTGTGGTC AGCGTCTCA CCGTCCTGCA CCAGGACTGG
1321  CTGAATGGCA AGGAGTACAA GTGCAAGGTC TCCAACAAAG CCCTCCCAGC CCCCCATCGAG
1381  AAAACCATCT CCAAAGCCAA AGGGCAGCCC CGAGAACAC AGGTGTACAC CCTGCCCTCA
1441  TCCCAGGAGG AGATGACCAA GAACCAGGTC AGCCTGACCT GCCTGGTCAA AGGCTTCTAT
1501  CCCAGCGACA TCGCCGTGGA GTGGGAGAGC AATGGGCAGC CGGAGAACAA CTACAAGACC
1561  ACGCCTCCCG TGCTGGACTC CGACGGCTCC TTCTCCTCT ATAGCAAGCT CACCGTGGAC
1621  AAGAGCAGGT GGCAGCAGGG GAACGTCTTC TCATGCTCCG TGATGCATGA GGCTCTGCAC
1681  AACCACTACA CGCAGAAGAG CCTCTCCCTG TCCCCGGGTA AATGA


```

(SEQ ID NO: 30)

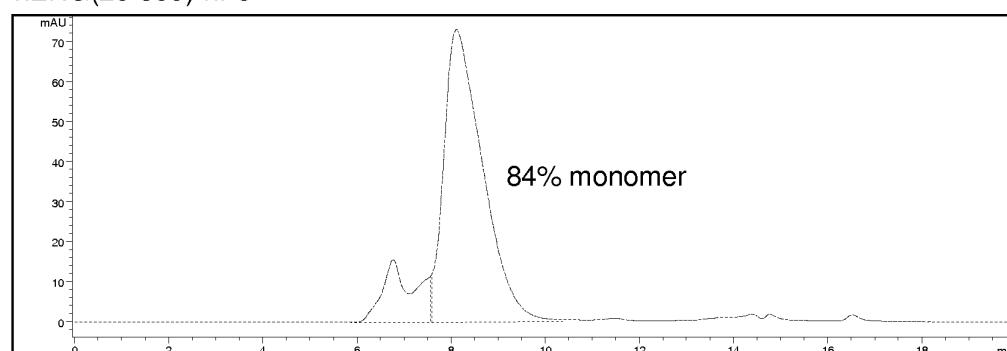
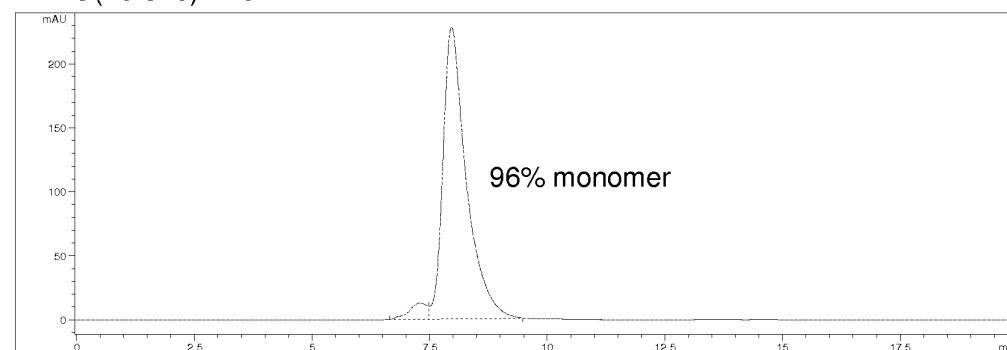
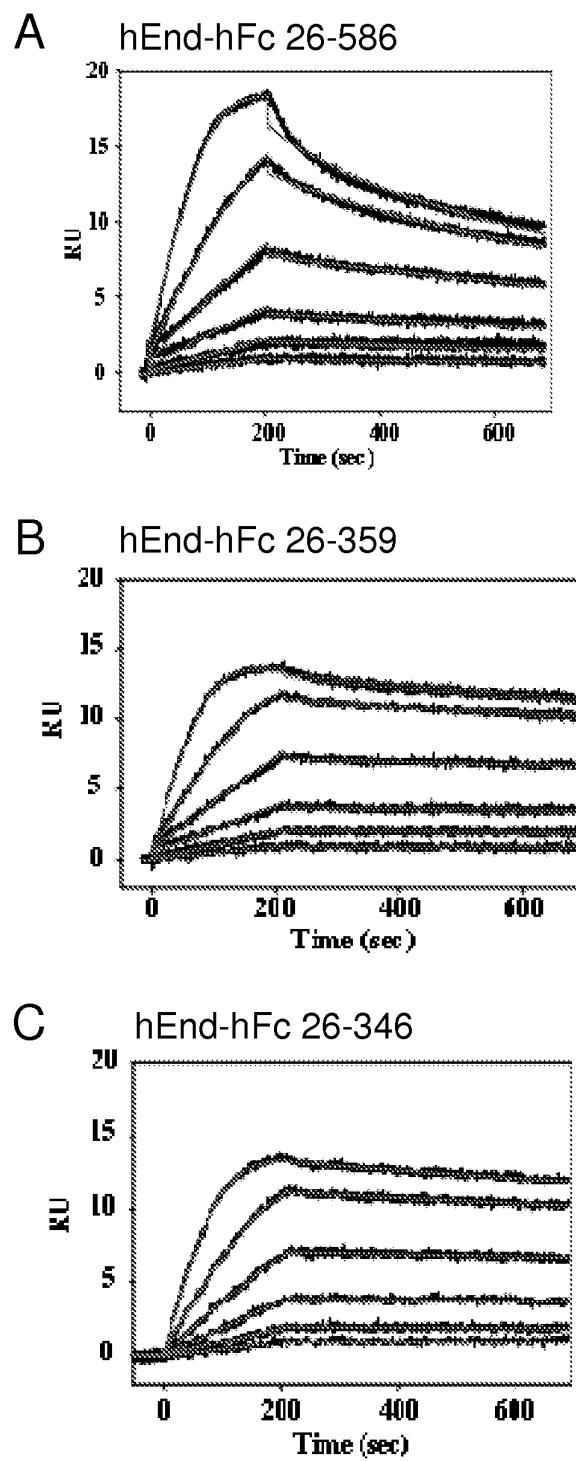

FIGURE 35

FIGURE 36. Size exclusion chromatograms of hENG-hFc proteins after initial purification


A hENG(26-586)-hFc


B hENG(26-359)-hFc

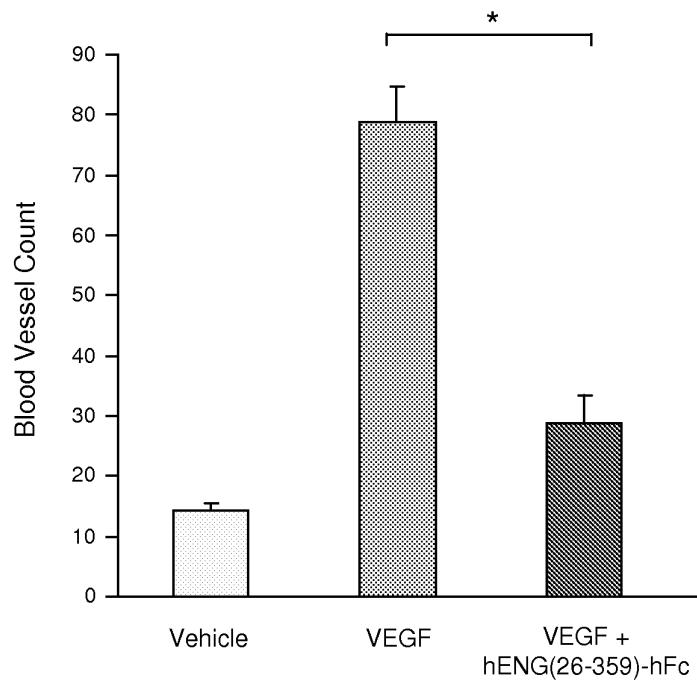

C hENG(26-346)-hFc

FIGURE 36

FIGURE 37. Characterization of high-affinity binding of BMP-9 to hENG-hFc variants**FIGURE 37**

FIGURE 38. hENG(26-359)-hFc inhibits VEGF-stimulated angiogenesis in a CAM assay

FIGURE 38

FIGURE 39. Effect of hENG(26-346)-hFc on growth factor-stimulated angiogenesis in a mouse angioreactor assay

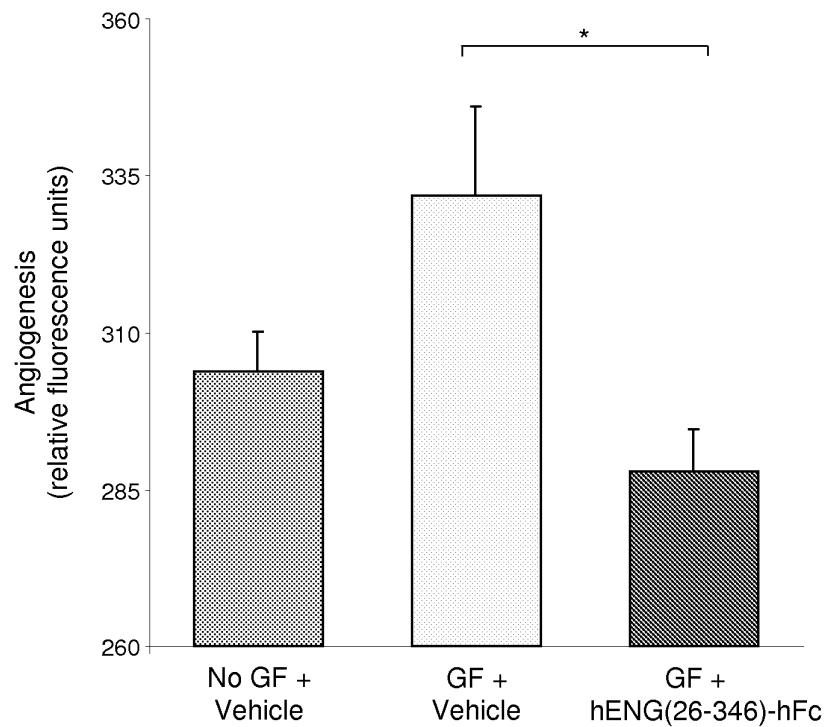
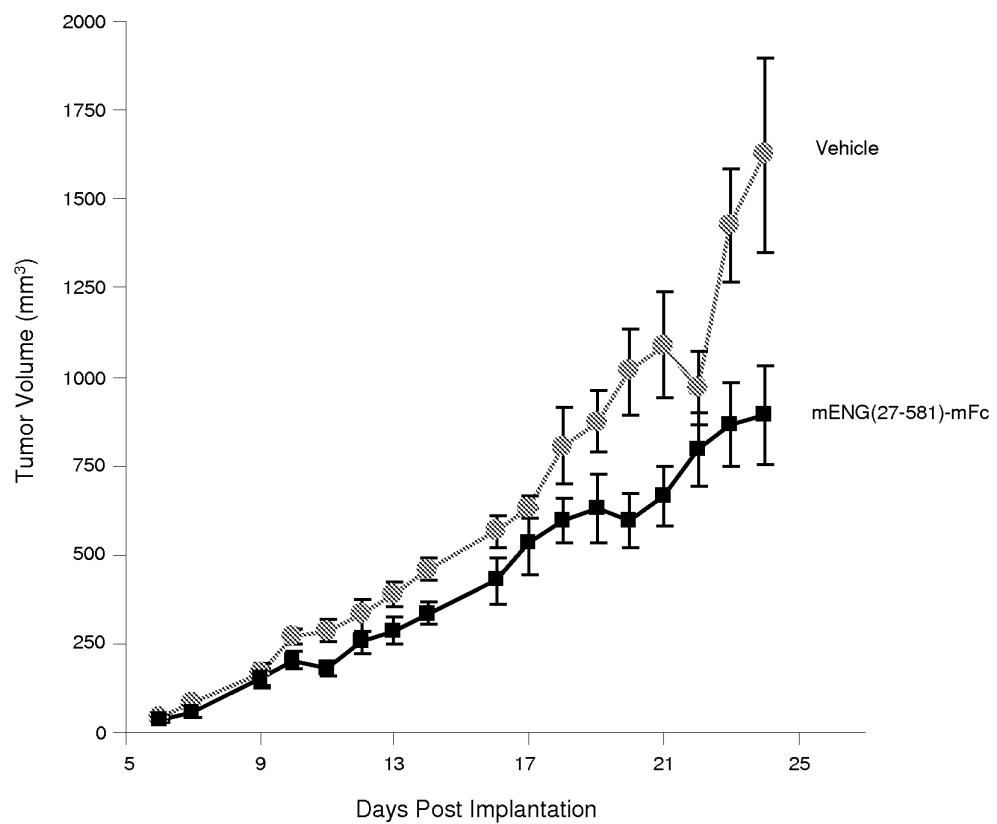
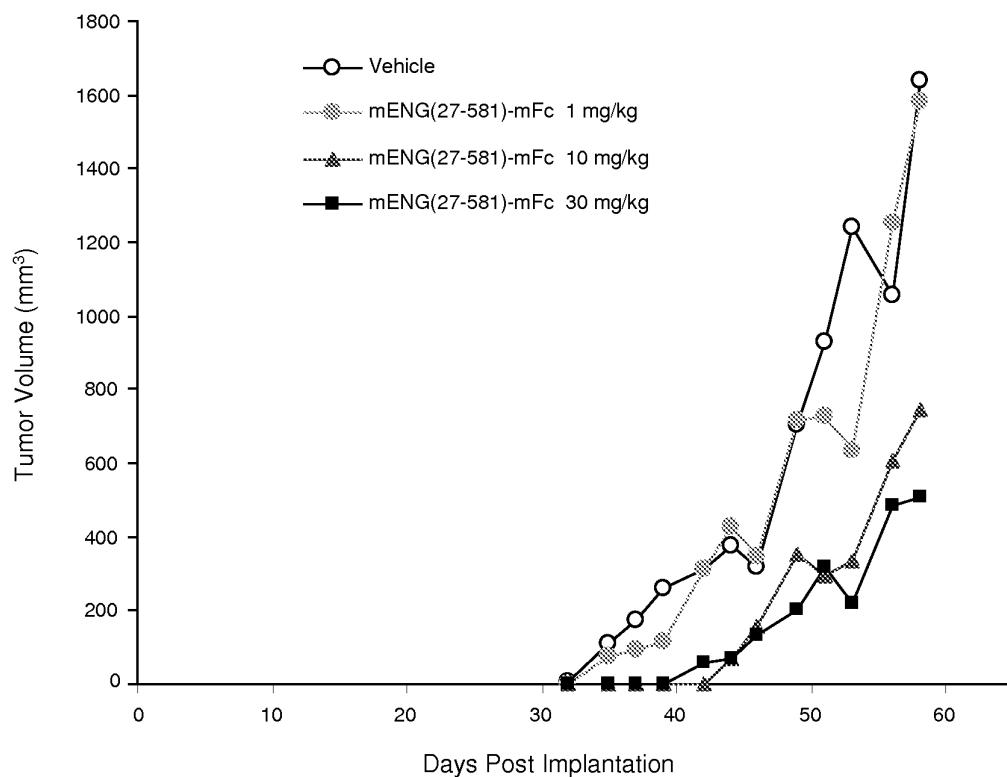




FIGURE 39

FIGURE 40. Effect of mENG(27-581)-mFc on growth of 4T1 mammary tumors in mice**FIGURE 40**

FIGURE 41. Effect of mENG(27-581)-mFc on growth of Colon-26 tumors in mice**FIGURE 41**

A090470006W000-SEQ-RE. TXT
SEQUENCE LISTING

<110> Accel eron Pharma, Inc.
