20107042374 A2 I 000 O 010 O 0 0

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oo o
1 rld Intellectual Property Organization /) -sady
(19) World Intellcctual Property Organization /g [N NI 0O 0O AR L
4§
J 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
15 April 2010 (15.04.2010) PCT WO 2010/042374 A2
(51) International Patent Classification: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
GO6F 13/14 (2006.01) GO6F 9/30 (2006.01) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
GO6F 9/44 (2006.01) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
i L. i NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(21) International Application Number: SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
PCT/US2009/059124 TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(22) International Filing Date: (84) Designated States (unless otherwise indicated, for every
30 September 2009 (30.09.2009) kind of regional protection available): ARIPO (BW, GH,
(25) Filing Language: English GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
L. . ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TI,
(26) Publication Language: English TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(30) Priority Data: ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
12/248,299 9 October 2008 (09.10.2008) US MC, MK, MT, NL, NO, PL, PT, RO, SE, S, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(71) Applicant (for all designated States except US): MI- ML, MR, NE, SN, TD, TG).
CROSOFT CORPORATION [US/US]; One Microsoft . .
Way, Redmond, Washington 98052-6399 (US). Declarations under Rule 4.17:
(72) Inventor: OSHINS, Jacob; c¢/o Microsoft Cororation, as to applicant’s en{z:tlement to apply for and be granted
One Microsoft Way, Redmond, Washington 98052-6399 @ patent (Rule 4.17(i1)
(US). — as to the applicant’s entitlement to claim the priority of
th 1i lication (Rule 4.17(iii
(81) Designated States (unless otherwise indicated, for every ¢ carlier application (Rule (i)

kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: VIRTUALIZED STORAGE ASSIGNMENT METHOD

Privileged Partition Non-Privileged Partition
- 600 File System 475 ~ 470
410 Virtual Storage |~ e : S
Manager ¥
L Multi-Path redirection layer ~~500
. &
. 42 *
Storage . 220 485 | 900
& Virualization 4 Disk Driver Disk Driver L _ _
Service Provider i
s e —1000
v SCSI Bus Devics -
o —430 Driver _-7480
Disk Driver == (synthetic)
& - i
3 ¥
i 485 E
440 |5%° Bl:iietiewce VMBus W © » VMBus Storage Device Driver | | - mw
(physical} { physical }
. - 495
Hypervisor '
SCSI Controller - 450 scsl Controller |~ 520
(primary interface) ~ {secondary interface) |
Fig. 10 L

¢ disk o 460

(57) Abstract: Various aspects are disclosed for building a device driver stack in a virtual machine partition that does not physi-
cally control the device represented by the stack. In an embodiment, a secondary interface and driver for an I/O device may be in-
stantiated. Information from an I/O virtualization layer describing the devices that the associated driver may control may be re-
quested. A multi-path redirection layer may provide a handle to an existing stack that includes a driver for the I/O device. This ex-
isting stack may then be used to communicate with the device and allow the creation of a new stack including an object represent -
ing the device and a new driver for the device. The multi-path redirection layer may then open a handle to the new stack and in-
form the device virtualization layer, which may then ask the existing device interface to relinquish control of the device to the
newly created interface.

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

VIRTUALIZED STORAGE ASSIGNMENT METHOD
FIELD OF TECHNOLOGY

[0001] The presently disclosed subject matter relates to the field of computing, and more
particularly, to computer virtualization, although virtualization is merely an exemplary and
non-limiting field.

BACKGROUND

[0002] Virtual machine systems can suffer from poor performance with respect to
input/output (I/O) functions because in a completely virtualized system, every 1/0O
operation is typically handled indirectly by a hypervisor, a host operating system or by a
separate virtual machine executing on the machine, thus increasing the costs of executing
the I/O functions. One way to mitigate such performance issues is by allowing a virtual
machine to take direct control of some of the physical hardware resources in the system.
However, providing such direct control may have the effect of rendering the virtual
machine incompletely virtualized, and many of the features associated with virtualization
(saving, migrating, snap-shotting, etc.) may become difficult to accomplish.

[0003] Another way to address such I/O performance issues is to create multiple paths to
an I/O device, wherein one path may travel directly to the hardware, and another path may
travel indirectly to the hardware via another virtual machine. When it is desired to fully
encapsulate a virtual machine’s state so that it can be saved or migrated, the direct path
may be torn down and the indirect path may be used. One problem with creating multiple
paths is that it is typically difficult to set up a second path without giving control of the
device to the second path as part of the setup process. If the I/O device is used for paging
code or data and control of the paging device is passed to the second path before it is
completely operational, paging may stop and cause the system to crash.

[0004] Accordingly, other techniques are needed in the art to solve the above described
problems.

SUMMARY

[0005] Various methods and systems are disclosed herein for building a device driver
stack in a virtual machine partition that does not physically control the device represented
by the stack. In an embodiment, a secondary interface and associated driver for an I/O
device may be instantiated. Information from an I/O virtualization layer may be
requested, the information describing the devices that the associated driver may control. A

multi-path redirection layer may provide a handle to an existing stack that includes a

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

driver for the I/O device. This existing stack may then be used to communicate with the
device and allow the creation of a new stack including an object representing the device
and a new driver for the device. The multi-path redirection layer may then open a handle
to the new stack and inform the device virtualization layer, which may then send a request
to the existing device interface to relinquish control of the device to the newly created
interface. The device may now be controlled by the new interface and I/O may be
redirected to the device via the new driver and interface.

[0006] In addition to the foregoing, other aspects are described in the claims, drawings,
and text forming a part of the present disclosure. It can be appreciated by one of skill in
the art that one or more various aspects of the disclosure may include but are not limited to
circuitry and/or programming for effecting the herein-referenced aspects of the present
disclosure; the circuitry and/or programming can be virtually any combination of
hardware, software, and/or firmware configured to effect the herein-referenced aspects
depending upon the design choices of the system designer.

