(54) Title: ADJUSTABLE DENTAL IMPLANT SYSTEM

(57) Abstract

The present invention relates to an endosteal implant system and a method for mounting a dental prosthesis on one or more implants. The system comprises an implant (30), a two-piece anchor whereby one piece (10) is an angled support for mounting a dental prosthesis and the second piece (20) is a threaded base portion for securing to the implant (30). The support (10) is seated within the base portion (20) and is rotatable about the longitudinal axis of the base portion (20). The alignment is achieved by first threading in the base portion (20) into the implant (30) and rotating the support (10) until a best alignment is made. An accurate visual intraoral evaluation of the anchor alignment is made utilizing a unique alignment handle (50) which is snapped into each support. If the alignment is not satisfactory, the support with the alignment handle (50) can be rotated until a satisfactory alignment is achieved.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>GN</td>
<td>Guinea</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>GR</td>
<td>Greece</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>HU</td>
<td>Hungary</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SU*</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Chaud</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE*</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>

+ Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.
ADJUSTABLE DENTAL IMPLANT SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an endosteal implant assembly and more particularly, to a novel abutment/anchor, hereinafter referred to as anchor, for adjustably supporting one or more prosthetic teeth or appliances at a desirable orientation relative to the path of insertion of the restoration. The present invention is particularly suited, but not limited, to use with patient-removable restorations.

2. Background of the Prior Invention

A dental prosthesis for replacing one or more missing teeth may be accomplished by placement of one or more dental implants in the jawbone and corresponding number of anchors to which the dental prosthesis is secured thereto. The anchor is normally screwed or bonded into the implant. The implant is generally made from a titanium alloy or other rigid materials which are non-reactive with human tissue or fluid.

It is well known that the angle of a dental anchor must be aligned with the intended angle of the path of insertion of the restoration and must be maintained from abutment to abutment, in cases where multiple implants are employed, to facilitate a smooth and non-traumatic insertion and function of a removable or a fixed appliance. The determination of the most desirable path of insertion of the appliance may be governed by factors such as the position of adjacent natural teeth, arc of closure, ridge contour and the patient’s dexterity. Prior inventions for adjustably aligning the prosthetic tooth are disclosed, for example, in U.S. Patents 4,713,004 to Linkow et al, 4,738,623 to Driskell, 4,780,080 to Haris, 4,832,601 to Linden, 4,854,872 to Detsch, 4,907,969 to Ward, 4,932,868 to Linkow et al, and 4,934,935 to Edwards.

Specifically, it is well known in the present field to place a dental implant in the jawbone, whereby through the process of osseointegration the bone grows
closely around the implant, permanently integrating the
implant into the jawbone. Various attempts have been made
in the past to properly align the dental anchor in relation
to the path of insertion with an improperly aligned dental
implant so that a prosthetic tooth, which is to be formed
on the dental anchor, properly aligns with the neighboring
teeth. One example of the prior technique is disclosed in
U.S. Patent 4,713,004 to Linkow et al (Linkow). In this
example, an implant is placed in the bone and one end of an
angled threaded shaft is threaded into the implant and
rotated into a proper orientation. A wedge shaped collar
having an angled upper surface is placed around the angled
shaft and the upper surface is positioned to coincide with
the angle of the shaft so that the free end of the shaft
extends perpendicularly from the angled surface. A
prosthetic tooth anchor is threaded on the free end of the
shaft to secure the collar in a set orientation. Linkow
also discloses an alternative embodiment of aligning a
prosthetic tooth, in which, instead of the angled shaft and
collar, an intermediary anchor having a ball and socket
joint is threaded in the implant. A bolt, which is
attached to a prosthetic tooth anchor, is screwed
completely through the ball to fix the position of the ball
relative to the socket once an alignment has been
accomplished.

Another technique employed in the prior art is
disclosed in U.S. Patent 4,780,080 to Haris. Haris places
a conventional dental implant in the jawbone, and also
secures an intermediary anchor to the implant. To correct
the improper orientation of the implant and the anchor, an
asymmetrically shaped frusto-conical prosthetic tooth
anchor is positioned coextensively with the intermediary
anchor. By rotating the asymmetrically shaped anchor about
the longitudinal axis of the implant, various alignments
can be achieved. Once a proper setting is identified, the
frusto-conically shaped anchor is bonded to the
intermediary anchor while the intermediary anchor is still
permanently secured to the implant.