Grinberg, Asya
Castonguay, Roseline
Werner, Eric
Kumar, Ravindra
<120> ENDOGLIN POLYPEPTIDES AND USES THEREOF
<130> A0904.70006W000
<140> N/A
<141> 2012-04-19
<150> US 61/477585
<151> 2011-04-12
<160> 36
<170> PatentIn version 3.5
<210> 1
<211> 658
<212> PRT
<213> Homo sapiens
<400> 1

Met Asp Arg Gly Thr Leu Pro Leu Ala Val Ala Leu Leu Leu Ala Ser
1 5 10 15

Cys Ser Leu Ser Pro Thr Ser Leu Ala Glu Thr Val His Cys Asp Leu
20 25 30

Gln Pro Val Gly Pro Glu Arg Gly Glu Val Thr Tyr Thr Thr Ser Gln
35 40 45

Val Ser Lys Gly Cys Val Ala Gln Ala Pro Asn Ala Ile Leu Glu Val
50 55 60

His Val Leu Phe Leu Glu Phe Pro Thr Gly Pro Ser Gln Leu Glu Leu
65 70 75 80

Thr Leu Gln Ala Ser Lys Gln Asn Gly Thr Trp Pro Arg Glu Val Leu
85 90 95

Leu Val Leu Ser Val Asn Ser Ser Val Phe Leu His Leu Gln Ala Leu
100 105 110

Gly Ile Pro Leu His Leu Ala Tyr Asn Ser Ser Leu Val Thr Phe Gln
115 120 125

Gl u Pro Pro Gly Val Asn Thr Thr Glu Leu Pro Ser Phe Pro Lys Thr
130 135 140

Gln Ile Leu Glu Trp Ala Ala Glu Arg Gly Pro Ile Thr Ser Ala Ala
145 150 155 160

A090470006W000-SEQ-RE. TXT

Gl u Leu Asn Asp Pro Gl n Ser Ile Leu Leu Arg Leu Gl y Gl n Al a Gl n
165 170 175

Gl y Ser Leu Ser Phe Cys Met Leu Gl u Al a Ser Gl n Asp Met Gl y Arg
180 185 190

Thr Leu Gl u Trp Arg Pro Arg Thr Pro Al a Leu Val Arg Gl y Cys His
195 200 205

Leu Gl u Gl y Val Al a Gl y His Lys Gl u Al a His Ile Leu Arg Val Leu
210 215 220

Pro Gl y His Ser Al a Gl y Pro Arg Thr Val Thr Val Lys Val Gl u Leu
225 230 235 240

Ser Cys Al a Pro Gl y Asp Leu Asp Al a Val Leu Ile Leu Gl n Gl y Pro
245 250 255

Pro Tyr Val Ser Trp Leu Ile Asp Al a Asn His Asn Met Gl n Ile Trp
260 265 270

Thr Thr Gl y Gl u Tyr Ser Phe Lys Ile Phe Pro Gl u Lys Asn Ile Arg
275 280 285

Gl y Phe Lys Leu Pro Asp Thr Pro Gl n Gl y Leu Leu Gl y Gl u Al a Arg
290 295 300

Met Leu Asn Al a Ser Ile Val Al a Ser Phe Val Gl u Leu Pro Leu Al a
305 310 315 320

Ser Ile Val Ser Leu His Al a Ser Ser Cys Gl y Gl y Arg Leu Gl n Thr
325 330 335

Ser Pro Al a Pro Ile Gl n Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro
340 345 350

Gl u Leu Leu Met Ser Leu Ile Gl n Thr Lys Cys Al a Asp Asp Al a Met
355 360 365

Thr Leu Val Leu Lys Lys Gl u Leu Val Al a His Leu Lys Cys Thr Ile
370 375 380

Thr Gl y Leu Thr Phe Trp Asp Pro Ser Cys Gl u Al a Gl u Asp Arg Gl y
385 390 395 400

Asp Lys Phe Val Leu Arg Ser Al a Tyr Ser Ser Cys Gl y Met Gl n Val
405 410 415

Ser Al a Ser Met Ile Ser Asn Gl u Al a Val Val Asn Ile Leu Ser Ser
420 425 430

A090470006W000-SEQ-RE. TXT

Ser Ser Pro Glu Arg Lys Lys Val His Cys Leu Asn Met Asp Ser Leu
435 440 445

Ser Phe Glu Leu Gly Leu Tyr Leu Ser Pro His Phe Leu Glu Ala Ser
450 455 460

Asn Thr Ile Glu Pro Gly Glu Glu Ser Phe Val Glu Val Arg Val Ser
465 470 475 480

Pro Ser Val Ser Glu Phe Leu Leu Glu Leu Asp Ser Cys His Leu Asp
485 490 495

Leu Glu Pro Glu Gly Gly Thr Val Glu Leu Ile Glu Glu Arg Ala Ala
500 505 510

Lys Glu Asn Cys Val Ser Leu Leu Ser Pro Ser Pro Glu Glu Asp Pro
515 520 525

Arg Phe Ser Phe Leu Leu His Phe Tyr Thr Val Pro Ile Pro Lys Thr
530 535 540

Gly Thr Leu Ser Cys Thr Val Ala Leu Arg Pro Lys Thr Glu Ser Glu
545 550 555 560

Asp Glu Glu Val His Arg Thr Val Phe Met Arg Leu Asn Ile Ile Ser
565 570 575

Pro Asp Leu Ser Glu Cys Thr Ser Lys Glu Leu Val Leu Pro Ala Val
580 585 590

Leu Glu Ile Thr Phe Glu Ala Phe Leu Ile Glu Ala Leu Leu Thr Ala
595 600 605

Ala Leu Trp Tyr Ile Tyr Ser His Thr Arg Ser Pro Ser Lys Arg Glu
610 615 620

Pro Val Val Ala Val Ala Ala Pro Ala Ser Ser Glu Ser Ser Ser Thr
625 630 635 640

Asn His Ser Ile Glu Ser Thr Glu Ser Thr Pro Cys Ser Thr Ser Ser
645 650 655

Met Ala

<210> 2
<211> 2030
<212> DNA
<213> Homo sapiens

<400> 2
cctgccactg gacacaggat aaggcccagc gcacagggcc ccacgtggac agcatggacc
Page 3

A090470006W000-SEQ-RE. TXT

gcggcacgct	ccctctggct	gttgcctgc	tgctggccag	ctgcagcctc	agccccacaa	120
gtcttcaga	aacagtccat	tgtgaccttc	agcctgtggg	cccccagagg	ggcgagggtga	180
catataccac	tagccaggc	tcgaaggcgt	gcgtggctca	ggcccccaat	gccatccttg	240
aagtccatgt	cctcttcctg	gagttcccaa	cgggcccgtc	acagctggag	ctgactctcc	300
aggcatccaa	gcaaaatggc	acctggccc	gagaggtgct	tctggtcctc	agtgtaaaca	360
gcagtgtctt	cctgcatctc	caggccctgg	gaatccact	gcacttggcc	tacaattcca	420
gcctggtcac	cttccaagag	cccccggggg	tcaacaccac	agagctgcca	tccttcccc	480
agacccagat	ccttgagtgg	gcagctgaga	ggggcccat	cacctctgct	gctgagctga	540
atgaccccca	gagcatcctc	ctccgactgg	gccaagccca	ggggtcactg	tccttctgca	600
tgctggaagc	cagccaggac	atggccgca	cgctcgagt	gcggccgcgt	actccagcct	660
tggtccgggg	ctgcccactt	gaaggcgtgg	ccggccacaa	ggaggcgcac	atcctgaggg	720
tcctgcccgg	ccactcgcc	gggccccgga	cggtaacgg	gaaggtggaa	ctgagctgca	780
cacccgggg	tctcgatgcc	gtcctcatcc	tgcagggtcc	cccctacgt	tcctggctca	840
tcgacgccaa	ccacaacatg	cagatctgga	ccactggaga	atactccttc	aagattttc	900
cagagaaaaa	cattcgtggc	ttcaagctcc	cagacacacc	tcaaggcctc	ctgggggagg	960
cccgatgct	caatgccagc	attgtggcat	cttcgtgg	gctaccgctg	gccagcatt	1020
tctcacttca	tgcctccagc	tgcgtggta	ggctgcagac	ctcacccgca	ccgatccaga	1080
ccactcctcc	caaggacact	tgtagccgg	agctgctcat	gtccttgatc	cagacaaagt	1140
gtgccgacga	cgcctatgacc	ctggtaactaa	agaaagagct	tgttgcgc	ttgaagtgc	1200
ccatcacggg	cctgaccc	tgggacccca	gctgtgaggc	agaggacagg	ggtgacaagt	1260
ttgtcttgcg	cagtgc	tccagctgt	gcatgcagg	gtcagcaagt	atgatcagca	1320
atgaggcggt	ggtcaatatc	ctgtcgagct	catcaccaca	gccccaaaaag	gtgcactgccc	1380
tcaacatgga	cagcctct	ttccagctgg	gcctctac	cagcccacac	ttcctccagg	1440
cctccaacac	catcgagcc	ggcagcaga	gcttgc	ggtcagagtg	tccccatccg	1500
tctccgagtt	cctgc	ttagacagct	gccacctgg	cttggggcct	gaggaggca	1560
ccgtggaact	catccagg	cggcggcca	aggcaactg	tgtgagc	ctgtccccaa	1620
gccccgaggg	tgacccgc	ttcagctcc	tcctccactt	ctacacagta	cccataccca	1680
aaaccggcac	cctcag	acggtagccc	tgcgtccaa	gaccgggtct	caagaccagg	1740
aagtccatag	gactgtttc	atgcgtt	acatcatcag	ccctgac	tctgggtgc	1800
caagcaaagg	cctcgtt	ccgcgt	tgggcatc	cttgggt	ttcctcatc	1860
gggcctgct	cactgct	ctctgg	tctactgc	cacgcgtt	cccagcaagc	1920
gggagcccg	ggtggcg	gctgcccgg	cctcctcg	gagcagc	accaaccaca	1980
gcatcgggag	cacccag	acccctg	ccacc	catggc	atag	2030

A090470006W000-SEQ-RE. TXT

<210> 3
<211> 625
<212> PRT
<213> Homo sapiens

<400> 3

Met Asp Arg Gly Thr Leu Pro Leu Ala Val Ala Leu Leu Leu Ala Ser
1 5 10 15

Cys Ser Leu Ser Pro Thr Ser Leu Ala Glu Thr Val His Cys Asp Leu
20 25 30

Gln Pro Val Gly Pro Glu Arg Gly Glu Val Thr Tyr Thr Thr Ser Gln
35 40 45

Val Ser Lys Gly Cys Val Ala Gln Ala Pro Asn Ala Ile Leu Glu Val
50 55 60

His Val Leu Phe Leu Glu Phe Pro Thr Gly Pro Ser Gln Leu Glu Leu
65 70 75 80

Thr Leu Gln Ala Ser Lys Gln Asn Gly Thr Trp Pro Arg Glu Val Leu
85 90 95

Leu Val Leu Ser Val Asn Ser Ser Val Phe Leu His Leu Gln Ala Leu
100 105 110

Gly Ile Pro Leu His Leu Ala Tyr Asn Ser Ser Leu Val Thr Phe Gln
115 120 125

Gl u Pro Pro Gly Val Asn Thr Thr Glu Leu Pro Ser Phe Pro Lys Thr
130 135 140

Gln Ile Leu Glu Trp Ala Ala Glu Arg Gly Pro Ile Thr Ser Ala Ala
145 150 155 160

Gl u Leu Asn Asp Pro Gln Ser Ile Leu Leu Arg Leu Gl y Gln Ala Gln
165 170 175

Gly Ser Leu Ser Phe Cys Met Leu Gl u Ala Ser Gln Asp Met Gl y Arg
180 185 190

Thr Leu Gl u Trp Arg Pro Arg Thr Pro Ala Leu Val Arg Gl y Cys His
195 200 205

Leu Gl u Gl y Val Ala Gl y His Lys Gl u Ala His Ile Leu Arg Val Leu
210 215 220

Pro Gl y His Ser Ala Gl y Pro Arg Thr Val Thr Val Lys Val Gl u Leu
225 230 235 240

Ser Cys Ala Pro Gl y Asp Leu Asp Ala Val Leu Ile Leu Gln Gl y Pro
Page 5

245

250

255

Pro Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Gln Ile Trp
 260 265 270

Thr Thr Gly Glu Tyr Ser Phe Lys Ile Phe Pro Glu Lys Asn Ile Arg
 275 280 285

Gly Phe Lys Leu Pro Asp Thr Pro Gln Gly Leu Leu Gly Glu Ala Arg
 290 295 300

Met Leu Asn Ala Ser Ile Val Ala Ser Phe Val Glu Leu Pro Leu Ala
 305 310 315 320

Ser Ile Val Ser Leu His Ala Ser Ser Cys Gly Gly Arg Leu Gln Thr
 325 330 335

Ser Pro Ala Pro Ile Gln Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro
 340 345 350

Gl u Leu Leu Met Ser Leu Ile Gln Thr Lys Cys Ala Asp Asp Ala Met
 355 360 365

Thr Leu Val Leu Lys Lys Gl u Leu Val Ala His Leu Lys Cys Thr Ile
 370 375 380

Thr Gly Leu Thr Phe Trp Asp Pro Ser Cys Gl u Ala Gl u Asp Arg Gly
 385 390 395 400

Asp Lys Phe Val Leu Arg Ser Ala Tyr Ser Ser Cys Gly Met Gln Val
 405 410 415

Ser Ala Ser Met Ile Ser Asn Gl u Ala Val Val Asn Ile Leu Ser Ser
 420 425 430

Ser Ser Pro Gln Arg Lys Lys Val His Cys Leu Asn Met Asp Ser Leu
 435 440 445

Ser Phe Gln Leu Gly Leu Tyr Leu Ser Pro His Phe Leu Gln Ala Ser
 450 455 460

Asn Thr Ile Glu Pro Gly Gln Gln Ser Phe Val Gln Val Arg Val Ser
 465 470 475 480

Pro Ser Val Ser Glu Phe Leu Leu Gln Leu Asp Ser Cys His Leu Asp
 485 490 495

Leu Gl y Pro Gl u Gl y Gl y Thr Val Gl u Leu Ile Gln Gl y Arg Ala Ala
 500 505 510

Lys Gl y Asn Cys Val Ser Leu Leu Ser Pro Ser Pro Gl u Gl y Asp Pro
 Page 6

515

520

525

Arg Phe Ser Phe Leu Leu His Phe Tyr Thr Val Pro Ile Pro Lys Thr
 530 535 540

Gly Thr Leu Ser Cys Thr Val Ala Leu Arg Pro Lys Thr Gly Ser Gln
 545 550 555 560

Asp Gln Glu Val His Arg Thr Val Phe Met Arg Leu Asn Ile Ile Ser
 565 570 575

Pro Asp Leu Ser Gly Cys Thr Ser Lys Gly Leu Val Leu Pro Ala Val
 580 585 590

Leu Gly Ile Thr Phe Gly Ala Phe Leu Ile Gly Ala Leu Leu Thr Ala
 595 600 605

Ala Leu Trp Tyr Ile Tyr Ser His Thr Arg Glu Tyr Pro Arg Pro Pro
 610 615 620

Gln
 625

<210> 4
 <211> 1931
 <212> DNA
 <213> Homo sapiens

<400> 4
 cctgccactg gacacaggat aaggcccagc gcacaggccc ccacgtggac agcatggacc 60
 gcggcacgct ccctctggct gttgccctgc tgctggccag ctgcagccctc agccccacaa 120
 gtcttgcaga aacagtccat tgtgaccttc agcctgtggg ccccgagagg ggcgaggtga 180
 catataccac tagccaggtc tcgaagggtc gcgtggctca ggcccccataat gccatccttg 240
 aagtccatgt cctttccctg gagttcccaa cgggcccgtc acagctggag ctgactctcc 300
 aggcatccaa gcaaaatggc acctggcccc gagaggtgct tctggccctc agtgtaaaca 360
 gcagtgtctt cctgcatctc caggccctgg gaatccact gcacttggcc tacaattcca 420
 gcctggtcac cttccaagag cccccgggg tcaacaccac agagctgcca tcctccca 480
 agacccagat ctttgagttgg gcagctgaga ggggccccat cacctctgct gctgagctga 540
 atgaccccca gagcatcctc ctccgactgg gccaagccca ggggtcactg tccttctgca 600
 tgctggaagc cagccaggac atgggcccga cgctcgagtgc gggccgcgt actccagcct 660
 tggtccgggg ctgccacttg gaaggcgtgg ccggccacaa ggaggcgcac atcctgaggg 720
 tcctgcccggg ccactcgccccc gggcccccga cggtaacgggt gaaggtggaa ctgagctgca 780
 caccggggta tctcgatgcc gtcctcatcc tgcagggtcc cccctacgtg tcctggctca 840
 tcgacgccaa ccacaacatg cagatctgga ccactggaga atactccttc aagattttc 900
 cagagaaaaa cattcgtggc ttcaagctcc cagacacacc tcaaggcctc ctgggggagg 960

A090470006W000-SEQ-RE. TXT

cccgatgct	caatgccagc	attgtggcat	cttcggtgga	gctaccgctg	gccagcattg	1020
tctcaattca	tgcctccagc	tgcggtggta	ggctgcagac	ctcacccgca	ccgatccaga	1080
ccactcctcc	caaggacact	tgtagcccg	agctgctcat	gtccttgcatt	cagacaaagt	1140
gtgccgacga	cgcctgacc	ctggtaactaa	agaaagagct	tgttgcgcatt	ttgaagtgc	1200
ccatcacggg	cctgacccctc	tgggacccca	gctgtgaggc	agaggacagg	ggtgacaagt	1260
ttgtcttgcg	cagtgcattac	tccagctgt	gcatgcaggt	gtcagcaagt	atgatcagca	1320
atgaggcggt	ggtaataatc	ctgtcgagct	catcaccaca	gccccaaaaag	gtgcactgcc	1380
tcaacatgga	cagcctctct	ttccagctgg	gcctctaccc	cagcccacac	ttcctccagg	1440
cctccaacac	catcgagccg	gggcagcaga	gctttgtca	ggtcagagtg	tccccatccg	1500
tctccgagtt	cctgctccag	ttagacagct	gccacctgga	cttggggcct	gagggaggca	1560
ccgtggaact	catccagggc	cggcggcca	agggcaactg	tgtgagcctg	ctgtccccaa	1620
cccccgaggg	tgacccgcgc	ttcagcttcc	tcctccactt	ctacacagta	cccataccac	1680
aaaccggcac	cctcagctgc	acggtagccc	tgcgtccaa	gaccgggtct	caagaccagg	1740
aagtccatag	gactgtcttc	atgcgcttga	acatcatcag	ccctgacctg	tctgggtgca	1800
caagcaaagg	cctcgtcctg	cccgccgtgc	tgggcatcac	cttgggtgccc	ttcctcatcg	1860
gggcctgct	cactgctgca	ctctggtaca	tctactcgca	cacgcgtgag	taccccaggc	1920
ccccacagtg	a					1931

<210> 5

<211> 653

<212> PRT

<213> Mus musculus

<400> 5

Met	Asp	Arg	Gly	Val	Leu	Pro	Leu	Pro	Ile	Thr	Leu	Leu	Phe	Val	Ile
1				5					10					15	

Tyr	Ser	Phe	Val	Pro	Thr	Thr	Gly	Leu	Ala	Glut	Arg	Val	Gly	Cys	Asp
				20				25					30		

Leu	Gln	Pro	Val	Asp	Pro	Thr	Arg	Gly	Glut	Val	Thr	Phe	Thr	Thr	Ser
							35	40					45		

Gln	Val	Ser	Glut	Gly	Cys	Val	Ala	Gln	Ala	Ala	Asn	Ala	Val	Arg	Glut
	50					55					60				

Val	His	Val	Leu	Phe	Leu	Asp	Phe	Gly	Met	Leu	Ser	His	Leu	Glut
65						70			75				80	

Leu	Thr	Leu	Gln	Ala	Ser	Lys	Gln	Asn	Gly	Thr	Glut	Thr	Gln	Glut	Val
									90				95		

Phe	Leu	Val	Leu	Val	Ser	Asn	Lys	Asn	Val	Phe	Val	Lys	Phe	Gln	Ala

100

105

110

Pro Glu Ile Pro Leu His Leu Ala Tyr Asp Ser Ser Leu Val Ile Phe
 115 120 125

Gln Gly Gln Pro Arg Val Asn Ile Thr Val Leu Pro Ser Leu Thr Ser
 130 135 140

Arg Lys Gln Ile Leu Asp Trp Ala Ala Thr Lys Gly Ala Ile Thr Ser
 145 150 155 160

Ile Ala Ala Leu Asp Asp Pro Gln Ser Ile Val Leu Gln Leu Gly Gln
 165 170 175

Asp Pro Lys Ala Pro Phe Leu Cys Leu Pro Glu Ala His Lys Asp Met
 180 185 190

Gly Ala Thr Leu Glu Trp Gln Pro Arg Ala Gln Thr Pro Val Gln Ser
 195 200 205

Cys Arg Leu Glu Gly Val Ser Gly His Lys Glu Ala Tyr Ile Leu Arg
 210 215 220