[0007] It should be noted that this Summary is provided to introduce a selection of
concepts in a simplified form that are further described below in the Detailed Description.
This Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used as an aid in determining the scope of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The foregoing Summary, as well as the following Detailed Description, is better
understood when read in conjunction with the appended drawings. In order to illustrate
the present disclosure, various aspects of the disclosure are illustrated. However, the
disclosure is not limited to the specific aspects shown. The following figures are included:
[0009] Figure 1a illustrates a virtual machine environment, with a plurality of virtual
machines, comprising a plurality of virtual processors and corresponding guest operating
systems; the virtual machines are maintained by a virtualizing layer which may comprise a
scheduler and other components, where the vitualizing layer virtualizes hardware for the
plurality of virtual machines;

[0010] Figure 1b illustrates a diagram representing the logical layering of the hardware
and software architecture for a virtualized environment in a computer system;

[0011] Figure 1c depicts an example computer system wherein aspects of the present
disclosure can be implemented;

[0012] Figure 2 illustrates an exemplary virtualized computing system;

-0

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

[0013] Figure 3illustrates an alternative virtualized computing system;

[0014] Figure 4 depicts an exemplary system diagram illustrating a process for
implementing the present disclosure;

[0015] Figure S depicts an exemplary system diagram illustrating a process for
implementing the present disclosure;

[0016] Figure 6 depicts an exemplary system diagram illustrating a process for
implementing the present disclosure;

[0017] Figure 7 depicts an exemplary system diagram illustrating a process for
implementing the present disclosure;

[0018] Figure 8 depicts an exemplary system diagram illustrating a process for
implementing the present disclosure;

[0019] Figure 9 depicts an exemplary system diagram illustrating a process for
implementing the present disclosure;

[0020] Figure 10 depicts an exemplary system diagram illustrating a process for
implementing the present disclosure;

[0021] Figure 11 illustrates an example of an operational procedure for constructing a
device driver stack in a virtual machine that does not control the device associated with the
stack;

[0022] Figure 12 illustrates an example of an operational procedure for constructing a
device driver stack in a virtual machine that does not control the device associated with the
stack;

[0023] Figure 13 illustrates an example of an operational procedure for creating
multiple paths to an I/O device used for paging code or data in a virtual machine
environment;

[0024] Figure 14 illustrates an example of an operational procedure for creating
multiple paths to an I/O device used for paging code or data in a virtual machine
environment;

[0025] Figure 15 illustrates a computer readable medium bearing computer executable
instructions discussed with respect to Figs. 1-10, above.

DETAILED DESCRIPTION

Virtual Machines In General Terms

[0026] Certain specific details are set forth in the following description and figures to
provide a thorough understanding of various embodiments of the invention. Certain well-

known details often associated with computing and software technology are not set forth

-3-

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

in the following disclosure to avoid unnecessarily obscuring the various embodiments of
the invention. Further, those of ordinary skill in the relevant art will understand that they
can practice other embodiments of the invention without one or more of the details
described below. Finally, while various methods are described with reference to steps and
sequences in the following disclosure, the description as such is for providing a clear
implementation of embodiments of the invention, and the steps and sequences of steps
should not be taken as required to practice this invention.

[0027] It should be understood that the various techniques described herein may be
implemented in connection with hardware or software or, where appropriate, with a
combination of both. Thus, the methods and apparatus of the invention, or certain aspects
or portions thereof, may take the form of program code (i.e., instructions) embodied in
tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-
readable storage medium wherein, when the program code is loaded into and executed by
a machine, such as a computer, the machine becomes an apparatus for practicing the
invention. In the case of program code execution on programmable computers, the
computing device generally includes a processor, a storage medium readable by the
processor (including volatile and non-volatile memory and/or storage elements), at least
one input device, and at least one output device. One or more programs that may
implement or utilize the processes described in connection with the invention, ¢.g.,
through the use of an API, reusable controls, or the like. Such programs are preferably
implemented in a high level procedural or object oriented programming language to
communicate with a computer system. However, the program(s) can be implemented in
assembly or machine language, if desired. In any case, the language may be a compiled or
interpreted language, and combined with hardware implementations.

[0028] With virtual machines, a single physical machine can support a number of guest
operating systems, each of which runs on its own complete virtual instance of the
underlying physical machine. The guest Operation Systems (OS’s) can be instances of a
single version of one OS, different releases of the same OS, or completely different OS’s.
A thin software layer called a virtual machine monitor (VMM) or hypervisor may create
and control the virtual machines and other virtual subsystems. The VMM may also take
complete control of the physical machine and provide resource guarantees for CPU,
memory, storage space, and I/O bandwidth for each guest OS.

[0029] Figure laillustrates a virtual machine environment 100, with a plurality of

virtual machines 120, 121, comprising a plurality of virtual processors 110, 112, 114, 116,

_4.-

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

and corresponding guest operating systems 130, 132. The virtual machines 120, 121 are
maintained by a virtualizing layer 140 which may comprise of a scheduler 142 and other
components (not shown), where the virtualizing layer 140 virtualizes hardware 150 for the
plurality of virtual machines 120, 121. The plurality of virtual processors 110, 112, 114,
116 can be the virtual counterparts of underlying hardware physical processors 160, 162.
[0030] Figure 1b is a diagram representing the logical layering of the hardware and
software architecture for a virtualized environment in a computer system. In Fig. 1b, a
virtualization program 180 runs directly or indirectly on the physical hardware architecture
182. The virtualization program 180 may be (a) a virtual machine monitor that runs
alongside a host operating system, (b) a host operating system with a hypervisor
component, where the hypervisor component performs the virtualization, (¢) hardware, or
(d) micro-code. The virtualization program may also be a hypervisor which runs
separately from any operating system. In other words, the hypervisor virtualization
program need not run as part of any operating system, and need not run alongside any
operating system. The hypervisor virtualization program may instead run “under” all the
operating systems, including the “root partition.” The virtualization program 180
virtualizes a guest hardware architecture 178 (shown as dashed lines to illustrate the fact
that this component is a “partition” or a “virtual machine”), that is, hardware that does not
actually exist but is instead virtualized by the virtualizing program 180. A guest operating
system 176 executes on the guest hardware architecture 178, and a software application
174 can run on the guest operating system 176. In the virtualized operating environment
of Fig. 1b, the software application 174 can run in a computer system even if the software
application 174 is designed to run on an operating system that is generally incompatible
with a host operating system and the hardware architecture 182.

[0031] A virtual machine typically contains an entire operating system and a set of
applications, which together constitute many processes, the entirety of which may be
referred to as “workload” or “process” in the context of virtual machines. In the present
disclosure the terms “process” and “workload” may be used interchangeably in the context
of virtual machines, and those skilled in the art will readily understand that “process” may
refer to multiple processes including all of systems and applications that may be
instantiated in a virtual machine.