Yet another technique employed in prior art is disclosed in U.S. Patent 4,832,601 to Linden. Linden utilizes a hexagonally-shaped intermediary anchor which is fastened to a complementary hexagonal bore formed in a dental implant. A prosthetic tooth anchor is adjustably secured to the intermediary anchor with a screw. The intermediary and the prosthetic tooth anchors function much like a ball and socket joint when the screw is loosened. That is, the prosthetic tooth anchor may move universally within the intermediary anchor. Once a proper alignment is made, the intermediary anchor and the prosthetic anchor may then be entirely removed from the implant. The screw is then tightened to immobilize the prosthetic support anchor relative to the intermediary anchor. The prosthetic support anchor with a prosthetic tooth formed thereon and the intermediary anchor is then placed back into the implant and secured thereto by a conventional means such as bonding or by a mechanical means.

Finally, U.S. Patent 4,934,935 to Edwards also employs a conventional implant technique for setting an implant in the jawbone. An intermediary anchor is temporarily plugged into the implant and is properly positioned therein by rotating the anchor which is set at a predetermined angle. The anchor is then bonded to the implant once properly positioned. A prosthetic tooth anchor is then screwed into the angled intermediary anchor for supporting a prosthetic tooth thereon.

While these prior inventions make provisions for aligning a prosthetic tooth with the neighboring teeth, there are numerous disadvantages. These would include extreme complexity, to a point of impossible execution in actual clinical situations; limited application, suited only to fixed, permanently cemented restorations such as bridges or single crowns; not applicable to patient-removable restorations; the necessity of screw access holes on the chewing surfaces of the artificial teeth (described
as "Swiss Cheese" effect in recent literature); and limited serviceability and retrievability of abutments or anchors. In short, the prior inventions do not present a simple, practical method for independent alignment of implant supported retrievable anchors for patient-removable restorations.

SUMMARY OF THE INVENTION

Recently, the use of dental implants has seen a tremendous growth. The technique of placement of the implants into the jawbone has been refined and the success rate has been excellent. For people with no teeth or roots of teeth left, the implants represent an exciting treatment option. The present invention was devised with the intention to simplify and make more effective the procedures for the operator and to further increase the success rate for the patients. Specifically, because of a simple bonding method and a unique two component adjustable anchor with alignment handles, it is now possible to provide patients with accurately aligned, simple, economical and extremely effective anchors as a means for removably retaining implant supported restorations. With the present invention the implant does not have to be exactly placed and/or aligned with the desired path of insertion of the dental appliance since the anchor can be independently adjusted to facilitate the alignment. Additionally, the anchor has been formed so that a dental prosthesis may be taken completely off the anchor and placed back on the anchor by the user.

The present invention comprises an implant utilizing a conventional osseointegration technique for firmly anchoring the implant in the jawbone and a two-piece anchor. One piece is configured as a dental prosthesis support for removably supporting one or more prosthetic teeth and a second piece is configured as threaded base portion for semi-permanently attaching to the implant. More specifically, the support is removably and adjustably situated within the threaded base portion so that the
support is rotatable within the threaded base portion about the longitudinal axis of the threaded base portion. The support has an upper protrusion that is angled with respect to a lower portion thereof. By rotating the support with respect to the threaded base portion, a plurality of alignments can be achieved. The support comes with various preselected angles so that various alignments can be realized using various selections of the pre-angled supports. In addition, unique alignment handles are employed to facilitate an intra-oral assessment of functional alignment between two or more anchors. The handles also simplify the insertion of the implant assembly into the implant by providing an extension surface for easy grasping and handling of the assembly. The handles may be used either to carry the support with its base snapped onto it to the implant in the mouth, or the support alone to the base already situated in the implant.