Ile Leu Pro Gly Ser Glu Ala Gly Pro Arg Thr Val Thr Val Met Met
 225 230 235 240

Gl u Leu Ser Cys Thr Ser Gly Asp Ala Ile Leu Ile Leu His Gly Pro
 245 250 255

Pro Tyr Val Ser Trp Phe Ile Asp Ile Asn His Ser Met Gln Ile Leu
 260 265 270

Thr Thr Gly Glu Tyr Ser Val Lys Ile Phe Pro Gly Ser Lys Val Lys
 275 280 285

Gly Val Glu Leu Pro Asp Thr Pro Gln Gly Leu Ile Ala Glu Ala Arg
 290 295 300

Lys Leu Asn Ala Ser Ile Val Thr Ser Phe Val Glu Leu Pro Leu Val
 305 310 315 320

Ser Asn Val Ser Leu Arg Ala Ser Ser Cys Gly Gly Val Phe Gln Thr
 325 330 335

Thr Pro Ala Pro Val Val Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro
 340 345 350

Val Leu Leu Met Ser Leu Ile Gln Pro Lys Cys Gly Asn Gln Val Met
 355 360 365

Thr Leu Ala Leu Asn Lys Lys His Val Gln Thr Leu Gln Cys Thr Ile
 Page 9

370

375

380

Thr Gl y Leu Thr Phe Trp Asp Ser Ser Cys Gl n Al a Gl u Asp Thr Asp
 385 390 395 400

Asp His Leu Val Leu Ser Ser Al a Tyr Ser Ser Cys Gl y Met Lys Val
 405 410 415

Thr Al a His Val Val Ser Asn Gl u Val Ile Ile Ser Phe Pro Ser Gl y
 420 425 430

Ser Pro Pro Leu Arg Lys Lys Val Gl n Cys Ile Asp Met Asp Ser Leu
 435 440 445

Ser Phe Gl n Leu Gl y Leu Tyr Leu Ser Pro His Phe Leu Gl n Al a Ser
 450 455 460

Asn Thr Ile Gl u Leu Gl y Gl n Gl n Al a Phe Val Gl n Val Ser Val Ser
 465 470 475 480

Pro Leu Thr Ser Gl u Val Thr Val Gl n Leu Asp Ser Cys His Leu Asp
 485 490 495

Leu Gl y Pro Gl u Gl y Asp Met Val Gl u Leu Ile Gl n Ser Arg Thr Al a
 500 505 510

Lys Gl y Ser Cys Val Thr Leu Leu Ser Pro Ser Pro Gl u Gl y Asp Pro
 515 520 525

Arg Phe Ser Phe Leu Leu Arg Val Tyr Met Val Pro Thr Pro Thr Al a
 530 535 540

Gl y Thr Leu Ser Cys Asn Leu Al a Leu Arg Pro Ser Thr Leu Ser Gl n
 545 550 555 560

Gl u Val Tyr Lys Thr Val Ser Met Arg Leu Asn Ile Val Ser Pro Asp
 565 570 575

Leu Ser Gl y Lys Gl y Leu Val Leu Pro Ser Val Leu Gl y Ile Thr Phe
 580 585 590

Gl y Al a Phe Leu Ile Gl y Al a Leu Leu Thr Al a Al a Leu Trp Tyr Ile
 595 600 605

Tyr Ser His Thr Arg Gl y Pro Ser Lys Arg Gl u Pro Val Val Al a Val
 610 615 620

Al a Al a Pro Al a Ser Ser Gl u Ser Ser Ser Thr Asn His Ser Ile Gl y
 625 630 635 640

Ser Thr Gl n Ser Thr Pro Cys Ser Thr Ser Ser Met Al a
 Page 10

<210> 6
 <211> 1965
 <212> DNA
 <213> Mus musculus

<400> 6
 agcatggacc gtggcgtgct ccctctgccc attaccctgc tgtttgcata ctatagcttt
 60
 gtacccacaa caggtctcgc agaaagagtc ggctgtgatc tacagcctgt ggaccccaca
 120
 aggggtgagg tgacgtttac caccagccag gtctccgagg gctgtgttagc tcaggctgcc
 180
 aatgctgtgc gtgaagtcca cgttctcttc ctggattttc ccggaatgct gtcacatctg
 240
 gagctgactc ttcaaggcatc caagcaaaat ggcacggaga cccaggaggt gttccctggtc
 300
 ctcgtttcga acaaaaatgt cttcgtgaag ttccaggccc cgaaatccc attgcacttg
 360
 gcctacgact ccagcctgggt catcttccaa ggacagccaa gagtcaacat cacagtgcta
 420
 ccatccctta cctccaggaa acagatcctc gactggcag ccaccaaggg cgccatcacc
 480
 tcgatagcag cactggatga ccccaaagc atcgtctcc agttgggcca agacccaaag
 540
 gcaccattct tgtgcttgcc agaagctcac aaggacatgg gcgccacact tgaatggcaa
 600
 ccacgagccc agaccccaagt ccaaagctgt cgcttggaaag gtgtgtctgg ccacaaggag
 660
 gcctacatcc tgaggatcct gccaggttct gaggccggc cccggacggt gaccgtaatg
 720
 atggaactga gttgcacatc tggggacgcc attctcatcc tgcattggtcc tccatatgtc
 780
 tcctggttca tcgacatcaa ccacagcatg cagatctga ccacaggtga atactccgtc
 840
 aagatcttc caggaagcaa ggtcaaaggc gtggagctcc cagacacacc ccaaggcctg
 900
 atagcggagg cccgcaagct caatgccagc attgtcacct cctttgtaga gctccctctg
 960
 gtcagcaatg tctccctgag gcctccagc tgcgggtggt tggccagac caccctgca
 1020
 cccgttgtga ccacacctcc caaggacaca tgcagccccg tgctactcat gtcctgtatc
 1080
 cagccaaagt gtggcaatca ggtcatgact ctggcactca ataaaaaaaca cgtgcagact
 1140
 ctccagtgca ccatcacagg cctgacttcc tgggactcca gctgccaggc tgaagacact
 1200
 gacgaccatc ttgtcctgag taggcctac tccagctgctg gcatgaaagt gacagcccat
 1260
 gtggcagca atgaggtgat catagttc cctgcaggct caccaccact tcggaaaaag
 1320
 gtacagtgca tcgacatgga cagcctctcc ttccagctgg gcctctaccc cagccgcac
 1380
 ttccctccagg catccaacac catgaaacta ggccagcagg cttcgtaca ggtgagcgtg
 1440
 tctccattga cctctgaggt cacagtccag ctagatagct gccatctgga cttggggccc
 1500
 gaaggggaca tggtggaaact catccagagc cgaacagcca agggcagctg tgtgaccttg
 1560
 ctgtctccaa gccctgaagg tgacccacgc ttcaagttcc tcctccgggt ctacatggtg
 1620
 cccacaccca cccgtggcac cctcagttgc aacttagctc tgcgccttag cacctgtcc
 1680
 caggaagtct acaagacagt ctccatgcgc ctgaacatcg tcagccctga cctgtctgg
 1740
 aaaggccttg tcctgcctc tgtactgggt atcaccttg gtgccttcgt gattggggcc
 1800

A090470006W000-SEQ-RE. TXT

ctgctcacag	ctgcactctg	gtacatctat	tctcacacac	gtggcccccag	caagcgggag	1860
cccgtggtgg	cagtggctgc	cccgccctcc	tctgagagca	gcagtagccaa	ccacagcatc	1920
gggagcaccc	agagcacccc	ctgctccacc	agcagcatgg	cgtag		1965

<210> 7
 <211> 641
 <212> PRT
 <213> Mus musculus

<400> 7

Met	Asp	Arg	Gly	Val	Leu	Pro	Leu	Pro	Ile	Thr	Leu	Leu	Phe	Val	Ile
1				5					10					15	

Tyr	Ser	Phe	Val	Pro	Thr	Thr	Gly	Leu	Ala	Glut	Arg	Val	Gly	Cys	Asp
				20				25					30		

Leu	Gln	Pro	Val	Asp	Pro	Thr	Arg	Gly	Glut	Val	Thr	Phe	Thr	Thr	Ser
							35	40				45			

Gln	Val	Ser	Glut	Gly	Cys	Val	Ala	Gln	Ala	Ala	Asn	Ala	Val	Arg	Glut
	50					55					60				

Val	His	Val	Leu	Phe	Leu	Asp	Phe	Pro	Gly	Met	Leu	Ser	His	Leu	Glut
65					70				75					80	

Leu	Thr	Leu	Gln	Ala	Ser	Lys	Gln	Asn	Gly	Thr	Glut	Thr	Gln	Glut	Val
					85				90				95		

Phe	Leu	Val	Leu	Val	Ser	Asn	Lys	Asn	Val	Phe	Val	Lys	Phe	Gln	Ala
		100						105				110			

Pro	Glu	Ile	Pro	Leu	His	Leu	Ala	Tyr	Asp	Ser	Ser	Leu	Val	Ile	Phe
	115					120						125			

Gln	Gly	Gln	Pro	Arg	Val	Asn	Ile	Thr	Val	Leu	Pro	Ser	Leu	Thr	Ser
		130				135				140					

Arg	Lys	Gln	Ile	Leu	Asp	Trp	Ala	Ala	Thr	Lys	Gly	Ala	Ile	Thr	Ser
145					150				155			160			

Ile	Ala	Ala	Leu	Asp	Asp	Pro	Gln	Ser	Ile	Val	Leu	Gln	Leu	Gly	Gln
								165		170			175		

Asp	Pro	Lys	Ala	Pro	Phe	Leu	Cys	Leu	Pro	Glut	Ala	His	Lys	Asp	Met
		180						185				190			

Gly	Ala	Thr	Leu	Glut	Trp	Gln	Pro	Arg	Ala	Gln	Thr	Pro	Val	Gln	Ser
		195				200					205				

Cys	Arg	Leu	Glut	Gly	Val	Ser	Gly	His	Lys	Glut	Ala	Tyr	Ile	Leu	Arg

210

215

220

Ile Leu Pro Gly Ser Glu Ala Gly Pro Arg Thr Val Thr Val Met Met
 225 230 235 240

Glu Leu Ser Cys Thr Ser Gly Asp Ala Ile Leu Ile Leu His Gly Pro
 245 250 255

Pro Tyr Val Ser Trp Phe Ile Asp Ile Asn His Ser Met Gln Ile Leu
 260 265 270

Thr Thr Gly Glu Tyr Ser Val Lys Ile Phe Pro Gly Ser Lys Val Lys
 275 280 285

Gly Val Glu Leu Pro Asp Thr Pro Gln Gly Leu Ile Ala Glu Ala Arg
 290 295 300

Lys Leu Asn Ala Ser Ile Val Thr Ser Phe Val Glu Leu Pro Leu Val
 305 310 315 320

Ser Asn Val Ser Leu Arg Ala Ser Ser Cys Gly Gly Val Phe Gln Thr
 325 330 335

Thr Pro Ala Pro Val Val Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro
 340 345 350

Val Leu Leu Met Ser Leu Ile Gln Pro Lys Cys Gly Asn Gln Val Met
 355 360 365

Thr Leu Ala Leu Asn Lys Lys His Val Gln Thr Leu Gln Cys Thr Ile
 370 375 380

Thr Glu Leu Thr Phe Trp Asp Ser Ser Cys Gln Ala Glu Asp Thr Asp
 385 390 395 400

Asp His Leu Val Leu Ser Ser Ala Tyr Ser Ser Cys Gly Met Lys Val
 405 410 415

Thr Ala His Val Val Ser Asn Glu Val Ile Ile Ser Phe Pro Ser Glu
 420 425 430

Ser Pro Pro Leu Arg Lys Lys Val Gln Cys Ile Asp Met Asp Ser Leu
 435 440 445

Ser Phe Gln Leu Gly Leu Tyr Leu Ser Pro His Phe Leu Gln Ala Ser
 450 455 460

Asn Thr Ile Glu Leu Gly Gln Gln Ala Phe Val Gln Val Ser Val Ser
 465 470 475 480

Pro Leu Thr Ser Glu Val Thr Val Gln Leu Asp Ser Cys His Leu Asp
 Page 13

Leu Gl y Pro Gl u Gl y Asp Met Val Gl u Leu Ile Gl n Ser Arg Thr Al a
500 505 510

Lys Gl y Ser Cys Val Thr Leu Leu Ser Pro Ser Pro Gl u Gl y Asp Pro
515 520 525

Arg Phe Ser Phe Leu Leu Arg Val Tyr Met Val Pro Thr Pro Thr Al a
530 535 540

Gl y Thr Leu Ser Cys Asn Leu Al a Leu Arg Pro Ser Thr Leu Ser Gl n
545 550 555 560

Gl u Val Tyr Lys Thr Val Ser Met Arg Leu Asn Ile Val Ser Pro Asp
565 570 575

Leu Ser Gl y Lys Gl y Leu Val Leu Pro Ser Val Leu Gl y Ile Thr Phe
580 585 590

Gl y Al a Phe Leu Ile Gl y Al a Leu Leu Thr Al a Al a Leu Trp Tyr Ile
595 600 605

Tyr Ser His Thr Arg Gl u Tyr Pro Lys Pro Pro Pro His Ser His Ser
610 615 620

Lys Arg Ser Gl y Pro Val His Thr Thr Pro Gl y His Thr Gl n Trp Ser
625 630 635 640

Leu

<210> 8
<211> 1929
<212> DNA
<213> Mus musculus

<400> 8	
agcatggacc gtggcgtgct ccctctgccc attaccctgc tgggtgtcat ctatagcttt	60
gtaccaccaa caggtctcgc agaaagagtc ggctgtgatc tacagcctgt ggaccacaca	120
aggggtgagg tgacgtttac caccagccag gtctccgagg gctgtgttagc tcaggctgcc	180
aatgctgtgc gtgaagtcca ctttctttc ctggattttc ccggaaatgct gtcacatctg	240
gagctgactc ttcaggcatc caagaaaaat ggcacggaga cccaggaggt gttcctggtc	300
ctcgtttcga acaaaaaatgt cttcgtgaag ttccaggccc cgaaatccc attgacttg	360
gcctacgact ccagcctgggt catttccaa ggacagccaa gagtcaacat cacagtcta	420
ccatccctta cctccagaa acagatcctc gactggcag ccaccaaggg cgccatcacc	480
tcgatagcag cactggatga ccccaaagc atcgtccctcc agttggcaca agacccaaag	540
gcaccattct tgtgcttgcc agaagctcac aaggacatgg gcggccacact tgaatggcaa	600

A090470006W000-SEQ-RE. TXT

ccacgagccc	agaccccagt	ccaaagctgt	cgcttggaaag	gtgtgtctgg	ccacaaggag	660
gcctacatcc	tgaggatcct	gccaggttct	gaggccgggc	cccgacggt	gaccgtaatg	720
atggaactga	gttgcacatc	tggggacgcc	attctcatcc	tgcacatggtcc	tccatatgtc	780
tcctggttca	tcgacatcaa	ccacagcatg	cagatctga	ccacaggta	atactccgtc	840
aagatcttc	caggaagcaa	ggtcaaaggc	gtggagctcc	cagacacacc	ccaaggcctg	900
atagcggagg	cccgcaagct	aatgcccagc	attgtcacct	cctttgtaga	gctccctctg	960
gtcagcaatg	tctccctgag	ggccctcagc	tgcgggttg	tgttccagac	caccctgca	1020
cccggtgtga	ccacaccc	caaggacaca	tgcagcccc	tgctactcat	gtccctgatc	1080
cagccaaagt	gtggcaatca	ggtcatgact	ctggcactca	ataaaaaaaca	cgtgcagact	1140
ctccagtgc	ccatcacagg	cctgactttc	tgggactcca	gctgccaggc	tgaagacact	1200
gacgaccatc	ttgtcctgag	taggcctac	tccagctg	gcatgaaagt	gacagccat	1260
gtggcagca	atgaggtgat	catcagttc	ccgtcaggct	caccaccact	tcggaaaaag	1320
gtacagtgc	tcgacatgga	cagcctctcc	ttccagctgg	gcctctac	cagccgcac	1380
ttcctccagg	catccaacac	catgaacta	ggccagcagg	cctcgtaca	ggtgagcgtg	1440
tctccattga	cctctgaggt	cacagtccag	ctagatagct	gccatctgga	cttggggccc	1500
gaagggaca	tggtggact	catccagagc	cgaacagcc	agggcagctg	tgtgacctt	1560
ctgtctccaa	gccctgaagg	tgacccacgc	ttcagctcc	tcctccgggt	ctacatgg	1620
cccacacca	ccgctggcac	cctcagttgc	aacttagctc	tgcgcctag	cacctgtcc	1680
caggaagtct	acaagacagt	ctccatgcgc	ctgaacatcg	tcagccctga	cctgtctgg	1740
aaaggcattt	tcctgccctc	tgtactgggt	atcacctt	gtgcctcct	gattggggcc	1800
ctgctcacag	ctgcaactct	gtacatctat	tctcacacac	gtgagtatcc	caagcctcca	1860
ccccattccc	acagcaagcg	ctcaggccc	gtccacacca	ccccggggca	cacccagtgg	1920
agcctctga						1929

<210> 9
 <211> 561
 <212> PRT
 <213> Homo sapiens

<400> 9

Glu Thr Val His Cys Asp Leu Gln Pro Val Gly Pro Glu Arg Gly Glu
 1 5 10 15

Val Thr Tyr Thr Ser Gln Val Ser Lys Gly Cys Val Ala Gln Ala
 20 25 30

Pro Asn Ala Ile Leu Glu Val His Val Leu Phe Leu Glu Phe Pro Thr
 35 40 45

Gly Pro Ser Gln Leu Glu Leu Thr Leu Gln Ala Ser Lys Gln Asn Gly
 Page 15

A090470006W000-SEQ-RE. TXT

50

55

60

Thr Trp Pro Arg Glu Val Leu Leu Val Leu Ser Val Asn Ser Ser Val
65 70 75 80

Phe Leu His Leu Gln Ala Leu Gly Ile Pro Leu His Leu Ala Tyr Asn
85 90 95

Ser Ser Leu Val Thr Phe Gln Glu Pro Pro Gly Val Asn Thr Thr Glu
100 105 110

Leu Pro Ser Phe Pro Lys Thr Gln Ile Leu Glu Trp Ala Ala Glu Arg
115 120 125

Gly Pro Ile Thr Ser Ala Ala Glu Leu Asn Asp Pro Gln Ser Ile Leu
130 135 140

Leu Arg Leu Gly Gln Ala Gln Gly Ser Leu Ser Phe Cys Met Leu Glu
145 150 155 160

Ala Ser Gln Asp Met Gly Arg Thr Leu Glu Trp Arg Pro Arg Thr Pro
165 170 175

Ala Leu Val Arg Gly Cys His Leu Glu Gly Val Ala Gly His Lys Glu
180 185 190

Ala His Ile Leu Arg Val Leu Pro Gln His Ser Ala Gly Pro Arg Thr
195 200 205

Val Thr Val Lys Val Glu Leu Ser Cys Ala Pro Gln Asp Leu Asp Ala
210 215 220

Val Leu Ile Leu Gln Gly Pro Pro Tyr Val Ser Trp Leu Ile Asp Ala
225 230 235 240

Asn His Asn Met Gln Ile Trp Thr Thr Gly Glu Tyr Ser Phe Lys Ile
245 250 255

Phe Pro Glu Lys Asn Ile Arg Gly Phe Lys Leu Pro Asp Thr Pro Gln
260 265 270

Gly Leu Leu Gly Glu Ala Arg Met Leu Asn Ala Ser Ile Val Ala Ser
275 280 285

Phe Val Glu Leu Pro Leu Ala Ser Ile Val Ser Leu His Ala Ser Ser
290 295 300

Cys Gly Gly Arg Leu Gln Thr Ser Pro Ala Pro Ile Gln Thr Thr Pro
305 310 315 320

Pro Lys Asp Thr Cys Ser Pro Glu Leu Leu Met Ser Leu Ile Gln Thr
Page 16

325

330

335

Lys Cys Al a Asp Asp Al a Met Thr Leu Val Leu Lys Lys Gl u Leu Val
 340 345 350

Al a His Leu Lys Cys Thr Ile Thr Gl y Leu Thr Phe Trp Asp Pro Ser
 355 360 365

Cys Gl u Al a Gl u Asp Arg Gl y Asp Lys Phe Val Leu Arg Ser Al a Tyr
 370 375 380

Ser Ser Cys Gl y Met Gl n Val Ser Al a Ser Met Ile Ser Asn Gl u Al a
 385 390 395 400

Val Val Asn Ile Leu Ser Ser Ser Ser Pro Gl n Arg Lys Lys Val His
 405 410 415

Cys Leu Asn Met Asp Ser Leu Ser Phe Gl n Leu Gl y Leu Tyr Leu Ser
 420 425 430

Pro His Phe Leu Gl n Al a Ser Asn Thr Ile Gl u Pro Gl y Gl n Gl n Ser
 435 440 445

Phe Val Gl n Val Arg Val Ser Pro Ser Val Ser Gl u Phe Leu Leu Gl n
 450 455 460