[0032] Next, Fig. 2 illustrates a virtualized computing system comprising a host
operating system (host OS) software layer 204 running directly above physical computer

hardware 202, where the host OS 204 provides access to the resources of the physical

-5-

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

computer hardware 202 by exposing interfaces to partitions A 208 and B 210 for the use
by operating systems A and B, 212 and 214, respectively. This enables the host OS 204 to
go unnoticed by operating system layers 212 and 214 running above it. Again, to perform
the virtualization, the host OS 204 may be a specially designed operating system with
native virtualization capabilities or, alternately, it may be a standard operating system with
an incorporated hypervisor component for performing the virtualization (not shown).
[0033] Referring again to Fig. 2, above the host OS 204 are two partitions, partition A
208, which may be, for example, a virtualized Intel 386 processor, and partition B 210,
which may be, for example, a virtualized version of one of the Motorola 680X0 family of
processors. Within each partition 208 and 210 are guest operating systems (guest OSs) A
212 and B 214, respectively. Running on top of guest OS A 212 are two applications,
application A1 216 and application A2 218, and running on top of guest OS B 214 is
application B1 220.

[0034] In regard to Fig. 2, it is important to note that partition A 208 and partition B 214
(which are shown in dashed lines) are virtualized computer hardware representations that
may exist only as software constructions. They are made possible due to the execution of
specialized virtualization software(s) that not only presents partition A 208 and partition B
210 to Guest OS A 212 and Guest OS B 214, respectively, but which also performs all of
the software steps necessary for Guest OS A 212 and Guest OS B 214 to indirectly interact
with the real physical computer hardware 202.

[0035] Figure 3 illustrates an alternative virtualized computing system where the
virtualization is performed by a virtual machine monitor (VMM) 204’ running alongside
the host operating system 204.” In certain cases, the VMM 204’ may be an application
running above the host operating system 204’ and interacting with the computer hardware
202 only through the host operating system 204.”” In other cases, as shown in Fig. 3, the
VMM 204 may instead comprise a partially independent software system that on some
levels interacts indirectly with the computer hardware 202 via the host operating system
204, but on other levels the VMM 204’ interacts directly with the computer hardware
202 (similar to the way the host operating system interacts directly with the computer
hardware). And yet in other cases, the VMM 204’ may comprise a fully independent
software system that on all levels interacts directly with the computer hardware 202
(similar to the way the host operating system interacts directly with the computer

hardware) without utilizing the host operating system 204’ (although still interacting with

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

the host operating system 204’ in order to coordinate use of the computer hardware 202
and avoid conflicts and the like).

[0036] All of these variations for implementing the above mentioned partitions are just
exemplary implementations, and nothing herein should be interpreted as limiting the
disclosure to any particular virtualization aspect.

Virtualized Storage Assignment

[0037] 1/O virtualization (IOV) refers to the capability for a single physical I/O device to
be shared by more than one virtual machine or between the hypervisor (or VMM, etc.) and
a virtual machine. Virtual machine systems can suffer from poor performance with
respect to I/O virtualization. This is because the characteristics of virtualization that make
it useful (e.g., isolation from the physical hardware) can have negative effects when
running a workload in a virtual machine. In a completely virtualized system, every 1/O
operation is typically handled indirectly, either by a hypervisor, a host operating system or
by a separate virtual machine running on the machine. One way to mitigate poor /O
performance may be to allow a virtual machine to take direct control of some of the
physical hardware in the system. However, allowing direct control may have the effect of
rendering the virtual machine incompletely virtualized, in which case many of the features
associated with virtualization (e.g., saving, migrating, snap-shotting, etc.) may become
difficult to accomplish.

[0038] Commonly assigned U.S. Patent Appln. No. [Attorney Docket No.: MSFT-5556
/316010.01] describes techniques for addressing the above issue. For example, multiple
paths to an I/O device may be created. One path may travel directly to the hardware, and
another path may travel indirectly to the hardware via another virtual machine. When it is
desired to fully encapsulate a virtual machine’s state so that it can be saved or migrated,
the direct path may be torn down and the indirect path may be used. The indirect path is
inherently virtualizable.

[0039] However, a problem may arise in building the two paths, in particular if the I/O
device is used for paging code or data. It is typically difficult to set up the second path
without giving control of the device to the second path as part of the setup process. If
control of the paging device is given to the second path before the paging device is
completely operational, errors may occur and paging may stop. In many situations, if
paging is stopped the system may crash.

[0040] Referring to Fig. 4, illustrated is a diagram of a purely “synthetic” storage
subsystem. A synthetic stack is an I/O stack made up of drivers that are typically designed

-7 -

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

for use within a virtual machine. Other terms may be used to refer to a synthetic stack
depending on the particular system. For example, a term used for a similar 1/0 stack in
alternate systems is “paravirtualized.” Referring to Fig. 4, the diagram illustrates two
partitions. One partition is a privileged partition 410 with direct physical access to disk
460. The other partition is a non-privileged partition 470 that may request access to disk
460. For example, file system 475 may request access to files requiring a synthetic SCSI
bus driver 480 to communicate with disk driver 485, which then communicates over the
VM Bus 465. A storage virtualization service provider 420 may provide virtualized
storage services. The storage virtualization service provider 420 may communicate to disk
driver 430 to access the physical SCSI bus device driver 440. The SCSI bus device driver
440 may provide access to the SCSI controller 450 and ultimately to the files residing on
disk 460 (typically occurring at the block layer). Thus one virtual machine indicated as
the privileged partition 410 has control of the physical storage device which is the SCSI
controller 450. Another virtual machine, indicated as the non-privileged partition 470,
may seek access to the SCSI controller 450.

[0041] Referring now to Figure 5, illustrated is an exemplary end state after building a
second path to the disk 460. The non-privileged partition 470 has physical control over
disk 460 via a secondary SCSI controller 520. This access is provided by a secondary
stack comprising physical SCSI bus device driver 510 and disk driver 505. A synthetic
stack providing a first path comprises disk driver 485 and synthetic SCSI bus driver 480,
which then communicates over the VM Bus 465. Storage virtualization service provider
420 may provide virtualized storage services. The storage virtualization service provider
420 may communicate to disk driver 430 to access the physical SCSI bus device driver
440. The SCSI bus device driver 440 may provide access to the SCSI controller 450,
which provides a primary interface to disk 460. A multi-path redirection layer 500 is
provided in the non-privileged partition 470 and manages and controls access to the two
stacks.