In carrying out the installation of the implant and the anchor, one or more implants are initially strategically placed in the jawbone. After the implants are fully integrated, i.e., after the jawbone completely grows around the implants, a base portion with or without a prosthetic support and alignment handle seated therein is threaded into each implant and fully tightened thereto. If a prosthetic support of a desired angle and an alignment handle have not been previously seated in each base, an alignment handle is snapped into each angled prosthetic support and the alignment handle with the angled prosthetic support is then seated in each base portion. Each prosthetic support with its alignment handle is rotated about the longitudinal axis of the base until the best alignment is achieved. If a visual assessment of mutual alignment of the handles snapped in the anchors does not indicate a satisfactory alignment even if the supports are adjusted, a differently angled prosthetic support may be used in various bases to achieve a satisfactory alignment of all anchors.
When the best alignment is achieved, the alignment of the support with respect to the base is marked so as to capture the desired orientation. Following marking and removal from the implant, the support is then separated from the base portion. The base portion and the support are cleaned and bonded utilizing a conventional bonding technique, with the support being aligned with respect to the base portion using the mark to properly orient the support. Once the bond is set, the support and the threaded base portion, now as one piece, is ready to be threaded back into the implant. The threads of the base are coated with a medical grade silicone adhesive to seal the threads from oral fluids to eliminate bacterial growth and to prevent the anchor from loosening from the implant. The adhesive properties of this type of silicone material are such that it is possible to allow deliberate unthreading of the anchor from the implant if replacement is required. When the anchor is completely threaded into the implant, the precision threading assures that the anchor will be returned to the exact same position as during the marking step.

Since the bonding takes place completely outside the patient's mouth, the procedure is easy to accomplish. In addition, since the properly oriented base portion and support are bonded outside the mouth, the bonding takes place in a dry environment and the strength of the bond is thus not affected by the saliva of the patient. Moreover, in the present invention, the support comprises a female eyelet, similar to the type disclosed in U.S. Patent 4,540,367, whereby a dental prosthesis having one or more prosthetic teeth is removably attached to one or more female eyelets. In particular, the prosthesis has one or more nylon male caps embedded thereto, each male cap seating on one of the female eyelets, as disclosed in U.S. Patent 4,540,367. Thus, the metal female eyelet of the anchor is protected from wear by the nylon-to-metal contact of the snap-in nylon male. However, should the female
eyelet or any other portion of the anchor suffer any wear or damage, it can be readily replaced with a new anchor by simply removing the dental prosthesis and unscrewing the anchor from the implant. The new anchor is aligned using the alignment technique as described above.

Accordingly, the object of the invention is to provide a simple and yet effective means and a method for aligning anchors of an endosteal implant.

Another object of the invention is to provide an anchor that is readily removable and replaceable with respect to the endosteal implant.

Another object of the invention is to provide a dental prosthesis that is readily removable and reattachable to one or more anchors of the corresponding number of endosteal implants.

Still another object of the invention is to enable the bonding of a prosthetic support to the base support in a dry environment.

The foregoing and other features of the present invention will become readily apparent hereafter from the following description:

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a perspective view of the present dental implant unit in unassembled form.

Fig. 2 is a cross sectional view taken along the line 2-2 of Fig. 1, with the dental assembly unit in assembled form.

Fig. 3 is a front view of the angled support for mounting a dental prosthesis thereto.

Fig. 4 is a perspective view of the angled support, showing the slotted lower portion thereof.

Fig. 5 is a perspective view of the angled support with a removable nylon cap placed on the upper portion thereof.

Fig. 6 is a front elevational cross-sectional view taken along the line 6-6 of Fig. 5.

Fig. 7 is a partially cross-sectioned view of the
alignment handle seated on the angled support.

DETAILED DESCRIPTION OF THE INVENTION

Fig. 1 shows a dental implant unit in unassembled form. The dental implant comprises an implant 30 and an anchor having a base 20 and an angled support 10. The implant has an elongated body 31, which is preferably made of a titanium alloy or other suitable materials which do not react with human tissue or fluid. Openings 32 are formed in the lower portion of the implant. A threaded cavity 33 is formed from the upper end of the implant for attaching the base. The purpose of the openings 32 is for the jawbone to grow thereinto and form a strong bond therewith. The base includes a threaded shaft 21 for mating with the threaded cavity 33 and an upper body 22 with flattened surfaces 23. The flattened surface forms a gripping area for an appropriate tool i.e., during tightening against or loosening the base from the implant. The upper body forms a cavity 24 for providing a snap fit retention with a slotted lower projection 11 of the angled support 10. Specifically, a convex profiled waist 11e and a complementary surface profile formed in the cavity 24 permits the slotted lower projection to retain therein while permitting a rotational movement about a longitudinal axis 2 of the implant assembly.