Leu Asp Ser Cys His Leu Asp Leu Gl y Pro Gl u Gl y Gl y Thr Val Gl u
 465 470 475 480

Leu Ile Gl n Gl y Arg Al a Al a Lys Gl y Asn Cys Val Ser Leu Leu Ser
 485 490 495

Pro Ser Pro Gl u Gl y Asp Pro Arg Phe Ser Phe Leu Leu His Phe Tyr
 500 505 510

Thr Val Pro Ile Pro Lys Thr Gl y Thr Leu Ser Cys Thr Val Al a Leu
 515 520 525

Arg Pro Lys Thr Gl y Ser Gl n Asp Gl n Gl u Val His Arg Thr Val Phe
 530 535 540

Met Arg Leu Asn Ile Ile Ser Pro Asp Leu Ser Gl y Cys Thr Ser Lys
 545 550 555 560

Gl y

<210> 10
 <211> 555
 <212> PRT
 <213> Mus musculus

A090470006W000-SEQ-RE. TXT

<400> 10

Gl u Arg Val Gl y Cys Asp Leu Gl n Pro Val Asp Pro Thr Arg Gl y Gl u
 1 5 10 15

Val Thr Phe Thr Thr Ser Gl n Val Ser Gl u Gl y Cys Val Al a Gl n Al a
 20 25 30

Al a Asn Al a Val Arg Gl u Val His Val Leu Phe Leu Asp Phe Pro Gl y
 35 40 45

Met Leu Ser His Leu Gl u Leu Thr Leu Gl n Al a Ser Lys Gl n Asn Gl y
 50 55 60

Thr Gl u Thr Arg Gl u Val Phe Leu Val Leu Val Ser Asn Lys Asn Val
 65 70 75 80

Phe Val Lys Phe Gl n Al a Pro Gl u Ile Pro Leu His Leu Al a Tyr Asp
 85 90 95

Ser Ser Leu Val Ile Phe Gl n Gl y Gl n Pro Arg Val Asn Ile Thr Val
 100 105 110

Leu Pro Ser Leu Thr Ser Arg Lys Gl n Ile Leu Asp Trp Al a Al a Thr
 115 120 125

Lys Gl y Al a Ile Thr Ser Ile Al a Al a Leu Asp Asp Pro Gl n Ser Ile
 130 135 140

Val Leu Gl n Leu Gl y Gl n Asp Pro Lys Al a Pro Phe Leu Cys Leu Pro
 145 150 155 160

Gl u Al a His Lys Asp Met Gl y Al a Thr Leu Gl u Trp Gl n Pro Arg Al a
 165 170 175

Gl n Thr Pro Val Gl n Ser Cys Arg Leu Gl u Gl y Val Ser Gl y His Lys
 180 185 190

Gl u Al a Tyr Ile Leu Arg Ile Leu Pro Gl y Ser Gl u Al a Gl y Pro Arg
 195 200 205

Thr Val Thr Val Met Met Gl u Leu Ser Cys Thr Ser Gl y Asp Al a Ile
 210 215 220

Leu Ile Leu His Gl y Pro Pro Tyr Val Ser Trp Phe Ile Asp Ile Asn
 225 230 235 240

His Ser Met Gl n Ile Leu Thr Thr Gl y Gl u Tyr Ser Val Lys Ile Phe
 245 250 255

Pro Gl y Ser Lys Val Lys Gl y Val Gl u Leu Pro Asp Thr Pro Gl n Gl y
 260 265 270

A090470006W000-SEQ-RE. TXT

Leu Ile Ala Glu Ala Arg Lys Leu Asn Ala Ser Ile Val Thr Ser Phe
275 280 285

Val Glu Leu Pro Leu Val Ser Asn Val Ser Leu Arg Ala Ser Ser Cys
290 295 300

Gly Gly Val Phe Gln Thr Thr Pro Ala Pro Val Val Thr Thr Pro Pro
305 310 315 320

Lys Asp Thr Cys Ser Pro Val Leu Leu Met Ser Leu Ile Gln Pro Lys
325 330 335

Cys Gly Asn Gln Val Met Thr Leu Ala Leu Asn Lys Lys His Val Gln
340 345 350

Thr Leu Gln Cys Thr Ile Thr Gly Leu Thr Phe Trp Asp Ser Ser Cys
355 360 365

Gln Ala Glu Asp Thr Asp Asp His Leu Val Leu Ser Ser Ala Tyr Ser
370 375 380

Ser Cys Gly Met Lys Val Thr Ala His Val Val Ser Asn Glu Val Ile
385 390 395 400

Ile Ser Phe Pro Ser Gly Ser Pro Pro Leu Arg Lys Lys Val Gln Cys
405 410 415

Ile Asp Met Asp Ser Leu Ser Phe Gln Leu Gly Leu Tyr Leu Ser Pro
420 425 430

His Phe Leu Gln Ala Ser Asn Thr Ile Glu Leu Gly Gln Gln Ala Phe
435 440 445

Val Gln Val Ser Val Ser Pro Leu Thr Ser Glu Val Thr Val Gln Leu
450 455 460

Asp Ser Cys His Leu Asp Leu Gly Pro Glu Gly Asp Met Val Glu Leu
465 470 475 480

Ile Gln Ser Arg Thr Ala Lys Gly Ser Cys Val Thr Leu Leu Ser Pro
485 490 495

Ser Pro Glu Gly Asp Pro Arg Phe Ser Phe Leu Leu Arg Val Tyr Met
500 505 510

Val Pro Thr Pro Thr Ala Gly Thr Leu Ser Cys Asn Leu Ala Leu Arg
515 520 525

Pro Ser Thr Leu Ser Gln Glu Val Tyr Lys Thr Val Ser Met Arg Leu
530 535 540

Asn Val Val Ser Pro Asp Leu Ser Gly Lys Gly
545 550 555

<210> 11
<211> 233
<212> PRT
<213> Homo sapiens

<400> 11

Gly Gly Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro
1 5 10 15

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
20 25 30

Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
35 40 45

Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
50 55 60

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
65 70 75 80

Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
85 90 95

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
100 105 110

Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
115 120 125

Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
130 135 140

Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
145 150 155 160

Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
165 170 175

Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
180 185 190

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
195 200 205

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
210 215 220

A090470006W000-SEQ-RE. TXT

Lys Ser Leu Ser Leu Ser Pro Gl y Lys
225 230

<210> 12
<211> 225
<212> PRT
<213> Homo sapiens

<400> 12

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Gl u Leu Leu Gl y Gl y Pro
1 5 10 15

Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser
20 25 30

Arg Thr Pro Gl u Val Thr Cys Val Val Val Asp Val Ser His Gl u Asp
35 40 45

Pro Gl u Val Lys Phe Asn Trp Tyr Val Asp Gl y Val Gl u Val His Asn
50 55 60

Al a Lys Thr Lys Pro Arg Gl u Gl u Gl n Tyr Asn Ser Thr Tyr Arg Val
65 70 75 80

Val Ser Val Leu Thr Val Leu His Gl n Asp Trp Leu Asn Gl y Lys Gl u
85 90 95

Tyr Lys Cys Lys Val Ser Asn Lys Al a Leu Pro Al a Pro Ile Gl u Lys
100 105 110

Thr Ile Ser Lys Al a Lys Gl y Gl n Pro Arg Gl u Pro Gl n Val Tyr Thr
115 120 125

Leu Pro Pro Ser Arg Gl u Gl u Met Thr Lys Asn Gl n Val Ser Leu Thr
130 135 140

Cys Leu Val Lys Gl y Phe Tyr Pro Ser Asp Ile Al a Val Gl u Trp Gl u
145 150 155 160

Ser Asn Gl y Gl n Pro Gl u Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu
165 170 175

Asp Ser Asp Gl y Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys
180 185 190

Ser Arg Trp Gl n Gl n Gl y Asn Val Phe Ser Cys Ser Val Met His Gl u
195 200 205

Al a Leu His Asn His Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Pro Gl y
210 215 220

Lys
225

<210> 13
<211> 21
<212> PRT
<213> Artificial Sequence

<220>
<223> Honey bee mellitin leader sequence

<400> 13

Met Lys Phe Leu Val Asn Val Ala Leu Val Phe Met Val Val Tyr Ile
1 5 10 15

Ser Tyr Ile Tyr Ala
20

<210> 14
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> Tissue plasminogen activator leader sequence

<400> 14

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
1 5 10 15

Ala Val Phe Val Ser Pro
20

<210> 15
<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<223> Native human ENG leader sequence

<400> 15

Met Asp Arg Gly Thr Leu Pro Leu Ala Val Ala Leu Leu Leu Ala Ser
1 5 10 15

Cys Ser Leu Ser Pro Thr Ser Leu Ala
20 25

<210> 16
<211> 820
<212> PRT
<213> Artificial sequence

<220>
<223> recombinant polypeptide

<400> 16

A090470006W000-SEQ-RE. TXT

Met Asp Al a Met Lys Arg Gl y Leu Cys Cys Val Leu Leu Leu Cys Gl y
1 5 10 15

Al a Val Phe Val Ser Pro Gl y Al a Gl u Thr Val His Cys Asp Leu Gl n
20 25 30

Pro Val Gl y Pro Gl u Arg Asp Gl u Val Thr Tyr Thr Thr Ser Gl n Val
35 40 45

Ser Lys Gl y Cys Val Al a Gl n Al a Pro Asn Al a Ile Leu Gl u Val His
50 55 60

Val Leu Phe Leu Gl u Phe Pro Thr Gl y Pro Ser Gl n Leu Gl u Leu Thr
65 70 75 80

Leu Gl n Al a Ser Lys Gl n Asn Gl y Thr Trp Pro Arg Gl u Val Leu Leu
85 90 95

Val Leu Ser Val Asn Ser Ser Val Phe Leu His Leu Gl n Al a Leu Gl y
100 105 110

Ile Pro Leu His Leu Al a Tyr Asn Ser Ser Leu Val Thr Phe Gl n Gl u
115 120 125

Pro Pro Gl y Val Asn Thr Thr Gl u Leu Pro Ser Phe Pro Lys Thr Gl n
130 135 140

Ile Leu Gl u Trp Al a Al a Gl u Arg Gl y Pro Ile Thr Ser Al a Al a Gl u
145 150 155 160

Leu Asn Asp Pro Gl n Ser Ile Leu Leu Arg Leu Gl y Gl n Al a Gl n Gl y
165 170 175

Ser Leu Ser Phe Cys Met Leu Gl u Al a Ser Gl n Asp Met Gl y Arg Thr
180 185 190

Leu Gl u Trp Arg Pro Arg Thr Pro Al a Leu Val Arg Gl y Cys His Leu
195 200 205

Gl u Gl y Val Al a Gl y His Lys Gl u Al a His Ile Leu Arg Val Leu Pro
210 215 220

Gl y His Ser Al a Gl y Pro Arg Thr Val Thr Val Lys Val Gl u Leu Ser
225 230 235 240

Cys Al a Pro Gl y Asp Leu Asp Al a Val Leu Ile Leu Gl n Gl y Pro Pro
245 250 255

Tyr Val Ser Trp Leu Ile Asp Al a Asn His Asn Met Gl n Ile Trp Thr
260 265 270

A090470006W000-SEQ-RE. TXT

Thr Gl y Gl u Tyr Ser Phe Lys Ile Phe Pro Gl u Lys Asn Ile Arg Gl y
275 280 285

Phe Lys Leu Pro Asp Thr Pro Gl n Gl y Leu Leu Gl y Gl u Al a Arg Met
290 295 300

Leu Asn Al a Ser Ile Val Al a Ser Phe Val Gl u Leu Pro Leu Al a Ser
305 310 315 320

Ile Val Ser Leu His Al a Ser Ser Cys Gl y Gl y Arg Leu Gl n Thr Ser
325 330 335

Pro Al a Pro Ile Gl n Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Gl u
340 345 350

Leu Leu Met Ser Leu Ile Gl n Thr Lys Cys Al a Asp Asp Al a Met Thr
355 360 365

Leu Val Leu Lys Lys Gl u Leu Val Al a His Leu Lys Cys Thr Ile Thr
370 375 380

Gl y Leu Thr Phe Trp Asp Pro Ser Cys Gl u Al a Gl u Asp Arg Gl y Asp
385 390 395 400

Lys Phe Val Leu Arg Ser Al a Tyr Ser Ser Cys Gl y Met Gl n Val Ser
405 410 415

Al a Ser Met Ile Ser Asn Gl u Al a Val Val Asn Ile Leu Ser Ser Ser
420 425 430

Ser Pro Gl n Arg Lys Lys Val His Cys Leu Asn Met Asp Ser Leu Ser
435 440 445

Phe Gl n Leu Gl y Leu Tyr Leu Ser Pro His Phe Leu Gl n Al a Ser Asn
450 455 460

Thr Ile Gl u Pro Gl y Gl n Gl n Ser Phe Val Gl n Val Arg Val Ser Pro
465 470 475 480

Ser Val Ser Gl u Phe Leu Leu Gl n Leu Asp Ser Cys His Leu Asp Leu
485 490 495

Gl y Pro Gl u Gl y Gl y Thr Val Gl u Leu Ile Gl n Gl y Arg Al a Al a Lys
500 505 510

Gl y Asn Cys Val Ser Leu Leu Ser Pro Ser Pro Gl u Gl y Asp Pro Arg
515 520 525

Phe Ser Phe Leu Leu His Phe Tyr Thr Val Pro Ile Pro Lys Thr Gl y
530 535 540

A090470006W000-SEQ-RE. TXT

Thr Leu Ser Cys Thr Val Ala Leu Arg Pro Lys Thr Gly Ser Gln Asp
545 550 555 560

Gln Glu Val His Arg Thr Val Phe Met Arg Leu Asn Ile Ile Ser Pro
565 570 575

Asp Leu Ser Gly Cys Thr Ser Lys Gly Thr Gly Gly Pro Lys Ser
580 585 590

Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu
595 600 605

Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
610 615 620

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser
625 630 635 640

His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu
645 650 655

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr
660 665 670

Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
675 680 685

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro
690 695 700

Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln
705 710 715 720

Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val
725 730 735

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val
740 745 750

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
755 760 765

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr
770 775 780

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val
785 790 795 800

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu
805 810 815

Ser Pro Gl y Lys
820

<210> 17
<211> 2463
<212> DNA
<213> Arti ficial sequence

<220>
<223> recombi nant pol ynucl eoti de

<400> 17						
atggatcaa tgaagagagg	gctctgtgt	gtgctgctgc	tgtgtggagc	agtcttcgtt	60	
tcgcccggcg	ccgaaacagt	ccattgtgac	cttcagcctg	tgggccccga	gagggacgag	120
gtgacatata	ccactagcca	ggtctcgaag	ggctgcgtgg	ctcaggcccc	caatgccatc	180
cttgaagtcc	atgtccttctt	cctggagttc	ccaacgggccc	cgtcacagct	ggagctgact	240
ctccaggcat	ccaagcaaaa	tggcacctgg	ccccgagagg	tgcttctgg	cctcagtgt	300
aacagcagt	tcttcctgca	tctccaggcc	ctggaaatcc	cactgcactt	ggcctacaat	360
tccagcctgg	tcaccttcca	agagcccccg	ggggtaacaaca	ccacagagct	gccatccttc	420
cccaagaccc	agatccttga	gtgggcagct	gagaggggccc	ccatcacctc	tgctgctgag	480
ctgaatgacc	cccagagcat	cctcctccga	ctgggccaag	cccagggggtc	actgtccttc	540
tgcatgctgg	aagccagcca	ggacatgggc	cgcacgctcg	agtggcggcc	gcgtactcca	600
gccttggtcc	ggggctgcca	cttggaaaggc	gtggccggcc	acaaggaggc	gcacatcctg	660
agggtcctgc	cggccactc	ggccgggccc	cggacggtga	cggtaaggt	ggaactgagc	720
tgcgaccccg	gggatctcga	tgccgtcctc	atcctgcagg	gtccccctta	cgtgtcctgg	780
ctcatcgacg	ccaaccacaa	catcgagatc	tggaccactg	gagaatactc	cttcaagatc	840
tttccagaga	aaaacattcg	tggcttcaag	ctcccaagaca	cacctaagg	cctcctgggg	900
gaggcccgga	tgctcaatgc	cagcattgtg	gcatccttcg	tggagctacc	gctggccagc	960
attgtctcac	ttcatgcctc	cagctgcgtt	ggtaggctgc	agacctcacc	cgcaccgatc	1020
cagaccactc	ctcccaagga	cacttgtagc	ccggagctgc	tcatgtcctt	gatccagaca	1080
aagtgtgccg	acgacgccc	gaccctggta	ctaaagaaag	agcttgttgc	gcatttgaag	1140
tgcaccatca	cgggcctgac	cttctggac	cccagctgtg	aggcagagga	caggggtgac	1200
aagtttgtct	tgcgcagtgc	ttactccagc	tgtggcatgc	aggtgtcagc	aagtatgtatc	1260
agcaatgagg	cggtgtcaa	tatcctgtcg	agctcatcac	cacagcggaa	aaaggtgcac	1320
tgcctcaaca	tggacagcct	ctcttccag	ctgggcctct	acctcagccc	acacttcctc	1380
caggcctcca	acaccatcga	gccggggcag	cagagcttg	tgcaggtcag	agtgtcccc	1440
tccgtctccg	agttcctgct	ccagttagac	agctgccacc	tggacttggg	gcctgaggga	1500
ggcaccgtgg	aactcatcca	ggccggggcg	gccaaggggca	actgtgtgag	cctgctgtcc	1560
ccaagccccc	agggtgaccc	gcgcttcagc	ttcctcctcc	acttctacac	agtaccata	1620

A090470006W000-SEQ-RE. TXT

cccaaaaccg	gcaccctcag	ctgcacggta	gccctgcgtc	ccaagaccgg	gtctcaagac	1680
caggaagtcc	ataggactgt	cttcatgcgc	ttgaacatca	tcagccctga	cctgtctgg	1740
tgcacaagca	aaggcaccgg	tggtggaccc	aatcttgt	acaaaactca	cacatgccca	1800