[0042] One problem that can arise is that in order to build a disk driver layer in either of
the paths within an operating system instance in the non-privileged partition, control of the
storage disk 460 may be required. The processes necessary to build the two stacks of
device drivers will typically require reading from the disk that is the boot device and
effecting disk activity through paging code and data. While this may be possible, in most
configurations the SCSI controller cannot simultancously control a disk from both its

primary and secondary interfaces. Those skilled in the art will recognize that the

-8-

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

application of the current disclosure to SCSI devices is exemplary and that the disclosed
methods and systems may be applied to other I/0 devices such as, but not limited to,
Serial Attached SCSI (SAS), internet SCSI (iSCSI), and FibreChannel.

[0043] In various embodiments, disclosed herein is a process for constructing the second
I/O path or stack. While the following will describe the process of starting with the
synthetic I/O stack and building the physical stack, those skilled in the art will recognize
that a similar process may be used to start with the synthetic I/O stack and build the
physical stack.

[0044] In some embodiments the SCSI controller may be asked to create a secondary
interface to itself. Some devices are capable of performing such operations, particularly
those that are compliant with the Peripheral Component Interconnect (PCI) Special
Interest Group’s (SIG’s) Single-Root (SR) I/O Virtualization (I0V) Specification.
Referring to Fig. 6, a virtual storage manager 600 is provided that may manage the
allocation of resources to a virtual machine and isolate resources assigned to a virtual
machine from access by other virtual machines. The virtual storage manager 600 may
send a message to the SCSI controller 450 via its physical SCSI bus device driver 440.
The SCSI controller 450 may then create a secondary SCSI controller interface 520. As
mentioned above, the present disclosure contemplates application of the disclosed methods
to various storage controllers other than SCSI controllers. Some controllers may connect
to the storage medium in multiple fashion, for example in a Storage Area Network (SAN),
such that multiple controllers may be used rather than a single SR-IOV-compliant
controller.

[0045] Referring to Fig. 7, illustrated are further exemplary processes for setting up a
second I/O stack. A storage device driver 700 may be set up for the secondary controller
interface 520. Using the synthetic storage stack 710, the boot device may be searched for
the files related to the device driver.

[0046] The SCSI bus device driver 700 in the non-privileged partition 470 may now
create a child device representing the disk. However, the non-privileged partition 470
does not currently own the disk 460 which is under the control of privileged partition 410.
As a result, normal methods for creating this part of the stack may not work since the
device is not able to send 1/O to the disk to find its properties.

[0047] Referring to Fig. 8, the SCSI bus device driver 700 may send a request to the
multi-path redirection layer 500 for information about the disk(s) that the SCSI bus device

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

driver 700 may eventually own. The multi-path redirection layer 500 may then respond
with a handle to the existing disk driver 485.

[0048] An operating system I/O manager may manage the communication between
applications and the interfaces provided by device drivers. An I/O manager may further
comprise a Plug and Play manager for managing the I/O functionality and recognizing
when a device is added to the system. Referring to Fig. 9, the SCSI bus driver 700 in the
non-privileged partition 470 may create an object representing the disk 460 and report the
object to the Plug-and-Play manager which may then set up a driver 900 for the disk 460.
Normally a driver 900 could not be set up without the SCSI controller interface 520
sending 1/0 to the disk 460. In this case, the driver 900 can be set up because the
necessary 1/0 is redirected down the synthetic storage stack 910 using the handle to the
disk driver 485 that the multi-path redirection layer 500 provided to the SCSI controller
interface 520. The multi-path redirection layer 500 may then open a handle to new disk
object 900 and its associated driver.

[0049] Referring to Fig. 10, the multi-path redirection layer 500 may send a message to
the virtual storage manager 600. The virtual storage manager 600 may send a message to
the SCSI bus device driver 440 for the SCSI controller’s primary interface 450. The SCSI
controller’s primary interface 450 may then relinquish control of the disk 460 to the SCSI
controller’s secondary interface 520 as shown. At this point, the multi-path redirection
layer 500 may direct I/O from the file system 475 down through the physical stack 1000 in
the non-privileged partition 470.

[0050] The presently disclosed aspects can be implemented as systems, methods,
computer executable instructions residing in computer readable media, and so on. Thus,
any disclosure of any particular system, method, or computer readable medium is not
confined there to, but rather extends to other ways of implementing the disclosed subject
matter.

[0051] Figures 11 and 12 depict an example of an operational procedure for constructing
a device driver stack in a virtual machine that does not control the device associated with
the stack. The procedure may include operations 1100, 1110, 1120, 1130, 1140, 1150,
1160, 1170, and 1180. Referring to Figure 11, operation 1100 begins the operational
procedure and in operation 1110 a request may be transmitted to instantiate a secondary
interface for the device. A physical driver for the secondary interface may be configured
1120. Operation 1130 illustrates constructing said device driver stack by creating a

representation of said device. Operation 1140 illustrates configuring a new driver for said

-10 -

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

device, and operation 1150 illustrates providing a second indication to said device driver
stack. Operation 1160 illustrates that information for constructing said device driver stack
is obtained by communicating to said device via said alternate stack. Operation 1170
illustrates directing 1/O to said device via said device driver stack and secondary interface.
Operation 1180 illustrates sending a message to a primary interface for said device to
relinquish control of said device to said secondary interface.

[0052] Continuing with FIG. 12, operation 1200 illustrates that the device may
optionally comprise multiple control interfaces. Operation 1205 illustrates that the
multiple control interfaces may optionally conform to the PCI SR-IOV specification. In
an embodiment, the device driver stack may be used for paging 1/0 1210, and in operation
1215 paging I/O may be necessary for creating the device driver stack.

[0053] Operation 1220 illustrates that in one embodiment the device is a disk device. In
another embodiment 1225, the device is a network interface adapter. In various
embodiments, a description and properties of the device are discovered 1230 by
redirecting 1/0 requests to the alternate stack.