The angled support comprises a wedge shaped intermediary body 12 with an angled upper surface 12a. The slotted lower projection 11, which has an hourglass profile, extends perpendicularly from a lower surface of the body 12 and an upper angled female eyelet 13 extends perpendicularly from the angled surface 12a. The female eyelet 13 is slightly tapered toward the uppermost surface thereof to form a truncated conical seat, with an opening 14 formed therein for seating a male cap 40. The detailed description of the female eyelet follows below in conjunction with the description of the male cap 40.

Fig. 2. illustrates a cross sectional view taken along the line 2-2 of Fig. 1, with the implant unit 1 in
assembled form. A pair of holes 15, set at 180° apart, is formed on the female eyelet 13 to permit drainage of saliva should saliva enter through the opening 14 of the female eyelet. Note that the female eyelet is angled at α° relative to the longitudinal axis 2 of the implant.

Fig. 3 shows a side elevational view of the support 10. The female eyelet is shown at an angle α relative to the longitudinal axis of the implant unit. The angle α is fixed, and the support 10 with differently angled female eyelet is used when different angles are needed. The female eyelet is preferable formed with angle α at 5°, 11°, and 17° relative to the longitudinal axis 2. It is to be noted that, due to the angling of the female eyelet, by rotating the support 10 about the longitudinal axis 2 of the base 20, various offset positions about the 360° of the axis 2 can be achieved.

Fig. 4 illustrates the lower projection 11 of the support 12, which conforms to the hourglass shape of the cavity 24 formed within the base 20. In particular, the lower projection 11 extends downwardly from the body 12 and the projection has a pair of slots which intersects at the right angle, with the slots extending in the direction of the projection. Accordingly, four identically shaped prongs 11a, 11b 11c, 11d are formed. The slots enable the prongs to move resiliently in the radial direction which is perpendicular to the direction of the projection when inserted or seated in the cavity 24 of the base 20. The convex profiled waist 11e and the complementary profile surface formed in the cavity 24 and the cross-slots of the projection permit a light snap fit retention with the base while permitting the support 10 to rotate about the longitudinal axis 2. In addition, the cuts also provide space for the adhesive to fill during the bonding stage so that a strong bond is formed between the support 10 and the base anchor 20.

Figs. 5 and 6 show a male prothesis retention cap placed over the female eyelet 13. In particular, the
female eyelet takes a form of a cup having a substantially cylindrical upstanding side wall 13b. The outer surface of the side wall of the socket generally is slightly tapered in outline toward the uppermost surface 13a thereof. The inner surface of the side wall is contoured to form a necked-down region or constriction 13c in a form of a convex arc shaped profile. The female eyelet 13 is preferably formed of titanium or other metallic material which conventionally finds use in the field of dentistry.

The male cap 40 preferably is formed of a plastic material having sufficient strength and durability to permit repeated connection and disconnection with the female eyelet. The material of the male cap should also provide a measure of resilience to permit a snap fit retention with the female eyelet. In addition, the material of the male cap should develop a retaining friction between the male cap and the female eyelet to retain the male cap and a dental prosthesis, which is formed around the male cap, in a positive manner, while permitting removal and reinsertion of the male cap with the dental prosthesis when desired. The male cap, accordingly, may be formed of strong nylon, a material that also has been found to eliminate problems of wear of the female eyelet. In this connection, the male cap will absorb all wear, and as wear increases, the male cap is replaceable with a new male cap. The replacement technique whereby one male member is replaced by another is disclosed in U.S. Patent 4,540,367 and in a copending application SN. 07/578,396, filed September 7, 1990, which are incorporated herein by reference.

The male cap 40 is also characterized by a substantially cup-shaped structure. As such, the male cap includes a wall 42 which extends from a base 43. In addition, a projection 44 extends from the base, along the axis of the wall 42 and has an outer contour which generally is complementary to that of the inner surface 13c.
of the side wall 13b of the female eyelet. Specifically, the outer contour is substantially shaped in the form of an hourglass. The projection includes a constriction at about the midpoint of its length, where two convex curve profiles meet, forming a waist portion 45. The waist allows a snap fit retention in the female eyelet and permits a substantial universal movement capability of the dental prothesis which is attached to outer surfaces of the male cap.