ccgtgcccag	cacctgaact	cctgggggga	ccgtcagtct	tcctttccc	cccaaaaccc	1860
aaggacaccc	tcatgatctc	ccggaccct	gaggtcacat	gcgtgggt	ggacgtgagc	1920
cacgaagacc	ctgaggtcaa	gttcaactgg	tacgtggacg	gcgtggaggt	gcataatgcc	1980
aagacaaga	cgcgggagga	gcagtacaac	agcacgtacc	gtgtggtcag	cgtcctcacc	2040
gtcctgcacc	aggactggct	aatggcaag	gagtacaagt	gcaaggtctc	caacaaagcc	2100
ctcccagccc	ccatcgagaa	aaccatctcc	aaagccaaag	ggcagccccg	agaaccacag	2160
gtgtacaccc	tgcccccattc	ccgggaggag	atgaccaaga	accaggtcag	cctgacactgc	2220
ctggtcaaag	gcttctatcc	cagcgacatc	gccgtggagt	gggagagcaa	tggcagccg	2280
gagaacaact	acaagaccac	gcctcccg	ctggactccg	acggctcctt	tttcctctat	2340
agcaagctca	ccgtggacaa	gagcaggtgg	cagcaggggaa	acgtttctc	atgctccgtg	2400
atgcatgagg	ctctgcacaa	ccactacacg	cagaagagcc	tctccctgtc	cccggttaaa	2460
tga						2463

<210> 18
<211> 814
<212> PRT
<213> Artificial sequence

<220>
<223> recombinant polypeptide

<400> 18

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
1 5 10 15

Ala Val Phe Val Ser Pro Gly Ala Glu Thr Val His Cys Asp Leu Glu
20 25 30

Pro Val Gly Pro Glu Arg Asp Glu Val Thr Tyr Thr Thr Ser Glu Val
35 40 45

Ser Lys Gly Cys Val Ala Glu Ala Pro Asn Ala Ile Leu Glu Val His
50 55 60

Val Leu Phe Leu Glu Phe Pro Thr Gly Pro Ser Glu Leu Glu Leu Thr
65 70 75 80

Leu Glu Ala Ser Lys Glu Asn Gly Thr Trp Pro Arg Glu Val Leu Leu
85 90 95

Val Leu Ser Val Asn Ser Ser Val Phe Leu His Leu Glu Ala Leu Gly
Page 27

A090470006W000-SEQ-RE. TXT

100

105

110

Ile Pro Leu His Leu Ala Tyr Asn Ser Ser Leu Val Thr Phe Gln Glu
 115 120 125

Pro Pro Gly Val Asn Thr Thr Glu Leu Pro Ser Phe Pro Lys Thr Gln
 130 135 140

Ile Leu Glu Trp Ala Ala Glu Arg Gly Pro Ile Thr Ser Ala Ala Glu
 145 150 155 160

Leu Asn Asp Pro Gln Ser Ile Leu Leu Arg Leu Gly Gln Ala Gln Gly
 165 170 175

Ser Leu Ser Phe Cys Met Leu Glu Ala Ser Gln Asp Met Gly Arg Thr
 180 185 190

Leu Glu Trp Arg Pro Arg Thr Pro Ala Leu Val Arg Gly Cys His Leu
 195 200 205

Gl u Gl y Val Ala Gl y His Lys Gl u Ala His Ile Leu Arg Val Leu Pro
 210 215 220

Gl y His Ser Ala Gl y Pro Arg Thr Val Thr Val Lys Val Gl u Leu Ser
 225 230 235 240

Cys Ala Pro Gl y Asp Leu Asp Ala Val Leu Ile Leu Gln Gl y Pro Pro
 245 250 255

Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Gln Ile Trp Thr
 260 265 270

Thr Gl y Gl u Tyr Ser Phe Lys Ile Phe Pro Gl u Lys Asn Ile Arg Gl y
 275 280 285

Phe Lys Leu Pro Asp Thr Pro Gln Gl y Leu Leu Gl y Gl u Ala Arg Met
 290 295 300

Leu Asn Ala Ser Ile Val Ala Ser Phe Val Gl u Leu Pro Leu Ala Ser
 305 310 315 320

Ile Val Ser Leu His Ala Ser Ser Cys Gl y Gl y Arg Leu Gln Thr Ser
 325 330 335

Pro Ala Pro Ile Gln Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Gl u
 340 345 350

Leu Leu Met Ser Leu Ile Gln Thr Lys Cys Ala Asp Asp Ala Met Thr
 355 360 365

Leu Val Leu Lys Lys Gl u Leu Val Ala His Leu Lys Cys Thr Ile Thr
 Page 28

370

375

380

Gl y Leu Thr Phe Trp Asp Pro Ser Cys Gl u Al a Gl u Asp Arg Gl y Asp
 385 390 395 400

Lys Phe Val Leu Arg Ser Al a Tyr Ser Ser Cys Gl y Met Gl n Val Ser
 405 410 415

Al a Ser Met Ile Ser Asn Gl u Al a Val Val Asn Ile Leu Ser Ser Ser
 420 425 430

Ser Pro Gl n Arg Lys Lys Val His Cys Leu Asn Met Asp Ser Leu Ser
 435 440 445

Phe Gl n Leu Gl y Leu Tyr Leu Ser Pro His Phe Leu Gl n Al a Ser Asn
 450 455 460

Thr Ile Gl u Pro Gl y Gl n Gl n Ser Phe Val Gl n Val Arg Val Ser Pro
 465 470 475 480

Ser Val Ser Gl u Phe Leu Leu Gl n Leu Asp Ser Cys His Leu Asp Leu
 485 490 495

Gl y Pro Gl u Gl y Gl y Thr Val Gl u Leu Ile Gl n Gl y Arg Al a Al a Lys
 500 505 510

Gl y Asn Cys Val Ser Leu Leu Ser Pro Ser Pro Gl u Gl y Asp Pro Arg
 515 520 525

Phe Ser Phe Leu Leu His Phe Tyr Thr Val Pro Ile Pro Lys Thr Gl y
 530 535 540

Thr Leu Ser Cys Thr Val Al a Leu Arg Pro Lys Thr Gl y Ser Gl n Asp
 545 550 555 560

Gl n Gl u Val His Arg Thr Val Phe Met Arg Leu Asn Ile Ile Ser Pro
 565 570 575

Asp Leu Ser Gl y Cys Thr Ser Lys Gl y Thr Gl y Gl y Gl y Thr His Thr
 580 585 590

Cys Pro Pro Cys Pro Al a Pro Gl u Leu Leu Gl y Gl y Pro Ser Val Phe
 595 600 605

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
 610 615 620

Gl u Val Thr Cys Val Val Val Asp Val Ser His Gl u Asp Pro Gl u Val
 625 630 635 640

Lys Phe Asn Trp Tyr Val Asp Gl y Val Gl u Val His Asn Al a Lys Thr
 Page 29

645

650

655

Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
 660 665 670

Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
 675 680 685

Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Val His Asn Ala
 690 695 700

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val
 705 710 715 720

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr
 725 730 735

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Asn Gly
 740 745 750

Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 755 760 765

Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 770 775 780

Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 785 790 795 800

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 805 810

<210> 19

<211> 821

<212> PRT

<213> Artificial sequence

<220>

<223> recombinant polypeptide

<400> 19

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
 1 5 10 15

Ala Val Phe Val Ser Pro Gly Gly Glu Arg Val Gly Cys Asp Leu Gln
 20 25 30

Pro Val Asp Pro Thr Arg Gly Glu Val Thr Phe Thr Thr Ser Gln Val
 35 40 45

Ser Glu Gly Cys Val Ala Gln Ala Ala Asn Ala Val Arg Glu Val His
 50 55 60

A090470006W000-SEQ-RE. TXT

Val Leu Phe Leu Asp Phe Pro Gly Met Leu Ser His Leu Glu Leu Thr
65 70 75 80

Leu Glu Ala Ser Lys Glu Asn Gly Thr Glu Thr Glu Glu Val Phe Leu
85 90 95

Val Leu Val Ser Asn Lys Asn Val Phe Val Lys Phe Glu Ala Pro Glu
100 105 110

Ile Pro Leu His Leu Ala Tyr Asp Ser Ser Leu Val Ile Phe Glu Gly
115 120 125

Gln Pro Arg Val Asn Ile Thr Val Leu Pro Ser Leu Thr Ser Arg Lys
130 135 140

Gln Ile Leu Asp Trp Ala Ala Thr Lys Gly Ala Ile Thr Ser Ile Ala
145 150 155 160

Ala Leu Asp Asp Pro Gln Ser Ile Val Leu Glu Leu Gly Gln Asp Pro
165 170 175

Lys Ala Pro Phe Leu Cys Leu Pro Glu Ala His Lys Asp Met Gly Ala
180 185 190

Thr Leu Glu Trp Gln Pro Arg Ala Gln Thr Pro Val Gln Ser Cys Arg
195 200 205

Leu Glu Gly Val Ser Gly His Lys Glu Ala Tyr Ile Leu Arg Ile Leu
210 215 220

Pro Gly Ser Glu Ala Gly Pro Arg Thr Val Thr Val Met Met Glu Leu
225 230 235 240

Ser Cys Thr Ser Gly Asp Ala Ile Leu Ile Leu His Gly Pro Pro Tyr
245 250 255

Val Ser Trp Phe Ile Asp Ile Asn His Ser Met Gln Ile Leu Thr Thr
260 265 270

Gly Glu Tyr Ser Val Lys Ile Phe Pro Gly Ser Lys Val Lys Gly Val
275 280 285

Glu Leu Pro Asp Thr Pro Gln Gly Leu Ile Ala Glu Ala Arg Lys Leu
290 295 300

Asn Ala Ser Ile Val Thr Ser Phe Val Glu Leu Pro Leu Val Ser Asn
305 310 315 320

Val Ser Leu Arg Ala Ser Ser Cys Gly Gly Val Phe Gln Thr Thr Pro
325 330 335

A090470006W000-SEQ-RE. TXT

Ala Pro Val Val Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Val Leu
340 345 350

Leu Met Ser Leu Ile Gln Pro Lys Cys Gly Asn Gln Val Met Thr Leu
355 360 365

Ala Leu Asn Lys Lys His Val Gln Thr Leu Gln Cys Thr Ile Thr Gly
370 375 380

Leu Thr Phe Trp Asp Ser Ser Cys Gln Ala Glu Asp Thr Asp Asp His
385 390 395 400

Leu Val Leu Ser Ser Ala Tyr Ser Ser Cys Gly Met Lys Val Thr Ala
405 410 415

His Val Val Ser Asn Gln Val Ile Ile Ser Phe Pro Ser Gly Ser Pro
420 425 430

Pro Leu Arg Lys Lys Val Gln Cys Ile Asp Met Asp Ser Leu Ser Phe
435 440 445

Gln Leu Gly Leu Tyr Leu Ser Pro His Phe Leu Gln Ala Ser Asn Thr
450 455 460

Ile Glu Leu Gly Gln Gln Ala Phe Val Gln Val Ser Val Ser Pro Leu
465 470 475 480

Thr Ser Glu Val Thr Val Gln Leu Asp Ser Cys His Leu Asp Leu Gly
485 490 495

Pro Glu Gly Asp Met Val Glu Leu Ile Gln Ser Arg Thr Ala Lys Gly
500 505 510

Ser Cys Val Thr Leu Leu Ser Pro Ser Pro Glu Gly Asp Pro Arg Phe
515 520 525

Ser Phe Leu Leu Arg Val Tyr Met Val Pro Thr Pro Thr Ala Gly Thr
530 535 540

Leu Ser Cys Asn Leu Ala Leu Arg Pro Ser Thr Leu Ser Gln Glu Val
545 550 555 560

Tyr Lys Thr Val Ser Met Arg Leu Asn Ile Val Ser Pro Asp Leu Ser
565 570 575

Gly Lys Gly Thr Gly Gly Glu Pro Arg Val Pro Ile Thr Gln Asn
580 585 590

Pro Cys Pro Pro Leu Lys Glu Cys Pro Pro Cys Ala Ala Pro Asp Leu
595 600 605

A090470006W000-SEQ-RE. TXT

Leu Gl y Gl y Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys Asp Val
610 615 620

Leu Met Ile Ser Leu Ser Pro Met Val Thr Cys Val Val Val Asp Val
625 630 635 640

Ser Gl u Asp Asp Pro Asp Val Gl n Ile Ser Trp Phe Val Asn Asn Val
645 650 655

Gl u Val His Thr Ala Gl n Thr Gl n Thr His Arg Gl u Asp Tyr Asn Ser
660 665 670

Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gl n His Gl n Asp Trp Met
675 680 685

Ser Gl y Lys Gl u Phe Lys Cys Lys Val Asn Asn Arg Ala Leu Pro Ser
690 695 700

Pro Ile Gl u Lys Thr Ile Ser Lys Pro Arg Gl y Pro Val Arg Ala Pro
705 710 715 720

Gl n Val Tyr Val Leu Pro Pro Pro Ala Gl u Gl u Met Thr Lys Lys Gl u
725 730 735

Phe Ser Leu Thr Cys Met Ile Thr Gl y Phe Leu Pro Ala Gl u Ile Ala
740 745 750

Val Asp Trp Thr Ser Asn Gl y Arg Thr Gl u Gl n Asn Tyr Lys Asn Thr
755 760 765

Al a Thr Val Leu Asp Ser Asp Gl y Ser Tyr Phe Met Tyr Ser Lys Leu
770 775 780

Arg Val Gl n Lys Ser Thr Trp Gl u Arg Gl y Ser Leu Phe Ala Cys Ser
785 790 795 800

Val Val His Gl u Gl y Leu His Asn His Leu Thr Thr Lys Thr Ile Ser
805 810 815

Arg Ser Leu Gl y Lys
820

<210> 20
<211> 2466
<212> DNA
<213> Artificial sequence

<220>
<223> recombinant polynucleotide

<400> 20
atggatcaa tgaagagagg gctctgctgt gtgctgctgc tgtgtggagc agtcttcgtt
Page 33

A090470006W000-SEQ-RE. TXT

tcgcccggcg	gggaaagagt	cggctgtat	ctacagcctg	tggacccac	aagggtgag	120
gtgacgtta	ccaccagcca	ggtctccgag	ggctgttag	ctcaggctgc	aatgctgtg	180
cgtgaagtcc	acgttcttt	cctggatttt	cccggaatgc	tgtcacatct	ggagctgact	240
cttcaggcat	ccaagcaaaa	tggcacggag	acccaggagg	tgttcctgg	cctcgttgc	300
aacaaaaatg	tcttcgtaa	gttccaggcc	ccggaaatcc	cattgcactt	ggcctacgac	360
tccagcctgg	tcatcttcca	aggacagcca	agagtcaaca	tcacagtct	accatccctt	420
acctccagga	aacagatcct	cgactggca	gccaccaagg	gcgccatcac	ctcgatagca	480
gcactggatg	acccccaag	catcgcttc	cagttggcc	aagacccaaa	ggcaccattc	540
tttgcttgc	cagaagctca	caaggacatg	ggcgccacac	ttaaatggca	accacgagcc	600
cagaccccaag	tccaaagctg	tcgcttggaa	ggtgtgtctg	gccacaagga	ggcctacatc	660
ctgaggatcc	tgccaggttc	tgaggccggg	ccccggacgg	tgaccgtaat	gatggaactg	720
agttgcacat	ctggggacgc	cattctcatc	ctgcatggc	ctccatatgt	ctcctggttc	780
atcgacatca	accacagcat	gcagatctt	accacaggtg	aataactccgt	caagatcttt	840
ccaggaagca	aggtcaaagg	cgtggagctc	ccagacacac	cccaaggcct	gatagcggag	900
gcccgcagc	tcaatgccag	cattgtcacc	tcctttgttag	agctccctct	ggtcagcaat	960
gtctccctga	gggcctccag	ctgcggtggt	gtgttccaga	ccacccctgc	accggttg	1020
accacaccc	ccaaggacac	atgcagcccc	gtgctactca	tgtccctgat	ccagccaaag	1080
tgtggcaatc	aggtcatgac	tctggactc	aataaaaaac	acgtgcagac	tctccagtgc	1140
accatcacag	gcctgacttt	ctgggactcc	agctgccagg	ctgaagacac	tgacgaccat	1200
cttgcctga	gtagcgcta	ctccagctgc	ggcatgaaag	tgacagccca	tgtggtcagc	1260
aatgaggtga	tcatcagttt	ccgtcaggc	tcaccaccac	ttcggaaaaaa	ggtacagtgc	1320
atcgacatgg	acagcctctc	cttccagctg	ggcctctacc	tcagccgc	cttcctccag	1380
gcatccaaca	ccatcgaaact	aggcagcag	gccttcgtac	aggtgagcgt	gtctccattg	1440
acctctgagg	tcacagtcc	gctagatagc	tgccatctgg	acttggggcc	cgaaggggac	1500
atggtggAAC	tcatccagag	ccgaacagcc	aagggcagct	gtgtgacctt	gctgtctcca	1560
agccctgaag	gtgacccacg	cttcagcttc	ctcctccggg	tctacatgg	gcccacaccc	1620
accgctggca	ccctcagttt	caacttagct	ctgcgccta	gcaccttg	ccaggaagtc	1680
tacaagacag	tctccatg	cctgaacatc	gtcagccctg	acctgtctgg	taaaggcacc	1740
ggtgggggtg	agcccagagt	gccataaca	cagaacccct	gtcctccact	caaagagtgt	1800
cccccatg	cagctccaga	cctttgggt	ggaccatccg	tcttcatctt	ccctccaaag	1860
atcaaggatg	tactcatgat	ctccctgagc	cccatggta	catgtgtgg	ggtggatgtg	1920
agcgaggatg	acccagacgt	ccagatcagc	tggtttgta	acaacgtgg	agtacacaca	1980
gctcagacac	aaacccatag	agaggattac	aacagtactc	tccgggtgg	cagtgcctc	2040
cccatccagc	accaggactg	gatgagtggc	aaggagtca	aatgcaaggt	caacaacaga	2100

A090470006W000-SEQ-RE. TXT

gccctccat ccccatcgaa	aaaaccatc tcaaaaccca	gagggccagt aagagctcca	2160
caggtatatg tcttgccctcc	accagcagaa gagatgacta	agaaagagtt cagtctgacc	2220
tgcatgatca caggcttctt	acctgcccgaat	tgctgtgg actggaccag caatggcgt	2280
acagagcaaa actacaagaa	caccgcaaca gtcctggact	ctgatggttc ttacttcatg	2340
tacagcaagc tcagagtaca	aaagagcaactggaaagag	gaagtctttt cgccctgctca	2400
gtggtccacg agggtctgca	caatcacctt acgactaaga	ccatctcccg gtctctgggt	2460
aaatga			2466

<210> 21
 <211> 671
 <212> PRT
 <213> Artificial sequence

<220>
 <223> recombinant polypeptide

<400> 21

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
 1 5 10 15

Ala Val Phe Val Ser Pro Gly Ala Glu Thr Val His Cys Asp Leu Glu
 20 25 30

Pro Val Gly Pro Glu Arg Asp Glu Val Thr Tyr Thr Thr Ser Glu Val
 35 40 45

Ser Lys Gly Cys Val Ala Glu Ala Pro Asn Ala Ile Leu Glu Val His
 50 55 60

Val Leu Phe Leu Glu Phe Pro Thr Gly Pro Ser Glu Leu Glu Leu Thr
 65 70 75 80

Leu Glu Ala Ser Lys Glu Asn Gly Thr Trp Pro Arg Glu Val Leu Leu
 85 90 95