[0054] In operation 1235 a boot device may be searched via a synthetic storage stack for
files related to the driver for the device. In operation 1240 illustrates transmitting a
request for information about devices that the physical driver may own to a multi-path
redirection layer. In one embodiment, the indications may be a handle 1245. In another
embodiment, a message to the virtual storage manager may be sent 1250, the message
describing the indication.

[0055] Figures 13 and 14 depict an exemplary operational procedure for creating
multiple paths to an I/O device used for paging code or data in a virtual machine
environment. The procedure may include operations 1300, 1302, 1304, 1306, 1308, 1310,
1312, and 1314. Referring to Figure 13, operation 1300 begins the operational procedure
and operation 1302 requesting the instantiation of a secondary interface and configuring a
physical driver for the I/O device, wherein the I/0O device is capable of supporting multiple
control interfaces. Operation 1304 illustrates receiving a pointer from an 1/O virtualization
layer to an existing stack comprising an existing driver to said 1/O device, and in operation
1306 an object representing the device may be instantiated.

[0056] Operation 1308 illustrates communicating to the I/O device via said existing
stack and configuring a new driver for the I/O device. A pointer to the object and new
driver may be provided 1310. Operation 1312 illustrates sending a message to a primary

interface for said I/O device to relinquish control of said I/O device to said secondary

-11 -

10

15

20

25

WO 2010/042374 PCT/US2009/059124

interface. Operation 1314 illustrates redirecting I/0O to said 1/0 device via the new driver
and secondary interface using said pointer.

[0057] Continuing with FIG. 14, in operation 1402 illustrates receiving properties of the
1/0 device and paging code and data. Operation 1404 illustrates that in one embodiment
the existing stack is a physical stack. In another embodiment the existing stack may be a
synthetic stack 1406.

[0058] Any of the above mentioned aspects can be implemented in methods, systems,
computer readable media, or any type of manufacture. For example, per Fig. 15, a
computer readable medium can store thereon computer executable instructions for creating
an alternative 1/O stack for a storage device in a virtualized 1/O environment, wherein the
storage device is used for paging code and data and the alternative 1/0 stack is created
while paging with the storage device continues through an existing stack. Such media can
comprise a first subset of instructions for requesting the instantiation of a secondary
interface and configuring a secondary physical driver for the storage device 1510; a
second subset of instructions for receiving a handle to the existing stack 1512; a third
subset of instructions for identifying the existing stack using said handle and
communicating to the storage device via the existing stack 1514; a fourth set of
instructions for instantiating said alternative I/O stack for the storage device, the
alternative I/O stack comprising an object representing said storage device and a driver for
the storage device 1516; a fifth set of instructions for reporting a handle to said alternative
I/O stack 1518; and a sixth set of instructions for sending a message to a primary interface
for said storage device to relinquish control of said storage device to said secondary
interface 1520. It will be appreciated by those skilled in the art that additional sets of
instructions can be used to capture the various other aspects disclosed herein, and that the
three presently disclosed subsets of instructions can vary in detail per the present

disclosure.

[0059] For example, the instructions can further comprise instructions 1526 for redirecting
I/O to the storage device via the alternative I/O stack. The instructions can further comprise
instructions to support an embodiment wherein the storage device is PCI SR-IOV compliant
1528, and instructions for searching a boot device via the existing stack for files related to
the driver for the storage device.

[0060] As described above, aspects of the invention may execute on a programmed
computer. FIG. Ic and the following discussion is intended to provide a brief description

of a suitable computing environment in which aspects of the present disclosure may be

-12-

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

implemented. One skilled in the art can appreciate that the computer system of FIG. 1¢
can in some embodiments effectuate various aspects of Figures 1a and 1b. In these
example embodiments, the server and client can include some or all of the components
described in FIG. 1¢ and in some embodiments the server and client can each include
circuitry configured to instantiate specific aspects of the present disclosure.

[0061] The term circuitry used through the disclosure can include specialized hardware
components. In the same or other embodiments circuitry can include microprocessors
configured to perform function(s) by firmware or switches. In the same or other example
embodiments circuitry can include one or more general purpose processing units and/or
multi-core processing units, etc., that can be configured when software instructions that
embody logic operable to perform function(s) are loaded into memory, ¢.g., RAM and/or
virtual memory. In example embodiments where circuitry includes a combination of
hardware and software, an implementer may write source code embodying logic and the
source code can be compiled into machine readable code that can be processed by the
general purpose processing unit(s).

[0062] Referring to Figure 1c, a computing system can include a computer 20 or the
like, including a processing unit 21, a system memory 22, and a system bus 23 that
couples various system components including the system memory to the processing unit
21. The system bus 23 may be any of several types of bus structures including a memory
bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory includes read only memory (ROM) 24 and random
access memory (RAM) 25. A basic input/output system 26 (BIOS), containing the basic
routines that help to transfer information between elements within the computer 20, such
as during start up, is stored in ROM 24. The computer 20 may further include a hard disk
drive 27 for reading from and writing to a hard disk, not shown, a magnetic disk drive 28
for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30
for reading from or writing to a removable optical disk 31 such as a CD ROM or other
optical media. In some example embodiments, computer executable instructions
embodying aspects of the invention may be stored in ROM 24, hard disk (not shown),
RAM 25, removable magnetic disk 29, optical disk 31, and/or a cache of processing unit
21. The hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are
connected to the system bus 23 by a hard disk drive interface 32, a magnetic disk drive
interface 33, and an optical drive interface 34, respectively. The drives and their

associated computer readable media provide non volatile storage of computer readable

-13 -

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

instructions, data structures, program modules and other data for the computer 20.
Although the environment described herein employs a hard disk, a removable magnetic
disk 29 and a removable optical disk 31, it should be appreciated by those skilled in the art
that other types of computer readable media which can store data that is accessible by a
computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli
cartridges, random access memories (RAMs), read only memories (ROMs) and the like
may also be used in the operating environment.

[0063] A number of program modules may be stored on the hard disk, magnetic disk 29,
optical disk 31, ROM 24 or RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37 and program data 38. A user may
enter commands and information into the computer 20 through input devices such as a
keyboard 40 and pointing device 42. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite disk, scanner or the like. These and other input
devices are often connected to the processing unit 21 through a serial port interface 46 that
is coupled to the system bus, but may be connected by other interfaces, such as a parallel
port, game port or universal serial bus (USB). A display 47 or other type of display device
can also be connected to the system bus 23 via an interface, such as a video adapter 48. In
addition to the display 47, computers typically include other peripheral output devices (not
shown), such as speakers and printers. The system of FIG. 1 also includes a host adapter
55, Small Computer System Interface (SCSI) bus 56, and an external storage device 62
connected to the SCSI bus 56.