A ridge 41 is formed around the outer perimeter thereof and a dental prothesis is formed around the outer surface of the male cap, with the ridge securely holding the cap in the dental prothesis. A gap is formed between the upper most surface 13a and the underside of the base 43 and another gap 46 is formed between the upper inclined surface 12a and the lowermost side of the male cap to enable the male member to move along the direction of the projection when force is applied to the dental prothesis formed therearound. A greater detailed description of the manner in which a dental prothesis is secured to the male cap and the manner in which the male cap resiliently move along the direction of the projection is disclosed in U.S. Patent No. 4,540,367 and the copending application SN 07/578,396, filed September 7, 1990, which are incorporated herein by reference.

To facilitate a visual intra-oral assessment of functional alignment between two or more supports 10 seated in the respective bases 20, an alignment handle 50 is provided. Fig. 7 shows a partial cross-sectional view of the handle. The handle 50 is made from the same plastic material as the cap 40, i.e., nylon and comprises an elongated cylindrical body 51 and enlarged cylindrical flange 52 formed at one end and a projection 53 formed at the opposite end. Specifically, the projection 53 is substantially shaped like the projection 44 formed on the cap 40, and in the similar manner, the projection 53 snaps into the cavity 14 formed in the female eyelet 13. The
projection 53 has an hourglass shaped profile as shown clearly in Fig. 7, with a waist portion 53a forming the narrowest point. However, it is to be noted that the projection can be shaped in any conventional manner as long as the projection is held securely in the cavity 14 and maintained with an orientation indicative of the slant \(\alpha \) of the female eyelet 13. The enlarged cylindrical disk-like flange 52, located on the opposite end of the projection 53, provides a place for gripping during insertion and removal of the handle from the female eyelet.

The alignment handle 50 serves an important function by sufficiently extending the alignment axis of the angled prosthetic components to allow an accurate visual intra-oral evaluation of the anchor alignment. This is especially important when two or more anchors are used to retain an appliance. All of the anchors must be aligned along the same path to achieve a smooth and non-traumatic insertion and removal of the appliance.

The difficult part of using attachments with implants is providing a parallel alignment of the implant assembly unit with the desirable path of insertion of the dental prosthesis retained by the assembly. The present implant assembly unit has a simple and a unique way of attaching and aligning the anchor part of the implant assembly and retaining the dental prosthesis. When two or more implants are placed reasonably parallel to each other in the jawbone, all components placed in the implants will be correctly aligned with respect to each other. In this case a conventional 0° one piece anchor can be used. However, in cases where a desirable alignment cannot be achieved by using 0° anchor or if the implants are not parallel, the present 5°, 11° or 17° two piece anchor can be used to achieve the desired alignment.

In operation, after one or more dental implants have been strategically placed flush in the jawbone, and after bone growth has fully integrated the implants in the jawbone, a base 20 with or without a preselected angled
support 10 and alignment handle 50 seated therein is screwed into each implant and tightened thereto. If not done previously, a preselected angled support with an alignment handle are seated in each base.

Each angled support 10 is then rotated about the longitudinal axis 2 until a best possible alignment is achieved. By rotating the angled support 10 about its longitudinal axis 2, various offset in any of the 360° direction about the longitudinal axis can be realized, as graphically depicted by the double arrow in Fig. 3.

After visually examining the mutual alignment of the handles 50 snapped in the female eyelets 13 of the anchors, if the handles do not indicate a satisfactory mutual alignment even if the supports are adjusted, differently angled prosthetic supports may be used in various bases 20 to achieve a satisfactory alignment of all anchors with respect to the intended path of insertion of the dental prosthesis and to each other.

When the best alignment is achieved, the relative position of the angled support 10 about the base 20 is marked. The base is then unscrewed from the implant in the jaw of the patient. The base and the support are separated, cleaned and then bonded after aligning in the dry environment outside of the mouth of the patient. The preestablished marks are used to capture the pre-aligned support and base position. Once the bond is set, the threaded shaft of the base is coated with medical-grade silicone adhesive, and the base, with the angled support bonded thereto, is screwed back into the previously set implant in the jaw of the patient. When the base is completely screwed into the implant, the precise threading assures that the anchor will be returned to the exact same position as during the marking step to achieve a correct orientation with the prescribed path of insertion of the dental appliance and with other implant assemblies.