Val Leu Ser Val Asn Ser Ser Val Phe Leu His Leu Glu Ala Leu Gly
 100 105 110

Ile Pro Leu His Leu Ala Tyr Asn Ser Ser Leu Val Thr Phe Glu Glu
 115 120 125

Pro Pro Gly Val Asn Thr Thr Glu Leu Pro Ser Phe Pro Lys Thr Glu
 130 135 140

Ile Leu Glu Trp Ala Ala Glu Arg Gly Pro Ile Thr Ser Ala Ala Glu
 145 150 155 160

Leu Asn Asp Pro Glu Ser Ile Leu Leu Arg Leu Glu Glu Ala Glu Glu
 165 170 175

A090470006W000-SEQ-RE. TXT

Ser Leu Ser Phe Cys Met Leu Glu Ala Ser Glu Asp Met Gly Arg Thr
180 185 190

Leu Glu Trp Arg Pro Arg Thr Pro Ala Leu Val Arg Gly Cys His Leu
195 200 205

Glu Gly Val Ala Gly His Lys Glu Ala His Ile Leu Arg Val Leu Pro
210 215 220

Gly His Ser Ala Gly Pro Arg Thr Val Thr Val Lys Val Glu Leu Ser
225 230 235 240

Cys Ala Pro Gly Asp Leu Asp Ala Val Leu Ile Leu Glu Gly Pro Pro
245 250 255

Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Glu Ile Trp Thr
260 265 270

Thr Gly Glu Tyr Ser Phe Lys Ile Phe Pro Glu Lys Asn Ile Arg Gly
275 280 285

Phe Lys Leu Pro Asp Thr Pro Glu Gly Leu Leu Gly Glu Ala Arg Met
290 295 300

Leu Asn Ala Ser Ile Val Ala Ser Phe Val Glu Leu Pro Leu Ala Ser
305 310 315 320

Ile Val Ser Leu His Ala Ser Ser Cys Gly Gly Arg Leu Glu Thr Ser
325 330 335

Pro Ala Pro Ile Glu Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Glu
340 345 350

Leu Leu Met Ser Leu Ile Glu Thr Lys Cys Ala Asp Asp Ala Met Thr
355 360 365

Leu Val Leu Lys Lys Glu Leu Val Ala His Leu Lys Cys Thr Ile Thr
370 375 380

Gly Leu Thr Phe Trp Asp Pro Ser Cys Glu Ala Glu Asp Arg Gly Asp
385 390 395 400

Lys Phe Val Leu Arg Ser Ala Tyr Ser Ser Cys Gly Met Glu Val Ser
405 410 415

Ala Ser Met Ile Ser Asn Glu Ala Val Val Asn Ile Leu Ser Ser Ser
420 425 430

Ser Pro Glu Arg Thr Gly Gly Pro Lys Ser Cys Asp Lys Thr His
435 440 445

A090470006W000-SEQ-RE. TXT

Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Glu Glu Pro Ser Val
450 455 460

Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr
465 470 475 480

Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu
485 490 495

Val Lys Phe Asn Trp Tyr Val Asp Glu Val Glu Val His Asn Ala Lys
500 505 510

Thr Lys Pro Arg Glu Glu Glu Tyr Asn Ser Thr Tyr Arg Val Val Ser
515 520 525

Val Leu Thr Val Leu His Glu Asp Trp Leu Asn Glu Lys Glu Tyr Lys
530 535 540

Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile
545 550 555 560

Ser Lys Ala Lys Glu Glu Pro Arg Glu Pro Glu Val Tyr Thr Leu Pro
565 570 575

Pro Ser Arg Glu Glu Met Thr Lys Asn Glu Val Ser Leu Thr Cys Leu
580 585 590

Val Lys Glu Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn
595 600 605

Glu Glu Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser
610 615 620

Asp Glu Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg
625 630 635 640

Trp Glu Glu Glu Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu
645 650 655

His Asn His Tyr Thr Glu Lys Ser Leu Ser Leu Ser Pro Glu Lys
660 665 670

<210> 22
<211> 2016

<212> DNA
<213> Artificial sequence

<220>
<223> recombinant polynucleotide

<400> 22

A090470006W000-SEQ-RE. TXT

atggatgcaa	tgaagagagg	gctctgctgt	gtgctgctgc	tgtgtggagc	agtcttcgtt	60
tcgcccggcg	ccgaaacagt	ccattgtgac	cttcagcctg	tgggccccga	gagggacgag	120
gtgacatata	ccactagcca	ggctcgaag	ggctgcgtgg	ctcaggcccc	caatgccatc	180
cttgaagtcc	atgtcctctt	cctggagttc	ccaacgggcc	cgtcacagct	ggagctgact	240
ctccaggcat	ccaagcaaaa	tggcacctgg	ccccgagagg	tgcttctggt	cctcagtgt	300
aacagcagt	tcttcctgca	tctccaggcc	ctggaaatcc	cactgcactt	ggcctacaat	360
tccagcctgg	tcaccttcca	agagcccccg	ggggtaaca	ccacagagct	gccatccttc	420
cccaagaccc	agatccttga	gtgggcagct	gagagggg	ccatcacctc	tgctgctgag	480
ctgaatgacc	cccagagcat	cctccctccga	ctgggccaag	cccaggggtc	actgtccttc	540
tgcatgctgg	aagccagcca	ggacatgggc	cgcacgctcg	agtggcggcc	gcgtactcca	600
gccttggtcc	ggggctgcca	cttggaaaggc	gtggccggcc	acaaggaggc	gcacatcctg	660
agggtcctgc	cgggcccactc	ggccgggccc	cggacggta	cggtaaggt	ggaactgagc	720
tgcgcacccg	gggatctcga	tgccgtcctc	atcctgcagg	gtcccccta	cgtgtcctgg	780
ctcatcgacg	ccaaccacaa	catcgacatc	tggaccactg	gagaatactc	cttcaagatc	840
tttccagaga	aaaacattcg	tggcttcaag	ctcccagaca	cacctaagg	cctcctgggg	900
gaggcccgga	tgctcaatgc	cagcattgt	gcatcctcg	tggagctacc	gctggccagc	960
attgtctcac	ttcatgcctc	cagctgcgg	ggtaggctgc	agacctcacc	cgcaccgatc	1020
cagaccactc	ctcccaagga	cactttagc	ccggagctgc	tcatgtcctt	gatccagaca	1080
aagtgtgccg	acgacgccat	gaccctggta	ctaaagaaag	agcttgttgc	gcatttgaag	1140
tgcaccatca	cgggcctgac	cttctggac	cccagctgt	aggcagagga	caggggtgac	1200
aagttgtct	tgcgca	ttactccagc	tgtggcatgc	aggtgtcagc	aagtatgatc	1260
agcaatgagg	cggtgtcaa	tatcctgtcg	agctcatcac	cacagcggac	cggtgtgga	1320
cccaaatctt	gtgacaaaac	tcacacatgc	ccaccgtgcc	cagcacctga	actcctgggg	1380
ggaccgtcag	tcttcctctt	ccccccaaaa	cccaaggaca	ccctcatgat	ctccggacc	1440
cctgaggtca	catgcgttgt	ggtggacgt	agccacgaag	accctgaggt	caagttcaac	1500
tggtagtgg	acggcgtgga	ggtgcataat	gccaagacaa	agccgcggga	ggagcagtac	1560
aacagcacgt	accgtgttgt	cagcgtcctc	accgtcctgc	accaggactg	gctgaatggc	1620
aaggagtaca	agtgcaggt	ctccaacaaa	gccctcccag	cccccatcga	gaaaaccatc	1680
tccaaagcca	aagggcagcc	ccgagaacca	caggtgtaca	ccctgcccc	atcccggag	1740
gagatgacca	agaaccaggt	cagcctgacc	tgcctggta	aaggcttcta	tcccagcgcac	1800
atcgccgtgg	agtggagag	aatgggcag	ccggagaaca	actacaagac	cacgcctccc	1860
gtgctggact	ccgacggctc	cttcttcctc	tatagcaagc	tcaccgtgga	caagagcagg	1920
tggcagcagg	ggaacgttct	ctcatgctcc	gtgatgcatg	aggctctgca	caaccactac	1980
acgcagaaga	gcctctccct	gtccccgggt	aatga			2016

A090470006W000-SEQ-RE. TXT

<210> 23
<211> 606
<212> PRT
<213> Artificial sequence

<220>
<223> recombinant polypeptide

<400> 23

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
1 5 10 15

Ala Val Phe Val Ser Pro Gly Ala Glu Thr Val His Cys Asp Leu Gln
20 25 30

Pro Val Gly Pro Glu Arg Asp Glu Val Thr Tyr Thr Thr Ser Gln Val
35 40 45

Ser Lys Gly Cys Val Ala Gln Ala Pro Asn Ala Ile Leu Glu Val His
50 55 60

Val Leu Phe Leu Glu Phe Pro Thr Gly Pro Ser Gln Leu Glu Leu Thr
65 70 75 80

Leu Gln Ala Ser Lys Gln Asn Gly Thr Trp Pro Arg Glu Val Leu Leu
85 90 95

Val Leu Ser Val Asn Ser Ser Val Phe Leu His Leu Gln Ala Leu Gly
100 105 110

Ile Pro Leu His Leu Ala Tyr Asn Ser Ser Leu Val Thr Phe Gln Glu
115 120 125

Pro Pro Gly Val Asn Thr Thr Glu Leu Pro Ser Phe Pro Lys Thr Gln
130 135 140

Ile Leu Glu Trp Ala Ala Glu Arg Gly Pro Ile Thr Ser Ala Ala Glu
145 150 155 160

Leu Asn Asp Pro Gln Ser Ile Leu Leu Arg Leu Gly Gln Ala Gln Gly
165 170 175

Ser Leu Ser Phe Cys Met Leu Glu Ala Ser Gln Asp Met Gly Arg Thr
180 185 190

Leu Glu Trp Arg Pro Arg Thr Pro Glu Arg Gly Pro Ile Thr Ser Ala
195 200 205

Ala Glu Leu Asn Asp Pro Gln Ser Ile Leu Leu Arg Leu Gly Gln Ala
210 215 220

Gln Gly Ser Leu Ser Phe Cys Met Leu Glu Ala Ser Gln Asp Met Gly
Page 39

225

230

235

240

Arg Thr Leu Glu Trp Arg Pro Arg Thr Pro Ile Leu Gln Gly Pro Pro
 245 250 255

Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Gln Ile Trp Thr
 260 265 270

Thr Gly Glu Tyr Ser Phe Lys Ile Phe Pro Glu Lys Asn Ile Arg Gly
 275 280 285

Phe Lys Leu Pro Asp Thr Pro Gln Gly Leu Leu Gly Glu Ala Arg Met
 290 295 300

Leu Asn Ala Ser Ile Val Ala Ser Phe Val Glu Leu Pro Leu Ala Ser
 305 310 315 320

Ile Val Ser Leu His Ala Ser Ser Cys Gly Gly Arg Leu Gln Thr Ser
 325 330 335

Pro Ala Pro Ile Gln Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Glu
 340 345 350

Leu Leu Met Ser Leu Ile Gln Thr Lys Cys Ala Asp Asp Ala Met Thr
 355 360 365

Leu Val Leu Lys Lys Glu Leu Val Ala Thr Gly Gly Thr His Thr
 370 375 380

Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe
 385 390 395 400

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
 405 410 415

Gl u Val Thr Cys Val Val Asp Val Ser His Gl u Asp Pro Gl u Val
 420 425 430

Lys Phe Asn Trp Tyr Val Asp Gl y Val Gl u Val His Asn Ala Lys Thr
 435 440 445

Lys Pro Arg Gl u Gl u Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
 450 455 460

Leu Thr Val Leu His Gl n Asp Trp Leu Asn Gl y Lys Gl u Tyr Lys Cys
 465 470 475 480

Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Gl u Lys Thr Ile Ser
 485 490 495

Lys Ala Lys Gl y Gl n Pro Arg Gl u Pro Gl n Val Tyr Thr Leu Pro Pro
 Page 40

500

505

510

Ser Arg Glu Glu Met Thr Lys Asn Glu Val Ser Leu Thr Cys Leu Val
 515 520 525

Lys Glu Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Glu
 530 535 540

Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 545 550 555 560

Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 565 570 575

Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 580 585 590

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Glu Lys
 595 600 605

<210> 24

<211> 1821

<212> DNA

<213> Artificial sequence

<220>

<223> recombinant polynucleotide

<400> 24

atggatgcaa tgaagagagg gctctgctgt gtgctgctgc tgtgtggagc agtcttcgtt 60

tcgcccggcg ccgaaacagt ccattgtgac cttcagcctg tgggccccga gagggacgag 120

gtgacatata ccactagcca ggtctcgaag ggctcgctgg ctcaggcccc caatgccatc 180

cttgaagtcc atgtcctctt cctggagttc ccaacgggcc cgtcacagct ggagctgact 240

ctccaggcat ccaagcaaaa tggcacctgg ccccgagagg tgcttctggc cctcagtgt 300

aacagcagtg tcttcctgca tctccaggcc ctggaaatcc cactgcactt ggcctacaat 360

tccagcctgg tcaccttcca agagccccg ggggtcaaca ccacagagct gccatccttc 420

cccaagaccc agatccttga gtgggcagct gagaggggcc ccatcacctc tgctgctgag 480

ctgaatgacc cccagagcat cctcctccga ctgggccaag cccaggggtc actgtccttc 540

tgcatgctgg aagccagcca ggacatgggc cgacgctcg agtggcggcc gcgtactcca 600

gccttggtcc gggctgcca cttggaaggc gtggccggcc acaaggaggc gcacatcctg 660

agggtcctgc cggccactc ggcggggccc cggacggtga cggtaaggt ggaactgagc 720

tgcgcacccg gggatctcga tgccgtcctc atcctgcagg gtccccctta cgtgtcctgg 780

ctcatcgacg ccaaccacaa catcgacatc tggaccactg gagaatactc cttcaagatc 840

tttccagaga aaaacattcg tggcttcaag ctcccagaca cacctaagg cctcctgggg 900

gaggcccgga tgctcaatgc cagcattgtg gcattcctcg tggagctacc gctggccagc 960

A090470006W000-SEQ-RE. TXT

attgtctcac	ttcatgcctc	cagctgcgt	ggtaggctgc	agacctcacc	cgcaccgatc	1020
cagaccactc	ctcccaagga	cactttagc	ccggagctgc	tcatgtcctt	gatccagaca	1080
aagtgtccg	acgacgccc	gaccctggta	ctaaagaaag	agcttggc	gaccgggtgg	1140
ggaactcaca	catgcccacc	gtgcccagca	cctgaactcc	tggggggacc	gtcagtcttc	1200
ctcttcccc	caaaacccaa	ggacaccctc	atgatctccc	ggaccctgaa	ggtcacatgc	1260
gtgggtgg	acgtgagcca	cgaagaccct	gaggtaagt	tcaactggta	cgtggacggc	1320
gtggagggtgc	ataatgcca	gacaaagccg	cgggaggagc	agtacaacag	cacgtaccgt	1380
gtggtcagcg	tcctcaccgt	cctgcaccag	gactggctgaa	atggcaagga	gtacaagtgc	1440
aaggctcca	acaaagccct	cccagcccc	atcgagaaaa	ccatctccaa	agccaaagg	1500
cagccccgag	aaccacaggt	gtacaccctg	ccccatccc	gggaggagat	gaccaagaac	1560
caggtcagcc	tgacctgcct	ggtcaaaggc	ttctatccca	gcgacatcgc	cgtggagtgg	1620
gagagcaatg	ggcagccgga	gaacaactac	aagaccacgc	ctcccggtc	ggactccgac	1680
ggctccttct	tcctctatag	caagctcacc	gtggacaaga	gcaggtggca	gcagggaaac	1740
gtcttcat	gctccgtat	gcatgaggct	ctgcacaacc	actacacgc	gaagagcctc	1800
tccctgtccc	cgggtaaatg	a				1821

<210> 25
 <211> 593
 <212> PRT
 <213> Artificial sequence

<220>
 <223> recombinant polypeptide

<400> 25

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
 1 5 10 15

Ala Val Phe Val Ser Pro Gly Ala Glu Thr Val His Cys Asp Leu Gln
 20 25 30

Pro Val Gly Pro Glu Arg Asp Glu Val Thr Tyr Thr Thr Ser Gln Val
 35 40 45

Ser Lys Gly Cys Val Ala Gln Ala Pro Asn Ala Ile Leu Glu Val His
 50 55 60

Val Leu Phe Leu Glu Phe Pro Thr Gly Pro Ser Gln Leu Glu Leu Thr
 65 70 75 80

Leu Gln Ala Ser Lys Gln Asn Gly Thr Trp Pro Arg Glu Val Leu Leu
 85 90 95

Val Leu Ser Val Asn Ser Ser Val Phe Leu His Leu Gln Ala Leu Gly
 100 105 110

A090470006W000-SEQ-RE. TXT

Ile Pro Leu His Leu Ala Tyr Asn Ser Ser Leu Val Thr Phe Glu Glu
115 120 125

Pro Pro Gly Val Asn Thr Thr Glu Leu Pro Ser Phe Pro Lys Thr Glu
130 135 140

Ile Leu Glu Trp Ala Ala Glu Arg Gly Pro Ile Thr Ser Ala Ala Glu
145 150 155 160

Leu Asn Asp Pro Glu Ser Ile Leu Leu Arg Leu Gly Glu Ala Glu Gly
165 170 175

Ser Leu Ser Phe Cys Met Leu Glu Ala Ser Glu Asp Met Glu Arg Thr
180 185 190

Leu Glu Trp Arg Pro Arg Thr Pro Ala Leu Val Arg Glu Cys His Leu
195 200 205

Glu Glu Val Ala Gly His Lys Glu Ala His Ile Leu Arg Val Leu Pro
210 215 220

Gly His Ser Ala Gly Pro Arg Thr Val Thr Val Lys Val Glu Leu Ser
225 230 235 240

Cys Ala Pro Gly Asp Leu Asp Ala Val Leu Ile Leu Glu Gly Pro Pro
245 250 255

Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Glu Ile Trp Thr
260 265 270

Thr Gly Glu Tyr Ser Phe Lys Ile Phe Pro Glu Lys Asn Ile Arg Gly
275 280 285

Phe Lys Leu Pro Asp Thr Pro Glu Gly Leu Leu Gly Glu Ala Arg Met
290 295 300

Leu Asn Ala Ser Ile Val Ala Ser Phe Val Glu Leu Pro Leu Ala Ser
305 310 315 320

Ile Val Ser Leu His Ala Ser Ser Cys Gly Gly Arg Leu Glu Thr Ser
325 330 335

Pro Ala Pro Ile Glu Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Glu
340 345 350

Leu Leu Met Ser Leu Ile Thr Gly Gly Pro Lys Ser Cys Asp Lys
355 360 365

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
370 375 380

A090470006W000-SEQ-RE. TXT

Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser
385 390 395 400

Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp
405 410 415

Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn
420 425 430

Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val
435 440 445

Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
450 455 460

Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
465 470 475 480

Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
485 490 495

Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr
500 505 510

Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
515 520 525

Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu
530 535 540

Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys
545 550 555 560

Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu
565 570 575

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly
580 585 590

Lys

<210> 26
<211> 1782
<212> DNA
<213> Artificial sequence

<220>
<223> recombinant polynucleotide

<400> 26
atggatcaa tgaagagagg gctctgtgt gtgctgtgc tgtgtggagc agtcttcgtt
Page 44

A090470006W000-SEQ-RE. TXT

tcgccccggcg	ccgaaacagt	ccattgtgac	cttcagcctg	tgggccccga	gagggacgag	120
gtgacatata	ccactagcca	ggtctcgaaag	ggctcgctgg	ctcaggcccc	caatgccatc	180
cttgaagtcc	atgtcctctt	cctggagttc	ccaacgggcc	cgtcacagct	ggagctgact	240
ctccaggcat	ccaagcaaaa	tggcacctgg	ccccgagagg	tgcttctggt	cctcagtgt	300
aacagcagt	tcttcctgca	tctccaggcc	ctgggaatcc	cactgcactt	ggcctacaat	360
tccagcctgg	tcaccttcca	agagcccccg	ggggtaaca	ccacagagct	gccatccttc	420
cccaagaccc	agatccttga	gtgggcagct	gagaggggcc	ccatcacctc	tgctgctgag	480
ctgaatgacc	cccagagcat	cctcctccga	ctgggccaag	cccaggggtc	actgtccttc	540
tgcatgctgg	aagccagcca	ggacatgggc	cgcacgctcg	agtggcggcc	gcgtactcca	600
gccttggtcc	ggggctgcca	cttggaaaggc	gtggccggcc	acaaggaggc	gcacatcctg	660
agggtcctgc	cgggccactc	ggccgggccc	cggacggta	cggtaaggt	ggaactgagc	720
tgcgcacccg	gggatctcga	tgcgcctc	atcctgcagg	gtcccccta	cgtgtcctgg	780
ctcatcgacg	ccaaccacaa	catcgacatc	tggaccactg	gagaataactc	cttcaagatc	840
tttccagaga	aaaacattcg	tggcttcaag	ctcccagaca	cacctaagg	cctcctgggg	900
gaggcccgga	tgctcaatgc	cagcattgt	gcatcctcg	tggagctacc	gctggccagc	960
attgtctcac	ttcatgcctc	cagctcggt	ggtaggctgc	agacctcacc	cgcaccgatc	1020
cagaccactc	ctcccaagga	cacttgtagc	ccggagctgc	tcatgtcctt	gatcaccggt	1080
ggtggaccca	aatcttgta	caaaactcac	acatgcccac	cgtgcccagc	acctaactc	1140
ctggggggac	cgtcagtctt	cctttcccc	ccaaaaccca	aggacaccct	catgatctcc	1200
cggaccctg	aggtcacatg	cgtggtggt	gacgtgagcc	acgaagaccc	tgaggtcaag	1260
ttcaacttgt	acgtggacgg	cgtggaggt	cataatgcca	agacaaagcc	gcgggaggag	1320
cagtacaaca	gcacgtaccg	tgtggtcagc	gtcctcaccg	tcctgcacca	ggactggctg	1380
aatggcaagg	agtacaagt	caaggtctcc	aacaaagccc	tcccagcccc	catcgagaaa	1440
accatctcca	aagccaaagg	gcagccccga	gaaccacagg	tgtacaccct	gcccccatcc	1500
cgggaggaga	tgaccaagaa	ccaggtcagc	ctgacctgcc	tggtaaagg	cttctatccc	1560
agcgacatcg	ccgtggagtg	ggagagcaat	gggcagccgg	agaacaacta	caagaccacg	1620
cctccctgc	tggactccga	cggctccttc	ttcctctata	gcaagctcac	cgtggacaag	1680
agcaggtggc	agcaggggaa	cgtttctca	tgctccgtga	tgcataggc	tctgcacaac	1740
cactacacgc	agaagagcct	ctccctgtcc	ccgggtaaat	ga		1782

<210> 27
 <211> 587
 <212> PRT
 <213> Artificial sequence

<220>
 <223> recombinant polypeptide

A090470006W000-SEQ-RE. TXT

<400> 27

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
1 5 10 15

Ala Val Phe Val Ser Pro Gly Ala Glu Thr Val His Cys Asp Leu Gly
20 25 30

Pro Val Gly Pro Glu Arg Asp Glu Val Thr Tyr Thr Thr Ser Gly Val
35 40 45

Ser Lys Gly Cys Val Ala Gly Ala Pro Asn Ala Ile Leu Glu Val His
50 55 60

Val Leu Phe Leu Glu Phe Pro Thr Gly Pro Ser Gly Leu Glu Leu Thr
65 70 75 80

Leu Gly Ala Ser Lys Gly Asn Gly Thr Trp Pro Arg Glu Val Leu Leu
85 90 95

Val Leu Ser Val Asn Ser Ser Val Phe Leu His Leu Gly Ala Leu Gly
100 105 110

Ile Pro Leu His Leu Ala Tyr Asn Ser Ser Leu Val Thr Phe Gly Glu
115 120 125

Pro Pro Gly Val Asn Thr Thr Glu Leu Pro Ser Phe Pro Lys Thr Gly
130 135 140

Ile Leu Glu Trp Ala Ala Glu Arg Gly Pro Ile Thr Ser Ala Ala Glu
145 150 155 160

Leu Asn Asp Pro Gly Ser Ile Leu Leu Arg Leu Gly Gly Ala Gly
165 170 175

Ser Leu Ser Phe Cys Met Leu Glu Ala Ser Gly Asp Met Gly Arg Thr
180 185 190

Leu Glu Trp Arg Pro Arg Thr Pro Ala Leu Val Arg Gly Cys His Leu
195 200 205

Gly Gly Val Ala Gly His Lys Glu Ala His Ile Leu Arg Val Leu Pro
210 215 220

Gly His Ser Ala Gly Pro Arg Thr Val Thr Val Lys Val Glu Leu Ser
225 230 235 240

Cys Ala Pro Gly Asp Leu Asp Ala Val Leu Ile Leu Gly Gly Pro Pro
245 250 255

Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Gly Ile Trp Thr
Page 46

260

265

270

Thr Gl y Gl u Tyr Ser Phe Lys Ile Phe Pro Gl u Lys Asn Ile Arg Gl y
 275 280 285

Phe Lys Leu Pro Asp Thr Pro Gl n Gl y Leu Leu Gl y Gl u Al a Arg Met
 290 295 300

Leu Asn Al a Ser Ile Val Al a Ser Phe Val Gl u Leu Pro Leu Al a Ser
 305 310 315 320

Ile Val Ser Leu His Al a Ser Ser Cys Gl y Gl y Arg Leu Gl n Thr Ser
 325 330 335

Pro Al a Pro Ile Gl n Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Gl u
 340 345 350

Leu Leu Met Ser Leu Ile Thr Gl y Gl y Gl y Thr His Thr Cys Pro Pro
 355 360 365

Cys Pro Al a Pro Gl u Leu Leu Gl y Gl y Pro Ser Val Phe Leu Phe Pro
 370 375 380

Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Gl u Val Thr
 385 390 395 400

Cys Val Val Val Asp Val Ser His Gl u Asp Pro Gl u Val Lys Phe Asn
 405 410 415

Trp Tyr Val Asp Gl y Val Gl u Val His Asn Al a Lys Thr Lys Pro Arg
 420 425 430

Gl u Gl u Gl n Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val
 435 440 445

Leu His Gl n Asp Trp Leu Asn Gl y Lys Gl u Tyr Lys Cys Lys Val Ser
 450 455 460

Asn Lys Al a Leu Pro Al a Pro Ile Gl u Lys Thr Ile Ser Lys Al a Lys
 465 470 475 480

Gl y Gl n Pro Arg Gl u Pro Gl n Val Tyr Thr Leu Pro Pro Ser Arg Gl u
 485 490 495

Gl u Met Thr Lys Asn Gl n Val Ser Leu Thr Cys Leu Val Lys Gl y Phe
 500 505 510

Tyr Pro Ser Asp Ile Al a Val Gl u Trp Gl u Ser Asn Gl y Gl n Pro Gl u
 515 520 525

Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gl y Ser Phe
 Page 47

530

535

540

Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gl n Gl n Gl y
 545 550 555 560

Asn Val Phe Ser Cys Ser Val Met His Gl u Al a Leu His Asn His Tyr
 565 570 575

Thr Gl n Lys Ser Leu Ser Leu Ser Pro Gl y Lys
 580 585

<210> 28

<211> 1764

<212> DNA

<213> Artificial sequence

<220>

<223> recombinant polynucleotide

<400> 28

atggatgcaa	tgaagagagg	gctctgctgt	gtgctgctgc	tgtgtggagc	agtcttcgtt	60
tcgccccggcg	ccgaaacagt	ccattgtgac	cttcagcctg	tgggccccga	gagggacgag	120
gtgacatata	ccactagcca	ggtctcgaag	ggctgcgtgg	ctcaggcccc	caatgccatc	180
cttgaagtcc	atgtcctctt	cctggagttc	ccaacgggcc	cgtcacagct	ggagctgact	240
ctccaggcat	ccaagcaaaa	tggcacctgg	ccccgagagg	tgttctgg	cctcagtgt	300
aacagcagt	tcttcctgca	tctccaggcc	ctggaaatcc	cactgcactt	ggcctacaat	360
tccagcctgg	tcaccttcca	agagcccccg	ggggtaaca	ccacagagct	gccatccttc	420
cccaagaccc	agatccttga	gtgggcagct	gagaggggcc	ccatcacctc	tgctgctgag	480
ctgaatgacc	cccagagcat	cctcctccga	ctgggccaag	cccaggggtc	actgtccttc	540
tgcatgctgg	aagccagcca	ggacatgggc	cgcacgctcg	agtggcggcc	gcgtactcca	600
gccttggtcc	ggggctgcca	cttggaaaggc	gtggccggcc	acaaggaggc	gcacatcctg	660
agggcctgc	cggccactc	ggccgggccc	cggacggtga	cgtgtaaggt	ggaactgagc	720
tgcgcacccg	gggatctcga	tgccgtcctc	atcctgcagg	gtccccctta	cgtgtcctgg	780
ctcatcgacg	ccaaccacaa	catgcagatc	tggaccactg	gagaatactc	cttcaagatc	840
tttccagaga	aaaacattcg	tggcttcaag	ctcccagaca	cacctaagg	cctcctgggg	900
gaggcccgga	tgctcaatgc	cagcattgtg	gcatccttcg	tggagctacc	gctggccagc	960
attgtctcac	ttcatgcctc	cagctgcgt	ggtaggctgc	agacctcacc	cgcaccgatc	1020
cagaccactc	ctcccaagga	cacttgtagc	ccggagctgc	tcatgtcctt	gatcaccggt	1080
ggtggaactc	acacatgccc	accgtgccca	gcacctaacc	tcctgggggg	accgtcagtc	1140
ttcctcttcc	ccccaaaacc	caaggacacc	ctcatgatct	cccgaccccc	tgaggtcaca	1200
tgcggttgg	tggacgtgag	ccacgaagac	cctgaggta	agttcaactg	gtacgtggac	1260
ggcgtggagg	tgcataatgc	caagacaaag	ccgcgggagg	agcagtacaa	cagcacgtac	1320

A090470006W000-SEQ-RE. TXT

cgtgtggtca	cggtcctcac	cgtcctgcac	caggactggc	tgaatggcaa	ggagtacaag	1380
tgcaaggct	ccaacaaagc	cctccagcc	cccatcgaga	aaaccatctc	caaagccaaa	1440
ggcagcccc	gagaaccaca	ggtgtacacc	ctgccccat	cccgggagga	gatgaccaag	1500
aaccaggta	gcctgacctg	cctggtaaaa	ggcttctatc	ccagcgacat	cgccgtggag	1560
tgggagagca	atggcagcc	ggagaacaac	tacaagacca	cgcccccgt	gctggactcc	1620
gacggctcct	tcttcctcta	tagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	1680
aacgtttct	catgctccgt	gatgcatgag	gctctgcaca	accactacac	gcagaagagc	1740
ctctccctgt	ccccggtaa	atga				1764

<210> 29

<211> 574

<212> PRT

<213> Artificial sequence

<220>

<223> recombinant polypeptide

<400> 29

Met	Asp	Ala	Met	Lys	Arg	Gly	Leu	Cys	Cys	Val	Leu	Leu	Leu	Cys	Gly
1				5				10						15	

Ala	Val	Phe	Val	Ser	Pro	Gly	Ala	Glu	Thr	Val	His	Cys	Asp	Leu	Gln
							20	25				30			

Pro	Val	Gly	Pro	Glu	Arg	Asp	Glu	Val	Thr	Tyr	Thr	Thr	Ser	Gln	Val
							35	40				45			

Ser	Lys	Gly	Cys	Val	Ala	Gln	Ala	Pro	Asn	Ala	Ile	Leu	Glu	Val	His
	50					55					60				

Val	Leu	Phe	Leu	Glu	Phe	Pro	Thr	Gly	Pro	Ser	Gln	Leu	Glu	Leu	Thr
65				70					75					80	

Leu	Gln	Ala	Ser	Lys	Gln	Asn	Gly	Thr	Trp	Pro	Arg	Glu	Val	Leu	Leu
				85				90				95			

Val	Leu	Ser	Val	Asn	Ser	Ser	Val	Phe	Leu	His	Leu	Gln	Ala	Leu	Gly
							100	105				110			

Ile	Pro	Leu	His	Leu	Ala	Tyr	Asn	Ser	Ser	Leu	Val	Thr	Phe	Gln	Glu
115						120					125				

Pro	Pro	Gly	Val	Asn	Thr	Thr	Glu	Leu	Pro	Ser	Phe	Pro	Lys	Thr	Gln
130						135					140				

Ile	Leu	Glu	Trp	Ala	Ala	Glu	Arg	Gly	Pro	Ile	Thr	Ser	Ala	Ala	Glu
145				150					155				160		

A090470006W000-SEQ-RE. TXT

Leu Asn Asp Pro Glu Ser Ile Leu Leu Arg Leu Glu Glu Ala Glu Glu
 165 170 175

Ser Leu Ser Phe Cys Met Leu Glu Ala Ser Glu Asp Met Glu Arg Thr
 180 185 190

Leu Glu Trp Arg Pro Arg Thr Pro Ala Leu Val Arg Glu Cys His Leu
 195 200 205

Glu Glu Val Ala Glu His Lys Glu Ala His Ile Leu Arg Val Leu Pro
 210 215 220

Glu His Ser Ala Glu Pro Arg Thr Val Thr Val Lys Val Glu Leu Ser
 225 230 235 240

Cys Ala Pro Glu Asp Leu Asp Ala Val Leu Ile Leu Glu Glu Pro Pro
 245 250 255

Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Glu Ile Trp Thr
 260 265 270

Thr Glu Glu Tyr Ser Phe Lys Ile Phe Pro Glu Lys Asn Ile Arg Glu
 275 280 285

Phe Lys Leu Pro Asp Thr Pro Glu Glu Leu Leu Glu Glu Ala Arg Met
 290 295 300

Leu Asn Ala Ser Ile Val Ala Ser Phe Val Glu Leu Pro Leu Ala Ser
 305 310 315 320

Ile Val Ser Leu His Ala Ser Ser Cys Glu Glu Arg Leu Glu Thr Ser
 325 330 335

Pro Ala Pro Ile Glu Thr Thr Pro Pro Thr Glu Glu Glu Thr His Thr
 340 345 350

Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Glu Glu Pro Ser Val Phe
 355 360 365

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
 370 375 380

Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val
 385 390 395 400

Lys Phe Asn Trp Tyr Val Asp Glu Val Glu Val His Asn Ala Lys Thr
 405 410 415

Lys Pro Arg Glu Glu Glu Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
 420 425 430

A090470006W000-SEQ-RE. TXT

Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
 435 440 445

Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
 450 455 460

Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
 465 470 475 480

Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
 485 490 495

Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
 500 505 510

Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 515 520 525

Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 530 535 540

Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 545 550 555 560

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 565 570

<210> 30

<211> 1725

<212> DNA

<213> Artificial sequence

<220>

<223> recombinant polynucleotide

<400> 30

atggatcaa	tgaagagagg	gctctgctgt	gtgctgctgc	tgtgtggagc	agtcttcgtt	60
tcgcccggcg	ccgaaacagt	ccattgtgac	cttcagcctg	tggcccccga	gagggacgag	120
gtgacatata	ccactagcca	ggtctcgaag	ggctcgctgg	ctcaggcccc	caatgccatc	180
cttgaagtcc	atgtccttctt	cctggagttc	ccaacggcc	cgtcacagct	ggagctgact	240
ctccaggcat	ccaagcaaaa	tggcacctgg	ccccgagagg	tgcctctgg	cctcagtgt	300
aacagcagtg	tcttcctgca	tctccaggcc	ctggaaatcc	cactgcactt	ggcctacaat	360
tccagcctgg	tcaccttcca	agagcccccg	ggggtaaca	ccacagagct	gccatccttc	420
cccaagaccc	agatccttga	gtggcagct	gagaggggcc	ccatcacctc	tgctgctgag	480
ctgaatgacc	cccagagcat	cctcctccga	ctgggccaag	cccagggtc	actgtccttc	540
tgcattgtgg	aagccagcca	ggacatgggc	cgcacgctcg	agtggcggcc	gcgtactcca	600
gccttggtcc	ggggctgccca	cttggaaaggc	gtggccggcc	acaaggaggc	gcacatcctg	660

A090470006W000-SEQ-RE. TXT

agggtcctgc	cggccactc	ggccggccc	cggacggtga	cggtaaggt	ggaactgagc	720
tgcgacccg	gggatctcg	tgccgtcctc	atcctgcagg	gtcccccta	cgtgtcctgg	780
ctcatcgacg	ccaaccacaa	catgcagatc	tggaccactg	gagaataactc	cttcaagatc	840
tttccagaga	aaaacattcg	tggcttcaag	ctcccgacac	cacctaagg	cctcctgggg	900
gaggcccgga	tgctcaatgc	cagcattgtg	gcatcctcg	tggagctacc	gctggccagc	960
attgtctcac	ttcatgcctc	cagctgcggt	ggtaggctgc	agacctcacc	cgcaccgatc	1020
cagaccactc	ctcccgacccg	tggtggact	cacacatgcc	caccgtgccc	agcacctgaa	1080
ctcctgggg	gaccgtcagt	ttcctcttc	cccccaaaac	ccaaggacac	cctcatgatc	1140
tcccgaccc	ctgaggtcac	atgcgtggtg	gtggacgtga	gccacgaaga	ccctgaggtc	1200
aagttcaact	ggtacgtgga	cggcgtggag	gtgcataatg	ccaagacaaa	gccgcgggag	1260
gagcagtaca	acagcacgta	ccgtgtggtc	agcgtcctca	ccgtcctgca	ccaggactgg	1320
ctgaatggca	aggagtacaa	gtcaaggtc	tccaacaaag	ccctcccagc	ccccatcgag	1380
aaaaccatct	ccaaagccaa	agggcagccc	cgagaaccac	aggtgtacac	cctgccccca	1440
tcccgagg	agatgaccaa	gaaccaggc	agcctgaccc	gcctggtcaa	aggcttctat	1500
cccagcgaca	tcgccgtgga	gtggagagc	aatggcagc	cggagaacaa	ctacaagacc	1560
acgcctcccg	tgctggactc	cgacggctcc	ttcttcctct	atagcaagct	caccgtggac	1620
aagagcaggt	ggcagcaggg	gaacgtcttc	tcatgctccg	tgtatgcatga	ggctctgcac	1680
aaccactaca	cgcagaagag	cctccctg	tcccccggta	aatga		1725

<210> 31

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> recombinant polypeptide

<400> 31

Thr Glu Glu Glu
1

<210> 32

<211> 3

<212> PRT

<213> Artificial Sequence

<220>

<223> recombinant polypeptide

<400> 32

Gly Gly Gly
1

<210> 33

A090470006W000-SEQ-RE. TXT

<211> 582
<212> PRT
<213> Artificial sequence

<220>
<223> recombinant polypeptide

<400> 33

Gl u Thr Val His Cys Asp Leu Gl n Pro Val Gl y Pro Gl u Arg Asp Gl u
1 5 10 15

Val Thr Tyr Thr Thr Ser Gl n Val Ser Lys Gl y Cys Val Al a Gl n Al a
20 25 30

Pro Asn Al a Ile Leu Gl u Val His Val Leu Phe Leu Gl u Phe Pro Thr
35 40 45

Gl y Pro Ser Gl n Leu Gl u Leu Thr Leu Gl n Al a Ser Lys Gl n Asn Gl y
50 55 60

Thr Trp Pro Arg Gl u Val Leu Leu Val Leu Ser Val Asn Ser Ser Val
65 70 75 80

Phe Leu His Leu Gl n Al a Leu Gl y Ile Pro Leu His Leu Al a Tyr Asn
85 90 95

Ser Ser Leu Val Thr Phe Gl n Gl u Pro Pro Gl y Val Asn Thr Thr Gl u
100 105 110

Leu Pro Ser Phe Pro Lys Thr Gl n Ile Leu Gl u Trp Al a Al a Gl u Arg
115 120 125

Gl y Pro Ile Thr Ser Al a Al a Gl u Leu Asn Asp Pro Gl n Ser Ile Leu
130 135 140

Leu Arg Leu Gl y Gl n Al a Gl n Gl y Ser Leu Ser Phe Cys Met Leu Gl u
145 150 155 160

Al a Ser Gl n Asp Met Gl y Arg Thr Leu Gl u Trp Arg Pro Arg Thr Pro
165 170 175

Al a Leu Val Arg Gl y Cys His Leu Gl u Gl y Val Al a Gl y His Lys Gl u
180 185 190

Al a His Ile Leu Arg Val Leu Pro Gl y His Ser Al a Gl y Pro Arg Thr
195 200 205

Val Thr Val Lys Val Gl u Leu Ser Cys Al a Pro Gl y Asp Leu Asp Al a
210 215 220

Val Leu Ile Leu Gl n Gl y Pro Pro Tyr Val Ser Trp Leu Ile Asp Al a
225 230 235 240

A090470006W000-SEQ-RE. TXT

Asn His Asn Met Glu Ile Trp Thr Thr Gly Glu Tyr Ser Phe Lys Ile
245 250 255

Phe Pro Glu Lys Asn Ile Arg Gly Phe Lys Leu Pro Asp Thr Pro Glu
260 265 270

Gly Leu Leu Gly Glu Ala Arg Met Leu Asn Ala Ser Ile Val Ala Ser
275 280 285

Phe Val Glu Leu Pro Leu Ala Ser Ile Val Ser Leu His Ala Ser Ser
290 295 300

Cys Gly Gly Arg Leu Glu Thr Ser Pro Ala Pro Ile Glu Thr Thr Pro
305 310 315 320

Pro Lys Asp Thr Cys Ser Pro Glu Leu Leu Met Ser Leu Ile Glu Thr
325 330 335

Lys Cys Ala Asp Asp Ala Met Thr Leu Val Leu Lys Lys Glu Leu Val
340 345 350

Ala Thr Gly Gly Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu
355 360 365

Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
370 375 380

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
385 390 395 400

Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Glu
405 410 415

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr Asn
420 425 430

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Glu Asp Trp
435 440 445

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro
450 455 460

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Glu Glu Pro Arg Glu
465 470 475 480

Pro Glu Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn
485 490 495

Glu Val Ser Leu Thr Cys Leu Val Lys Glu Phe Tyr Pro Ser Asp Ile
500 505 510

A090470006W000-SEQ-RE. TXT

Ala Val Glu Trp Glu Ser Asn Gly Glu Pro Glu Asn Asn Tyr Lys Thr
515 520 525

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
530 535 540

Leu Thr Val Asp Lys Ser Arg Trp Glu Glu Gly Asn Val Phe Ser Cys
545 550 555 560

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Glu Lys Ser Leu
565 570 575

Ser Leu Ser Pro Gly Lys
580

<210> 34

<211> 569

<212> PRT

<213> Artificial sequence

<220>

<223> recombinant polypeptide

<400> 34

Glu Thr Val His Cys Asp Leu Glu Pro Val Gly Pro Glu Arg Asp Glu
1 5 10 15

Val Thr Tyr Thr Ser Glu Val Ser Lys Gly Cys Val Ala Glu Ala
20 25 30

Pro Asn Ala Ile Leu Glu Val His Val Leu Phe Leu Glu Phe Pro Thr
35 40 45

Gly Pro Ser Glu Leu Glu Leu Thr Leu Glu Ala Ser Lys Glu Asn Glu
50 55 60 80

Thr Trp Pro Arg Glu Val Leu Leu Val Leu Ser Val Asn Ser Ser Val
65 70 75 80

Phe Leu His Leu Glu Ala Leu Gly Ile Pro Leu His Leu Ala Tyr Asn
85 90 95

Ser Ser Leu Val Thr Phe Glu Glu Pro Pro Gly Val Asn Thr Thr Glu
100 105 110

Leu Pro Ser Phe Pro Lys Thr Glu Ile Leu Glu Trp Ala Ala Glu Arg
115 120 125

Gly Pro Ile Thr Ser Ala Ala Glu Leu Asn Asp Pro Glu Ser Ile Leu
130 135 140

A090470006W000-SEQ-RE. TXT

Leu Arg Leu Gl y Gl n Al a Gl n Gl y Ser Leu Ser Phe Cys Met Leu Gl u
145 150 155 160

Al a Ser Gl n Asp Met Gl y Arg Thr Leu Gl u Trp Arg Pro Arg Thr Pro
165 170 175

Al a Leu Val Arg Gl y Cys His Leu Gl u Gl y Val Al a Gl y His Lys Gl u
180 185 190

Al a His Ile Leu Arg Val Leu Pro Gl y His Ser Al a Gl y Pro Arg Thr
195 200 205

Val Thr Val Lys Val Gl u Leu Ser Cys Al a Pro Gl y Asp Leu Asp Al a
210 215 220

Val Leu Ile Leu Gl n Gl y Pro Pro Tyr Val Ser Trp Leu Ile Asp Al a
225 230 235 240

Asn His Asn Met Gl n Ile Trp Thr Thr Gl y Gl u Tyr Ser Phe Lys Ile
245 250 255

Phe Pro Gl u Lys Asn Ile Arg Gl y Phe Lys Leu Pro Asp Thr Pro Gl n
260 265 270

Gl y Leu Leu Gl y Gl u Al a Arg Met Leu Asn Al a Ser Ile Val Al a Ser
275 280 285

Phe Val Gl u Leu Pro Leu Al a Ser Ile Val Ser Leu His Al a Ser Ser
290 295 300

Cys Gl y Gl y Arg Leu Gl n Thr Ser Pro Al a Pro Ile Gl n Thr Thr Pro
305 310 315 320

Pro Lys Asp Thr Cys Ser Pro Gl u Leu Leu Met Ser Leu Ile Thr Gl y
325 330 335

Gl y Gl y Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro
340 345 350

Al a Pro Gl u Leu Leu Gl y Gl y Pro Ser Val Phe Leu Phe Pro Pro Lys
355 360 365

Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Gl u Val Thr Cys Val
370 375 380

Val Val Asp Val Ser His Gl u Asp Pro Gl u Val Lys Phe Asn Trp Tyr
385 390 395 400

Val Asp Gl y Val Gl u Val His Asn Al a Lys Thr Lys Pro Arg Gl u Gl u
405 410 415

A090470006W000-SEQ-RE. TXT

Gl n Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
420 425 430

Gl n Asp Trp Leu Asn Gl y Lys Gl u Tyr Lys Cys Lys Val Ser Asn Lys
435 440 445

Al a Leu Pro Al a Pro Ile Gl u Lys Thr Ile Ser Lys Al a Lys Gl y Gl n
450 455 460

Pro Arg Gl u Pro Gl n Val Tyr Thr Leu Pro Pro Ser Arg Gl u Gl u Met
465 470 475 480

Thr Lys Asn Gl n Val Ser Leu Thr Cys Leu Val Lys Gl y Phe Tyr Pro
485 490 495

Ser Asp Ile Al a Val Gl u Trp Gl u Ser Asn Gl y Gl n Pro Gl u Asn Asn
500 505 510

Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gl y Ser Phe Phe Leu
515 520 525

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gl n Gl n Gl y Asn Val
530 535 540

Phe Ser Cys Ser Val Met His Gl u Al a Leu His Asn His Tyr Thr Gl n
545 550 555 560

Lys Ser Leu Ser Leu Ser Pro Gl y Lys
565

<210> 35

<211> 563

<212> PRT

<213> Artificial sequence

<220>

<223> recombinant polypeptide

<400> 35

Gl u Thr Val His Cys Asp Leu Gl n Pro Val Gl y Pro Gl u Arg Asp Gl u
1 5 10 15

Val Thr Tyr Thr Ser Gl n Val Ser Lys Gl y Cys Val Al a Gl n Al a
20 25 30

Pro Asn Al a Ile Leu Gl u Val His Val Leu Phe Leu Gl u Phe Pro Thr
35 40 45

Gl y Pro Ser Gl n Leu Gl u Leu Thr Leu Gl n Al a Ser Lys Gl n Asn Gl y
50 55 60

A090470006W000-SEQ-RE. TXT

Thr Trp Pro Arg Glu Val Leu Leu Val Leu Ser Val Asn Ser Ser Val
 65 70 75 80

Phe Leu His Leu Glu Ala Leu Gly Ile Pro Leu His Leu Ala Tyr Asn
 85 90 95

Ser Ser Leu Val Thr Phe Glu Glu Pro Pro Gly Val Asn Thr Thr Glu
 100 105 110

Leu Pro Ser Phe Pro Lys Thr Glu Ile Leu Glu Trp Ala Ala Glu Arg
 115 120 125

Gly Pro Ile Thr Ser Ala Ala Glu Leu Asn Asp Pro Glu Ser Ile Leu
 130 135 140

Leu Arg Leu Gly Glu Ala Glu Gly Ser Leu Ser Phe Cys Met Leu Glu
 145 150 155 160

Ala Ser Glu Asp Met Gly Arg Thr Leu Glu Trp Arg Pro Arg Thr Pro
 165 170 175

Ala Leu Val Arg Gly Cys His Leu Glu Gly Val Ala Gly His Lys Glu
 180 185 190

Ala His Ile Leu Arg Val Leu Pro Glu His Ser Ala Glu Pro Arg Thr
 195 200 205

Val Thr Val Lys Val Glu Leu Ser Cys Ala Pro Glu Asp Leu Asp Ala
 210 215 220

Val Leu Ile Leu Glu Glu Pro Pro Tyr Val Ser Trp Leu Ile Asp Ala
 225 230 235 240

Asn His Asn Met Glu Ile Trp Thr Thr Gly Glu Tyr Ser Phe Lys Ile
 245 250 255

Phe Pro Glu Lys Asn Ile Arg Gly Phe Lys Leu Pro Asp Thr Pro Glu
 260 265 270

Gly Leu Leu Gly Glu Ala Arg Met Leu Asn Ala Ser Ile Val Ala Ser
 275 280 285

Phe Val Glu Leu Pro Leu Ala Ser Ile Val Ser Leu His Ala Ser Ser
 290 295 300

Cys Gly Gly Arg Leu Glu Thr Ser Pro Ala Pro Ile Glu Thr Thr Pro
 305 310 315 320

Pro Lys Asp Thr Cys Ser Pro Glu Leu Leu Met Ser Leu Ile Thr Gly
 325 330 335

A090470006W000-SEQ-RE. TXT

Gly Gly Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
 340 345 350

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
 355 360 365

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
 370 375 380

Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Glu Val Glu Val
 385 390 395 400

His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
 405 410 415

Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Glu
 420 425 430

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
 435 440 445

Glu Lys Thr Ile Ser Lys Ala Lys Glu Gln Pro Arg Glu Pro Gln Val
 450 455 460

Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
 465 470 475 480

Leu Thr Cys Leu Val Lys Glu Phe Tyr Pro Ser Asp Ile Ala Val Glu
 485 490 495

Trp Glu Ser Asn Glu Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
 500 505 510

Val Leu Asp Ser Asp Glu Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
 515 520 525

Asp Lys Ser Arg Trp Gln Gln Glu Asn Val Phe Ser Cys Ser Val Met
 530 535 540

His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
 545 550 555 560

Pro Glu Lys

<210> 36
 <211> 550
 <212> PRT
 <213> Artificial sequence

<220>
 <223> recombinant polypeptide

A090470006W000-SEQ-RE. TXT

<400> 36

Gl u Thr Val Hi s Cys Asp Leu Gl n Pro Val Gl y Pro Gl u Arg Asp Gl u
1 5 10 15

Val Thr Tyr Thr Ser Gl n Val Ser Lys Gl y Cys Val Al a Gl n Al a
20 25 30

Pro Asn Al a Ile Leu Gl u Val Hi s Val Leu Phe Leu Gl u Phe Pro Thr
35 40 45

Gl y Pro Ser Gl n Leu Gl u Leu Thr Leu Gl n Al a Ser Lys Gl n Asn Gl y
50 55 60

Thr Trp Pro Arg Gl u Val Leu Leu Val Leu Ser Val Asn Ser Ser Val
65 70 75 80

Phe Leu His Leu Gl n Al a Leu Gl y Ile Pro Leu His Leu Al a Tyr Asn
85 90 95

Ser Ser Leu Val Thr Phe Gl n Gl u Pro Pro Gl y Val Asn Thr Thr Gl u
100 105 110

Leu Pro Ser Phe Pro Lys Thr Gl n Ile Leu Gl u Trp Al a Al a Gl u Arg
115 120 125

Gl y Pro Ile Thr Ser Al a Al a Gl u Leu Asn Asp Pro Gl n Ser Ile Leu
130 135 140

Leu Arg Leu Gl y Gl n Al a Gl n Gl y Ser Leu Ser Phe Cys Met Leu Gl u
145 150 155 160

Al a Ser Gl n Asp Met Gl y Arg Thr Leu Gl u Trp Arg Pro Arg Thr Pro
165 170 175

Al a Leu Val Arg Gl y Cys His Leu Gl u Gl y Val Al a Gl y His Lys Gl u
180 185 190

Al a His Ile Leu Arg Val Leu Pro Gl y His Ser Al a Gl y Pro Arg Thr
195 200 205

Val Thr Val Lys Val Gl u Leu Ser Cys Al a Pro Gl y Asp Leu Asp Al a
210 215 220

Val Leu Ile Leu Gl n Gl y Pro Pro Tyr Val Ser Trp Leu Ile Asp Al a
225 230 235 240

Asn His Asn Met Gl n Ile Trp Thr Thr Gl y Gl u Tyr Ser Phe Lys Ile
245 250 255

Phe Pro Gl u Lys Asn Ile Arg Gl y Phe Lys Leu Pro Asp Thr Pro Gl n
Page 60

A090470006W000-SEQ-RE. TXT

260

265

270

Gly Leu Leu Gly Glu Ala Arg Met Leu Asn Ala Ser Ile Val Ala Ser
 275 280 285

Phe Val Glu Leu Pro Leu Ala Ser Ile Val Ser Leu His Ala Ser Ser
 290 295 300

Cys Gly Gly Arg Leu Gln Thr Ser Pro Ala Pro Ile Gln Thr Thr Pro
 305 310 315 320

Pro Thr Gly Gly Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu
 325 330 335

Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
 340 345 350

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
 355 360 365

Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
 370 375 380

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
 385 390 395 400

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
 405 410 415

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro
 420 425 430

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu
 435 440 445

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn
 450 455 460

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
 465 470 475 480

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr
 485 490 495

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
 500 505 510

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
 515 520 525

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
 Page 61

A090470006W000-SEQ-RE. TXT
530 535 540

Ser Leu Ser Pro Gl y Lys
545 550