[0064] The computer 20 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 49. The remote
computer 49 may be another computer, a server, a router, a network PC, a peer device or
other common network node, and typically can include many or all of the elements
described above relative to the computer 20, although only a memory storage device 50
has been illustrated in FIG. 1c. The logical connections depicted in FIG. 1 can include a
local area network (LAN) 51 and a wide area network (WAN) 52. Such networking
environments are commonplace in offices, enterprise wide computer networks, intranets
and the Internet.

[0065] When used in a LAN networking environment, the computer 20 can be
connected to the LAN 51 through a network interface or adapter 53. When used in a
WAN networking environment, the computer 20 can typically include a modem 54 or

other means for establishing communications over the wide area network 52, such as the

-14 -

10

15

20

25

WO 2010/042374 PCT/US2009/059124

Internet. The modem 54, which may be internal or external, can be connected to the
system bus 23 via the serial port interface 46. In a networked environment, program
modules depicted relative to the computer 20, or portions thereof, may be stored in the
remote memory storage device. It will be appreciated that the network connections shown
are examples and other means of establishing a communications link between the
computers may be used. Moreover, while it is envisioned that numerous embodiments of
the invention are particularly well-suited for computer systems, nothing in this document
is intended to limit the disclosure to such embodiments.

[0066] The foregoing detailed description has set forth various embodiments of the
systems and/or processes via examples and/or operational diagrams. Insofar as such block
diagrams, and/or examples contain one or more functions and/or operations, it will be
understood by those within the art that each function and/or operation within such block
diagrams, or examples can be implemented, individually and/or collectively, by a wide
range of hardware, software, firmware, or virtually any combination thereof.

[0067] Lastly, while the present disclosure has been described in connection with the
preferred aspects, as illustrated in the various figures, it is understood that other similar
aspects may be used or modifications and additions may be made to the described aspects
for performing the same function of the present disclosure without deviating therefrom.
For example, in various aspects of the disclosure, various mechanisms were disclosed for
building a device driver stack in a virtual machine partition that does not physically
control the device represented by the stack. However, other equivalent mechanisms to
these described aspects are also contemplated by the teachings herein. Therefore, the
present disclosure should not be limited to any single aspect, but rather construed in

breadth and scope in accordance with the appended claims.

-15 -

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

What is Claimed:
1. A method for constructing a device driver stack (1000) in a virtual machine (470)
that does not control the device associated with the stack, comprising:
requesting the instantiation of a secondary interface (520) to said device
and configuring a physical driver (700) for said secondary interface;
receiving a first indication of an alternate stack (910) for said device;
constructing said device driver stack by creating a representation of said
device, configuring a new driver (900) for said device, and providing a second
indication to said device driver stack, wherein information for constructing said
device driver stack is obtained by communicating to said device via said alternate
stack; and
directing I/0 to said device via said device driver stack and secondary
interface.
2. The method according to claim 1, further comprising sending a message to a

primary interface for said device to relinquish control of said device to said secondary

interface.

3. The method according to claim 1, wherein said device comprises multiple control
interfaces.

4. The method according to claim 1, wherein said device driver stack is used for
paging I/O.

5. The method according to claim 1, wherein said device is a storage device.

6. The method according to claim 1, wherein said device is a network interface
adapter.

7. The method according to claim 1, wherein a description and properties of said

device are obtained by redirecting I/O requests to said alternate stack.

8. The method according to claim 1, wherein said configuring a physical driver
further comprises searching a boot device via a synthetic storage stack for files related to
the physical driver.

9. The method according to claim 1, further comprising transmitting a request to a
multi-path redirection layer for information about devices that the physical driver may
own.

10. The method according to claim 1 wherein said first and second indications are

handles.

- 16 -

10

15

20

25

30

WO 2010/042374 PCT/US2009/059124

11. The method according to claim 1 further comprising sending a message to a virtual
storage manager describing said second indication.
12. A system adapted to create multiple paths to an I/O device used for paging code or
data in a virtual machine environment, comprising:
at least one processor; and
at least one memory communicatively coupled to said at least one
processor, the memory having stored therein computer-executable instructions
capable of:
requesting the instantiation of a secondary interface (520) and
configuring a physical driver (700) for the I/O device, wherein the I/O
device is capable of supporting multiple control interfaces;
receiving a pointer from an I/O virtualization layer to an existing
stack (910) comprising an existing driver to said I/O device;
instantiating an object representing said device;
communicating to the I/O device via said existing stack and
configuring a new driver for the I/O device;
providing a pointer to the object and new driver;
sending a message to a primary interface (450) for said 1I/O device
to relinquish control of said 1/O device to said secondary interface; and
redirecting 1/0 to said I/O device via the new driver and secondary
interface using said pointer.
13. The system of claim 13 wherein said communicating to the I/O device further
comprises receiving properties of the I/O device and paging code and data.
14. A computer readable storage medium (1500) storing thereon computer executable
instructions for creating an alternative I/O stack for a storage device in a virtualized I/O
environment, wherein the storage device is used for paging code and data and the
alternative I/O stack is created while paging with the storage device continues through an
existing stack, comprising instructions for:
requesting (1510) the instantiation of a secondary interface and configuring
a secondary physical driver for the storage device;
receiving (1512) a handle to the existing stack;
identifying the existing stack using said handle and communicating (1514)

to the storage device via the existing stack;

-17 -

WO 2010/042374 PCT/US2009/059124

instantiating (1516) said alternative I/O stack for the storage device, the
alternative I/O stack comprising an object representing said storage device and a
driver for the storage device;
reporting (1518) a handle to said alternative 1/0 stack; and
sending (1520) a message to a primary interface for said storage device to
relinquish control of said storage device to said secondary interface.
15. The computer readable storage medium of claim 17 further comprising redirecting

I/O to said storage device via the alternative 1/0 stack.