A dental prosthesis having one or more teeth is then snapped into one or more female eyelets 13 of the
support 10. The dental prosthesis includes a male cap at each corresponding female eyelet location. By incorporating this technique, the entire dental prosthesis can be removed by the user simply by pulling out the prosthesis from the female eyelet(s) and then reinserted again. In many cases, a patient-removable, rather than a permanently cemented prosthesis, is more desirable or the only option for restoration of a partially or fully edentulous patient. The above described method facilitates this technique simply and effectively for use with implants. In addition, if a different anchor is required at a later time, perhaps due to the wear, the dental prosthesis can be easily removed, and the base 20, which is bonded to the support 10, can be unscrewed from the implant 30. A new base and an appropriately angled support can easily replace the old base and angled support. Using the same (old) implants, new bases and angled supports are aligned as described above.

The foregoing description is only illustrative of the principle of the present invention. It is to be understood that the present invention is not to be limited to the exact construction as illustrated and described herein. Accordingly, all expedient modifications which may be made within the scope and the spirit of the present invention are encompassed herein. For instance, while only one embodiment of the implant type is illustrated for the purpose of simplification, it is to be understood that the present adjustable anchoring system is usable with all implant type having a threaded opening at one end for receiving a threaded portion of the anchor.
I claim:

1. An angularly alignable prosthetic implant device for mounting a dental prosthesis on the jawbone comprising:

 an implant means for permanently mounting to a cavity formed in a jaw bone, said implant means having a bore with a fastening means; and

 an anchor means having a complementary fastening means for fastening to said bore of said implant means, said anchor means having a seating means for seating a prosthesis support means,

 wherein said prosthesis support means comprises an upper angled eyelet for coupling with said prosthesis and a lower coupling means for coupling with said seating means of said anchor means, said upper angled portion being angled about a longitudinal axis of said lower coupling means, and

 wherein said support means being rotatable about the longitudinal axis of said anchor means so that said support means is alignable at a desired orientation with respect to said anchor means by rotating said support means.

2. An angularly alignable prosthetic implant attachment system according to claim 1, wherein said angle of said eyelet one of 5 degrees, 11 degrees, and 17 degrees.

3. An angularly alignable prosthetic implant attachment system according to claim 1, wherein said upper angled eyelet forms a female coupling joint having a recess therein.

4. An angularly alignable prosthetic implant attachment system according to claim 3, wherein said prosthesis is mounted to said eyelet using a complementary nylon male coupling means which snaps into said female coupling joint, said prosthesis being formed around said complementary nylon male coupling means.

5. An angularly alignable prosthetic implant
attachment system according to claim 4, wherein said complementary nylon male coupling means is removably coupled to said female coupling joint so that said prosthesis can be readily detached from and attached to said support means.

6. An angularly alignable prosthetic implant attachment system according to claim 1, wherein said anchor means to implant fastening means is a screw connecting means.

7. An angularly alignable prosthetic implant attachment system according to claim 6, wherein said anchor means includes means for permitting said anchor to be firmly grasped during tightening or loosening of said anchor means to said implant means.

8. An angularly alignable prosthetic implant attachment system according to claim 1, wherein said lower coupling means of said support means comprises a projection formed in the direction of said longitudinal axis and comprises a cross-shaped slot also formed in the direction of said axis for permitting said projection to deform in a radial direction which is perpendicular to said axis.

9. An angularly alignable prosthetic implant attachment system according to claim 8, wherein said seating means of said anchor means has a complementary recess for seating said projection, said projection snaps into said recess and retains said support in said anchor means while permitting said support means to freely rotate about said axis.

10. An angularly alignable anchor for a dental prosthesis for use with a dental implant means comprising:
 a base anchor; and
 a prosthesis support means,
 wherein said base anchor means having one end for removably securing to said implant means and another end having a female coupling means for securing and seating said prosthesis support means;
 wherein said prosthesis support means comprising
an upper angled eyelet portion for seating said dental prosthesis and a lower male coupling means for rotatably coupling with said female coupling means of said anchor means, said angled eyelet portion being angled about a longitudinal axis of said lower coupling means; and
wherein said prosthesis support means being rotatable about the longitudinal axis of said lower coupling means, said longitudinal axis being coaxial with a longitudinal axis of said anchor means so that said prosthesis support means is alignable at a desired orientation with respect to said anchor means by rotating said prosthesis support means.

11. An angularly alignable prosthetic implant attachment system according to claim 10, wherein said angle of said eyelet portion is one of 5 degrees, 11 degrees, and 17 degrees.

12. An angularly alignable prosthetic implant attachment system according to claim 10, wherein said angled eyelet portion forms a female coupling joint having a recess therein.

13. An angularly alignable prosthetic implant attachment system according to claim 12, wherein said prosthesis is mounted to said support using a complementary male coupling means which snaps into said female coupling joint, said prosthesis being formed around said complementary male coupling means.

14. An angularly alignable prosthetic implant attachment system according to claim 13, wherein said complementary male coupling means is removably coupled to said female coupling joint so that said prosthesis can be readily detached from and attached to said support means.

15. An angularly alignable prosthetic implant attachment system according to claim 10, wherein said anchor means to implant means fastening means is a screw coupling means.

16. An angularly alignable prosthetic implant attachment system according to claim 15, wherein said
anchor means includes means for permitting said anchor means to be firmly grasped during tightening or loosening of said anchor means to said implant means.

17. An angularly alignable prosthetic implant attachment system according to claim 10, wherein said lower coupling means of said support means comprises a projection formed in the direction of said longitudinal axis and comprises a cross-shaped slot also formed in the direction of said axis for permitting said projection to deform in a radial direction which is perpendicular to said axis.

18. An angularly alignable prosthetic implant attachment system according to claim 17, wherein said female coupling means of said anchor means has a complementary recess for seating said projection, said projection snaps into said recess and retains said support means in said anchor means while permitting said support means to freely rotate about said axis.

19. An angularly alignable prosthetic implant attachment system according to claim 14, wherein said complementary male coupling means is formed from nylon.

20. An angularly alignable prosthetic implant attachment system according to claim 1, further comprising an alignment handle which is snapped into said angled eyelet for making a visual evaluation of the alignment of said support means.

21. An angularly alignable prosthetic implant attachment system according to claim 20, wherein said alignment handle is snapped into each said angled eyelet to facilitate an intra-oral assessment of functional alignment between two or more respective support means.

22. An angularly alignable prosthetic implant attachment system according to claim 20, wherein said alignment handle comprises an elongated cylindrical body having an enlarged disk-like flange formed at one end and a protrusion formed at the opposite end, said protrusion being removably snapped into said eyelet.

23. An angularly alignable prosthetic implant
attachment system according to claim 22, wherein said protrusion formed at the opposite end is substantially hourglass shaped in profile.

24. An angularly alignable prosthetic implant attachment system according to claim 10, further comprising an alignment handle which is snapped into said angled eyelet for making a visual evaluation of the alignment of said support means.

25. An angularly alignable prosthetic implant attachment system according to claim 24, wherein said alignment handle is snapped into each said eyelet to facilitate a visual intra-oral assessment of functional alignment between two or more respective support means.

26. An angularly alignable prosthetic implant attachment system according to claim 24, wherein said alignment handle comprises an elongated cylindrical body having an enlarged disk-like flange formed at one end and a protrusion formed at the opposite end, said protrusion being removably snapped into said eyelet.

27. An angularly alignable prosthetic implant attachment system according to claim 26, wherein said protrusion formed at the opposite end is substantially hourglass shaped in profile.

28. An angularly alignable prosthetic implant attachment system according to claim 1, further comprising means for fixing said support means relative to said anchor means after aligning said support means relative to said anchor means.

29. An angularly alignable prosthetic implant attachment system according to claim 10, further comprising means for fixing said support means relative to said anchor means after aligning said support means relative to said anchor means.

30. A method of mounting a dental prosthesis comprising one or more teeth on one or more dental implants in a person's mouth, comprising the steps of:

a) inserting one or more dental implants into a
jawbone;

b) securing a corresponding number of anchors, one for each implant, each anchor having a female coupling means for securing and seating a prosthesis support into one of said implants;

c) securing each prosthesis support which has an upper angled eyelet portion for seating said dental prosthesis and a lower male coupling means for coupling with said female coupling means of said anchor, said upper angled portion being angled about a longitudinal axis of said lower coupling means, wherein said prosthesis support is rotatable about the longitudinal axis of said lower coupling means, said longitudinal axis being coaxial with a longitudinal axis of said anchor so that said prosthesis support means is alignable by rotating said prosthesis support;

d) aligning each prosthesis support by rotating said prosthesis support about the longitudinal axis of said anchor;

e) marking the position, which indicates a proper alignment, of each support relative to the respective anchor;

f) removing each anchor from the respective implant;

g) bonding each support to the respective anchor using said mark to capture said proper alignment;

h) resecuring each anchor with said fixed support into the respective implant; and

i) attaching said dental prosthesis into the respective supports.

31. A method of angularly aligning a support anchor which attaches to a dental implant in a person's mouth, comprising the steps of:

a) threading and tightening an anchor into said implant;

b) rotatably securing a prosthesis support, which has an angled female eyelet portion, which is angled about
a longitudinal axis of the anchor, in said anchor;
c) aligning said support relative to said anchor
by rotating said support about said axis;
d) marking the relative position of said anchor
and said support which is indicative of the alignment;
e) removing said anchor from said implant and out
of the person's mouth;
f) bonding said support to said implant using
said mark to capture the alignment;
g) rethreading said anchor and the bonded support
into said, the precision threading assuring that said
anchor will return to the exact same position as during the
marking step; and
h) attaching a dental prosthesis.

32. A method according to claim 30, wherein said
aligning step is carried out by snapping an alignment
handle on each angled eyelet portion to facilitate a visual
intra-oral assessment of functional alignment between two
or more support.

33. A method according to claim 31, wherein said
aligning step is carried out by snapping an alignment
handle on each angled eyelet portion to facilitate a visual
intra-oral assessment of functional alignment between two
or more support.

34. A method according to claim 30, further
comprising the steps of replacing said anchor and the
respective support by:
j) removing said dental prosthesis;
k) detaching an anchor and said support, which
need replacing, together from the respective implant;
l) repeating the steps of b) through i) using a
new anchor and a new support and/or a new dental
prosthesis.

35. A method according to claim 31, further
comprising the steps of replacing said anchor and said
support by:
i) removing said dental prosthesis;
j) detaching said anchor and said support together from said implant;
k) repeating the steps of a) through h) using a new anchor and a new support and/or a new dental prosthesis.
INTERNATIONAL SEARCH REPORT

International Application No. PCT/US91/09119

I. CLASSIFICATION OF SUBJECT MATTER
 According to International Patent Classification (IPC) or to both National Classification and IPC

 US Cl. : 433/173,174
 IPC(5): AG1C 8/00

II. FIELDS SEARCHED
 Minimum Documentation Searched 7

 Classification System
 Classification Symbols

 U.S. 433/169,173,174,175,176,181

 Documentation Searched other than Minimum Documentation to the extent that such Documents are included in the Fields Searched 9

III. DOCUMENTS CONSIDERED TO BE RELEVANT 1

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 11</th>
<th>Relevant to Claim No. 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US, A, 4,854,872 (DEITSCHE) 08 AUGUST 1989</td>
<td>1-3, 6, 7, 10-16, 28, 29, 30, 31, 34, 35</td>
</tr>
<tr>
<td></td>
<td>See the entire document.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 4,645,453 (NIZNICK) 24 FEBRUARY 1987</td>
<td>1-7, 10-16, 19</td>
</tr>
<tr>
<td></td>
<td>See the entire document.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>DE, A, 3,406,448 (HADER) 23 AUGUST 1984</td>
<td>8, 9, 17, 18</td>
</tr>
<tr>
<td></td>
<td>See the entire document.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See the entire document.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4,488,875 (NIZNICK) 18 DECEMBER 1984</td>
<td>1-35</td>
</tr>
<tr>
<td></td>
<td>See the entire document.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4,957,438 (BAX) 18 SEPTEMBER 1990</td>
<td>1-35</td>
</tr>
<tr>
<td></td>
<td>See the entire document.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See the entire document.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4,713,004 (LINKOW ET AL.) 15 DECEMBER 1987</td>
<td>1-35</td>
</tr>
<tr>
<td></td>
<td>See the entire document.</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 10
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 21 JANUARY 1992
Date of Mailing of this International Search Report: 30 MAR 1992

International Searching Authority: ISA/US
Signature of Authorized Officer: NICK LUCHESE