- 18 -

PCT/US2009/059124

WO 2010/042374

1117

el b1

Z91 N J1ossadoud |edishyd

0GI a@JempieH

091 | 108S39504(d |edisAyd

:

¥l 19Ae Buizijenuip

ZPT 49Inpayds

Y 27
N 10SS820.d | 10SS9904d
[enJIp [enjuIp
F4"
SO
}seno
12t

N SUIYOep [enjIA

JUBWIUOIIAUT SUIYDRA [eNMIA

001

:

41 (1%
N J0ossa20.d | Jossadoud
[enyJIA [enyIA

SO
0ct
| SUIYOB [eNntIIA

WO 2010/042374

2/17
172
174
Software Application
176
Guest Operating System

Guest Hardware Architecture
(Partition / Virtual Machine)

Virtualization Program
(Hypervisor / Virtual Machine Monitor)

182

Physical Hardware Architecture

Fig. 1b

PCT/US2009/059124

PCT/US2009/059124

WO 2010/042374

3117

06 aaLQq Addoj4

9€
suoljeolddy
T

0¥ preogAsy]

CoJe o JU L JC T[]

//Qmi\

¢S NVYM

€G 4/l YIoMISN

117
d/1 Hod |euss

A

J¢ sbold
J8Ui0

8¢ ejed
wielbo.d

gz @Al Addol4

————| [zzemapen
A

ve 4
/I A [eondo

¢ 4/1 9Aug
31s1q onsubely

ze 4N
aAQ YsIa pleH

A

c9

aoIne(abelo)s

€7 sng walsAg

y

8¢ vL1vd
NWYHO0dd

L& SNVHO0dd
d3HLO

9¢ SNVYHO0dd
NOILYOI1ddV

Ly JOJUON

1

96 sng ISOS

Ly

11

Jaydepy 1SOH

8¥

1e)depy 0spIA

T4

nun Buissaoold

0z Jamadwo)

G¢ SO

(4
AVYY)

9¢ SOI9

(b2 WOY)
t44

AIOWS\ WaISAS

WO 2010/042374 PCT/US2009/059124

417
208 210
' Partition A | ' Partition B
i 216 218 i i 220
| App A1 App A2 i | App B1
212 H ﬁ i 214 %
i Guest OS A i i Guest OS B

204 }

Host Operating System

202 ﬁ

PHYSICAL COMPUTER HARDWARE

¢ b1

PCT/US2009/059124

JUVYMANYH Y3LNdNOD TvoISAHd | %
._O“—_CO_\/_ OC_CON_\/_ _NDt_> v0C
wa1sAg bunesad 1So0H W0e

517

WO 2010/042374

o o 1
m gasomens | vSoisno |
| f p1Z W m L f oz |
| lgddy | | gvddy v ddy |
| 022 | m 812 oz |
| g uoned e v Lohied |
““““““““““““ 0z 802

PCT/US2009/059124

WO 2010/042374

6/17

6Y—

%K/ Ssp

J9]]0Ju0Y ISOS

4
| JosinedAH |
k4
(leo1sAyd)
ﬁk\/ SNgNA 4 SNgGNA JaAug d
Nmmv 8olAe(Qg sng ISOS
& & A
|mwvg 19AuQ s §K> 19Aua SIA
: ﬁ
(onsyyuAs) JopIACI4 80IM8S
ag JaAlQ % uopeziermip ¥
@oIA8(SNY |1SOS ﬂk/ abelo)g
i
4
ﬂ% waysAg)14

uoniyed pebajinLd-UoN

uonied pabejiaud

PCT/US2009/059124

WO 2010/042374

77

09t

o

(ooepaIUI Aepuocoss)

J8]104U0D [SOS

(eoepaiul Aewud)

J8]1104U0D [SOS

& &
67— | JosinedAy |
k2 k2
(1eo1sAyd) (1eo1sAyd) A
JaAuQg SNGNA K SNGNA JaAuQg /fa
0 _\mk oo1ne(q shg ISDS —G9v 9one(Qd sng ISOS
4 3 5 &
¥ | ¥
(onepuAs) omwg JaAuQisia
|vak/ 18AUQq ,.,,,,
9o1neQ sngd I1ISOS 4
&
| Jepinoid eomeg |
S JaAuQ Msia JaAuQ Msia \Kﬂ % uonezienmip Z
m|omK ﬂg sbeioig
@ &
ki
K\l Jake| uonoalipal Yyed-niny
003 4 u
g v oLy
wr™ - walsAg a4
0Ly mﬁnk\/
uopied pabe|ialid-UoN uonied pabe|ild

PCT/US2009/059124

WO 2010/042374

8117

g (eoepsul Alepuooss)

(eoep8UI Atewud)

0¢s 19]|0U0D ISOS 19]|0JuU0) ISOS
%
- JosInJadAH
mmvg
k i
([eoisAyd) |
SNgNA = B SNGNA J9AIQ -7
N@ a2IneQg sng |ISOS
4 4 #.
% k4
(onsyjuAs) —
—a 18AIQ omvg JaALa XsId
08 so1A9(sNg ISDS | - -
ki \\
| I9PINOIH 921N,/
% Jaaug ¥sig Iai uoneziienyin F
a8t , 0cr— obeios
\f Jake| uonoauipal yied-nin\ g | &
& R Jebeuep
L4 * 9beI0)S |BNLIA
ﬂkﬁ ﬂkb waysAg 9|14 %g ﬁo:\
uonied pabs|inlid-UON uonied psbajinLd

PCT/US2009/059124

9/17

WO 2010/042374

(eoruayUl AlepUODaS)

uonied pabajialid UON

(e0epsUI Arewid)
|N@K\/ 19[|0JuUOYD [SOS |omvg 19]|0J3U0D |SDS
& %
JOSIAIBdAH
mmv\
L4 7
Ayd)
(reoisAyd) sn (feors
m ; gNA & SNGINA J9ALQ
oom&\’ J19ALQ 901A8(8BBI0)S SOOGS0
% 2 &
v ¥
(onoysuAs) Jenua ¥sia
JaAlQg
901A8(SNd ISOS 4
L
|| Japlnold 99IAIeg |/
JeAu@ ¥siQ ¥ uonezienin ©
obelo
% 1S
7 ¥
\J Jake| uonoalipas yied-niny - &
008G 4 - Jabeuep
k 4 abeJ0)g [BNUIA
a WB1SAS 9|14
Ly—

uonied pabajinld

PCT/US2009/059124

WO 2010/042374

10/17

o

(eoeuBUl Azepuooes)

49]|0U0Y [SOS

Q@

(eoenoiUl Arewd)

0S¥ | J9ll04u0Q |SOS
F
%.
ag JosingadAH
ki k4
IsAyd)
(jeaisAyd) (jeos
] sNginA 4 B snginA JaAuQ
oo|mk JOALIQ 921A9(Shg |1SOS =55 s01neQ sNg ISOS
% 5 5 -
v v
(on0UIUAS) o /| enuasia
— E1Te
owwg @018 sNg 1SOS 4
5
¥
LI 381G MWBUSQQ 90IAI8S @
— . . UONEZI|ENHIA
mwvg ﬂkb abelo)g
%
L4 k4 \\ﬁ
e] Jahe| uonoauipal yied -ninw 5 &
(0]0]; i
w g mgmmmcm_\/_
- ODRBIOIS [eNUIA
o o5 | | wesfs oy 005
uonied pebs|iAldUON uonied pebs|iald

PCT/US2009/059124

WO 2010/042374

11117

%sIp

09%
(soep8iuUl AuepuoDaSs) (scepiUl Asewind)
%&» J3]|0U0D |SOS a& Jajjonuo) 1SOS
A Iy
agi JosiniadAH |
k- ki
IsAyd)
(lRoisAud) L (1eats
N SNGINA SNGINA JaAlQ A —
oom\/ 1OMIQ 901AS(SN ISOS Nﬂmv 821n8(shg 1SDOS -
% & s 5 &
. v
(OneyjuAs) N Jaal@ ¥sig
a& oo_>om9w/xm ISOS oLy
! | %
o6 &
¥ L |
| Joplnoid 921AI8g |/
L | J1sAu@SIa JOALIQ MSIq - % uonezienuip ¥
|\ . =a% |g abeio)g
006 5 % 8y 472
k 4 k4 W \é
— Jake| uonoalipas yred-niniy | -
%\J 4 , . —— Jabeuep
>ﬁ abelo)s [enuip \K
— WBISAS 9]l4 S 0Lt
5 o5 509 | ory
uonied pabs|iald-UoN uonied pabs|iald

PCT/US2009/059124

WO 2010/042374

12/17

09—

AsIp

(soepayul AiepuoOas)

oL "Bi4

(eoepsul Artewnd)

ag 19]|0U0D |SDS [\) 19]]0U0D |ISOS
% %
JosInIedAH
%
k 4 k 4
Ayd)
| (1eoisAyd) (eors a
] SNgNA 4 w SNgGNA J9ALQ
a& JaALI(Q 991A8Qq abelo)S Nm'mv 801A8q SNg |SOS
& 5 & 5 s
v v
(onayuAs) —— /' JeAugsia
a& JaAuq om¢K
90IA8(Q sng ISOS 4
- . ,,,,,,,,
000 r\ » @
,ngmc_>9n_ 90IAI9S w‘
\] JeAugsia Jaau@isia) uonezijenuin
ARE erer= — abe.o
06 . N 8y v S
Y .ﬁ ,@ \&.
oo|m\/ Jake| uonoalipas yied-niny s -
% .Y Jobeuey
abelo)g |enuIp
ag SIv— Wa)SAg 9|14 %g

uoniued pabajiAld-UON

uoned pabajinud

WO 2010/042374 PCT/US2009/059124

13/17

1110 requesting the instantiation of a secondary interface to said device

Y

1120 configuring a physical driver for said secondary interface

B ¢

1130 constructing said device driver stack by creating a representation of said device

v

1140 configuring a new driver for said device

— I

1150 providing a second indication to said device driver stack

v

1160 information for constructing said device driver stack is obtained by communicating to
said device via said alternate stack

!

1170 directing I/O to said device via said device driver stack and secondary interface

Y

1180 sending a message to a primary interface for said device to relinquish control of said
device to said secondary interface

Fig. 11

WO 2010/042374 PCT/US2009/059124

14/17

1200 said device comprises multiple control interfaces

1210 device driver stack is used for paging I/0O

1220 the device is a disk device
1225 the device is a network interface adapter
1230 a description and properties of the device are discovered by redirecting 1/0 requests to
the alternate stack

Y

1235 searching a boot device via a synthetic storage stack for files related to the driver for
the device

'

1240 transmitting a request to a multi-path redirection layer for information about devices
that the physical driver may own

!

1245 first and second indications are handles

1250 sending a message to a virtual storage manager describing said second indication

Fig.12

WO 2010/042374 PCT/US2009/059124

15/17

1302 requesting the instantiation of a secondary interface and configuring a physical driver
for the 1/0 device, wherein the 1/0 device is capable of supporting multiple control
interfaces

!

1304 receiving a pointer from an I/O virtualization layer to an existing stack comprising an
existing driver to said 1/O device

!

1306 instantiating an object representing said device

'

1308 communicating to the I/O device via said existing stack and configuring a new driver
for the 1/0 device

!

1310 providing a pointer to the object and new driver

!

1312 sending a message to a primary interface for said I/O device to relinquish control of
said 1/0 device to said secondary interface

Y

1314 redirecting 1/0 to said 1/O device via the new driver and secondary interface using said
pointer

Fig. 13

WO 2010/042374 PCT/US2009/059124

16/17

1402 receiving properties of the I/O device and paging code and data

l

1404 existing stack is a physical stack

]

1406 existing stack is a synthetic stack

Fig. 14

PCT/US2009/059124

WO 2010/042374

17117

Gl ‘b1

0¢si
aseuajul Aewnd

e 0) abessaw e Buipuss

1o} suononJysu|

8LSl
a|puey Buiuodau
1o} suononasu|

A

Y

0051
wnips a|gepesy Jo3ndwon

8¢Sl
991A3p Jooq e Bulyosiess

1o} suononJysu|

vesl
ad1Aap abelols

0} O/| Bunoaupal
10} suolonsu|

9¢si

AOI-HS 19d Buioddns
10} suoljonijsuj

A 4

9lG1
yoels
aAljewsjje Buiyenuelsul
1o} suoonIsu|

Y

L/

vicl
ao1Aap abelo)s

o} Buesiunwwos

Joj suolonsu|

cisl
sjpuey Buialesal
1o} suononsu|

Y

0lsl
aoep9)ul Arepuodss jo
uonjenuejsul Bunsenbal
1o} suoonIsu|

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings

