Title: A61K

Inventors: Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404 (US).

Agents: CHOI, Anita et al; Morrison & Foerster LLP, 425 Market Street, San Francisco, CA 94105-2482 (US).

Priority Data:

Applicant: GILEAD CALISTOGA LLC [US/US]; C/o Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404 (US).

Inventors: EVARTS, Jerry; C/o Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404 (US). PATEL, Leena; C/o Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404 (US). KAPLAN, Joshua; C/o Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404 (US). TREIBERG, Jennifer, A.; C/o Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404 (US). PERREault, Stephane; C/o Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404 (US). PHILLIPS, Gary; C/o Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404 (US).

International Patent Classification:
C07D 403/12 (2006.01) A61P 35/00 (2006.01)
A61K 31/06 (2006.01) A61P 37/00 (2006.01)
A61K 31/57 (2006.01) A61P 29/00 (2006.01)
C07D 239/90 (2006.01)

International Publication Number
WO 2014/100767 A1

Abstract: The present disclosure provides phosphatidylinositol 3-kinase (PI3K) inhibitors of formula (I), or pharmacologically acceptable salts thereof, in which n, m, R1, R2, and R3 are as defined herein. These compounds are useful for treatment of conditions mediated by one or more PI3K isoforms, such as PI3K8. The present disclosure further provides pharmaceutical compositions that include a compound of formula (I), or pharmaceutically acceptable salts thereof, and methods of using these compounds and compositions to treat conditions mediated by one or more PI3K isoforms, such as PI3K6.
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application Serial No. 61/745,437, filed December 21, 2012, the disclosure of which is hereby incorporated by reference in its entirety.

FIELD

[0002] The present disclosure relates generally to inhibitors of phosphatidylinositol 3-kinase (PI3K) activity and, more specifically, to novel compounds that are selective inhibitors of PI3K delta activity.

BACKGROUND

[0003] Cell signaling via 3'-phosphorylated phosphoinositides has been implicated in a variety of cellular processes, e.g., malignant transformation, growth factor signaling, inflammation, and immunity. See generally Rameh et al., J. Biol. Chem., 274:8347-8350 (1999). The enzyme responsible for generating these phosphorylated signaling products is phosphatidylinositol 3-kinase (PI 3-kinase; PI3K). PI3K originally was identified as an activity associated with viral oncoproteins and growth factor receptor tyrosine kinases that phosphorylate phosphatidylinositol (PI) and its phosphorylated derivatives at the 3'-hydroxyl of the inositol ring. See Panayotou et al., Trends Cell Biol 2:358-60 (1992).

[0004] Presently, three classes of the PI 3-kinase (PI3K) enzymes are distinguished, based on their substrate specificities. Class I PI3Ks can phosphorylate phosphatidylinositol (PI), phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-biphosphate (PIP$_2$) to produce phosphatidylinositol-3-phosphate (PIP), phosphatidylinositol-3,4-biphosphate, and phosphatidylinositol-3,4,5-triphosphate, respectively. Class II PI3Ks phosphorylate PI and phosphatidylinositol-4-phosphate, whereas Class III PI3Ks can only phosphorylate PI.

[0005] The initial purification and molecular cloning of PI 3-kinase revealed that it was a heterodimer consisting of p85 and p10 subunits. See Otsu et al., Cell, (55:91-104 (1991); Hiles et al., Cell, 70:419-29 (1992). Since then, four distinct Class I PI3Ks have been identified, designated PI3K α, β, δ, and γ, each consisting of a distinct 110 kDa catalytic subunit and a regulatory subunit. More specifically, three of the catalytic subunits, i.e., p10a, p10δ, and p10γ, each interact with the same regulatory subunit, i.e., p85, whereas p10γ interacts with a
distinct p101 regulatory subunit. As described below, the patterns of expression of each of these
PDKs in human cells and tissues also are distinct.

[0006] Identification of the p10δ isoform of PI 3-kinase is described in Chantry et al., J.
Biol. Chem., 272:19236-41 (1997). It was observed that the human p10δ isoform is expressed
in a tissue-restricted fashion. It is expressed at high levels in lymphocytes and lymphoid tissues,
suggesting that the protein might play a role in PI 3-kinase-mediated signaling in the immune
system. Details concerning the p10δ isoform also can be found in U.S. Patent Nos. 5,858,753;
5,822,910; and 5,985,589, each of which is incorporated herein by reference. See also

[0007] A need remains, however, for additional therapeutic agents useful to treat
proliferative disorders or diseases that are mediated by PI3K. The present invention provides
novel compounds that are inhibitors of PI3K isoforms.

SUMMARY

[0008] Compounds and pharmaceutically acceptable salts thereof useful for inhibiting PI3K
isoforms, such as PI3K5, are described herein. Compositions, including pharmaceutical
compositions, and kits that include the compounds are also provided, as are methods of using
and making the compounds. The compounds provided herein may find use in treating diseases,
disorders, or conditions that are mediated by PI3K isoforms, such as PI3Kδ.

[0009] In one aspect, provided is a compound of formula (J):

\[
\begin{align*}
\text{A} & \text{ is N or CH;} \\
\text{n} & \text{ is 0, 1, 2, or 3;} \\
\text{each } R^1 & \text{ is independently unsubstituted or substituted alkyl, unsubstituted or substituted}
\text{haloalkyl, unsubstituted or substituted aryl, unsubstituted or substituted heteroaryl, halo, cyano,}
\end{align*}
\]

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein:

A is N or CH;
n is 0, 1, 2, or 3;
each R\(^1\) is independently unsubstituted or substituted alkyl, unsubstituted or substituted
haloalkyl, unsubstituted or substituted aryl, unsubstituted or substituted heteroaryl, halo, cyano,
NHC(=0)alkylene-N(R l x) 2 , N 0 2 , OR 1x , OCF 3 , N(R 1x) 2 , OC(=0)R 1x , C(=0)R 1x , C(=0)OR 1x ,
aryl-OR 1x , Het, NR 1x C(=0)alkylene-C(=0)OR 1x , aryl-0-alkylene-N(R 1x) 2 , aryl-0-C(=0)R 1x ,
alkylene-C(=0)OR 1x , 0-alkylene-C(=0)OR 1x , alkylene-0-alkylene-C(=0)OR 1x ,
C(=0)NR 1x 0-alkylene-0-alkylene-C(=0)OR 1x , NHC(=0)alkylene-aryl, alkylene-C(=0)NR 1x ,
heteroarylalkyl, aryl-O-alkylene-N(R 1x) 2 , aryloxy-NR 1x , alkylene-N(R 1x) 2 , alkylene-C(=0)NR 1x ,
heteroarylalkyl, aryl-0-alkylene-N(R 1x) 2 , aryloxy-NR 1x , alkylene-N(R 1x) 2 , NHC(=0)alkylene-aryl,
unsubstituted or substituted cycloalkyl, unsubstituted or substituted heterocycloalkyl, aryl-O-
alkylene-N(R 1x) 2 , aryl-OC(=0)R 1x , NHC(=0)alkylene-heterocycloalkyl, NHC(=0)alkylene-Het,
0-alkylene-0-alkylene-C(=0)OR 1x , C(=0)arylene-Het, or NHC(=0)halo-alkyl,
wherein Het is a 5- or 6-membered heterocyclic ring containing at least one heteroatom
selected from the group consisting of oxygen, nitrogen and sulfur, wherein the 5- or 6-membered
heterocyclic ring is saturated, partially unsaturated or fully unsaturated, and wherein Het is
unsubstituted or substituted with alkyl or C(=0)OR 1x ,
wherein R 1x is independently hydrogen, unsubstituted or substituted alkyl, unsubstituted
or substituted cycloalkyl, unsubstituted or substituted heterocycloalkyl, alkylene-N(R 1x) 2 ,
unsubstituted or substituted aryl, arylalkyl, alkylenearyl, unsubstituted or substituted heteroaryl,
unsubstituted or substituted heteroaryalkyl, or alkyleneheteroaryl, or two R 1x groups are taken
together to form a 5- or 6-membered ring, optionally containing at least one heteroatom,
wherein R 1x is hydrogen, unsubstituted or substituted alkyl, unsubstituted or substituted
aryl, unsubstituted or substituted heteroaryl, arylalkyl, heteroaryalkyl, alkylenearyl, and
alkyleneheteroaryl;

m is 0, 1, 2, or 3;

each R 2 is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or
substituted haloalkyl, unsubstituted or substituted alkoxy, or NR 2x R 2y , wherein each R 2x and R 2y
is independently hydrogen, C(0)R 2x or C(0)OR 2x , wherein R 2x is unsubstituted or substituted
alkyl;

R 3 is hydrogen or unsubstituted or substituted alkyl; and

R 4 is cyano, CON(R 4x) 2 , S0_2-alkyl, halo, or haloalkyl, where each R 4x is independently
hydrogen, or unsubstituted or substituted alkyl.
In some embodiments of formula (J) where A is N, the compound is of formula (JA):

or a pharmaceutically acceptable salt, prodrug, or solvate thereof.

In other embodiments of formula (J) where A is CH, the compound is of formula (JB):

or a pharmaceutically acceptable salt, prodrug, or solvate thereof.

In some embodiments of formula (JA) or (JB),

- each R^1 is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, hydroxy, unsubstituted or substituted cycloalkyl, $-S0_2R^{1x}$, or $-C(0)N(R^{1x})_2$, wherein each R^{1x} is independently hydrogen or unsubstituted or substituted alkyl;

- each R^2 is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, or $N(R^{2x})_2$, wherein each R^{2x} is independently hydrogen, $C(0)R^{2s}$ or $C(0)OR^{2s}$, wherein R^{2s} is unsubstituted or substituted alkyl; and

R^3 and R^4 are as defined for formula (J).
In another aspect, provided is a compound of formula (I):

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein each of \(n, R^1, m, R^2, \) and \(R^3 \) is as defined for formula (J).

In some embodiments of formula (I):

- \(n \) is 0, 1, 2, or 3;
- each \(R^1 \) is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, hydroxy, unsubstituted or substituted cycloalkyl, \(-\text{SO}_2\text{R}^1\), or \(-\text{C}(\text{O})\text{NR}^1\text{R}^1\), wherein each \(R^1, R^1s \) and \(R^{1t} \) is independently hydrogen or unsubstituted or substituted alkyl;
- \(m \) is 0, 1, 2, or 3;
- each \(R^2 \) is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, or unsubstituted or substituted alkoxy; and
- \(R^3 \) is hydrogen, or unsubstituted or substituted alkyl.

In some embodiments of formula (I), one or both of the following properties apply:

- (i) \(n \) is 1, 2 or 3; and
- (ii) \(m \) is 1, 2 or 3.

In other embodiments of formula (I) where \(n \) is 2 and \(m \) is 2, the compound is of formula (IA-1):
or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein:

- each R^{1a} and R^{1b} can be selected from the moieties defined for R^1 of formula (I);
- each R^{2a} and R^{2b} can be selected from the moieties defined for R^2 of formula (I); and
- R^3 is as defined for formula (I).

[0017] In certain embodiments of formula (IA-1),

- each R^{1a} and R^{1b} is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, hydroxy, or unsubstituted or substituted cycloalkyl;
- each R^{2a} and R^{2b} is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, or unsubstituted or substituted alkoxy; and
- R^3 is unsubstituted or substituted alkyl.

[0018] In other embodiments of formula (I) where n is 2 and m is 2, the compound is of formula (IA-2):

![Formula (IA-2)](image)

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein each of R^{1a}, R^{1b}, R^{2a}, R^{2b} and R^3 is as defined for formula (IA-1).

[0019] In other embodiments of formula (I) where n is 1 and m is 2, the compound is of formula (IB-1):

![Formula (IB-1)](image)

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein:
R\textsubscript{1a} can be selected from the moieties defined for R\textsubscript{1} of formula (I); each R\textsubscript{2a} and R\textsubscript{2b} can be selected from the moieties defined for R\textsubscript{2} of formula (I); and R\textsubscript{3} is as defined for formula (I).

[0020] In certain embodiments of formula (IB-1), R\textsubscript{1a} is halo, cyano, unsubstituted or substituted alkyl, or unsubstituted or substituted haloalkyl; each R\textsubscript{2a} and R\textsubscript{2b} is independently hydrogen, halo or cyano; and R\textsubscript{3} is unsubstituted or substituted alkyl.

[0021] In yet other embodiments of formula (I) where n is 1 and m is 2, the compound is of formula (IB-2):

![IB-2](image)

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein each of R\textsubscript{1a}, R\textsubscript{2a}, R\textsubscript{2b} and R\textsubscript{3} is as defined for formula (IB-1).

[0022] In yet other embodiments of formula (I) where n is 1 and m is 2, the compound is of formula (IB-3):

![IB-3](image)

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein each of R\textsubscript{1a}, R\textsubscript{2a}, R\textsubscript{2b} and R\textsubscript{3} is as defined for formula (IB-1).
In yet other embodiments of formula (I) where n is 1 and m is 2, the compound is of formula (IB-4):

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein each of R_1^a, R_2^a, R_2^b, and R_3 is as defined for formula (IB-1).

Provided are also compounds selected from Table 1, or a pharmaceutically acceptable salt, prodrug, or solvate thereof. In some embodiments, the compound is selected from Compound No. 1-89, 95-99, 101-103, and 106-110, or a pharmaceutically acceptable salt, prodrug, or solvate thereof. In other embodiments, the compound is selected from Compound No. 90-94, 100, 104, and 105, or a pharmaceutically acceptable salt, prodrug, or solvate thereof.

In one embodiment, the compound is (S)-2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile; (S)-2,4-diamino-6-((1-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile; (S)-2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile; (S)-2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile, or a pharmaceutically acceptable salt, prodrug, or solvate thereof. In other embodiments, the compound is selected from Compound No. 111-122, 124, 125, 127, 129-133, 135-138, 140, 141, 145, 146, 148-156, 159-168, 175, 176, 178, 179, 181-186, 190, 192, 193, 194, 195-198, 205, 206, 142, 187-189, 191, 199, 200-204 and 207, or a pharmaceutically acceptable salt, prodrug, or solvate thereof.

Also provided is a pharmaceutical composition that includes a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, together with at least one pharmaceutically acceptable vehicle. Examples of pharmaceutically acceptable vehicle may be selected from carriers, adjuvants, and excipients.
Also provided is a method of treating a subject, who has or is suspected of having a disease or condition responsive or believed to be responsive to the inhibition of PI3K5 activity by administering to the subject a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof. In some embodiments, the subject is a human.

Also provided is a method of inhibiting kinase activity of a phosphatidylinositol 3-kinase delta polypeptide by contacting the polypeptide with a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof. Further provided is a method of inhibiting excessive or destructive immune reactions, such as asthma, rheumatoid arthritis, multiple sclerosis, and lupus.

Also provided is a method of disrupting leukocyte function comprising contacting the leukocytes with an effective amount of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof.

Also provided is a method of inhibiting a growth or a proliferation of cancer cells comprising contacting the cancer cells with an effective amount of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof. Also provided is a method for increasing sensitivity of cancer cells to chemotherapy, comprising administering to a patient undergoing chemotherapy with a chemotherapeutic agent an amount a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, sufficient to increase the sensitivity of cancer cells to the chemotherapeutic agent. In some embodiments, the cancers cells are of hematopoietic origin.

Also provided is a kit that includes a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof; and a label and/or instructions for use of the compound in the treatment of a disease or condition mediated by PI3K5 activity.

Also provided are articles of manufacture that include a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof; and a container. In one embodiment, the container may be a vial, jar, ampoule, preloaded syringe, or an intravenous bag.
DETAILED DESCRIPTION

[0032] The following description sets forth exemplary methods, parameters and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.

[0033] As used in the present specification, the following words, phrases and symbols are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise.

[0034] A dash ("-") that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, -CONH₂ is attached through the carbon atom.

[0035] Reference to "about" a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se. For example, description referring to "about X" includes description of "X".

[0036] "Alkyl" refers to a monoradical unbranched or branched saturated hydrocarbon chain. In some embodiments, alkyl as used herein, such as in compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), has 1 to 20 carbon atoms (i.e., CI₂₀ alkyl), 1 to 8 carbon atoms (i.e., CI-g alkyl), 1 to 6 carbon atoms (i.e., CI₆ alkyl), or 1 to 4 carbon atoms (i.e., CI₄ alkyl). Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, liexyi, 2-hexyl, 3-hexyl, and 3-methylpentyl. When an alkyl residue having a specific number of carbons is named, all geometric isomers having that number of carbons may be encompassed; thus, for example, "butyl" can include n-butyl, sec-butyl, isobutyl and t-butyl; "propyl" can include n-propyl and isopropyl.

[0037] "Cycloalkyl" refers to a cyclic alkyl group. In some embodiments, cycloalkyl as used herein, such as in compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), has from 3 to 20 ring carbon atoms (i.e., C₃.₂₀ cycloalkyl), or 3 to 12 ring carbon atoms (i.e., C₃.₁₂ cycloalkyl), or 3 to 8 ring carbon atoms (i.e., C₃.₈ cycloalkyl). Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.

[0038] "Heterocycloalkyl" refers to a cyclic alkyl group, with one or more ring heteroatoms independently selected from nitrogen, oxygen and sulfur. In some embodiments, the heterocycloalkyl as used herein, such as in compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), has 2 to 20 ring carbon atoms (i.e., C₂.₂₀ heterocycloalkyl), or 2 to 12 ring carbon atoms (i.e., C₂.₁₂ heterocycloalkyl), or 2 to 8 ring carbon atoms (i.e., C₂.₈ heterocycloalkyl).
heterocycloalkyl); and 1 to 5 ring heteroatoms, 1 to 4 ring heteroatoms, 1 to 3 ring heteroatoms, 1 or 2 ring heteroatoms, or 1 ring heteroatom independently selected from nitrogen, sulfur or oxygen. In one example, a heterocycloalkyl has 2 to 8 ring carbon atoms, with 1 to 3 ring heteroatoms independently selected from nitrogen, oxygen and sulfur. Examples of heterocycloalkyl groups may include pyrrolidinyl, piperidinyl, piperazinyl, oxetanyl, dioxolanyl, azetidinyl, and morpholinyl.

[0039] "Alkoxy" refers to the group "alkyl-O-". Examples of alkoxy groups may include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, and 1,2-dimethylbutoxy.

[0040] "Aryl" refers to an aromatic carbocyclic group having a single ring (e.g., phenyl), multiple rings (e.g., biphenyl), or multiple fused rings (e.g., naphthyl, fluorenyl, and anthryl). In certain embodiments, aryl as used herein, such as in compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), has 6 to 20 ring carbon atoms (i.e., C₆₋₂₀ aryl), or 6 to 12 carbon ring atoms (i.e., C₆₋₁₂ aryl). Aryl, however, does not encompass or overlap in any way with heteroaryl, separately defined below. In certain embodiments, if one or more aryl groups are fused with a heteroaryl ring, the resulting ring system is heteroaryl.

[0041] "Heteroaryl" refers to an aromatic group having a single ring, multiple rings, or multiple fused rings, with one or more ring heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, heteroaryl is an aromatic, monocyclic or bicyclic ring containing one or more heteroatoms independently selected from nitrogen, oxygen and sulfur with the remaining ring atoms being carbon. In certain embodiments, heteroaryl as used herein, such as in compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), has 3 to 20 ring carbon atoms (i.e., C₃₋₂₀ heteroaryl), 3 to 12 ring carbon atoms (i.e., C₃₋₁₂ heteroaryl), or 3 to 8 carbon ring atoms (i.e., C₃₋₈ heteroaryl); and 1 to 5 heteroatoms, 1 to 4 heteroatoms, 1 to 3 ring heteroatoms, 1 or 2 ring heteroatoms, or 1 ring heteroatom independently selected from nitrogen, oxygen, and sulfur. In one example, a heteroaryl has 3 to 8 ring carbon atoms, with 1 to 3 ring heteroatoms independently selected from nitrogen, oxygen and sulfur. Examples of heteroaryl groups include pyridyl, pyridazinyl, pyrimidinyl, benzothiazolyli, and pyrazolyl. Heteroaryl does not encompass or overlap with aryl as defined above.
The term "substituted", as used herein, means that any one or more hydrogen atoms on the designated atom or group is replaced with a moiety other than hydrogen, provided that the designated atom's normal valence is not exceeded.

"Substituted alkyl" refers to an alkyl group having one or more substituents including, for example, hydroxy!, haloalkyl, alkoxy, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cyano, halo, carboxyl, and NR₂, where each R is independently hydrogen, alkyl, haloalkyl, alkylC(O)-, alkylOC(O)-, or H₂NC(O)-. In some embodiments, a substituted alkyl may have 1 to 5 substituents, 1 to 3 substituents, 1 to 2 substituents, or 1 substituent.

"Substituted cycloalkyl" refers to a cycloalkyl group having one or more substituents including, for example, alkyl, haloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, cyan, halo, carboxyl, hydroxy!, and NR₂, where each R is independently hydrogen, alkyl, haloalkyl, alkylC(O)-, alkylOC(O)-, or H₂NC(O)-. In some embodiments, a substituted cycloalkyl may have 1 to 5 substituents, 1 to 3 substituents, 1 to 2 substituents, or 1 substituent.

"Substituted heterocycloalkyl" refers to a heterocycloalkyl group having one or more substituents including, for example, alkyl, haloalkyl, cycloalkyl, aryl, heteroaryl, alkoxy, cyan, halo, carboxyl, hydroxy!, and NR₂, where each R is independently hydrogen, alkyl, haloalkyl, alkylC(O)-, alkylOC(O)-, or H₂NC(O)-. In some embodiments, a substituted heterocycloalkyl may have 1 to 5 substituents, 1 to 3 substituents, 1 to 2 substituents, or 1 substituent. In certain embodiments, a substituted heterocycloalkyl may contain 1, 2 or 3 heteroatoms independently selected from nitrogen, oxygen, and sulfur.

"Substituted aryl" refers to an aryl group having one or more substituents including, for example, halo, OR, NR₂, C(0)NR'₂, SO₂NR'₂, alkyl, haloalkyl, heterocycloalkyl, heteroaryl, alkoxy, amino, cyano, and carboxyl, where each R is independently hydrogen, alkyl, haloalkyl, alkylC(O)-, alkylOC(O)-, or H₂NC(O)- and each R' is independently hydrogen, alkyl, haloalkyl. In some embodiments, a substituted aryl may have 1 to 5 substituents, 1 to 3 substituents, 1 to 2 substituents, or 1 substituent.

"Substituted heteroaryl" refers to a heteroaryl group having one or more substituents including, for example, alkyl, haloalkyl, halo, NR₂, OR, -C(0)OR, heterocycloalkyl, aryl, and cyano, where each R is independently hydrogen, alkyl, haloalkyl, alkylC(O)-, alkylOC(O)-, or H₂NC(O)-. In some embodiments, a substituted heteroaryl may have 1 to 5 substituents, 1 to 3 substituents, 1 to 2 substituents, or 1 substituent. In certain embodiments, a substituted
heteroaryl may contain 1, 2 or 3 heteroatoms independently selected from nitrogen, oxygen, and sulfur.

[0048] The term "halogen" or "halo" includes fluoro, chloro, bromo, and iodo, and the term "halogen" includes fluorine, chlorine, bromine, and iodine. "Haloalkyl" refers to an unbranched or branched alkyl group as defined above, wherein one or more hydrogen atoms are replaced by a halogen. For example, where a residue is substituted with more than one halogen, it may be referred to by using a prefix corresponding to the number of halogen moieties attached. For example, dihaloaryl, dihaloalkyl, and trihaloaryl refer to aryl and alkyl substituted with two ("di") or three ("tri") halo groups, which may be, but are not necessarily, the same halogen; thus, for example, 3,5-difluorophenyl, 3-chloro-5-fluorophenyl, 4-chloro-3-fluorophenyl, and 3,5-difluoro-4-chlorophenyl is within the scope of dihaloaryl. Other examples of a haloalkyl group include difluoromethyl (-CHF₂) and trifluoromethyl (-CF₃). It should be understood that trifluoromethyl (-CF₃) may also be referred to as perfluoromethyl.

PI3K Inhibitor Compounds

[0049] Provided herein are compounds that function as inhibitors of PI3K isoforms, such as PI3K5. In one aspect, provided is a compound of formula (J):

![Chemical Structure](image)

(J),

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein:

- A is N or CH;
- n is 0, 1, 2, or 3;
- each R₁ is independently unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted aryl, unsubstituted or substituted heteroaryl, halo, cyano, NHC(=0)alkylene-N(R₁x)₂, NO₂, OR₁x, OCF₃, N(R₁x)₂, OC(=0)R₁x, C(=0)R₁x, C(=0)OR₁x, aryl-OR₁x, Het, NR₁xC(=0)alkylene-C(=0)OR₁x, aryl-0-alkylene-N(R₁x)₂, aryl-0-C(=0)R₁x, alkylene-C(=0)OR₁x, 0-alkylene-C(=0)OR₁x, alkylene-0-alkylene-C(=0)OR₁x, C(=0)NR₁xS₀₂R₁x, alkylene-N(R₁x)₂, alkenylene-N(alkylene-N(R₁x)₂), C(=0)NR₁x-alkylene-OR₁x,
C(=O)NR_l^x alkylene-Het, 0-alkylene-N(R_l^x)_2, 0-alkylene-CH(OR_l^x)CH_2N(R_l^x)_2, O-alkylene-Het, 0-alkylene-OR_l^x, 0-alkylene-NR_l^x=0)OR_l^x, NR_l^xalkylene-N(R_l^x)_2, NR_l^xC(=O)R_l^x, NR_l^xC(=O)NR_l^x, S0_2alkyl), NR_l^x(S0_2alkyl), S0_2R_l^x, S0_2N(R_l^x)_2, OS0_2CF_3, alkylenearyl, alkylene-Het, alkylene-OR_1^y, alkylene-N(R_1^x)_2, C(=O)N(R_1^x)_2, NHC(=O)alkylene-aryl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted heterocycloalkyl, aryl-Oalkylene-N(R_1^x)_2, aryl-OC(=O)R_1^y, NHC(=O)alkylene-heterocycloalkyl, NHC(=O)alkylene-Het, 0-alkylene-0-alkylene-C(=O)OR_1^y, C(=O)alkylene-Het, or NHC(=O)halo-alkyl,

wherein Het is a 5- or 6-membered heterocyclic ring containing at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur, wherein the 5- or 6-membered heterocyclic ring is saturated, partially unsaturated or fully unsaturated, and wherein Het is unsubstituted or substituted with alkyl or C(=O)OR_1^x,

wherein R_1^x is independently hydrogen, unsubstituted or substituted alkyl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted heterocycloalkyl, alkylene-N(R_1^x)_2, unsubstituted or substituted aryl, arylalkyl, alkylenearyl, unsubstituted or substituted heteroaryl, unsubstituted or substituted heteroaryalkyl, or alkyleneheteroaryl, or two R_1^x groups are taken together to form a 5- or 6-membered ring, optionally containing at least one heteroatom,

wherein R_1^y is hydrogen, unsubstituted or substituted alkyl, unsubstituted or substituted aryl, unsubstituted or substituted heteroaryl, arylalkyl, heteroaryalkyl, alkylenearyl, and alkyleneheteroaryl;

m is 0, 1, 2, or 3;

each R_2 is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, or NR_2^xR_2^y, wherein each R_2^x and R_2^y is independently hydrogen, C(0)R_2^x or C(0)OR_2^x, wherein R_2^x is unsubstituted or substituted alkyl;

R_3 is hydrogen, unsubstituted or substituted alkyl, or unsubstituted or substituted haloalkyl; and

R_4 is cyano, CON(R_4^x)_2, S0_2alkyl, halo, or haloalkyl, where each R_4^x is independently hydrogen, or unsubstituted or substituted alkyl.

[0050] In some embodiments of formula (J),

A is N or CH;

n is 0, 1, 2, or 3;

each R_1 is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, hydroxy, unsubstituted or substituted
cycloalkyl, S_{0}2R^{1}, or C(=0)NR_{1}sR^{1}, wherein each R^{1}, R^{1}s and R^{1}l is independently hydrogen or unsubstituted or substituted alkyl;

m is 0, 1, 2, or 3;

each R^{2} is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, or unsubstituted or substituted alkoxy;

R^{3} is hydrogen or unsubstituted or substituted alkyl; and

R^{4} is cyano, CON(R^{4s})_{2}, S_{0}2^{-}alkyl, halo, or haloalkyl, where each R^{4s} is independently hydrogen, or unsubstituted or substituted alkyl.

[0051] In other embodiments of formula (J),

A is N or CH;

n is 0, 1, 2, or 3;

each R^{1} is independently halo, cyano, OR^{lx}, C(=0)OR^{lx}, S_{0}2R^{lx}, or C(=0)N(R^{lx})_{2},

wherein R^{lx} is independently hydrogen, or unsubstituted or substituted alkyl;

m is 0, 1, 2, or 3;

each R^{2} is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, or unsubstituted or substituted alkoxy;

R^{3} is hydrogen, unsubstituted or substituted alkyl, or unsubstituted or substituted haloalkyl; and

R^{4} is cyano, CON(R^{4s})_{2}, halo, or haloalkyl, where each R^{4s} is independently hydrogen, or unsubstituted or substituted alkyl.

[0052] In some embodiments of formula (J), each R^{1} is independently fluoro, chloro, cyano, methyl, CHF_{2}, CF_{3}, methoxy, or hydroxy. In other embodiments of formula (J), each R^{1} is independently halo, cyano, OR^{lx}, C(=0)OR^{lx}, S_{0}2R^{lx}, or C(=0)N(R^{lx})_{2}, wherein R^{lx} is independently hydrogen, or unsubstituted or substituted alkyl.

[0053] In certain embodiments of formula (J), n is 0, 1 or 2. In certain embodiments of formula (J), n is 1 or 2.

[0054] In some embodiments of formula (J), each R^{2} is independently fluoro, chloro, iodo, cyano, methoxy, CHF_{2}, or CF_{3}. In other embodiments of formula (J), each R^{2} is independently halo or substituted alkoxy. In one embodiment, each R^{2} is independently fluoro or -OCF_{3}.

[0055] In certain embodiments of formula (J), m is 1 or 2.
In some embodiments of formula (J), \(R^3 \) is alkyl substituted with halo or alkoxy. In one embodiment, \(R^3 \) is \(-\text{CH}_2\text{CF}_3\) or \(-\text{CH}_2\text{OCH}_3\). In other embodiments of formula (J), \(R^3 \) is unsubstituted alkyl. In one embodiment, \(R^3 \) is methyl, ethyl, propyl or butyl. In another embodiment, \(R^3 \) is methyl or ethyl.

In some embodiments of formula (J), \(R^4 \) is halo. In one embodiment, \(R^4 \) is chloro.

In certain embodiments of formula (J),

- \(n \) is 1, 2, or 3;
- each \(R^1 \) is independently halo, cyano or unsubstituted or substituted alkyl;
- \(m \) is 1, 2, or 3;
- each \(R^2 \) is independently halo or cyano; and
- \(R^3 \) is unsubstituted or substituted alkyl.

In certain embodiments of formula (J),

- \(n \) is 1;
- \(R^1 \) is halo;
- \(m \) is 2;
- each \(R^2 \) is independently halo;
- \(R^3 \) is unsubstituted or substituted alkyl.

In some embodiments of formula (J) where \(A \) is N, the compound is of formula (JA):

or a pharmaceutically acceptable salt, prodrug, or solvate thereof.
In other embodiments of formula (J) where \(A \) is \(CH \), the compound is of formula (JB):

![Chemical structure](image)

(JB),

or a pharmaceutically acceptable salt, prodrug, or solvate thereof.

In some embodiments of formula (JA) or (JB),

each \(R^1 \) is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, hydroxy, unsubstituted or substituted cycloalkyl, \(-SO_2R^{1x}\), or \(-C(0)N(R^{1x})_2\), wherein each \(R^{1x} \) is independently hydrogen or unsubstituted or substituted alkyl;

each \(R^2 \) is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, or \(N(R^{2s})_2 \), wherein each \(R^{2s} \) is independently hydrogen, \(C(0)R^{2s} \) or \(C(0)OR^{2s} \), wherein \(R^{2s} \) is unsubstituted or substituted alkyl; and

\(R^3 \) and \(R^4 \) are as defined for formula (J).

It is intended and understood that each and every variation of \(R^1 \) and \(R^2 \) may be combined with each and every variation of \(n, m, R^3 \) and \(R^4 \) as described for formula (JA) or (JB), as if each and every combination is individually described.

In some embodiments of formula (JA) or (JB), \(R^3 \) is hydrogen. In other embodiments, \(R^3 \) is unsubstituted or substituted alkyl. In certain embodiments, \(R^3 \) is methyl or ethyl. It is intended and understood that each and every variation of \(R^3 \) may be combined with each and every variation of \(n, R^1, m, R^2 \) and \(R^4 \) as described for formula (JA) or (JB), as if each and every combination is individually described.

In some embodiments of formula (JA) or (JB), \(R^4 \) is cyano, fluoro, chloro, \(CONH_2 \), or \(SO_2CH_3 \). In one embodiment, \(R^4 \) is cyano. It is intended and understood that each and every
variation of R^4 may be combined with each and every variation of n, R^1, m, R^2, and R^3 as described for formula (JA) or (JB), as if each and every combination is individually described.

[0065] In some embodiments of formula (J), (JA), or (JB), one or both of the following properties apply:

(i) n is 1, 2 or 3; and
(ii) m is 1, 2 or 3.

It is intended and understood that each and every variation of n and m may be combined with each and every variation of R^1, R^2, R^3 and R^4 as described for formula (J), (JA), and (JB), as if each and every combination is individually described.

[0066] The embodiments and variations described herein are suitable for compounds of any formulae detailed herein, where applicable. For example, the embodiments and structures as described herein with respect to formula (J) are suitable for compounds of any formulae detailed herein, including (JA) and (JB) where applicable.

[0067] In another aspect, provided is a compound of formula (I):

\[
\begin{align*}
\text{(I),} \\
\text{or a pharmaceutically acceptable salt thereof, wherein each of } n, R^1, m, R^2, \text{ and } R^3 \text{ are as defined for formula (J).}
\end{align*}
\]

[0068] In some embodiments of formula (I),

n is 0, 1, 2, or 3;

each R^1 is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, hydroxy, unsubstituted or substituted cycloalkyl, -SO$_2$R1s, or -C(0)NR$^{1s}R^{1t}$, wherein each R^{1s}, R^{1s} and R^{1t} is independently hydrogen or unsubstituted or substituted alkyl;

m is 0, 1, 2, or 3;
each R² is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, or unsubstituted or substituted alkoxy; and

R³ is hydrogen, or unsubstituted or substituted alkyl.

[0069] In some embodiments of formula (I), one or both of the following properties apply:
 (i) n is 1, 2 or 3; and
 (ii) m is 1, 2 or 3.

[0070] In one embodiment of formula (I), n is 0. In other embodiments, n is 1, 2 or 3. In certain embodiments, n is 1 or 2. In one embodiment, n is 1. The R¹ moiety may be located on any position of the quinazolinone ring, as depicted below.

[0071] In another embodiment, n is 2. In embodiments where n is 2, both R¹ may be the same or different. Two R¹ moieties may be located of any two positions of the quinazolinone ring as depicted below. For example, two R¹ moieties may be in para-, meta- or ortho-positions to each other.

[0072] In yet another embodiment, n is 3. In embodiments where n is 3, all R¹ may be the same or different, or two R¹ may be the same and different from the third R¹. Three R¹ moieties may be located on any three positions of the quinazolinone ring as depicted below. For example, the first R¹ may be ortho to the second R¹, and the first R¹ may be para to the third R¹.
In some embodiments of formula (I), each \(R^1 \) is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, or hydroxy. In certain embodiments, each \(R^1 \) is independently halo, cyano, unsubstituted or substituted alkyl, or unsubstituted or substituted haloalkyl.

In some embodiments of formula (I), each \(R^1 \) is independently halo, cyano, unsubstituted or substituted \(C_{1-6} \) alkyl, unsubstituted or substituted \(C_{1-6} \) haloalkyl, unsubstituted or substituted \(C_{1-6} \) alkoxy, hydroxy, or unsubstituted or substituted \(C_{3-6} \) cycloalkyl. In certain embodiments, each \(R^1 \) is independently halo or unsubstituted or substituted \(C_{1-6} \) alkyl.

In certain embodiments of formula (I), each \(R^1 \) is independently fluoro, chloro, cyano, methyl, \(CHF_2, CF_3, \) methoxy, hydroxy, \(CONH_2, SO_2CH_3, \) or cyclopropyl. In one embodiment, each \(R^1 \) is independently fluoro, chloro, cyano, methyl, \(CHF_2, CF_3, \) methoxy, or hydroxy. In another embodiment, each \(R^1 \) is independently fluoro, chloro, cyano or methyl.

In some embodiments of formula (I) where \(n \) is 1, \(R^1 \) is halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, hydroxy, \(-SO_2R^1, \) or \(-C(0)NR^1R^1\) or unsubstituted or substituted cycloalkyl. In certain embodiments where \(n \) is 1, \(R^1 \) is fluoro, chloro, cyano, methyl, ethyl, \(CHF_2, CF_3, \) methoxy, hydroxy, \(CONH_2, SO_2CH_3, \) or cyclopropyl. In one embodiment where \(n \) is 1, \(R^1 \) is fluoro, chloro, hydroxy, methyl, cyano, \(CHF_2, CF_3, \) or methoxy. In another embodiment where \(n \) is 1, \(R^1 \) is fluoro, chloro, or cyano. It should be understood that the \(R^1 \) moiety may be located on any position of the quinazolinone ring.

In other embodiments of formula (I) where \(n \) is 2, both \(R^1 \) are independently halo, which may be the same (\(e.g., \) both \(R^1 \) are fluoro) or which may be different (\(e.g., \) one \(R^1 \) is fluoro and the other \(R^1 \) is chloro). In other embodiments where \(n \) is 2, one \(R^1 \) is halo and the other \(R^1 \) is unsubstituted alkyl. In certain embodiments where \(n \) is 2, both \(R^1 \) are chloro or both \(R^1 \) are fluoro. In yet other embodiments where \(n \) is 2, one \(R^1 \) is chloro and the other \(R^1 \) is fluoro; one \(R^1 \) is chloro and the other \(R^1 \) is methyl; or one \(R^1 \) is fluoro and the other \(R^1 \) is methyl. It should be understood that the two \(R^1 \) moieties may be located of any two positions of the quinazolinone ring as depicted below.
In some embodiments, the moiety \((R^1)_n\) of formula (I) is:

In certain embodiments, the moiety \((R^1)_n\) of formula (I) is:
It is intended and understood that each and every variation of \(n \) and \(R^1 \) may be combined with each and every variation of \(m \), \(R^2 \) and \(R^3 \) as described for formula (I), as if each and every combination is individually described.

In some embodiments of formula (I), \(m \) is 0. In other embodiments, \(m \) is 1, 2 or 3. In yet other embodiments, \(m \) is 1 or 2. In one embodiment, \(m \) is 1. The \(R^2 \) moiety may be located on any position of the phenyl ring, as depicted below.
In another embodiment, \(m = 2 \). In embodiments where \(m = 2 \), both \(R^2 \) may be the same or different. The two \(R^2 \) moieties may be located on any two positions of the phenyl ring, as depicted below.

In yet another embodiment, \(m = 3 \). In embodiments where \(m = 3 \), all \(R^2 \) may be the same or different, or two \(R^2 \) may be the same and different from the third \(R^2 \). The three \(R^2 \) moieties may be located on any three positions of the phenyl ring, as depicted below.

In some embodiments of formula (I), each \(R^2 \) is independently halo, cyano, unsubstituted or substituted \(C_{1-6} \) alkyl, unsubstituted or substituted \(C_{1-6} \) haloalkyl, or unsubstituted or substituted \(C_{1-6} \) alkoxy. In certain embodiments, each \(R^2 \) is independently halo or cyano.

In certain embodiments of formula (I), each \(R^2 \) is independently fluoro, chloro, iodo, cyano, \(-\text{NHC(0)NHCH}_2\text{CH}_3\), methoxy, \(\text{CHF}_2 \), or \(\text{CF}_3 \). In one embodiment, each \(R^2 \) is independently fluoro, chloro, iodo, cyano, methoxy, \(\text{CHF}_2 \), or \(\text{CF}_3 \). In another embodiment, each \(R^2 \) is independently fluoro, chloro, or cyano.

In some embodiments of formula (I), \(m = 1 \) or 2. In some embodiments of formula (I) where \(m = 1 \), \(R^2 \) is halo, cyano, or haloalkyl. In certain embodiments where \(m = 1 \), \(R^2 \) is fluoro,
chloro, cyano, CHF₂, or CF₃. In one embodiment where m is 1, R² is fluoro, chloro, or cyano. It should be understood that the R² moiety may be located on any position of the phenyl ring.

[0087] In some embodiments of formula (I) where m is 2, both R² are independently halo, which may the same (e.g., both R² are fluoro) or which may be different (e.g., one R² is fluoro and the other R² is chloro). In other embodiments where m is 2, both R² are independently unsubstituted or substituted alkyl, which may the same (e.g., both R² are methyl) or which may be different (e.g., one R² is methyl and the other R² is ethyl). In other embodiments where m is 2, both R² are independently unsubstituted or substituted haloalkyl, which may the same (e.g., both R⁹ are CF₃) or which may be different (e.g., one R² is CF₃ and the other R² is CHF₂). In yet other embodiments where m is 2, both R² are independently unsubstituted or substituted alkoxy, which may the same (e.g., both R² are methoxy) or which may be different (e.g., one R² is methoxy and the other R¹ is ethoxy). In other embodiments where m is 2, one R² is halo and the other R² is cyano, one R² is halo and the other R² is unsubstituted or substituted haloalkyl, one R² is halo and the other R² is unsubstituted or substituted alkyl, one R² is halo and the other R² is unsubstituted or substituted alkoxy, or one R² is cyano and the other R² is unsubstituted or substituted haloalkyl.

[0088] In certain embodiments of formula (I) where m is 2, both R² are fluoro, both R² are chloro, or both R² are methoxy. In yet other embodiments where m is 2, one R² is fluoro and the other R² is chloro, one R² is fluoro and the other R² is cyano, one R² is chloro and the other R² is cyano, one R² is fluoro and the other R² is CF₃, one R² is fluoro and the other R² is CHF₂, one R² is chloro and the other R² is CF₃, one R² is chloro and the other R² is CHF₂, one R² is cyano and the other R² is CF₃, or one R² is cyano and the other R² is CHF₂. It should be understood that the two R² moieties may be located on any two positions of the phenyl ring.

[0089] In yet other embodiments of formula (I) where m is 3, one or two of R² are independently halo, which may the same (e.g., two R² are fluoro) or which may be different (e.g., one R² is fluoro and another R² is chloro), the third R² is unsubstituted or substituted alkoxy (e.g., third R² is methoxy). In another embodiment where m is 3, one R² is alkyl, another R² is alkoxy, and the third R² is halo. It should be understood that the three R² moieties may be located on any three positions of the phenyl ring.

[0090] In some embodiments, the moiety of formula (I) is:
It is intended and understood that each and every variation of m and R² may be combined with each and every variation of n, R¹ and R³ as described for formula (I), as if each and every combination is individually described.

In some embodiments, the moiety of formula (I) is:

It is intended and understood that each and every variation of m and R² may be combined with each and every variation of n, R¹ and R³ as described for formula (I), as if each and every combination is individually described.

In some embodiments of formula (I), R³ is hydrogen, or unsubstituted or substituted C₁₋₆ alkyl. In one embodiment, R³ is hydrogen. In another embodiment, R³ is methyl or ethyl. It is intended and understood that each and every variation of R³ may be combined with each and every variation of n, R¹, m and R² as described for formula (I), as if each and every combination is individually described.
In some embodiments of formula (I),
n is 1, 2, or 3;
each R₁ is independently halo, cyano, or unsubstituted or substituted alkyl;
m is 1, 2, or 3;
each R₂ is independently halo or cyano; and
R³ is unsubstituted alkyl.

In one embodiment of formula (I),
n is 1;
R¹ is halo;
m is 2;
each R₂ is independently halo; and
R³ is unsubstituted alkyl.

In some embodiments of formula (I) where n is 2 and m is 2, the compound is of formula (IA-1):

![Chemical structure](image)

(IA-1),
or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein:
each R¹₁a and R¹₁b can be selected from the moieties defined for R₁ of formula (I);
each R²a and R²b can be selected from the moieties defined for R₂ of formula (I); and
R³ is as defined for formula (I).

In certain embodiments of formula (IA-1),
each R¹₁a, R¹₁b is independently halo, cyano, unsubstituted or substituted alkyl,
unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, hydroxy, or
unsubstituted or substituted cycloalkyl;
each R²a and R²b is independently halo, cyano, unsubstituted or substituted alkyl,
unsubstituted or substituted haloalkyl, or unsubstituted or substituted alkoxy; and
R³ is unsubstituted or substituted alkyl.
In one embodiment of formula (IA-1), each $R^{1\text{a}}$ and $R^{1\text{b}}$ is independently hydrogen, halo, cyano, or unsubstituted or substituted alkyl; and each $R^{2\text{a}}$ and $R^{2\text{b}}$ is independently hydrogen, halo, or cyano.

In other embodiments of formula (I) where n is 2 and m is 2, the compound is of formula (IA-2):

![Chemical structure](IA-2)

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein:

- each $R^{1\text{a}}$ and $R^{1\text{b}}$ can be selected from the moieties defined for R^{1} of formula (I);
- each $R^{2\text{a}}$ and $R^{2\text{b}}$ can be selected from the moieties defined for R^{2} of formula (I); and
- R^{3} is as defined for formula (I).

In certain embodiments of formula (IA-1) or (IA-2),

- each $R^{1\text{a}}$ and $R^{1\text{b}}$ is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, hydroxy, or unsubstituted or substituted cycloalkyl;
- each $R^{2\text{a}}$ and $R^{2\text{b}}$ is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, or unsubstituted or substituted alkoxy; and
- R^{3} is unsubstituted or substituted alkyl.

In some embodiments of formula (IA-1) or (IA-2), each $R^{1\text{a}}$ and $R^{1\text{b}}$ is independently halo, cyano, unsubstituted or substituted C_{1-6} alkyl, unsubstituted or substituted C_{1-6} haloalkyl, unsubstituted or substituted C_{1-6} alkoxy, hydroxy, unsubstituted or substituted C_{3-6} cycloalkyl, -$SO_{2}R^{1\text{f}}$, or -$C(0)NR^{1\text{s}}R^{1\text{f}}$, wherein each $R^{1\text{f}}$, $R^{1\text{s}}$ and $R^{1\text{f}}$ is independently hydrogen or unsubstituted or substituted C_{1-6} alkyl. In certain embodiments, each $R^{1\text{a}}$ and $R^{1\text{b}}$ is independently halo, cyano, or unsubstituted alkyl. In one embodiment, each $R^{1\text{a}}$ and $R^{1\text{b}}$ is independently fluoro, chloro, cyano, methyl, CF_{3}, or CHF_{2}. In another embodiment, each $R^{1\text{a}}$ and $R^{1\text{b}}$ is independently fluoro, chloro, cyano, or methyl. It is intended and understood that
each and every variation of \(R^{1a} \) and \(R^{1b} \) may be combined with each and every variation of \(R^{2a} \), \(R^{2b} \), and \(R^{3} \) as described for formula (IA-1) or (IA-2), as if each and every combination is individually described.

[0102] In some embodiments of formula (IA-1) or (IA-2), each \(R^{2a} \) and \(R^{2b} \) is independently halo, cyano, unsubstituted or substituted \(C_{1-6} \) alkyl, unsubstituted or substituted \(C_{1-6} \) haloalkyl, or unsubstituted or substituted \(C_{1-6} \) alkoxy. In certain embodiments, each \(R^{2a} \) and \(R^{2b} \) is independently halo, cyano, or unsubstituted \(C_{1-6} \) alkyl. In one embodiment, each \(R^{2a} \) and \(R^{2b} \) is independently fluoro, chloro, cyano, methyl, \(CF_{3} \), or \(CHF_{2} \). In another embodiment, each \(R^{2a} \) and \(R^{2b} \) is independently fluoro, chloro, or cyano. It is intended and understood that each and every variation of \(R^{2a} \) and \(R^{2b} \) may be combined with each and every variation of \(R^{1a}, R^{1b}, \) and \(R^{3} \) as described for formula (IA-1) or (IA-2), as if each and every combination is individually described.

[0103] In some embodiments, \(R^{3} \) is unsubstituted \(C_{1-6} \) alkyl. In one embodiment, \(R^{3} \) is methyl. In another embodiment, \(R^{3} \) is ethyl. It is intended and understood that each and every variation of \(R^{3} \) may be combined with each and every variation of \(R^{1a}, R^{1b}, R^{2a} \) and \(R^{2b} \) as described for formula (IA-1) or (IA-2), as if each and every combination is individually described.

[0104] In other embodiments of formula (I) where \(n \) is 1 and \(m \) is 2, the compound is of formula (IB-1):

![Chemical Structure](image)

(IB-1),

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein:

- \(R^{1a} \) can be selected from the moieties defined for \(R^{1} \) of formula (I);
- each \(R^{2a} \) and \(R^{2b} \) can be selected from the moieties defined for \(R^{2} \) of formula (I); and
- \(R^{3} \) is as defined for formula (I).

[0105] In some embodiments of formula (IB-1),
R¹_a is halo, cyano, unsubstituted or substituted alkyl, or haloalkyl;
each R²_a and R²_b is independently hydrogen, halo or cyano; and
R³ is unsubstituted or substituted alkyl.

[0106] In yet other embodiments of formula (I) where n is 1 and m is 2, the compound is of
formula (IB-2):

![Chemical Structure](IB-2)

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein each of R¹_a, R²_a, R²_b
and R³ is as defined for formula (IB-1).

[0107] In yet other embodiments of formula (I) where n is 1 and m is 2, the compound is of
formula (IB-3):

![Chemical Structure](IB-3)

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein each of R¹_a, R²_a, R²_b
and R³ is as defined for formula (IB-1).

[0108] In yet other embodiments of formula (I) where n is 1 and m is 2, the compound is of
formula (IB-4):
or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein each of R^{1a}, R^{2a}, R^{2b} and R^3 is as defined for formula (IB-1).

[0109] In certain embodiments of formula (IB-4),

R^{1a} is halo, cyano, unsubstituted or substituted alkyl, or haloalkyl;

each R^{2a} and R^{2b} is independently hydrogen, halo or cyano; and

[0110] In certain embodiments of formula (IB-1), (IB-2), (IB-3), and (IB-4),

R^{1a} is halo, cyano, unsubstituted or substituted alkyl, or unsubstituted or substituted haloalkyl;

each R^{2a} and R^{2b} is independently hydrogen, halo or cyano; and

R^3 is unsubstituted or substituted alkyl.

[0111] In some embodiments of formula (IB-1), (IB-2), (IB-3), and (IB-4), R^{1a} is fluoro or chloro. In one embodiment, R^{1a} is fluoro. In another embodiment, R^{1a} is chloro.

[0112] In other embodiments formula (IB-1), (IB-2), (IB-3), and (IB-4), each R^{2a} and R^{2b} is independently fluoro, chloro, or cyano. In one embodiment, both R^{2a} and R^{2b} are fluoro. In another embodiment, both R^{2a} and R^{2b} are chloro. In another embodiment, R^{2a} is chloro and R^{2b} is fluoro. In yet another embodiment, R^{2a} is fluoro and R^{2b} is chloro.

[0113] In yet other embodiments formula (IB-1), (IB-2), (IB-3), and (IB-4), R^3 is methyl or ethyl. In one embodiment, R^3 is methyl. In another embodiment, R^3 is ethyl.

[0114] It should be understood that the embodiments and structures as described herein with respect to formula (I) are suitable for compounds of any formulae detailed herein, including (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), and (IB-4) where applicable.

[0115] For compounds of the invention, including the compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt thereof, bearing
one or more chiral centers, each unique stereoisomer has a compound number bearing a suffix "a", "b", etc. As an example, Compound 1 bearing one chiral center can be resolved into its individual enantiomers 1a and 1b.

\[\text{Enantiomers } 1a \text{ and } 1b \]

\[\ast = \text{chiral center} \]

[0116] In any one of the foregoing embodiments, the compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt thereof, is the (S)-enantiomer. In other aspects, in any one of the foregoing embodiments, the compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt thereof, is the (R)-enantiomer.

[0117] A composition containing a mixture of enantiomers of the compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt thereof, is also provided herein. In some embodiments, the composition contains the (S)-enantiomer of the compound and is substantially free of its corresponding (R)-enantiomer. In certain embodiments, a composition substantially free of the (R)-enantiomer has less than or about 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.05%, or 0.01% of the (R)-enantiomer. In other embodiments, the composition containing the (S)-enantiomer of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt thereof, predominates over its corresponding (R)-enantiomer by a molar ratio of at least or about 9:1, at least or about 19:1, at least or about 40:1, at least or about 80:1, at least or about 160:1, or at least or about 320:1.

[0118] The composition containing a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt thereof, may also contain the compound in enantiomeric excess (e.e.). For instance, a compound with 95% (^-isomer and 5% (R)-isomer will have an e.e. of 90%. In some embodiments, the compound has an e.e. of at least or about 60%, 75%, 80%, 85%, 90%, 95%, 98% or 99%. In some of the foregoing
embodiments, the compound is enantiomerically-enriched in the (\(^{-}\)-isomer of compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4).

[0119] Provided is also a composition comprising a mixture of the (S)-enantiomer and the (R)-enantiomer of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt thereof. In one embodiment, the mixture is a racemic mixture. In other embodiments, the composition comprises the (S)-enantiomer of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt thereof, wherein the (S)-enantiomer of the compound is present in excess of over the corresponding the (R)-enantiomer of the compound, or a pharmaceutically acceptable salt thereof.

[0120] In certain embodiments, the compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt thereof, is a diastereomer. As an example, Compound 164 is a diastereomer that can be resolved into its individual stereoisomers as depicted below.

![Chemical structures](image)

[0121] In any one of the foregoing embodiments, the compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt thereof, is an atropisomer. A composition containing a mixture of atropisomers of the compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt thereof, is also provided herein. "Atropisomers" refers to conformational stereoisomers which occur when rotation about a single bond in the molecule is prevented, or greatly slowed, as a result of steric interactions with other parts of the molecule and the substituents at both ends of the single bond are asymmetrical, i.e., they do not require a stereocenter. Where the rotational barrier about the single bond is high enough, and interconversion between conformations is slow enough, separation and isolation of the isomeric species may be permitted. Atropisomers are enantiomers without a single asymmetric atom. As an example, Compound 142 can be resolved into its individual atropisomers as depicted below.
Representative compounds of the invention are listed in Table 1 below in its non-isomeric form. The compounds in Table 1 are named using ChemBioDraw Ultra 12.0 and it should be understood that other names may be used to identify compounds of the same structure. Other compounds or radicals may be named with common names, or systematic or non-systematic names. The compounds may also be named using other nomenclature systems and symbols that are commonly recognized in the art of chemistry including, for example, Chemical Abstract Service (CAS) and international Union of Pure and Applied Chemistry (IUPAC). The naming and numbering of the compounds of the present disclosure is illustrated with representative compounds of formula (J), (I), (LA-i), (IA-1), (IB-1), (IB-2), (IB-3), or (IB-4) shown in Table 1 below. The compounds provided in Table 1 may be a single enantiomer (e.g., (S)-enantiomer, (R)-enantiomer), or the compounds may be present in a composition having an enantiomeric mixture.
Table 1. Representative Compounds

<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
<th>Name</th>
<th>#</th>
<th>Structure</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2,4-diamino-6-((1-(5-hydroxy-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2,4-diamino-6-((1-(8-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-8-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3-chlorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3-chlorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2-(1-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3-chlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2,4-diamino-6-((1-(6-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Structure</td>
<td>Name</td>
<td>#</td>
<td>Structure</td>
<td>Name</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>---</td>
<td>----</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3-cyanophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>18.</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-4-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3-cyanophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>19.</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-4-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3-chlorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>20.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3-cyanophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>21.</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>22.</td>
<td></td>
<td>2,4-diamino-6-((1-(8-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile</td>
<td>23.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td>#</td>
<td>Structure</td>
<td>Name</td>
<td>#</td>
<td>Structure</td>
<td>Name</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>--</td>
<td>----</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>2,4-diamino-6-((1-((3-(3-cyano-5-fluorophenyl))-5-methyl-4-oxo-3,4-dihydroquinazolin-2-y)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>30</td>
<td></td>
<td>2,4-diamino-6-((1-((3-(3,5-difluorophenyl))-5,6-difluoro-4-oxo-3,4-dihydroquinazolin-2-y)(propyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td></td>
<td>a: (S)-enantiomer</td>
<td></td>
<td></td>
<td>a: (S)-enantiomer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b: (R)-enantiomer</td>
<td></td>
<td></td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>2,4-diamino-6-((1-((3-(3,5-difluorophenyl))-8-fluoro-5-methyl-4-oxo-3,4-dihydroquinazolin-2-y)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>31</td>
<td></td>
<td>2,4-diamino-6-((1-((3-(3-cyano-5-fluorophenyl))-8-fluoro-5-methyl-4-oxo-3,4-dihydroquinazolin-2-y)(ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td></td>
<td>a: (S)-enantiomer</td>
<td></td>
<td></td>
<td>a: (S)-enantiomer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b: (R)-enantiomer</td>
<td></td>
<td></td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>2,4-diamino-6-((1-((3-(3,5-difluorophenyl))-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-y)propyl)amino)pyrimidine-5-carbonitrile</td>
<td>32</td>
<td></td>
<td>2,4-diamino-6-((1-((3-(3-cyano-5-fluorophenyl))-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-y)(ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td></td>
<td>a: (S)-enantiomer</td>
<td></td>
<td></td>
<td>a: (S)-enantiomer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b: (R)-enantiomer</td>
<td></td>
<td></td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>2,4-diamino-6-((1-((3-(3,5-difluorophenyl))-5,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-y)propyl)amino)pyrimidine-5-carbonitrile</td>
<td>33</td>
<td></td>
<td>2,4-diamino-6-((1-((3-fluoro-3-(3-fluorophenyl))-4-oxo-3,4-dihydroquinazolin-2-y)(ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td></td>
<td>a: (S)-enantiomer</td>
<td></td>
<td></td>
<td>a: (S)-enantiomer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b: (R)-enantiomer</td>
<td></td>
<td></td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>2,4-diamino-6-((1-((3-(3,5-difluorophenyl))-4-oxo-3,4-dihydroquinazolin-2-y)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>34</td>
<td></td>
<td>2,4-diamino-6-((1-((3-(3,5-difluorophenyl))-4-oxo-8-(trifluoromethyl)-3,4-dihydroquinazolin-2-y)(ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td></td>
<td>a: (S)-enantiomer</td>
<td></td>
<td></td>
<td>a: (S)-enantiomer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b: (R)-enantiomer</td>
<td></td>
<td></td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>2,4-diamino-6-((1-((3-(3,5-difluorophenyl))-5,6-difluoro-4-oxo-3,4-dihydroquinazolin-2-y)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>35</td>
<td></td>
<td>2,4-diamino-6-((1-((3-(3,5-difluorophenyl))-5-fluoro-8-methyl-4-oxo-3,4-dihydroquinazolin-2-y)(ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td></td>
<td>a: (S)-enantiomer</td>
<td></td>
<td></td>
<td>a: (S)-enantiomer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b: (R)-enantiomer</td>
<td></td>
<td></td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Structure</td>
<td>Name</td>
<td>#</td>
<td>Structure</td>
<td>Name</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>------</td>
<td>----</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>36.</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl))-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile</td>
<td>42.</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-dichlorophenyl))-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td></td>
<td></td>
<td>NH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td></td>
<td></td>
<td>NH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl))-5-fluoro-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile</td>
<td>43.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3-chloro-5-fluorophenyl))-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3-cyanophenyl))-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>44.</td>
<td></td>
<td>2,4-diamino-6-((1-(3-chloro-5-fluorophenyl))-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td></td>
<td>2,4-diamino-6-((1-(8-methyl-4-oxo-3-(3-(trifluoromethyl)phenyl)-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>45.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3-fluorophenyl))-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-fluoro-4-oxo-3-(3-(trifluoromethyl)phenyl)-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>46.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-fluoro-4-oxo-3-(3-(trifluoromethyl)phenyl)-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3,5-dichlorophenyl))-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>47.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-4-oxo-3-(3-(trifluoromethyl)phenyl)-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td></td>
<td>Cl</td>
<td></td>
<td></td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Structure</td>
<td>Name</td>
<td></td>
<td>#</td>
<td>Structure</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>------</td>
<td>---</td>
<td>----</td>
<td>-----------</td>
</tr>
<tr>
<td>48.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3-cyano-5-fluorophenyl))-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td>54.</td>
</tr>
<tr>
<td>49.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-4-oxo-3-phenyl)-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td>55.</td>
</tr>
<tr>
<td>50.</td>
<td></td>
<td>2,4-diamino-6-((1-(5,8-dichloro-4-oxo-3-phenyl)-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td>56.</td>
</tr>
<tr>
<td>51.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3,5-dimethoxyphenyl))-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td>57.</td>
</tr>
<tr>
<td>52.</td>
<td></td>
<td>2,4-diamino-6-((1-(3,5-difluorophenyl)-3-(3,5-difluorophenyl))-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td>58.</td>
</tr>
<tr>
<td>53.</td>
<td></td>
<td>2,4-diamino-6-((1-(5,8-difluoro-4-oxo-3-phenyl)-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile</td>
<td>a: (S)-enantiomer</td>
<td>b: (R)-enantiomer</td>
<td>59.</td>
</tr>
<tr>
<td>#</td>
<td>Structure</td>
<td>Name</td>
<td>#</td>
<td>Structure</td>
<td>Name</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>--</td>
<td>----</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>2,4-diamino-6-((1-(8-fluoro-5-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)(ethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
<td>66</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3,5-difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>2,4-diamino-6-((1-(5-fluoro-8-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)(ethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
<td>67</td>
<td></td>
<td>2,4-diamino-6-((1-(8-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)(ethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>2,4-diamino-6-((1-(5-(difluoromethyl)-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)(ethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
<td>68</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-8-methoxy-4-oxo-3,4-dihydroquinazolin-2-yl)(ethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3-cyanophenyl)-5-(difluoromethyl)-4-oxo-3,4-dihydroquinazolin-2-yl)(ethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
<td>69</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-6,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)(ethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3-cyanophenyl)-8-fluoro-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)(ethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
<td>70</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-6,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)(ethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3-(difluoromethyl)-5-fluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)(ethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
<td>71</td>
<td></td>
<td>2,4-diamino-6-((1-(8-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)(ethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>#</td>
<td>Structure</td>
<td>Name</td>
<td>#</td>
<td>Structure</td>
<td>Name</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--</td>
<td>----</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>2,4-diamino-6-((1-(8-chloro-3-((3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-y)propyl)amino)pyrimidine-5-carbonitrile</td>
<td>78</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-((3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-y)propyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>a: (S)-enantiomer, b: (R)-enantiomer</td>
<td>79</td>
<td></td>
<td>a: (S)-enantiomer, b: (R)-enantiomer</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>2,4-diamino-6-((1-(5,8-dichloro-3-((3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-y)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>80</td>
<td></td>
<td>2,4-diamino-6-((3,5-difluorophenyl)-6,7-difluoro-4-oxo-3,4-dihydroquinazolin-2-y)methylamino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>a: (S)-enantiomer, b: (R)-enantiomer</td>
<td>81</td>
<td></td>
<td>a: (S)-enantiomer, b: (R)-enantiomer</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-y)propyl)amino)pyrimidine-5-carbonitrile</td>
<td>82</td>
<td></td>
<td>2,4-diamino-6-((1-(3-cyanophenyl)-5-fluoro-8-methyl-4-oxo-3,4-dihydroquinazolin-2-y)ethyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>a: (S)-enantiomer, b: (R)-enantiomer</td>
<td>83</td>
<td></td>
<td>a: (S)-enantiomer, b: (R)-enantiomer</td>
</tr>
<tr>
<td>#</td>
<td>Structure</td>
<td>Name</td>
<td>#</td>
<td>Structure</td>
<td>Name</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>--</td>
<td>----</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>84.</td>
<td></td>
<td>2,4-diamino-6-(((8-chloro-3-(3-cyanophenyl)-4-oxo-3,4-dihydroquinazolin-2-y)(methyl)amino)pyrimidine-5-carbonitrile</td>
<td>89.</td>
<td></td>
<td>2,4-diamino-6-((1-(8-chloro-3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-y)(ethyl)amino)pyrimidine-5-carbonitrile a: (S)-enantiomer b: (R)-enantiomer</td>
</tr>
<tr>
<td>85.</td>
<td></td>
<td>2,4-diamino-6-((1-(6-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-y)(ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>90.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-y)(ethyl)amino)pyrimidine-5-carboxamide a: (S)-enantiomer b: (R)-enantiomer</td>
</tr>
<tr>
<td>86.</td>
<td></td>
<td>2,4-diamino-6-((1-(6-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-y)(propyl)amino)pyrimidine-5-carbonitrile</td>
<td>91.</td>
<td></td>
<td>2-((1-(2,6-diamino-5-cyanopyrimidin-4-y)amino)ethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carboxamide a: (S)-enantiomer b: (R)-enantiomer</td>
</tr>
<tr>
<td>87.</td>
<td></td>
<td>5-(5-chloro-2-(1-((2,6-diamino-5-cyanopyrimidin-4-y)amino)ethyl)-4-oxoquinazolin-3(4H)-yl)isophthalonitrile a: (S)-enantiomer b: (R)-enantiomer</td>
<td>92.</td>
<td></td>
<td>2-((1-(2,6-diamino-5-cyanopyrimidin-4-y)amino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carboxamide a: (S)-enantiomer b: (R)-enantiomer</td>
</tr>
<tr>
<td>88.</td>
<td></td>
<td>2,4-diamino-6-((1-((3-(3,5-bis(trifluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-y)(ethyl)amino)pyrimidine-5-carbonitrile a: (S)-enantiomer b: (R)-enantiomer</td>
<td>93.</td>
<td></td>
<td>2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-y)(ethyl)amino)pyrimidine-5-carboxamide a: (S)-enantiomer b: (R)-enantiomer</td>
</tr>
<tr>
<td>#</td>
<td>Structure</td>
<td>Name</td>
<td>#</td>
<td>Structure</td>
<td>Name</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>--</td>
<td>----</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>5-chloro-2-(1-(2,6-diamino-5-(methylsulfonyl)pyrimidin-4-yl)aminoethyl)-3-(3,5-difluorophenyl)quinoxalin-4(3H)-one</td>
<td>99</td>
<td></td>
<td>2,4-diamo-no-6-(1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile</td>
</tr>
</tbody>
</table>
| | | a: (S)-enantiomer
| | | b: (R)-enatiomer | 100 | ![Structure](image) | 2,4-diamo-no-6-(1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carboxamide |
| | | a: (S)-enantiomer
| | | b: (R)-enatiomer |
| 95 | ![Structure](image) | 2,4-diamo-no-6-(1-(5-(methylsulfonyl)-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile | 101 | ![Structure](image) | 2,4-diamo-no-6-(1-(2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazoline-8-carbonitrile |
| | | a: (S)-enantiomer
| | | b: (R)-enatiomer |
| 96 | ![Structure](image) | 2,4-diamo-no-6-(1-(3-(3,5-difluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile | 102 | ![Structure](image) | 2,4-diamo-no-6-((1-(8-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylamino)pyrimidine-5-carbonitrile |
| | | a: (S)-enantiomer
| | | b: (R)-enatiomer |
| 97 | ![Structure](image) | 2,4-diamo-no-6-(1-(3-(3,5-difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile | 103 | ![Structure](image) | 2,4-diamo-no-6-(1-(3-(3,5-difluorophenyl)-8-ethyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile |
| | | a: (S)-enantiomer
<p>| | | b: (R)-enatiomer |</p>
<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
<th>Name</th>
<th>#</th>
<th>Structure</th>
<th>Name</th>
</tr>
</thead>
</table>
| 104| ![Structure](image) | 5-chloro-2-1-(2,6-diamino-5-chloropyrimidin-4-yl)aminoethyl-3-phenylquinazolin-4(3H)-one
 a: (S)-enantiomer
 b: (R)-enantiomer | 108| ![Structure](image) | 2,4-diamino-6-1-(5-chloro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-y)ethylamino)pyrimidene-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 105| ![Structure](image) | 2-(1-(2,6-diamino-5-chloropyrimidin-4-yl)amino)propyl-3-(3,5-difluorophenyl)-5-fluoroquinazolin-4(3H)-one
 a: (S)-enantiomer
 b: (R)-enantiomer | 109| ![Structure](image) | 2,4-diamino-6-1-(5-chloro-3-(3-methoxy-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-y)ethylamino)pyrimidene-5-carbonitrile
 a: (S)-enantiomer
 a-1 and a-2: atropisomers
 b: (R)-enantiomer
 b-1 and b-2: atropisomers |
| 106| ![Structure](image) | 2,4-diamino-6-1-(5-chloro-3-(3-difluoromethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-y)ethylamino)pyrimidene-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer | 110| ![Structure](image) | 2,4-diamino-6-1-(5-chloro-3-(5-fluoro-3-methoxy-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-y)ethylamino)pyrimidene-5-carbonitrile
 a: (S)-enantiomer
 a-1 and a-2: atropisomers
 b: (R)-enantiomer
 b-1 and b-2: atropisomers |
| 107| ![Structure](image) | 2,4-diamino-6-1-(5-chloro-3-isopropylphenyl)-4-oxo-3,4-dihydroquinazolin-2-y)ethylamino)pyrimidene-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer | 111| ![Structure](image) | 2,4-diamino-6-1-(5-methoxy-4-oxo-3-phenyl)-3,4-dihydroquinazolin-2-y)ethylamino)pyrimidene-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 112| ![Structure](image) | 2-(1-(2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
<th>Description</th>
</tr>
</thead>
</table>
| 113 | ![Structure](image1) | 3-(3-cyano-5-fluorophenyl)-2-(1-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 114 | ![Structure](image2) | 2,4-diamino-6-((1-(3-chloro-5-(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino/pyrimidine
 5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 115 | ![Structure](image3) | 2,4-diamino-6-((1-(5-chloro-3-(3-chloro-5-(difluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino/pyrimidine
 5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 116 | ![Structure](image4) | 2,4-diamino-6-((1-(3-(3-(difluoromethyl)phenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino/pyrimidine
 5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 117 | ![Structure](image5) | 2,4-diamino-6-((1-(3-(3-fluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino/pyrimidine
 5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 118 | ![Structure](image6) | 2,4-diamino-6-((1-(3-(3,5-bis(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino/pyrimidine
 5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 119 | ![Structure](image7) | 2,4-diamino-6-((1-(3-(3,5-bis(difluoromethyl)phenyl)-5-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino/pyrimidine
 5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 120 | ![Structure](image8) | 2,4-diamino-6-((1-(5-chloro-3-(3,2,2-difluoroethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino/pyrimidine
 5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 121 | ![Structure](image9) | 2,4-diamino-6-((1-(3-(3-(2,2-difluoroethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino/pyrimidine
 5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 122 | ![Structure](image10) | 2-(1-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-8-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
<table>
<thead>
<tr>
<th>Number</th>
<th>Chemical Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td></td>
<td>2-(1-((2,6-diamo-5-cyanopyrimidin-4-yl)amino)ethyl)-8-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>2-(1-((2,6-diamo-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3,5-difluorophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazoline-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td>5-chloro-2-(1-((2,6-diamo-5-chloropyrimidin-4-yl)amino)ethyl)-8-fluoro-3-phenylquinazolin-4(3H)-one
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>2,4-diamo-6-((1-(5-bromo-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidin-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>2,4-diamo-6-((1-(5-bromo-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td>2-((1-(2,6-diamo-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3-fluorophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazoline-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td>2,4-diamo-6-((3,3,3-trifluoro-1-(6-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td>2,4-diamo-6-((1-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)3,3,3-trifluoropropyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>2,4-diamo-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)2-methoxyethyl)amino)pyrimidine-5-carbonitrile
a: (S)-enantiomer
b: (R)-enantiomer</td>
</tr>
</tbody>
</table>
WO 2014/100767

2,4-diamino-6-((1-(3,3,5-
3.5-bis(difluoromethyl)phen-
yl)-5-fluoro-4-oxo-3,4-
dihydroquinazolin-2-
yl)ethyl)amino)pyrimid-
ie-5-carbonitrile

a: (S)-enantiomer
b: (R)-enantiomer

PCT/US2013/077315

2,4-diamino-6-((1-(5-
chloro-3-(2,6-
difluorophenyl)-4-oxo-
3,4-dihydroquinazolin-
2-
yl)ethyl)amino)pyrimidi-
ie-5-carbonitrile

a: (S)-enantiomer
b: (R)-enantiomer

2,4-diamino-6-((1-(3-
5-bis(difluoromethyl)phen-
yl)-5-chloro-4-oxo-3,4-
dihydroquinazolin-2-
yl)ethyl)amino)pyrimid-
ie-5-carbonitrile

a: (S)-enantiomer
b: (R)-enantiomer

2,4-diamino-6-((1-(3-
5-cyanopyrimidin-4-
yl)amino)ethyl)-3-(3-
difluoromethyl)-5-
fluorophenyl)-4-oxo-
3,4-dihydroquinazoline-
5-carbonitrile

a: (S)-enantiomer
b: (R)-enantiomer

2,4-diamino-6-((1-(5-
chloro-3-(3,5-
difluorophenyl)-6-
fluoro-4-oxo-3,4-
dihydroquinazolin-
2-
yl)ethyl)amino)pyrimidi-
ie-5-carbonitrile

a: (S)-enantiomer
b: (R)-enantiomer

2,4-diamino-6-((1-(5,
8-difluoro-3-(3-
fluorophenyl)-4-oxo-3,4-
dihydroquinazolin-
2-
yl)ethyl)amino)pyrimidi-
ie-5-carbonitrile

a: (S)-enantiomer
b: (R)-enantiomer

2,4-diamino-6-((1-(5-
chloro-3-(3-
cyano-phenyl)-5-
8-difluoro-4-oxo-3,4-
dihydroquinazolin-
2-
yl)propyl)amino)pyrimi-
dine-5-carbonitrile

a: (S)-enantiomer
b: (R)-enantiomer

2,4-diamino-6-((1-(5,
8-difluoro-3-(3-
fluorophenyl)-4-oxo-
3,4-dihydroquinazolin-
2-
yl)propyl)amino)pyrimi-
dine-5-carbonitrile

a: (S)-enantiomer
b: (R)-enantiomer
<table>
<thead>
<tr>
<th>WO 2014/100767</th>
<th>PCT/US2013/077315</th>
</tr>
</thead>
<tbody>
<tr>
<td>152 2,4-diamino-6-((1-(3-(3-cyanophenyl)-5,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile</td>
<td>160 2-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3-(difluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazoline-8-carbonitrile</td>
</tr>
<tr>
<td>a: (S)-enantiomer b: (R)-enantiomer</td>
<td>a: (S)-enantiomer b: (R)-enantiomer</td>
</tr>
<tr>
<td>153 2-((1-(2,6-diamino-5-chloropyrimidin-4-yl)amino)ethyl)-3-(3-fluorophenyl)-5-(methylsulfonyl)quinazolin-4(3H)-one</td>
<td>161 2-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazoline-8-carbonitrile</td>
</tr>
<tr>
<td>a: (S)-enantiomer b: (R)-enantiomer</td>
<td>a: (S)-enantiomer b: (R)-enantiomer</td>
</tr>
<tr>
<td>154 2-((1-(2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-6-fluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazoline-8-carbonitrile</td>
<td>162 2-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carboxylic acid</td>
</tr>
<tr>
<td>a: (S)-enantiomer b: (R)-enantiomer</td>
<td>a: (S)-enantiomer b: (R)-enantiomer</td>
</tr>
<tr>
<td>155 2-((1-(2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-6-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazoline-8-carbonitrile</td>
<td>163 2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)3-methylbutyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td>a: (S)-enantiomer b: (R)-enantiomer</td>
<td>a: (S)-enantiomer b: (R)-enantiomer</td>
</tr>
<tr>
<td>156 2,4-diamino-6-((1-(8-methoxy-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile</td>
<td>164 2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)2-methylbutyl)amino)pyrimidine-5-carbonitrile</td>
</tr>
<tr>
<td>a: (S)-enantiomer b: (R)-enantiomer</td>
<td>a: (1S, 2S) b: (1S, 2R) c: (1R, 1R) d: (1R, 2S)</td>
</tr>
<tr>
<td>159 2-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-6-carbonitrile</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Chemical Structure</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 182 | ![Chemical Structure](image1) | 2,4-diamino-6-((1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 183 | ![Chemical Structure](image2) | 2,4-diamino-6-((1-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonamide
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 184 | ![Chemical Structure](image3) | 2,4-diamino-6-((1-(5-chloro-3-(3-methoxy-4-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 185 | ![Chemical Structure](image4) | 2,4-diamino-6-((1-(5-chloro-3-(3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 186 | ![Chemical Structure](image5) | 2,4-diamino-6-((1-(5-chloro-3-(4-fluoro-3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 190 | ![Chemical Structure](image6) | 2,4-diamino-6-((1-(5-chloro-3-(3-fluoromethyl)-5-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 192 | ![Chemical Structure](image7) | 2,4-diamino-6-((1-(5-chloro-3-(3-fluoro-5-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 193 | ![Chemical Structure](image8) | 2,4-diamino-6-((1-(5-chloro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 194 | ![Chemical Structure](image9) | 5-chloro-2-((2,6-diamino-5-fluoropyrimidin-4-yl)amino)ethyl)-3-phenylquinazolin-4(3H)-one
 a: (S)-enantiomer
 b: (R)-enantiomer |
| 195 | ![Chemical Structure](image10) | 8-chloro-3-((2,6-diamino-5-chloropyrimidin-4-yl)amino)ethyl)-2-phenylisoquinolin-1(2H)-one
 a: (S)-enantiomer
 b: (R)-enantiomer |
Provided are also compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or pharmaceutically acceptable salts, prodrugs, or solvates thereof, in which from 1 to n hydrogen atoms attached to a carbon atom may be replaced by a deuterium atom or D, in which n is the number of hydrogen atoms in the molecule. As known in the art, the deuterium
atom is a non-radioactive isotope of the hydrogen atom. Such compounds may increase resistance to metabolism, and thus may be useful for increasing the half-life of the compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or pharmaceutically acceptable salts, prodrugs, or solvates thereof, when administered to a mammal. See, e.g., Foster, "Deuterium Isotope Effects in Studies of Drug Metabolism", Trends Pharmacol. Sci., 5(12):524-527 (1984). Such compounds are synthesized by means well known in the art, for example by employing starting materials in which one or more hydrogen atoms have been replaced by deuterium.

[0124] Provided are also pharmaceutically acceptable salts, hydrates, solvates, tautomeric forms, polymorphs, and prodrugs of the compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4).

[0125] "Pharmaceutically acceptable salts" include, for example, salts with inorganic acids and salts with an organic acid. In addition, if the compounds described herein are obtained as an acid addition salt, the free base can be obtained by basifying a solution of the acid salt. Conversely, if the product is a free base, an addition salt, particularly a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds. Those skilled in the art will recognize various synthetic methodologies that may be used to prepare nontoxic pharmaceutically acceptable addition salts.

[0126] A "solvate" is formed by the interaction of a solvent and a compound. Solvates of salts of the compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4) are also provided. Hydrates of the compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4) are also provided.

[0127] A "prodrug" includes any compound that becomes a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4) when administered to a subject, e.g., upon metabolic processing of the prodrug.

[0128] In certain embodiments, provided are optical isomers, racemates, atropisomers, or other mixtures thereof, of the compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or pharmaceutically acceptable salts, prodrugs, or solvates thereof. In those situations, the single enantiomer or diastereomer, i.e., optically active form, can be obtained by
asymmetric synthesis or by resolution of the racemate. Resolution of racemates can be accomplished, for example, by conventional methods such as crystallization in the presence of a resolving agent, or chromatography, using, for example a chiral high pressure liquid chromatography (HPLC) column. In addition, provided are also Z- and E- forms (or cis- and trans- forms) of the compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or pharmaceutically acceptable salts, prodrugs, or solvates thereof with carbon-carbon double bonds. Provided are also all tautomeric forms of the compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or pharmaceutically acceptable salts, prodrugs, or solvates thereof.

[0129] Compositions provided herein that include a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, may include racemic mixtures, or mixtures containing an enantiomeric excess of one enantiomer or single diastereomers or diastereomeric mixtures. All such isomeric forms of these compounds are expressly included herein the same as if each and every isomeric form were specifically and individually listed.

[0130] In certain embodiments, provided herein are also crystalline and amorphous forms of the compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or pharmaceutically acceptable salts, prodrugs, or solvates thereof.

[0131] In certain embodiments, provided are also chelates, non-covalent complexes, and mixtures thereof, of the compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or pharmaceutically acceptable salts, prodrugs, or solvates thereof. A "chelate" is formed by the coordination of a compound to a metal ion at two (or more) points. A "non-covalent complex" is formed by the interaction of a compound and another molecule wherein a covalent bond is not formed between the compound and the molecule. For example, complexation can occur through van der Waals interactions, hydrogen bonding, and electrostatic interactions (also called ionic bonding).

Therapeutic Uses of the Compounds

[0132] The compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof may be used for the treatment of diseases and/or conditions mediated by PI3K isomers, such as PI3K5. Thus, provided herein are methods for inhibiting one or more PI3K isomers. In one embodiment, provided are methods for
inhibiting PI3Kδ activity using a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof. The PI3K isomers may be selectively or specifically inhibited. Additionally, the compounds may be used to inhibit PI3K activity therapeutically or prophylactically.

[0133] In some embodiments, the methods include administering a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, in a therapeutically effective amount to a subject (including a human) in need thereof. The method can be employed to treat a subject who has or is believed to have a disease or condition whose symptoms or pathology is mediated by PI3K5 expression or activity.

[0134] In addition to the therapeutic uses described herein, certain compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, have one or more properties selected from: (i) selectivity to any PI3K isoforms, such as PI3K5; (ii) hepatocyte stability; and (iii) potency in a cellular assay. In one embodiment, certain compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, have selectivity to any PI3K isoforms, such as PI3K5. In other embodiments, certain compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, have selectivity to at least PI3K5. In yet other embodiments, certain compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, have one of the properties selected from: (i) selectivity to PI3Kδ; (ii) hepatocyte stability; and (iii) potency in a cellular assay. In yet other embodiments, certain compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, have selectivity to PI3K5 and hepatocyte stability; or selectivity to PI3K5 and potency in a cellular assay; or hepatocyte stability and potency in a cellular assay. In some embodiments, certain compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof have hepatocyte stability. Hepatocyte stability of a subject can be determined using any methods currently known in the art, including the methods described in the Examples below. For
example, hepatocyte stability may be characterized based on clearance or half-life. In some embodiments, the half-life is greater than or about 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, or 15 hours in human hepatocytes.

[0136] In yet another embodiment, certain compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof have potency in a cellular assay. Potency in a cellular assay can be determined using any methods currently known in the art, including the methods described in the Examples below. In some embodiments, the activity in the cellular assay is less than 10 nM, 9 nM, 8 nM, 7 nM, 6 nM, 5 nM, 4 nM, 3 nM, 2 nM, InM, 0.1 nM, or 0.01 nM.

[0137] For example, certain compounds may have selectivity to at least one PI3K isomer, including PI3K5, and have hepatocyte stability based on a half-life of greater than 3 hours.

[0138] "Treatment" or "treating" is an approach for obtaining beneficial or desired results including clinical results. Beneficial or desired clinical results may include one or more of the following:

a) inhibiting the disease or condition (e.g., decreasing one or more symptoms resulting from the disease or condition, and/or diminishing the extent of the disease or condition);

b) slowing or arresting the development of one or more clinical symptoms associated with the disease or condition (e.g., stabilizing the disease or condition, preventing or delaying the worsening or progression of the disease or condition, and/or preventing or delaying the spread (e.g., metastasis) of the disease or condition); and/or

c) relieving the disease, that is, causing the regression of clinical symptoms (e.g., ameliorating the disease state, providing partial or total remission of the disease or condition, enhancing effect of another medication, delaying the progression of the disease, increasing the quality of life, and/or prolonging survival.

[0139] "Prevention" or "preventing" means any treatment of a disease or condition that causes the clinical symptoms of the disease or condition not to develop. Compounds may, in some embodiments, be administered to a subject (including a human) who is at risk or has a family history of the disease or condition.

[0140] "Subject" refers to an animal, such as a mammal (including a human), that has been or will be the object of treatment, observation or experiment. The methods described herein may
be useful in human therapy and/or veterinary applications. In some embodiments, the subject is a mammal. In one embodiment, the subject is a human.

[0141] The term "therapeutically effective amount" of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, means an amount sufficient to effect treatment when administered to a subject, to provide a therapeutic benefit such as amelioration of symptoms or slowing of disease progression. For example, a therapeutically effective amount may be an amount sufficient to decrease a symptom of a disease or condition responsive to inhibition of PI3K5 activity. The therapeutically effective amount may vary depending on the subject, and disease or condition being treated, the weight and age of the subject, the severity of the disease or condition, and the manner of administering, which can readily be determined by one or ordinary skill in the art.

[0142] The term "inhibition" indicates a decrease in the baseline activity of a biological activity or process. "Inhibition of activity of PI3K isomers" or variants thereof refer to a decrease in activity in any PI3K isomer (e.g., alpha, beta, gamma, or delta) as a direct or indirect response to the presence of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvent thereof, relative to the activity of PI3K isomer in the absence of the compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvent thereof. "Inhibition of PI3K5 activity" or variants thereof refer to a decrease in PI3K5 activity as a direct or indirect response to the presence of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, relative to the activity of PI3K5 in the absence of the compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof. In some embodiments, the inhibition of PI3K5 activity may be compared in the same subject prior to treatment, or other subjects not receiving the treatment.

[0143] Without wishing to be bound to any theory, the decrease in PI3K5 activity may be due to the direct interaction of the compound with PI3K5, or due to the interaction of the compounds described herein with one or more other factors that in turn affect PI3K5 activity. For example, the presence of the compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, may decrease PI3K5 activity by directly binding to the PI3K5, by causing (directly or indirectly) another factor to decrease PI3K5 activity, or by (directly or indirectly) decreasing the amount of PI3K5 present in the cell or organism.
The terms "PI3K isoform selective inhibitor" generally refers to a compound that inhibits the activity of one or more PI3K isoforms more effectively than the other remaining PI3K isoforms. By way of example, the term "PI3K5 selective inhibitor" generally refers to a compound that inhibits the activity of the PI3K5 isoform more effectively than other isoforms of the PI3K family (e.g., PI3K α, β, or γ). The term "PDKα selective inhibitor" generally refers to a compound that inhibits the activity of the PDKα isoform more effectively than other isoforms of the PDK family (e.g., PDK β, δ, or γ). The term "PI3Kβ selective inhibitor" generally refers to a compound that inhibits the activity of the PI3Kβ isoform more effectively than other isoforms of the PDK family (e.g., PDK α, δ, or γ). The term "dual PDKα/β selective inhibitor" generally refers to a compound that inhibits the activity of the PDKα and PI3Kβ isoforms more effectively than other isoforms of the PDK family (e.g., PDK δ or γ).

The relative efficacies of compounds as inhibitors of an enzyme activity (or other biological activity) can be established by determining the concentrations at which each compound inhibits the activity to a predefined extent and then comparing the results. In one embodiment, the efficacy of a compound as an inhibitor of one or more PDK isoforms can be measured by the concentration that inhibits 50% of the activity in a biochemical assay, i.e., the IC_{50} inhibitor concentration or "IC_{50}". IC_{50} determinations can be accomplished using conventional techniques known in the art, including the techniques described in the Examples below. In general, an IC_{50} can be determined by measuring the activity of a given enzyme in the presence of a range of concentrations of the compound under study. The experimentally obtained values of enzyme activity may then be plotted against the compound concentrations used. The concentration of the inhibitor that shows 50% enzyme activity (as compared to the activity in the absence of any inhibitor) is taken as the IC_{50} value. Analogously, other inhibitory concentrations can be defined through appropriate determinations of activity. For example, in some settings it may be desirable to establish a 90% inhibitory concentration, i.e., IC_{90}.

In one embodiment, a PI3K5 selective inhibitor is a compound that exhibits a 50% inhibitory concentration (IC_{50}) with respect to PI3K5 that is at least 10-fold, in another aspect at least 20-fold, and in another aspect at least 30-fold, lower than the IC_{50} value with respect to any or all of the other Class I PDK family members. In another embodiment, a PI3K5 selective inhibitor is a compound that exhibits an IC_{50} with respect to PI3K5 that is at least 50-fold, in another aspect at least 100-fold, in an additional aspect at least 200-fold, and in yet another aspect at least 500-fold, lower than the IC_{50} with respect to any or all of the other PDK Class I
family members. A PI3K5 selective inhibitor is typically administered in an amount such that it selectively inhibits PI3K5 activity, as described above.

[0147] In one embodiment, a PDKα selective inhibitor is a compound that exhibits a 50% inhibitory concentration (IC₅₀) with respect to PI3Kβ that is at least 10-fold, in another aspect at least 20-fold, and in another aspect at least 30-fold, lower than the IC₅₀ value with respect to any or all of the other Class I PDK family members. In another embodiment, a PDKα selective inhibitor is a compound that exhibits an IC₅₀ with respect to PDKα that is at least 50-fold, in another aspect at least 100-fold, in an additional aspect at least 200-fold, and in yet another aspect at least 500-fold, lower than the IC₅₀ with respect to any or all of the other PDK Class I family members. A PDKα selective inhibitor is typically administered in an amount such that it selectively inhibits PDKα activity, as described above.

[0148] In one embodiment, a PI3Kβ selective inhibitor is a compound that exhibits a 50% inhibitory concentration (IC₅₀) with respect to PI3Kβ that is at least 10-fold, in another aspect at least 20-fold, and in another aspect at least 30-fold, lower than the IC₅₀ value with respect to any or all of the other Class I PDK family members. In another embodiment, a PI3Kβ selective inhibitor is a compound that exhibits an IC₅₀ with respect to PI3Kβ that is at least 50-fold, in another aspect at least 100-fold, in an additional aspect at least 200-fold, and in yet another aspect at least 500-fold, lower than the IC₅₀ with respect to any or all of the other PDK Class I family members. A PI3Kβ selective inhibitor is typically administered in an amount such that it selectively inhibits PI3Kβ activity, as described above.

[0149] In one embodiment, a dual PI3Kα/β selective inhibitor is a compound that exhibits a 50% inhibitory concentration (IC₅₀) with respect to PDKα and PI3Kβ that is at least 10-fold, in another aspect at least 20-fold, and in another aspect at least 30-fold, lower than the IC₅₀ value with respect to any or all of the other Class I PDK family members. In another embodiment, a dual PI3Kα/β selective inhibitor is a compound that exhibits an IC₅₀ with respect to PDKα and PI3Kβ that is at least 50-fold, in another aspect at least 100-fold, in an additional aspect at least 200-fold, and in yet another aspect at least 500-fold, lower than the IC₅₀ with respect to any or all of the other PDK Class I family members. A dual PI3Kα/β selective inhibitor is typically administered in an amount such that it selectively inhibits PDKα and PI3Kβ activity, as described above.

[0150] The methods described herein may be applied to cell populations in vivo or ex vivo. "In vivo" means within a living individual, as within an animal or human. In this context, the
methods described herein may be used therapeutically in an individual. "Ex vivo" means outside of a living individual. Examples of ex vivo cell populations include in vitro cell cultures and biological samples including fluid or tissue samples obtained from individuals. Such samples may be obtained by methods well known in the art. Exemplary biological fluid samples include blood, cerebrospinal fluid, urine, and saliva. Exemplary tissue samples include tumors and biopsies thereof. In this context, the invention may be used for a variety of purposes, including therapeutic and experimental purposes. For example, the invention may be used ex vivo to determine the optimal schedule and/or dosing of administration of a PI3K5 selective inhibitor for a given indication, cell type, individual, and other parameters. Information gleaned from such use may be used for experimental purposes or in the clinic to set protocols for in vivo treatment. Other ex vivo uses for which the invention may be suited are described below or will become apparent to those skilled in the art. The selected compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, may be further characterized to examine the safety or tolerance dosage in human or non-human subjects. Such properties may be examined using commonly known methods to those skilled in the art.

[0151] Compared to other PI3K isoforms, PI3K5 is generally expressed in hematopoietic cells. Consequently, the direct effects of selective inhibitors of PI3K5 can be observed in hematopoietic cells. Hematopoietic cells typically differentiate into either lymphoid progenitor cells or myeloid progenitor cells, both of which ultimately differentiate into various mature cell types including leukocytes. Aberrant proliferation of hematopoietic cells of one type often interferes with the production or survival of other hematopoietic cell types, which can result in compromised immunity, anemia, and/or thrombocytopenia. The methods described herein may treat aberrant proliferation of hematopoietic cells by inhibiting aberrant proliferation of hematopoietic cells. As a result, these methods may also ameliorate the symptoms and secondary conditions that result from a primary effect such as excessive system or localized levels of leukocytes or lymphocytes.

[0152] In some embodiments, the compounds described herein may be used to treat subjects having various disease states, disorders, and conditions (also collectively referred to as "indications") involving aberrant proliferation of hematopoietic cells (including excessive production of lymphoid progenitor cell-derived cells and/or myeloid progenitor cell-derived cells). Such indications may include, for example, leukemias, lymphomas, myeloproliferative disorders, myelodysplasia syndromes, and plasma cell neoplasms. In certain embodiments, the
compounds described herein may be used to treat hematologic malignancies, inflammation, autoimmune disorders, allergic conditions, cardiovascular disease, and autoimmune diseases. In certain embodiments, allergic conditions may include all forms of hypersensitivity.

[0153] In other embodiments, the compounds described herein may be used to treat cancers that are mediated by, dependent on or associated with PI3K activity, such as PI3K5 activity. In certain embodiments, the disease is a hematologic malignancy. In certain embodiments, the disease is lymphoma, multiple myeloma, or leukemia. In particular embodiments, the hematologic malignancy is leukemia or lymphoma. In specific embodiments, the disease is acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), myelodyplasia syndrome (MDS), myeloproliferative disease (MPD), chronic myeloid leukemia (CML), juvenile myelomonocytic leukemia (JMML), multiple myeloma (MM), Hodgkin lymphoma, indolent non-Hodgkin's lymphoma (iNHL), refractory iNHL, non-Hodgkin's lymphoma (NHL), mantle cell lymphoma (MCL), follicular lymphoma, Waldenstrom's macroglobulinemia (WM), minimal residual disease (MRD), T-cell lymphoma, B-cell lymphoma, diffuse large B-cell lymphoma (DLBCL), T-cell acute lymphoblastic leukemia (T-ALL), B-cell acute lymphoblastic leukemia (B-ALL), lymphoplasmacytic lymphoma, marginal zone lymphoma, or Burkitt lymphoma. In one embodiment, the disease is T-cell acute lymphoblastic leukemia (T-ALL), or B-cell acute lymphoblastic leukemia (B-ALL). It should be understood that the non-Hodgkin lymphoma may, in certain embodiments, encompass the indolent B-cell diseases that include, for example, follicular lymphoma, lymphoplasmacytic lymphoma, Waldenstrom macroglobulinemia, and marginal zone lymphoma, as well as the aggressive lymphomas that include, for example, Burkitt lymphoma, diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL).

[0154] In other embodiments, the disease is a solid tumor. In particular embodiments, the solid tumor is from pancreatic cancer, bladder cancer, colorectal cancer, breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancers, CNS cancers, brain tumors (e.g., glioma, anaplastic oligodendroglioma, adult glioblastoma multiforme, and adult anaplastic astrocytoma), bone cancer, or soft tissue sarcoma. In some embodiments, the solid tumor is from non-small cell lung cancer, small-cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer, or breast cancer.

[0155] In some embodiments, the disease is an autoimmune disease. In particular embodiments, the autoimmune disease is systemic lupus erythematosus (SLE), myestenia gravis,
rheumatoid arthritis (RA), acute disseminated encephalomyelitis, idiopathic thrombocytopenic purpura, multiple sclerosis (MS), Sjogren's syndrome, psoriasis, autoimmune hemolytic anemia, asthma, or chronic obstructive pulmonary disease (COPD). In other embodiments, the disease is inflammation. In yet other embodiments, the disease is excessive or destructive immune reactions, such as asthma, rheumatoid arthritis, multiple sclerosis, chronic obstructive pulmonary disease (COPD), and lupus.

[0156] Provided is a method for treating a subject, who has or is suspected of having a disease or condition responsive or believed to be responsive to the inhibition of PI3K5 activity by administering to the subject a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof.

[0157] Provided is also a method of inhibiting kinase activity of a phosphatidylinositol 3-kinase delta polypeptide by contacting the polypeptide with a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof.

[0158] Provided is also a method of disrupting leukocyte function comprising contacting the leukocytes with an effective amount of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, in a subject in need thereof (e.g., a human).

[0159] Provided is also a method of inhibiting a growth or a proliferation of cancer cells of hematopoietic origin comprising contacting the cancer cells with an effective amount of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof. Also provided is a method for increasing sensitivity of cancer cells to chemotherapy, comprising administering to a patient undergoing chemotherapy with a chemotherapeutic agent an amount a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, sufficient to increase the sensitivity of cancer cells to the chemotherapeutic agent.

Combination Therapies

[0160] In one embodiment, the compounds of the present application (e.g., a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof) may be used in combination with one or more additional
therapeutic agent that are being used and/or developed to treat cancers or inflammatory disorders. The one or more additional therapeutic agent may be an inhibitor to PI3K such as PI3Kγ, PKBβ, and/or PKBα, Janus kinase (JAK) such as JAK1, JAK2 and/or JAK3, spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK), bromodomain containing protein inhibitor (BRD) such as BRD4, a lysyl oxidase protein (LOX), lysyl oxidase-like protein (LOXL) such as LOXL1-5, matrix metalloprotease (MMP) such as MMP 1-10, adenosine A2B receptor (A2B), isocitrate dehydrogenase (IDH) such as IDH1, apoptosis signal-regulating kinase (ASK) such as ASK1, serine/threonine kinase TPL2, discoidin domain receptor (DDR) such as DDR1 and DDR2, histone deacetylase (HDAC), protein kinase C (PKC), or any combination thereof.

[0161] One, two, three, or more of the therapeutic agents (e.g. a PI3K inhibitor, a JAK inhibitor, a SYK inhibitor, a BTK inhibitor, a BRD4 inhibitor, a LOXL2 inhibitor, a MMP9 inhibitor, a A2B inhibitor, an IDH inhibitor, an ASK inhibitor, a TPL2 inhibitor, a DDR1 inhibitor, a TBK inhibitor, a HDAC inhibitor, a PKC inhibitor) may be further used or combined with a chemotherapeutic agent, an immunotherapeutic agent, a radiotherapeutic agent, an anti-neoplastic agent, an anti-cancer agent, an anti-fibrotic agent, an anti-angiogenic agent, a therapeutic antibody, or any combination thereof.

[0162] Chemotherapeutic agents may be categorized by their mechanism of action into, for example, the following groups: anti-metabolites/anti-cancer agents, such as pyrimidine analogs (flouxuridine, capecitabine, and cytarabine); purine analogs, folate antagonists and related inhibitors antiproliferative/antimitotic agents including natural products such as vinca alkaloid (vinblastine, vincristine) and microtubule such as taxane (paclitaxel, docetaxel), vinblastin, nocodazole, epothilones and navelbine, epidipodophyllotoxins (etoposide, teniposide); DNA damaging agents (actinomycin, amsacrine, busulfan, carboplatin, chlorambucil, cisplatin, cyclophosphamide, Cytoxan, dactinomycin, daunorubicin, doxorubicin, epirubicin, ifosphamide, melphalan, merchlorehtamine, mitomycin, mitoxantrone, nitrosourea, procarbazine, taxol, taxotere, teniposide, etoposide, triethyleneithiophosphoramide); antibiotics such as dactinomycin (actinomycin D), daunorubicin, doxorubicin (adriamycin), idarubicin, anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin) and mitomycin; enzymes (L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine); antiplatelet agents; antiproliferative/antimitotic alkylating agents such as nitrogen mustards cyclophosphamide and analogs, melphalan, chlorambucil), and (hexamethylmelamine and thiotepa), alkyl nitrosoureas (BCNU)
and analogs, streptozocin), trazenes-dacarbazine (DTIC); antiproliferative/antimitotic antimetabolites such as folic acid analogs (methotrexate); platinum coordination complexes (cisplatin, oxaloplatinim, carboplatin), procarbazine, hydroxyurea, mitotane, aminogluthethimide; hormones, hormone analogs (estrogen, tamoxifen, goserelin, bicalutamide, nilutamide) and aromatase inhibitors (letrozole, anastrozole); anticoagulants (heparin, synthetic heparin salts and other inhibitors of thrombin); fibrinolytic agents (such as tissue plasminogen activator, streptokinase and urokinase), aspirin, dipyridamole, ticlopidine, clopidogrel; antimigratory agents; antisecretory agents (breveldin); immunosuppressives tacrolimus sirolimus azathioprine, mycophenolate; compounds (TNP-470, genistein) and growth factor inhibitors (vascular endothelial growth factor inhibitors, fibroblast growth factor inhibitors); angiotensin receptor blocker, nitric oxide donors; anti-sense oligonucleotides; antibodies (trastuzumab, rituximab); cell cycle inhibitors and differentiation inducers (tretinoin); inhibitors, topoisomerase inhibitors (doxorubicin (adriamycin), daunorubicin, dactinomycin, eniposide, epirubicin, etoposide, idarubicin, irinotecan and mitoxantrone, topotecan, irinotecan, camptothesin), corticosteroids (cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisone, and prenisolone); growth factor signal transduction kinase inhibitors; dysfunction inducers, toxins such as Cholera toxin, ricin, Pseudomonas exotoxin, Bordetella pertussis adenylate cyclase toxin, or diphtheria toxin, and caspase activators; and chromatin.

[0163] As used herein the term "chemotherapeutic agent" or "chemotherapeutic" (or "chemotherapy," in the case of treatment with a chemotherapeutic agent) may encompass any non-proteinaceous (e.g., non-peptidic) chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and cyclophosphamide; alkyl sulfonates such as busulfan, imposulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; emylumines and memylamelamines including alfretamine, triemyleinemelamine, triethylenephosphoramidine, triethylenetriphosphoramidine and trimemylolomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (articulary cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CBI-TMI); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chloronaphazine, chlorophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosoareas such as Carmustine, chlorozotocin, foremustine, lomustine, nimustine, ranimustine; antibiotics such as the enediyne
antibiotics (e.g., calicheamicin, especially calicheamicin gammall and calicheamicin phill, see, e.g., Agnew, Chem. Intl. Ed. Engl, 33:183-186 (1994); dynemicin, including dynemicin A; bisphosphonates, such as clodronate; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antibiotic chromomophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabinc, carminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycphenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as demopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogues such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, meptiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replinisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; hestrabucil; bisantrene; edatrazate; defofamine; demecolcine; diaziquone; elormthine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; leucovorin; lonidamine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mpopidamol; nitracrine; pentostatin; phenamet; pirarubicin; losoxantrone; fluoropyrimidine; folinic acid; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK(r); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2',2"-tricUorotriemylamine; trichotheccenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethane; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); cyclophosphamide; thiopeta; taxoids, e.g., paclitaxel (TAXOL(r)) and docetaxel (TAXOTERE(r)); chlorambucil; gemcitabine (Gemzar(r)); 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitroantrone; vancristine; vinorelbine (Navelbine(r)); novantrone; teniposide; edatrexate; daunomycin; aminopterin; xeoloda; ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluoromethylnithine (DMFO); retinoids such as retinoic acid; capecitabine; FOLFIRI (fluorouracil, leucovorin, and irinotecan) and pharmaceutically acceptable salts, acids or derivatives of any of the above. One or more chemotherapeutic agent are used or included in the
present application. For example, gemcitabine, nab-paclitaxel, and gemcitabine/nab-paclitaxel are used with the JAK inhibitor and/or PI3K5 inhibitor for treating hyperproliferative disorders.

[0164] Chemotherapeutic agents may also include, for example, anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including Nolvadex™), raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (Fareston(r)); inhibitors of the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminogluthethimide, megestrol acetate (Mega(r)), exemestane, formestane, fadrozole, vorozole (Rvisor(r)), letrozole (Femara(r)), and anastrozole (Arimidex(r)); and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprohde, and goserelin; and pharmaceutically acceptable salts, acids or derivatives of any of the above.

[0165] The anti-angiogenic agents include, but are not limited to, retinoid acid and derivatives thereof, 2-methoxyestradiol, ANGIOSTATIN(r), ENDOSTATIN(r), suramin, squalamine, tissue inhibitor of metalloproteinase-1, tissue inhibitor of metalloprotemase-2, plasminogen activator inhibitor-1, plasminogen activator inhibitor-2, cartilage-derived inhibitor, paclitaxel (nab-paclitaxel), platelet factor 4, protamine sulphate (clupeine), sulphated chitin derivatives (prepared from queen crab shells), sulphated polysaccharide peptidoglycan complex (sp-pg), staurosporine, modulators of matrix metabolism, including for example, proline analogs ((l-azetidine-2-carboxylic acid (LACA), cishydroxyproline, dI-3,4-dehydroproline, thiaproline, .alpha.-dipyridyl, beta-aminopropionitrile fumarate, 4-propyl-5-(4-pyridinyl)-2(3h)-oxazolone; methotrexate, mitoxantrone, heparin, interferons, 2 macroglobulin-serum, chimp-3, chemostatin, beta-cyclodextrin tetradesacylate, eponemycin; fumagillin, gold sodium thiomalate, d-penicillamine (CDPT), beta-1-anticollagenase-serum, alpha-2-antiplasmin, bisantrene, lobenzarit disodium, n-2-carboxyphenyl-4-chloroanthronilic acid disodium or "CCA", thalidomide; angiostatic steroid, cargboxyaminolmidazole; metalloproteinase inhibitors such as BB94. Other anti-angiogenesis agents include antibodies, preferably monoclonal antibodies against these angiogenic growth factors: beta-FGF, alpha-FGF, FGF-5, VEGF isoforms, VEGF-C, HGF/SF and Ang-1/Ang-2. See Ferrara N. and Alitalo, K. "Clinical application of angiogenic growth factors and their inhibitors" (1999) Nature Medicine 5:1359-1364.

[0166] The anti-fibrotic agents include, but are not limited to, the compounds such as beta-aminopropionitrile (BAPN), as well as the compounds disclosed in U.S. Pat. No. 4,965,288 to Palfreyman, et al., issued Oct. 23, 1990, entitled "Inhibitors of lysyl oxidase," relating to
inhibitors of lysyl oxidase and their use in the treatment of diseases and conditions associated with the abnormal deposition of collagen; U.S. Pat. No. 4,997,854 to Kagan, et al., issued Mar. 5, 1991, entitled "Anti-fibrotic agents and methods for inhibiting the activity of lysyl oxidase in situ using adjacent positioned diamine analogue substrate," relating to compounds which inhibit LOX for the treatment of various pathological fibrotic states, which are herein incorporated by reference. Further exemplary inhibitors are described in U.S. Pat. No. 4,943,593 to Palfreyman, et al., issued Jul. 24, 1990, entitled "Inhibitors of lysyl oxidase," relating to compounds such as 2-isobutyl-3-fluoro-, chloro-, or bromo-allylamine; as well as, e.g., U.S. Pat. No. 5,021,456; U.S. Pat. No. 5,5059,714; U.S. Pat. No. 5,120,764; U.S. Pat. No. 5,182,297; U.S. Pat. No. 5,252,608 (relating to 2-(1-naphthyloxymethyl)-3-fluoroallylamine); and U.S. Patent Application No. 2004/0248871, which are herein incorporated by reference. Exemplary anti-fibrotic agents also include the primary amines reacting with the carbonyl group of the active site of the lysyl oxidases, and more particularly those which produce, after binding with the carbonyl, a product stabilized by resonance, such as the following primary amines: emylenemamine, hydrazine, phenylhydrazine, and their derivatives, semicarbazide, and urea derivatives, aminonitriles, such as beta-aminopropionitrile (BAPN), or 2-nitroethylamine, unsaturated or saturated haloamines, such as 2-bromo-ethylamine, 2-chloroethylamine, 2-trifluoroethylamine, 3-bromopropylamine, p-halobenzylamines, selenohomocysteine lactone. Also, the anti-fibrotic agents are copper chelating agents, penetrating or not penetrating the cells. Exemplary compounds include indirect inhibitors such compounds blocking the aldehyde derivatives originating from the oxidative deamination of the lysyl and hydroxyllysyl residues by the lysyl oxidases, such as the thiolamines, in particular D-penicillamine, or its analogues such as 2-amino-5-mercapto-5-methylhexanoic acid, D-2-amino-3-methyl-3-((2-acetamidoethyl)dithio)butanoic acid, p-2-amino-3-methyl-3-((2-aminoethyl)dithio)butanoic acid, sodium-4-((1-dimethyl-2-amino-2-carboxylethyl)dithio)butane sulphurate, 2-acetamidoethyl-2-acetamidoethanethiol sulphanate, sodium-4-mercaptobutanesulphinate trihydrate.

[0167] The immunotherapeutic agents include and are not limited to therapeutic antibodies suitable for treating patients; such as abagovomab, adecatumumab, afutuzumab, alemtuzumab, altumomab, amatuximab, anatumomab, arcitumomab, bavituximab, bectumomab, bevacizumab, bivatuzumab, blinatumomab, brentuximab, cantuzumab, catumaxomab, cetuximab, citatumumab, cixutumumab, clivatuzumab, conatumumab, daratumumab, drozitumab, duligotumab, dusigitumab, detumomab, dacetuzumab, dalotuzumab, ecromeximab, elotuzumab, ensituximab, ertumaxomab, etaracizumab, faricetuzumab, ficlatuzumab, fitumumab, flanvotumab, futuximab, ganitumab, gemtuzumab, girentuximab, glembatumumab, ibritumomab, igomab,
imgatuzumab, indatuximab, inotuzumab, intetumumab, ipilimumab, iratumumab, labetuzumab, lexatumumab, lintuzumab, lorvotuzumab, lucatumumab, mapatumumab, matuzumab, milatuzumab, minretumomab, mitomomab, moxetumomab, narnatumab, napatumomab, necitumumab, , nimotuzumab, nofetumomabn, ocaratuzumab, ofatumumab, olaratumab, onartuzumab, oportuzumab, oregovomab, panitumumab, parsatuzumab, patritumab, pemtumomab, pertuzumab, pintumomab, pratumumab, racotumomab, radretumab, rituximab, robatumumab, satumomab, sibrotuzumab, siltuximab, simtuzumab, solitomab, tacatuzumab, taplitumomab, tenatumomab, teprotumumab, tigatuzumab, tositumomab, trastuzumab, tucotuzumab, ublituximab, veltuzumab, vorsetuzumab, votumumab, zalutumumab, CC49 and 3F8. The exemplified therapeutic antibodies may be further labeled or combined with a radioisotope particle, such as indium In 111, yttrium Y 90, iodine 1-131.

[0168] The application also provides method for treating a subject who is undergoing one or more standard therapies, such as chemotherapy, radiotherapy, immunotherapy, surgery, or combination thereof. Accordingly, one or more therapeutic agent or inhibitors may be administered before, during, or after administration of chemotherapy, radiotherapy, immunotherapy, surgery or combination thereof.

[0169] In certain embodiments, the subject may be a human who is (i) substantially refractory to at least one chemotherapy treatment, or (ii) in relapse after treatment with chemotherapy, or both (i) and (ii). In some of embodiments, the subject is refractory to at least two, at least three, or at least four chemotherapy treatments (including standard or experimental chemotherapies).

[0170] In certain embodiments, the subject is refractory to at least one, at least two, at least three, or at least four chemotherapy treatment (including standard or experimental chemotherapy) selected from fludarabine, rituximab, obinutuzumab, alkylating agents, alemtuzumab and other chemotherapy treatments such as CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone); R-CHOP (rituximab-CHOP); hyperCVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, cytarabine); R-hyperCVAD (rituximab-hyperCVAD); FCM (fludarabine, cyclophosphamide, mitoxantrone); R-FCM (rituximab, fludarabine, cyclophosphamide, mitoxantrone); bortezomib and rituximab; temsirolimus and rituximab; temsirolimus and Velcade®; Iodine- 131 tositumomab (Bexxar®) and CHOP; CVP (cyclophosphamide, vincristine, prednisone); R-CVP (rituximab-CVP); ICE (iposphamide, carboplatin, etoposide); R-ICE (rituximab-ICE); FCR
(fludarabine, cyclophosphamide, rituximab); FR (fludarabine, rituximab); and D.T. PACE (dexamethasone, thalidomide, cisplatin, Adriamycin®, cyclophosphamide, etoposide).

[0172] Examples of immunotherapeutic agents treating lymphoma or leukemia include, but are not limited to, rituximab (such as Rituxan), alemtuzumab (such as Campath, MabCampath), anti-CD19 antibodies, anti-CD20 antibodies, anti-MN-14 antibodies, anti-TRAIL, Anti-TRAIL DR4 and DR5 antibodies, anti-CD74 antibodies, apolizumab, bevacizumab, CHIR-12.12, epratuzumab (hHL2- anti-CD22 humanized antibody), galiximab, ha20, ibritumomab tiuxetan, lumiliximab, milatuzumab, ofatumumab, PROD 1921, SGN-40, WT-1 analog peptide vaccine, WT1 126-134 peptide vaccine, tositumomab, autologous human tumor-derived HSPPC-96, and veltuzumab. Additional immunotherapy agents includes using cancer vaccines based upon the genetic makeup of an individual patient's tumor, such as lymphoma vaccine example is GTOP-99 (MyVax®).

[0173] Examples of chemotherapy agents for treating lymphoma or leukemia include aldesleukin, alvocidib, antineoplaston AS2-1, antineoplaston A10, anti-thymocyte globulin, amifostine trihydrate, aminocamptothecin, arsenic trioxide, beta alethine, Bcl-2 family protein inhibitor ABT-263, BMS-345541, bortezomib (Velcade®), bryostatin 1, busulfan, carboplatin, campath-1H, CC-5103, carmustine, caspofungin acetate, clofarabine, cisplatin, Cladribine (Leustatin), Chlorambucil (Leukeran), Curcumin, cyclosporine, Cyclophosphamide (Cyloxan, Endoxan, Endoxana, Cyclostin), cytarabine, denileukin diftitox, dexamethasone, DT PACE, docetaxel, dolastatin 10, Doxorubicin (Adriamycin®, Adriblastine), doxorubicin hydrochloride, enzastaurin, epoetin alfa, etoposide, Everolimus (RAD001), fenretinide, filgrastim, melphalan, mesna, Flavopiridol, Fludarabine (Fludara), Geldanamycin (17-AAG), ifosfamide, irinotecan hydrochloride, ixabepilone, Lenalidomide (Revlimid®, CC-5013), lymphokine-activated killer cells, melphalan, methotrexate, mitoxantrone hydrochloride, motexafin gadolinium, mycophenolate mofetil, nelarabine, oblimersen (Genasense) Obatoclax (GX15-070), oblimersen,
octreotide acetate, omega-3 fatty acids, oxaliplatin, paclitaxel, PD0332991, PEGylated liposomal doxorubicin hydrochloride, pegfilgrastim, Pentastatin (Nipent), perifosine, Prednisolone, Prednisone, R-roscovitine (Selicilib, CYC202), recombinant interferon alfa, recombinant interleukin-12, recombinant interleukin-11, recombinant flt3 ligand, recombinant human thrombopoietin, rituximab, sargramostim, sildenafil citrate, simvastatin, sirolimus, Styryl sulphones, tacrolimus, tanezumab, Temsirolimus (CCl-779), Thalidomide, therapeutic allogeneic lymphocytes, thiopeta, tipifarnib, Velcade® (bortezomib or PS-341), Vincristine (Oncovin), vincristine sulfate, vinorelbine ditartrate, Vorinostat (SAHA), vorinostat, and FR (fludarabine, rituximab), CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone), CVP (cyclophosphamide, vincristine and prednisone), FCM (fludarabine, cyclophosphamide, mitoxantrone), FCR (fludarabine, cyclophosphamide, rituximab), hyperCVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, cycarabine), ICE (iphosphamide, carboplatin and etoposide), MCP (mitoxantrone, chlorambucil, and prednisolone), R-CHOP (rituximab plus CHOP), R-CVP (rituximab plus CVP), R-FCM (rituximab plus FCM), R-ICE (rituximab-ICE), and R-MCP (R-MCP).

[0174] The therapeutic treatments can be supplemented or combined with any of the abovementioned therapies with stem cell transplantation or treatment. One example of modified approach is radioimmunotherapy, wherein a monoclonal antibody is combined with a radioisotope particle, such as indium In 111, yttrium Y 90, iodine 1-131. Examples of combination therapies include, but are not limited to, Iodine-131 tositumomab (Bexxar®), Yttrium-90 ibritumomab tiuxetan (Zevalin®), Bexxar® with CHOP.

[0175] Other therapeutic procedures include peripheral blood stem cell transplantation, autologous hematopoietic stem cell transplantation, autologous bone marrow transplantation, antibody therapy, biological therapy, enzyme inhibitor therapy, total body irradiation, infusion of stem cells, bone marrow ablation with stem cell support, in vitro-treated peripheral blood stem cell transplantation, umbilical cord blood transplantation, immunoenzyme technique, pharmacological study, low-LET cobalt-60 gamma ray therapy, bleomycin, conventional surgery, radiation therapy, and nonmyelo ablative allogeneic hematopoietic stem cell transplantation.

Kits

[0176] Provided herein are also kits that include a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate
thereof, and suitable packaging. In one embodiment, a kit further includes instructions for use. In one aspect, a kit includes a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, and a label and/or instructions for use of the compounds in the treatment of the indications, including the diseases or conditions, described herein.

[0177] Provided herein are also articles of manufacture that include a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, in a suitable container. The container may be a vial, jar, ampoule, preloaded syringe, and intravenous bag.

Pharmaceutical Compositions and Modes of Administration

[0178] Compounds provided herein are usually administered in the form of pharmaceutical compositions. Thus, provides herein are also pharmaceutical compositions that contain one or more of the compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, and one or more pharmaceutically acceptable vehicles selected from carriers, adjuvants and excipients. Suitable pharmaceutically acceptable vehicles may include, for example, inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants. Such compositions are prepared in a manner well known in the pharmaceutical art. See, e.g., Remington's Pharmaceutical Sciences, Mace Publishing Co., Philadelphia, Pa. 17th Ed. (1985); and Modern Pharmaceutics, Marcel Dekker, Inc. 3rd Ed. (G.S. Banker & C.T. Rhodes, Eds.).

[0179] The pharmaceutical compositions may be administered in either single or multiple doses. The pharmaceutical composition may be administered by various methods including, for example, rectal, buccal, intranasal and transdermal routes. In certain embodiments, the pharmaceutical composition may be administered by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously, orally, topically, or as an inhalant. In certain embodiments, the compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, is administered intravenously, intramuscularly, parenterally, nasally or orally.

[0180] One mode for administration is parenteral, for example, by injection. The forms in which the pharmaceutical compositions described herein may be incorporated for administration by injection include, for example, aqueous or oil suspensions, or emulsions, with sesame oil,
corn oil, cottonseed oil, or peanut oil, as well as elixirs, mannitol, dextrose, or a sterile aqueous solution, and similar pharmaceutical vehicles.

[0181] Oral administration may be another route for administration of the compounds described herein. Administration may be via, for example, capsule or enteric coated tablets. In making the pharmaceutical compositions that include at least one compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, the active ingredient is usually diluted by an excipient and/or enclosed within such a carrier that can be in the form of a capsule, sachet, paper or other container. When the excipient serves as a diluent, it can be in the form of a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, sterile injectable solutions, and sterile packaged powders.

[0182] Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup, and methyl cellulose. The formulations can additionally include lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl and propylhydroxy-benzoates; sweetening agents; and flavoring agents.

[0183] The compositions that include at least one compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the subject by employing procedures known in the art. Controlled release drug delivery systems for oral administration include osmotic pump systems and dissolitional systems containing polymer-coated reservoirs or drug-polymer matrix formulations. Examples of controlled release systems are given in U.S. Patent Nos. 3,845,770; 4,326,525; 4,902,514; and 5,616,345. Another formulation for use in the methods of the present invention employs transdermal delivery devices ("patches"). Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds described herein in controlled amounts. The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Patent Nos. 5,023,252, 4,992,445
and 5,001,139. Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.

[0184] For preparing solid compositions such as tablets, the principal active ingredient may be mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof. When referring to these preformulation compositions as homogeneous, the active ingredient may be dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.

[0185] Exemplary unit dosage levels of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), or a pharmaceutically acceptable salt, prodrug, or solvate thereof, for a human subject may, in certain variations, be between about 0.01 mg to about 1000 mg, between about 1 mg to about 15 mg, or between about 50 mg to about 200 mg, or about 5 mg, about 10 mg, about 15 mg, about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, or about 150 mg, or about 175 mg, about 200 mg, or about 250 mg.

[0186] The tablets or pills of the compounds described herein may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action, or to protect from the acid conditions of the stomach. For example, the tablet or pill can include an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer that serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.

[0187] Compositions for inhalation or insufflation may include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra. In some embodiments, the compositions are administered by the oral or nasal respiratory route for local or systemic effect. In other embodiments, compositions in pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be inhaled directly from the nebulizing device or the nebulizing device may be attached to a facemask tent, or intermittent positive pressure breathing machine. Solution,
suspension, or powder compositions may be administered, preferably orally or nasally, from devices that deliver the formulation in an appropriate manner.

Dosing

The specific dose level of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4), for any particular subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease in the subject undergoing therapy. For example, a dosage may be expressed as a number of milligrams of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4) per kilogram of the subject's body weight (mg/kg). Dosages of between about 0.1 and 150 mg/kg may be appropriate. In some embodiments, about 0.1 and 100 mg/kg may be appropriate. In other embodiments a dosage of between 0.5 and 60 mg/kg may be appropriate. Normalizing according to the subject's body weight is particularly useful when adjusting dosages between subjects of widely disparate size, such as occurs when using the drug in both children and adult humans or when converting an effective dosage in a non-human subject such as dog to a dosage suitable for a human subject.

The daily dosage may also be described as a total amount of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4) administered per dose or per day. Daily dosage of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4) may be between about 1 mg/day and 4,000 mg/day, between about 2,000 mg/day to 4,000 mg/day, between about 400 mg/day to 2,000 mg/day, between about 1 mg/day to 1,000 mg/day, between about 1 mg/day to 1 mg/day and 2 mg/day, between about 1 mg/day to 300 mg/day, between about 1 mg/day to 200 mg/day, between about 15 mg/day to 15 mg/day, or between 1 mg/day and 15 mg/day.

When administered orally, the total daily dosage for a human subject may be between 1 mg and 1,000 mg, between about 10-500 mg/day, between about 50-300 mg/day, between about 75-200 mg/day, or between about 100-150 mg/day.

The compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4) or the compositions thereof may be administered once, twice, three, or four times daily, using any suitable mode described above. Also, administration or treatment with the compounds formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4) may be continued for a number of days; for example, commonly treatment would continue for at least 7 days, 14 days, or 28 days, for one
cycle of treatment. Treatment cycles are well known in cancer chemotherapy, and are frequently alternated with resting periods of about 1 to 28 days, commonly about 7 days or about 14 days, between cycles. The treatment cycles, in other embodiments, may also be continuous.

[0192] In a particular embodiment, the method comprises administering to the subject an initial daily dose of about 1 to 500 mg of a compound of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4) and increasing the dose by increments until clinical efficacy is achieved. Increments of about 5, 10, 25, 50, or 100 mg can be used to increase the dose. The dosage can be increased daily, every other day, twice per week, or once per week.

Synthesis of the Compounds of Formula (I)

[0193] The compounds of formula (J), (I), (IA-1), (IA-2), (IB-1), (IB-2), (IB-3), or (IB-4) may be prepared using the methods disclosed herein and routine modifications thereof, which will be apparent given the disclosure herein and methods well known in the art. Conventional and well-known synthetic methods may be used in addition to the teachings herein. The synthesis of typical compounds described herein may be accomplished as described in the following examples. If available, reagents may be purchased commercially, e.g., from Sigma Aldrich or other chemical suppliers.

General Synthesis

[0194] Typical embodiments of compounds described herein may be synthesized using the general reaction schemes described below. It will be apparent given the description herein that the general schemes may be altered by substitution of the starting materials with other materials having similar structures to result in products that are correspondingly different. Descriptions of syntheses follow to provide numerous examples of how the starting materials may vary to provide corresponding products. Given a desired product for which the substituent groups are defined, the necessary starting materials generally may be determined by inspection. Starting materials are typically obtained from commercial sources or synthesized using published methods. For synthesizing compounds which are embodiments described in the present disclosure, inspection of the structure of the compound to be synthesized will provide the identity of each substituent group. The identity of the final product will generally render apparent the identity of the necessary starting materials by a simple process of inspection, given the examples herein.
The terms "solvent", "inert organic solvent", or "inert solvent" refer to a solvent inert under the conditions of the reaction being described in conjunction therewith (including, for example, benzene, toluene, acetonitrile, tetrahydrofuran ("THF"), dimethylformamide ("DMF"), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, pyridine and the like). Unless specified to the contrary, the solvents used in the reactions of the present invention are inert organic solvents, and the reactions are carried out under an inert gas, preferably nitrogen.

The term "q.s." means adding a quantity sufficient to achieve a stated function, e.g., to bring a solution to the desired volume (i.e., 100%).

Compounds of Formula I

One method of preparing compounds of formula (I) is shown in Reaction Scheme I.
Step 1—Preparation of a compound of formula (1)

[0198] The compound of formula (1) can be made by combining compounds (A), (B) and (C) in the presence of a dehydrating agent. Compounds (A), (B) and (C) are commercially available or can be made by methods known in the art. With respect to compound (A), R₁ is as defined herein. With respect to compound (B), R³ is as defined herein. With respect to compound (C), R² is as defined herein. Compound (A) can be mixed with Compound (B) in the presence of a coupling agent such as diphenyl phosphite in a solvent such as pyridine. After stirring at a temperature between ambient and 100°C for between 1 and 5 hours, compound (C) is added. After further stirring at a temperature between ambient and 100°C for between 5 and 24 hours, the reaction mixture is allowed to cool to room temperature. To extract the compound of formula (1), an organic solvent such as ethyl acetate (EtOAc) may be added, followed by washing with, mild acid, water, and brine. The organic phase can be concentrated to obtain the
compound of formula (1). The compound of formula (1) may be purified by any suitable methods known in the art, such as chromatography on silica gel. Alternatively, the compound of formula (1) may be used in the next step without purification.

Step 2—Preparation of a compound of formula (2)

The compound of formula (2) can be made by removing the protecting group(s) from the compound of formula (1). The compound of formula (1) is dissolved in a suitable solvent and treated with a suitable acid. Suitable solvents may include, for example, dichloromethane, dioxane, or other suitable solvents. Suitable acids may include, for example, trifluoroacetic acid, hydrochloric acid, or boron tribromide (BBr₃). The reaction can be carried out at temperatures between -78°C to ambient temperature. On reaction completion, solvent is removed to obtain the compound of formula (2). In the case of a reaction using BBr₃, the reaction may first be treated with MeOH before an aqueous work-up to obtain a compound of formula (2).

Step 3—Preparation of a compound of formula (3)

The compound of formula (3) can be made by treating 5-substituted-2,4,6-trihalopyrimidine with ammonium hydroxide in a suitable solvent such as dioxane, where the halo is either chloro or fluoro. The reaction is carried out at an elevated temperature between 30 and 80 °C for a suitable time, typically between 2 and 8 hours or when the reaction is complete. Upon completion, water is added to the cooled solution, and the precipitate is collected by filtration. The nitrile can be converted to the carboxamide under standard conditions.

Step 4—Preparation of a compound of formula (I)

The compound of formula (I) can generally be prepared by coupling compound of formula (2) and compound of formula (3) in the presence of a suitable base in a suitable solvent. An example of a suitable base is diisopropylethylamine. An example of a suitable solvent is N-methylpyrrolidone (NMP). The reaction is typically performed at a temperature between 50°C to 150°C for about 30 minutes to 24 hours. In some instance, the reaction can be performed at a temperature between 20°C to 100°C for about 12 hours to 120 hours. Alternatively the reaction can be performed in a microwave at a temperature between 100°C to 150°C for about 30 minutes to 24 hours. Water can be added to quench the reaction upon completion, and the precipitate may be filtered and then dissolved in an organic solvent such as dichloromethane (DCM). The product can be isolated by methods known in the art, for example by removal of solvent under
reduced pressure. The product can be purified using any suitable methods known in the art, for example, chromatography of the residue on a silica column.

[0202] It should be understood that the compounds of formula (J) can be prepared according to the methods provided in Reaction Scheme 1, starting from materials known to one of skill in the art.

Example 1

Preparation of a Compound of Formula (1)

A. Preparation of a Compound of Formula (1) in which n is 1, R^1 is chloro, m is 0, and R^3 is methyl

![Chemical Structure](image)

[0203] Diphenyl phosphite (1.9 mL, 10 mmol) was added to a solution of 2-amino-6-chlorobenzoic acid (495 mg, 2.9 mmol) and (S)-2-(tert-butoxycarbonylamino)propanoic acid (710 mg, 3.77 mmol) in pyridine (3 mL). The reaction mixture was stirred at 40°C for 2 hours. Aniline (274 mg, 3.48 mmol) was then added to the reaction mixture, which was then stirred at 55°C for 12 hours. The reaction mixture was cooled to room temperature. This mixture was then diluted with EtOAc (50 mL), washed with IN aqueous HCl (2 x 50mL), brine (50mL), and dried over sodium sulfate. The organics layer was filtered and concentrated in vacuo to afford material which was purified by column chromatography on SiO_2 eluting with EtOAc in hexanes (0-50%) to afford (S)-tert-butyl l-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate as a solid. ES/MS m/z = 400.1 (M+H+).

B. Preparation of a Compound of Formula (1), varying R^1, R^2, and R^3

[0204] Following the procedure described in Example 1A and Reaction Scheme 1, but varying the R^1, R^2 and R^3 substituents, other compounds of formula (1) were prepared including:

[0205] (S)-tert-butyl l-(8-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate, ES/MS m/z = 384.1 (M+H+):
(S)-tert-butyl l-(5,8-dichloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate, ES/MS m/z = 434.2 (M+H+);

(S)-tert-butyl l-(5-chloro-8-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate, ES/MS m/z = 418.1 (M+H+);

(S)-tert-butyl l-(8-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate, ES/MS m/z = 400.1 (M+H+);

(S)-tert-butyl l-(5,8-difluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate, ES/MS m/z = 402.1 (M+H+);

(S)-tert-butyl l-(5-chloro-4-oxo-3-(3,5-difluorophenyl)-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-chloro-4-oxo-3-(3,5-difluorophenyl)-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(5-fluoro-4-oxo-3-(3,5-difluorophenyl)-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(5-chloro-3-(3-cyanophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(6-fluoro-3-(3-cyanophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(6-fluoro-3-(3-chlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(8-fluoro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(5,8-dichloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-chloro-3-(3,5-dicyanophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-chloro-3-(3-cyano-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5,8-difluoro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-hydroxy-3-phenyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5,8-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-chloro-3-(3-cyano-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3-cyano-5-fluorophenyl)-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(5-methyl-3-phenyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-8-fluoro-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-chloro-3-(3,5-dimethoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(6,7-difluoro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(8-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(8-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(5-(difluoromethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-(difluoromethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-5,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-5,6-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-5,6-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-5,6-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-3-(2-(L-aminoethyl)-8-fluoro-5-methyl-4-oxoquinazolin-3(4H)-yl)-5-fluorobenzonitrile;

(S)-tert-butyl L-(3-(3-cyano-5-fluorophenyl)-8-fluoro-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl L-(5-chloro-3-(3-cyano-5-fluorophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl L-(3-(3-cyano-5-fluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl L-(5-fluoro-3-(3-fluoro-5-(trifluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl L-(3-(3,5-difluorophenyl)-4-oxo-8-(trifluoromethyl)-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl L-(3-(3,5-difluorophenyl)-5-fluoro-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;
(S)-tert-butyl l-(5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-8-methoxy-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3-cyanophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(8-methyl-4-oxo-3-(3-(trifluoromethyl)phenyl)-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-fluoro-4-oxo-3-(3-(trifluoromethyl)phenyl)-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(8-(difluoromethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(8-methyl-3-phenyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-fluoro-3-phenyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(8-fluoro-3-phenyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-chloro-3-(3-fluorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-chloro-3-(3-chlorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-fluoro-8-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl 1-(8-fluoro-5-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl 1-(5-(difluoromethyl)-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl 3-(3-cyanophenyl)-1-(5-(difluoromethyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-3-(2-(1-aminoethyl)-8-fluoro-5-methyl-4-oxoquinazolin-3(4H)-yl)benzonitrile;

(S)-tert-butyl 1-(3-(3-cyanophenyl)-8-fluoro-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl 1-(5-chloro-3-(3,5-dichlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl 1-(3-(3,5-dichlorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl 1-(8-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl 1-(8-fluoro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;
(S)-tert-butyl l-(5-chloro-3-(5-trifluoromethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3-cyano-5-fluorophenyl)-5-fluoro-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3-cyanophenyl)-5-fluoro-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3-(difluoromethyl)-5-fluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(3-(3-(difluoromethyl)-5-fluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-(difluoromethyl)-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-(methylsulfonyl)-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-8-ethyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-(dMuorome%)l)-3-(3-(difluoromethyl)-5-fluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3-(difluoromethyl)-phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3-(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-(methylsulfonyl)-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(1-(3-(3,5-difluorophenyl)-8-iodo-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl l-(1-(3-(3,5-difluorophenyl)-8-iodo-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl l-(8-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylcarbamate;

(S)-tert-butyl l-(3-(3,5-difluorophenyl)-8-ethyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(5-chloro-3-(3-(difluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(5-chloro-3-(3-isopropylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(5-chloro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(5-carbamoyl-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(5-carbamoyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(5-methoxy-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate.
(S)-tert-butyl l-(5-cyano-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(5-cyano-3-(3-cyano-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(3-(3-chloro-5-(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(3-(3-chloro-5-(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(3-(3,5-bis(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(3-(3,5-bis(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;
(S)-tert-butyl l-(3-(3,5-bis(difluoromethyl)phenyl)-5-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate.

(S)-tert-butyl l-(5-chloro-3-(3-(difluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(3-(3-(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-bromo-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-tert-butyl l-(5-bromo-4-oxo-3-(3-fluorophenyl)-3,4-dihydroquinazolin-2-yl)ethylcarbamate;

(S)-2-(l-amino-3,3,3-trifluoropropyl)-3-phenyl-6-fluoroquinazolin-4(3H)-one;

(S)-2-(l-amino-3,3,3-trifluoropropyl)-3-(3,5-difluorophenyl)-6-fluoroquinazolin-4(3H)-one;

(R)-tert-butyl l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methoxyethyl)carbamate;

(S)-tert-butyl l-(l-(3-(3,5-bis(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl l-(1-(3-(3,5-bis(difluoromethyl)phenyl)-5-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl l-(1-(3-cyano-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl l-(5-chloro-3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl l-(5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl l-(3-(2-fluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;
(S)-tert-butyl (l-(3-(3-cyanophenyl)-5,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)carbamate;

(S)-tert-butyl (l-(5,8-difluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)carbamate;

(S)-tert-butyl (l-(5,8-difluoro-3-phenyl-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)carbamate;

(S)-tert-butyl (l-(3-(3-cyanophenyl)-5,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5,8-difluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(3-(2,6-difluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(2,6-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-2-(l-aminoethyl)-3-(3,5-difluorophenyl)-8-iodoquinazolin-4(3H)-one;

(S)-tert-butyl (l-(6-fluoro-3-(3-fluorophenyl)-8-iodo-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(8-methoxy-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(6-iodo-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(3-(3-(difluoromethyl)phenyl)-8-iodo-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;
(S)-tert-butyl (l-(3-(3,5-difluorophenyl)-6-fluoro-8-iodo-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-3-methylbutyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methylbutyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-3,3,3-trifluoropropyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-3,3,3-trifluoropropyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3,5-difluorophenyl)-3-cyanophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-3-methylbutyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3,5-difluorophenyl)-3-cyanophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-3-methylbutyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3,5-difluorophenyl)-3-cyanophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3-methylphenyl)-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;
(S)-tert-butyl (l-(5-chloro-3-(3-methoxy-4-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(5-methoxy-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(4-fluoro-3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(5-(difluoromethyl)-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3-(difluoromethyl)-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3-(difluoromethyl)-5-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(2,5-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3-fluoro-5-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3-fluoro-5-(trifluoromethoxy)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)-2-methylpropyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3-fluoro-5-(trifluoromethoxy)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (l-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)-2-methylpropyl)carbamate;

(S)-tert-butyl (l-(5-chloro-3-(3-fluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;
(S)-tert-butyl (1-(5-chloro-3-(3,5-difluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (1-(5-chloro-3-(5-fluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (1-(5-chloro-3-(2,3-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (1-(5-chloro-3-(4-fluoro-2,3-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (1-(5-chloro-3-(3,4-difluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate;

(S)-tert-butyl (1-(5-chloro-3-(3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate; and

(S)-tert-butyl (1-(5-chloro-3-(3-fluoro-5-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)carbamate.

Example 1b

Preparation of Compound of Formula 1b

A. Preparation of a Compound of Formula (lb) in which n is 1, R¹ is cyano, m is 0, and R³ is methyl.

![Chemical Structure](1b)

(S)-tert-butyl (1-(5-bromo-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)carbamate (500 mg, 1.13 mmol), zinc cyanide (166 mg, 1.41 mmol), and tetrakis(triphenylphosphine)Pd(0) (124 mg, 0.11 mmol) were combined in NMP (5 mL). The mixture was degassed under Ar and heated to 90°C overnight. The reaction was poured into EtOAc, washed with water (3x), and purified by flash chromatography (40g silica, 0 - 50%
To a solution of (S)-tert-butyl (l-(5-cyano-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)carbamate (105 mg, 0.269 mmol) in THF/H$_2$O (1 mL each) was added Ghaffar's catalyst. The mixture was heated to 80°C overnight. Purification by flash chromatography (25g silica, 0 - 100% EtOAc / DCM) provided (S)-tert-butyl (l-(5-carbamoyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)carbamate as a white solid. ES/MS 409.1 (M+H$^+$).
Example 2

Preparation of a Compound of Formula (2)

A. Preparation of a Compound of Formula (2) in which \(n \) is 1, \(R^1 \) is chloro, \(m \) is 0, and \(R^3 \) is methyl.

[0379] Trifluoroacetic acid (3 mL) was added to a solution of (S)-tert-butyl 1-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylcarbamate (1 g, 2.5 mmol) in dichloromethane (3 mL). The resultant was stirred at room temperature for 3 hours. The solvents was removed \textit{in vacuo} to afford (S)-2-(l-aminoethyl)-5-chloro-3-phenylquinazolin-4(3H)-one 2,2,2-trifluoroacetic acid salt. ES/MS \(m/z = 300.1 \) (M+H+).

B. Preparation of a Compound of Formula (2), varying \(R^1 \), \(R^2 \), and \(R^3 \)

[0380] Following the procedure described in Example 2A and Reaction Scheme 1, but varying the \(R^1 \), \(R^2 \), and \(R^3 \) substituents, other compounds of formula (2) were prepared including:

[0381] (S)-2-(l-aminoethyl)-8-fluoro-3-phenylquinazolin-4(3H)-one, ES/MS \(m/z = 284.1 \) (M+H+);

[0382] (S)-2-(l-aminoethyl)-5,8-dichloro-3-phenylquinazolin-4(3H)-one, ES/MS \(m/z = 334.1 \) (M+H+);

[0383] (S)-2-(l-aminoethyl)-5-chloro-8-fluoro-3-phenylquinazolin-4(3H)-one, ES/MS \(m/z = 318.1 \) (M+H+);

[0384] (S)-2-(l-aminoethyl)-8-chloro-3-phenylquinazolin-4(3H)-one, ES/MS \(m/z = 300.1 \) (M+H+);

[0385] (S)-2-(l-aminoethyl)-5,8-difluoro-3-phenylquinazolin-4(3H)-one, ES/MS \(m/z = 302.1 \) (M+H+);
(S)-2-(l-aminoethyl)-5-chloro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-5-chloro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-5-fluoro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-chloro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-difluorophenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-difluorophenyl)-6-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-phenyl-6-fluoroquinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-chloro-4-oxoquinazolin-3(4H)-yl)benzonitrile;
(S)-3-(2-(l-aminoethyl)-6-floro-4-oxoquinazolin-3(4H)-yl)benzonitrile;
(S)-2-(l-aminoethyl)-3-(3-chlorophenyl)-6-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-difluorophenyl)-8-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-3-(3,5-difluorophenyl)-8-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-difluorophenyl)-5-methylquinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-3-(3,5-difluorophenyl)-5-methylquinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-3-(3,5-difluorophenyl)-8-methylquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-difluorophenyl)-8-methylquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5,8-dichloro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-methyl-4-oxoquinazolin-3(4H)-yl)-5-fluorobenzonitrile;
(S)-2-(l-aminoethyl)-5,8-difluoro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-chloro-3-(3,5-difluorophenyl)-8-methylquinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-methyl-4-oxoquinazolin-3(4H)-yl)-5-fluorobenzonitrile;
(S)-2-(l-aminoethyl)-5-methyl-3-phenylquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-difluorophenyl)-8-fluoro-5-methylquinazolin-4(3H)-one
(S)-2-(l-aminoethyl)-5-chloro-3-(3,5-dimethoxyphenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-6,7-difluoro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-8-chloro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-8-chloro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-(difluoromethyl)-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-5-(difluoromethyl)-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-3-(3,5-difluorophenyl)-6-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-3-(3,5-difluorophenyl)-5,8-difluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-difluorophenyl)-5,6-difluoroquinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-chloro-8-fluoro-4-oxoquinazolin-3(4H)-yl)-5-fluorobenzonitrile;
(S)-2-(l-aminopropyl)-3-(3,5-difluorophenyl)-6,8-difluoroquinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-3-(3,5-difluorophenyl)-5,8-difluoroquinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-3-(3,5-difluorophenyl)-5,6-difluoroquinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-chloro-8-fluoro-4-oxoquinazolin-3(4H)-yl)-5-fluorobenzonitrile;
(S)-2-(l-aminopropyl)-3-(3,5-difluorophenyl)-6,8-difluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-difluorophenyl)-6,8-difluoroquinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-fluoro-4-oxoquinazolin-3(4H)-yl)-5-fluorobenzonitrile;
(S)-2-(l-aminoethyl)-5-fluoro-3-(3-fluoro-5-(trifluoromethyl)phenyl)quinazolin-4(3H)-one;
(S)-2Kl-aminoethyl)-3-(3,5-difluorophenyl)-8-(trifluoromethyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-difluorophenyl)-5-fluoro-8-methylquinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-3-(3,5-difluorophenyl)-5-fluoro-8-methylquinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-3-(3,5-difluorophenyl)-5-fluoro-8-methylquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-8-chloro-3-(3,5-difluorophenyl)-6-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3-(difluoromethyl)-5-fluorophenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-difluorophenyl)-8-methoxyquinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-fluoro-4-oxoquinazolin-3(4H)-yl)benzonitrile;
(S)-2-(l-aminoethyl)-8-methyl-3-(3-(trifluoromethyl)phenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-fluoro-3-(3-(trifluoromethyl)phenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-8-(difluoromethyl)-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-8-(difluoromethyl)-3-phenylquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-8-fluoro-3-phenylquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-fluoro-3-phenylquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-chloro-3-(3-chlorophenyl)-8-methylquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-chloro-8-methyl-3-phenylquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-8-fluoro-5-methyl-3-phenylquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-fluoro-8-methyl-3-phenylquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-(difluoromethyl)-3-phenylquinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-(difluoromethyl)-4-oxoquinazolin-3(4H)-yl)benzonitrile;
(S)-3-(2-(l-aminoethyl)-8-fluoro-5-methyl-4-oxoquinazolin-3(4H)-yl)benzonitrile;
(S)-2-(l-aminoethyl)-3-(3,5-dichlorophenyl)-5-fluoro-quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-8-chloro-3-(3,5-difluorophenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3-chlorophenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carbonitrile;
(S)-2-(l-aminoethyl)-5-chloro-3-(3-chloro-5-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3-chloro-5-fluorophenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-chloro-3-(3-fluoro-5-(trifluoromethyl)phenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-5-fluoro-3-(5-trifluoromethylphenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3-(difluoromethyl)-5-fluorophenyl)-5-(methylsulfonyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-(difluoromethyl)-3-(3-(difluoromethyl)-5-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-fluoro-3-(3-(difluoromethyl)-5-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(1-aminoethyl)-3-(3-(difluoromethyl)phenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2-(1-aminoethyl)-3-(3,5-difluorophenyl)-5-(methylsulfonyl)quinazolin-4(3H)-one;
(S)-2-(1-aminoethyl)-5-(methylsulfonyl)-3-phenylquinazolin-4(3H)-one;
(S)-2-(1-aminopropyl)-8-chloro-3-(3,5-difluorophenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2-(1-aminoethyl)-3-(3,5-difluorophenyl)-8-ethylquinazolin-4(3H)-one;
(S)-2-(1-aminoethyl)-5-chloro-3-(3-(difluoromethyl)phenyl)quinazolin-4(3H)-one;
(S)-2-(1-aminoethyl)-5-chloro-3-(3-isopropylphenyl)quinazolin-4(3H)-one;
(S)-2-(1-aminoethyl)-5-chloro-3-(3-fluorophenyl)quinazolin-4(3H)-one.
(S)-2-(1-aminoethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carboxamide;
(S)-2-(1-aminoethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carboxamide;
(S)-2-(1-aminoethyl)-5-methoxy-3-phenylquinazolin-4(3H)-one;
(S)-2-(1-aminoethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile;
(S)-2-(1-aminoethyl)-3-(3-cyano-5-fluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile;
(S)-2-(1-aminoethyl)-3-(3-chloro-5-(difluoromethyl)phenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2-(1-aminoethyl)-5-chloro-3-(3-chloro-5-(difluoromethyl)phenyl)quinazolin-4(3H)-one;
(S)-2-(1-aminoethyl)-3-(3-(difluoromethyl)phenyl)-5-(methylsulfonyl)quinazolin-4(3H)-one;
(S)-2-(1-aminoethyl)-3-(3-fluorophenyl)-5-(methylsulfonyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-bis(difluoromethyl)phenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-bis(difluoromethyl)phenyl)-5-chloroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-chloro-3-(3-(difluoromethyl)phenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3-(difluoromethyl)phenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-8-carbonitrile;
(S)-2-(l-aminoethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carbonitrile;
(S)-2-(l-aminoethyl)-4-oxo-3-(3-fluorophenyl)-3,4-dihydroquinazoline-5-carbonitrile;
(S)-2-(l-aminoethyl)-4-oxo-3-(3,5-difluorophenyl)-3,4-dihydroquinazoline-5-carbonitrile;
(S)-2-(l-aminoethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carboxamide;
(S)-2-(l-aminoethyl)-5-bromo-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-5-bromo-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-amino-2-methoxyethyl)-5-chloro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-amino-3,3,3-trifluoropropyl)-3-phenyl-6-fluoroquinazolin-4(3H)-one
(S)-2-(l-amino-3,3,3-trifluoropropyl)-3-(3,5-difluorophenyl)-6-fluoroquinazolin-4(3H)-one;
(R)-2-(l-amino-2-methoxyethyl)-5-chloro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-bis(difluoromethyl)phenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3,5-bis(difluoromethyl)phenyl)-5-chloroquinazolin-4(3H)-one;
(S)-2-(l-aminoethyl)-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile;

(S)-2-(l-aminoethyl)-5-chloro-3-(3,5-difluorophenyl)-6-fluoroquinazolin-4(3H)-one;

(S)-2-(l-aminoethyl)-5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-6-fluoroquinazolin-4(3H)-one;

(S)-2-(l-aminoethyl)-3-(2-fluorophenyl)-5-(methylsulfonyl)quinazolin-4(3H)-one;

(S)-3-(2-(l-aminopropyl)-5,8-difluoro-4-oxoquinazolin-3(4H)-yl)benzonitrile;

(S)-2-(l-aminopropyl)-5,8-difluoro-3-(3-fluorophenyl)quinazolin-4(3H)-one;

(S)-2-(l-aminopropyl)-5,8-difluoro-3-phenylquinazolin-4(3H)-one;

(S)-3-(2-(l-aminoethyl)-5,8-difluoro-4-oxoquinazolin-3(4H)-yl)benzonitrile;

(S)-2-(l-aminoethyl)-5,8-difluoro-3-(3-fluorophenyl)quinazolin-4(3H)-one;

(S)-2-(l-aminoethyl)-6-fluoro-3-(3-fluorophenyl)-8-iodoquinazolin-4(3H)-one;

(S)-2-(l-aminoethyl)-3-(3-fluorophenyl)-8-iodoquinazolin-4(3H)-one;

(S)-2-(l-aminoethyl)-6-fluoro-3-phenyl-8-iodoquinazolin-4(3H)-one;

(S)-2-(l-aminoethyl)-8-methoxy-3-phenylquinazolin-4(3H)-one;

(S)-2-(l-aminoethyl)-6-iodo-3-phenylquinazolin-4(3H)-one;

(S)-2-(l-amino-3-methylbutyl)-5-chloro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;

(S)-2-(l-amino-2-methylbutyl)-5-chloro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-amino-3,3,3-trifluoropropyl)-5-chloro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-amino-3,3,3-trifluoropropyl)-3-(3,5-difluorophenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-3-(2-(l-amino-3-methylbutyl)-5-chloro-4-oxoquinazolin-3(4H)-yl)benzonitrile;
(S)-2-(l-amino-3-methylbutyl)-5-chloro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminobutyl)-3-(3,5-difluorophenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2-(l-aminobutyl)-3-(3,5-difluorophenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-chloro-6-fluoro-4-oxoquinazolin-3(4H)-yl)benzonitrile;
(S)-2-(l-aminopropyl)-6-fluoro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-5-fluoro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-5-chloro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-chloro-8-fluoro-4-oxoquinazolin-3(4H)-yl)benzonitrile;
(S)-2-(l-aminopropyl)-5-fluoro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-chloro-8-fluoro-4-oxoquinazolin-3(4H)-yl)benzonitrile;
(S)-2-(l-aminopropyl)-5-fluoro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-5-fluoro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-chloro-8-fluoro-4-oxoquinazolin-3(4H)-yl)benzonitrile;
(S)-2-(l-aminopropyl)-5-fluoro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-5-fluoro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-5-fluoro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-3-(2-(l-aminoethyl)-5-chloro-8-fluoro-4-oxoquinazolin-3(4H)-yl)benzonitrile;
(S)-2-(l-aminopropyl)-5-fluoro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-5-fluoro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-(l-aminopropyl)-5-chloro-3-(3-fluorophenyl)quinazolin-4(3H)-one;
(S)-2-((1-aminoethyl)-5-chloro-3-(3-fluoro-5-(trifluoromethoxy)phenyl)quinazolin-4(3H)-one;
(S)-2-((1-amino-2-methylpropyl)-5-chloro-3-phenylquinazolin-4(3H)-one;
(S)-2-((1-amino-2-methylpropyl)-5-chloro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2-((1-aminoethyl)-5-chloro-3-(3-fluoro-2-methylphenyl)quinazolin-4(3H)-one;
(S)-2-((1-aminoethyl)-5-chloro-3-(3,5-difluoro-2-methylphenyl)quinazolin-4(3H)-one;
(S)-2-((1-aminoethyl)-5-chloro-3-(5-fluoro-2-methylphenyl)quinazolin-4(3H)-one;
(S)-2-((1-aminoethyl)-5-chloro-3-(2,3-dimethylphenyl)quinazolin-4(3H)-one;
(S)-2-((1-aminoethyl)-5-chloro-3-(4-fluoro-2,3-dimethylphenyl)quinazolin-4(3H)-one;
(S)-2-((1-aminoethyl)-5-chloro-3-(3,4-difluoro-2-methylphenyl)quinazolin-4(3H)-one;
(S)-2-((1-aminoethyl)-5-chloro-3-(3-methoxyphenyl)quinazolin-4(3H)-one;
(S)-2-((1-aminoethyl)-5-chloro-3-(3-fluoro-5-methoxyphenyl)quinazolin-4(3H)-one.

Example 3
Preparation of a Compound of Formula (3)

A. Preparation of a Compound of Formula (3) in which R^4 is CN and X is CI (2,4-diamino-6-chloropyrimidine-5-carbonitrile)

![Chemical Structure]

Ammonium hydroxide (20 mL) was added to a solution of 2,4,6-trichloropyrimidine-5-carbonitrile (5.0 g, 24 mmol) in dioxane (20 mL) at room temperature. The solution was warmed to 50°C and stirred for 3 hrs. The reaction mixture was cooled to 10°C and water (50 mL) was added. The resulting solid was filtered, washed with water, and dried under high vacuum to afford the compound depicted above as a white solid (4.5 g) ^1H NMR (100 MHz, DMSO) 164.8, 162.6, 161.9, 115.8, 77.6. ES/MS m/z = 169.9 (M+H)^+. 102
B. Preparation of a Compound of Formula (3), varying R⁴ and X

[0548] 5-chloro-6-fluoropyrimidine-2,4-diamine;

[0549] 6-chloro-5-(methylsulfonyl)pyrimidine-2,4-diamine;

[0550] 6-chloro-5-(trifluoromethyl)pyrimidine-2,4-diamine; and

[0551] 2,4-diamino-6-chloropyrimidine-5-carboxamide.

Example 4

Preparation of a Compound of Formula (I)

A. Preparation of a Compound of Formula (I) in which n=l, R¹ is chloro, m=2, both R² are fluoro, R³ is methyl, and R⁴ is cyano (Compound la)

Potassium fluoride (138 mg, 2.38 mmol) was added to a solution of (S)-2-(1-aminoethyl)-5-chloro-3-(3,5-difluorophenyl)quinazolin-4(3H)-one (400 mg, 1.19 mmol) and 2,4-diamino-6-chloropyrimidine-5-carbonitrile (201 mg, 1.19 mmol) in diisopropylethylamine (1.0 mL, 6.0 mmol) and DMSO (3 mL). The resultant mixture was heated to 90°C for 14 hours, after which time the reaction was cooled to room temperature, filtered, and purified by HPLC eluting with 5%-95% water/acetonitrile (0.1% v/v trifluoroacetic acid). The appropriate fractions were pooled and lyophilized to afford Compound la as a white solid (479 mg). ¹H NMR (400 MHz, DMSO) δ 7.78 (t, J = 8.0 Hz, 1H), 7.65 (dd, J = 8.2, 1.2 Hz, 1H), 7.58 (dd, J = 7.8, 1.2 Hz, 1H), 7.43 (dm, J = 9.2 Hz, 1H), 7.29 (dt, J = 9.2, 2.4 Hz, 1H), 7.24 (dm, J = 11 Hz, 1H), 6.83 (d, J = 6.8 Hz, 1H), 6.51 (br s, 1H), 6.24 (br s, 1H), 4.82 (dq, J = 6.65, 6.65 Hz, 1H), 1.34 (d, J = 6.65 Hz, 3H). ES/MS 469.1 (M+H⁺).
B. Preparation of a Compound of Formula (I), varying R₁, R₂, and R₃; and a Compound of Formula (J), varying R₁, R₂, R₃ and R₄

[0553] (S)-2,4-diamino-6-((1-(5-hydroxy-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 2a); H NMR (400 MHz, DMSO) δ 11.56 (s, 1H), 7.96 - 7.78 (br. M, 2H), 7.74 (t, J = 8.2 Hz, 1H), 7.60 - 7.36 (m, 5H), 7.17 (dd, J = 8.1, 0.9 Hz, 1H), 6.92 (dd, J = 8.2, 0.9 Hz, 1H), 4.95 - 4.84 (m, 1H), 1.33 (d, J = 6.7 Hz, 3H). ES/MS 415.1 (M+H⁺);

[0554] (S)-2,4-diamino-6-((1-(8-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 3a); H NMR (400 MHz, DMSO) δ 7.96 (ddd, J = 7.9, 1.5, 0.6 Hz, 1H), 7.75 (ddd, J = 7.4, 1.5, 0.9 Hz, 1H), 7.57 - 7.41 (m, 6H), 4.96 - 4.86 (m, 1H), 2.62 (s, 3H), 1.33 (d, J = 6.6 Hz, 3H). ES/MS 413.1 (M+H⁺);

[0555] (S)-2,4-diamino-6-((1-(5-chloro-8-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 4a); H NMR (400 MHz, DMSO) δ 7.68 (dd, J = 8.1, 0.8 Hz, 1H), 7.58 - 7.40 (br. M, 4H), 7.39 - 6.75 (m, 6H), 4.90 - 4.80 (m, 1H), 2.56 (s, 3H), 1.31 (d, J = 6.6 Hz, 3H). ES/MS 447.1 (M+H⁺);

[0556] (S)-2,4-diamino-6-((1-(5-chloro-3-(3-chlorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 5a); H NMR (400 MHz, DMSO) δ 7.78 - 7.67 (m, 3H), 7.55 - 7.40 (m, 5H), 4.99 - 4.84 (m, 1H), 2.60 - 2.54 (m, 3H), 1.41 - 1.30 (m, 3H). ES/MS 481.1 (M+H⁺);

[0557] (S)-2,4-diamino-6-((1-(3-(3-chlorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 6a); H NMR (400 MHz, DMSO) δ 7.97 - 7.92 (m, 1H), 7.76 - 7.71 (m, 1H), 7.62 - 7.41 (m, 5H), 6.96 - 6.79 (m, 1H), 6.59 - 6.46 (m, 2H), 6.34 - 6.12 (m, 2H), 4.90 - 4.80 (m, 1H), 2.64 - 2.58 (m, 3H), 1.37 - 1.27 (m, 3H). ES/MS 447.1 (M+H⁺);

[0558] (S)-2-((2,6-diamino-5-cyanopyrimidin-4-yl)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carbonitrile (Compound 7a); H NMR (400 MHz, DMSO) δ 8.05 (dd, J = 4.8, 3.9 Hz, 1H), 7.99 - 7.95 (m, 2H), 7.62 - 7.45 (m, 5H), 6.80 (d, J = 6.9 Hz, 1H), 6.54 (br. S, 2H), 6.25 (br. S, 2H), 4.79 - 4.70 (m, 1H), 1.30 (d, J = 6.7 Hz, 3H). ES/MS 424.1 (M+H⁺);

[0559] (S)-2,4-diamino-6-((1-(5-chloro-3-(3-chlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 8a); H NMR (400 MHz, DMSO) δ 7.79
(ddd, J = 17.0, 10.3, 3.2 Hz, 1H), 7.67 (ddd, J = 13.3, 8.2, 1.2 Hz, 1H), 7.60 (ddd, J = 7.8, 4.6, 1.2 Hz, 1H), 7.53 - 7.44 (m, 2H), 7.40 (qd, J = 6.6, 4.6 Hz, 1H), 5.00 - 4.83 (m, 1H), 1.36 (dd, J = 9.4, 6.7 Hz, 2H). ES/MS 467.3 (M+H+);

(Compound 9a): \(^1H \) NMR (400 MHz, DMSO) \(\delta \) 7.93 (s, 1H), 7.86 - 7.64 (m, 5H), 7.50 (dt, J = 10.0, 4.2 Hz, 2H), 7.46 - 7.34 (m, 4H), 5.00 - 4.85 (m, 1H), 1.34 (d, J = 6.7 Hz, 3H). ES/MS 417.1 (M+H+);

(Compound 10a): \(^1H \) NMR (400 MHz, DMSO) \(\delta \) 7.87 (dd, J = 13.6, 8.1 Hz, 1H), 7.57 (s, 2H), 7.55 (d, J = 8.2 Hz, 1H), 7.46 (d, J = 8.7 Hz, 1H), 7.38 - 7.19 (m, 2H), 7.15 (d, J = 8.6 Hz, 1H), 5.11 - 4.85 (m, 1H), 1.38 (d, J = 6.6 Hz, 3H). ES/MS 453.3 (M+H+);

(Compound 11a): \(^1H \) NMR (400 MHz, DMSO) \(\delta \) 7.88 - 7.67 (m, 4H), 7.48 (d, J = 9.1 Hz, 1H), 7.38 - 7.18 (m, 2H), 7.12 (d, J = 8.4 Hz, 2H), 5.11 - 4.88 (m, 1H), 1.34 (t, J = 37.5 Hz, 3H). ES/MS 453.2 (M+H+);

(Compound 12a): \(^1H \) NMR (400 MHz, DMSO) \(\delta \) 8.13 (t, J = 1.6 Hz, 1H), 7.93 (ddd, J = 8.0, 2.0, 1.2 Hz, 1H), 7.88 - 7.83 (m, 1H), 7.80 (dd, J = 9.5, 1.7 Hz, 2H), 7.75 - 7.66 (m, 3H), 7.61 (ddd, J = 1.5, 4.3, 3.2 Hz, 1H), 7.18 - 7.08 (m, 1H), 6.77 - 6.68 (m, 1H), 4.96 - 4.77 (m, 1H), 1.33 (t, J = 16.1 Hz, 3H). ES/MS 457.9 (M+H+);

(Compound 13a): \(^1H \) NMR (400 MHz, DMSO) \(\delta \) 8.14 (t, J = 1.7 Hz, 1H), 7.94 (d, J = 7.9 Hz, 1H), 7.90 - 7.75 (m, 6H), 7.75 - 7.65 (m, 1H), 7.60 (t, J = 7.9 Hz, 1H), 4.99 - 4.83 (m, 1H), 1.35 (t, J = 13.0 Hz, 3H). ES/MS 442.1 (M+H+);

(Compound 14a): \(^1H \) NMR (400 MHz, DMSO) \(\delta \) 8.14 - 7.74 (m, 6H), 7.71 - 7.28 (m, 5H), 5.14 - 4.69 (m, 1H), 1.38 (dd, J = 9.0, 6.8 Hz, 3H). ES/MS 451.5 (M+H+);
\[\text{(Compound 21a):} \ H \ \text{NMR (400 MHz, DMSO)} \ \delta 7.91 - 7.71 \text{ (m, 2H)}, \ 7.62 \text{ (dd, } J = 8.8, 4.5 \text{ Hz, 2H)}, \ 7.46 \text{ (d, } J = 9.0 \text{ Hz, 1H)}, \ 7.37 - 7.26 \text{ (m, 1H)}, \ 7.13 \text{ (d, } J = 9.1 \text{ Hz, 1H)}, \ 5.05 - 4.88 \text{ (m, 1H)}, \ 1.33 \text{ (t, } J = 36.2 \text{ Hz, 3H)}. \]

\[\text{ES/MS} \ 487.6 \text{ (M+H+)}; \]

\[\text{(Compound 16a):} \ H \ \text{NMR (400 MHz, DMSO)} \ \delta 7.95 \text{ (d, } J = 8.0 \text{ Hz, 2H)}, \ 7.86 - 7.69 \text{ (m, 2H)}, \ 7.58 \text{ (td, } J = 8.0, 4.7 \text{ Hz, 2H)}, \ 7.48 \text{ (d, } J = 9.0 \text{ Hz, 1H)}, \ 7.41 - 7.18 \text{ (m, 2H)}, \ 7.14 \text{ (d, } J = 9.0 \text{ Hz, 1H)}, \ 5.09 - 4.86 \text{ (m, 1H)}, \ 1.40 \text{ (d, } J = 6.6 \text{ Hz, 3H)}. \]

\[\text{ES/MS} \ 453.1 \text{ (M+H+)}; \]

\[\text{(Compound 17a):} \ H \ \text{NMR (400 MHz, DMSO)} \ \delta 7.95 \text{ (dd, } J = 8.0, 0.9 \text{ Hz, 1H)}, \ 7.86 - 7.69 \text{ (m, 1H)}, \ 7.55 \text{ (ddd, } J = 30.0, 16.6, 7.0 \text{ Hz, 2H)}, \ 7.32 \text{ (t, } J = 9.3, 2.4 \text{ Hz, 1H)}, \ 7.17 \text{ (d, } J = 9.1 \text{ Hz, 1H)}, \ 4.84 \text{ (dd, } J = 12.9, 7.3 \text{ Hz, 1H)}, \ 2.11 - 1.91 \text{ (m, 1H)}, \ 1.94 - 1.62 \text{ (m, 1H)}, \ 0.81 \text{ (t, } J = 7.3 \text{ Hz, 3H)}. \]

\[\text{ES/MS} \ 467.3 \text{ (M+H+)}; \]

\[\text{(Compound 18a):} \ H \ \text{NMR (400 MHz, DMSO)} \ \delta 7.92 \text{ (s, 1H)}, \ 7.80 - 7.66 \text{ (m, 1H)}, \ 7.61 - 7.40 \text{ (m, 2H)}, \ 7.37 - 7.18 \text{ (m, 2H)}, \ 7.14 \text{ (d, } J = 9.0 \text{ Hz, 1H)}, \ 5.02 - 4.80 \text{ (m, 1H)}, \ 2.82 - 2.64 \text{ (s, 3H)}, \ 1.38 \text{ (s, 3H)}. \]

\[\text{ES/MS} \ 449.2 \text{ (M+H+)}; \]

\[\text{(Compound 19a):} \ H \ \text{NMR (400 MHz, DMSO)} \ \delta 7.87 \text{ (s, 3H)}, \ 7.75 - 7.66 \text{ (m, 1H)}, \ 7.50 \text{ (dd, } J = 42.4, 8.6 \text{ Hz, 3H)}, \ 7.38 - 7.24 \text{ (m, 2H)}, \ 7.24 - 7.06 \text{ (m, 2H)}, \ 4.80 \text{ (dd, } J = 13.1, 7.5 \text{ Hz, 1H)}, \ 2.90 - 2.57 \text{ (m, 3H)}, \ 2.11 - 1.86 \text{ (m, 1H)}, \ 1.77 \text{ (dt, } J = 29.5, 11.4 \text{ Hz, 1H)}, \ 0.82 \text{ (m, 3H)}. \]

\[\text{ES/MS} \ 463.2 \text{ (M+H+)}; \]

\[\text{(Compound 20a):} \ H \ \text{NMR (400 MHz, DMSO)} \ \delta 8.12 - 7.97 \text{ (m, 1H)}, \ 7.96 - 7.76 \text{ (m, 4H)}, \ 7.73 \text{ (ddd, } J = 8.1, 2.4, 1.1 \text{ Hz, 1H)}, \ 7.67 - 7.61 \text{ (m, 1H)}, \ 5.08 - 4.78 \text{ (m, 1H)}, \ 1.40 \text{ (d, } J = 6.6 \text{ Hz, 3H)}. \]

\[\text{ES/MS} \ 476.1 \text{ (M+H+)}; \]

\[\text{(Compound 21a):} \ H \ \text{NMR (400 MHz, DMSO)} \ \delta 7.92 \text{ (s, 1H)}, \ 7.80 - 7.66 \text{ (m, 1H)}, \ 7.61 - 7.40 \text{ (m, 2H)}, \ 7.37 - 7.18 \text{ (m, 2H)}, \ 7.14 \text{ (d, } J = 9.0 \text{ Hz, 1H)}, \ 5.02 - 4.80 \text{ (m, 1H)}, \ 2.82 - 2.64 \text{ (s, 3H)}, \ 1.38 \text{ (s, 3H)}. \]

\[\text{ES/MS} \ 449.2 \text{ (M+H+)}; \]
MHz, DMSO) δ 7.83 (d, J = 9.9 Hz, 1H), 7.56 - 7.26 (m, 4H), 7.17 (d, J = 9.0 Hz, 1H), 5.13 - 4.84 (m, 1H), 1.41 (d, J = 6.6 Hz, 3H). ES/MS 471.2 (M+H+);

[0573] (S)-2,4-diamino-6-((8-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 22a): H NMR (400 MHz, DMSO) δ 8.08 (dd, J = 16.8, 7.2 Hz, 2H), 7.68 - 7.48 (m, 4H), 7.45 (s, 3H), 5.07 - 4.84 (m, 1H), 1.38 (d, J = 6.5 Hz, 3H). ES/MS 432.9 (M+H+);

[0574] (S)-2,4-diamino-6-((5-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 23a): H NMR (400 MHz, DMSO) δ 7.92 (s, 1H), 7.80 - 7.66 (m, 1H), 7.61 - 7.40 (m, 2H), 7.37 - 7.18 (m, 4H), 7.14 (d, J = 9.0 Hz, 1H), 5.02 - 4.80 (m, 1H), 2.82 - 2.64 (s, 3H), 1.38 (s, 3H). ES/MS 413.1 (M+H+);

[0575] (S)-2,4-diamino-6-((3-(3-cyano-5-fluorophenyl)-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 24a): H NMR (400 MHz, DMSO) δ 8.17 - 7.80 (m, 4H), 7.76 (t, J = 7.7 Hz, 1H), 7.66 - 7.55 (m, 1H), 7.38 (d, J = 7.4 Hz, 1H), 5.03 - 4.81 (m, 1H), 2.76 (d, J = 14.7 Hz, 3H), 1.42 (t, J = 9.7 Hz, 3H). ES/MS 456.3 (M+H+);

[0576] (S)-2,4-diamino-6-((3-(3,5-difluorophenyl)-8-fluoro-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 25a): H NMR (400 MHz, DMSO) δ 7.66 (dd, J = 10.0, 8.3 Hz, 4H), 7.48 (d, J = 9.2 Hz, 1H), 7.40 - 7.28 (m, 2H), 7.15 (d, J = 9.3 Hz, 2H), 6.15 (dd, J = 6.4, 5.8, 3.6 Hz, 1H), 5.13 - 4.84 (m, 1H), 2.68 (d, J = 7.0 Hz, 3H), 1.41 (d, J = 6.6 Hz, 3H). ES/MS 467.2 (M+H+);

[0577] (S)-2,4-diamino-6-((3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylamino)pyrimidine-5-carbonitrile (Compound 26a): H NMR (400 MHz, DMSO) δ 7.66 (dd, J = 10.0, 8.3 Hz, 4H), 7.48 (d, J = 9.2 Hz, 1H), 7.40 - 7.28 (m, 2H), 7.15 (d, J = 9.3 Hz, 2H), 6.15 (dd, J = 6.4, 5.8, 3.6 Hz, 1H), 5.13 - 4.84 (m, 1H), 2.68 (d, J = 7.0 Hz, 3H), 1.41 (d, J = 6.6 Hz, 3H). ES/MS 467.4 (M+H+);

[0578] (S)-2,4-diamino-6-((3-(3,5-difluorophenyl)-5,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylamino)pyrimidine-5-carbonitrile (Compound 27a): H NMR (400 MHz, DMSO) δ 8.02 - 7.77 (m, 1H), 7.65 - 7.25 (m, 4H), 7.20 (d, J = 9.4 Hz, 1H), 4.80 (dd, J = 12.9, 7.5 Hz, 1H), 2.08 - 1.67 (m, 2H), 0.88 - 0.65 (m, 3H). ES/MS 485.1 (M+H+);
[0579] (S)-2,4-diamino-6-(1-(3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 28a): H NMR (400 MHz, DMSO) δ 8.32 - 8.10 (m, 1H), 7.91 (ddd, J = 23.8, 12.7, 9.1 Hz, 1H), 7.76 (dd, J = 14.1, 6.5 Hz, 1H), 7.68 - 7.56 (m, 1H), 7.50 (d, J = 9.2 Hz, 1H), 7.32 (tt, J = 9.3, 2.4 Hz, 1H), 7.18 (d, J = 9.1 Hz, 1H), 5.08 - 4.94 (m, 1H), 1.54 - 1.31 (m, 3H). ES/MS 435.1 (M+H+);

[0580] (S)-2,4-diamino-6-(1-(3-(3,5-difluorophenyl)-5,6-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 29a): H NMR (400 MHz, DMSO) δ 8.02 (m, 1H), 8.01 (dd, J = 8.12, 7.68 Hz, 1H), 7.76 (dd, J = 8.4, 5.08 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.35 (t, J = 9.3 Hz, 1H), 7.21 (d, J = 8.6 Hz, 1H), 4.78 (d, J = 5.6 Hz, 1H), 1.98 (dd, J = 13.1, 6.5 Hz, 1H), 1.96 - 1.70 (m, 1H), 0.81 (t, J = 7.3 Hz, 3H). ES/MS 485.3 (M+H+);

[0581] (S)-2,4-diamino-6-(1-(3-(3,5-difluorophenyl)-5,6-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylamino)pyrimidine-5-carbonitrile (Compound 30a): H NMR (400 MHz, DMSO) δ 8.16 - 7.84 (m, 2H), 7.76 - 7.54 (m, 2H), 7.38 (s, 2H), 4.97 (m, 1H), 2.68 (s, 3H), 1.41 (d, J = 6.5 Hz, 3H). ES/MS 474.3 (M+H+);

[0582] (S)-2,4-diamino-6-(1-(3-(3-cyano-5-fluorophenyl)-8-fluoro-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 31a): H NMR (400 MHz, DMSO) δ 7.18 - 7.45 (m, 2H), 7.37 - 7.19 (m, 1H), 5.04 - 4.62 (m, 1H), 1.39 (d, J = 6.5 Hz, 3H). ES/MS 460.4 (M+H+);

[0583] (S)-2,4-diamino-6-(1-(3-(3-cyano-5-fluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 32a): H NMR (400 MHz, DMSO) δ 7.77 (m, 3H), 7.63 (dd, J = 23.6, 9.0 Hz, 2H), 7.45 - 7.19 (m, 1H), 5.04 - 4.62 (m, 1H), 1.39 (d, J = 6.5 Hz, 3H). ES/MS 460.4 (M+H+);

[0584] (S)-2,4-diamino-6-(1-(5-fluoro-3-(3-fluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 33a): H NMR (400 MHz, DMSO) δ 7.85 (m, 1H), 7.77 - 7.62 (m, 1H), 7.65 - 7.45 (m, 2H), 7.37 (dd, J = 18.2, 7.5 Hz, 2H), 5.27 - 4.66 (m, 1H), 1.38 (dd, J = 13.9, 6.6 Hz, 3H). ES/MS 503.6 (M+H+);

[0585] (S)-2,4-diamino-6-(1-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 34a): H NMR (400 MHz, DMSO) δ 8.43 (d, J = 8.1 Hz, 1H), 8.30 (d, J = 7.7 Hz, 1H), 7.75 (t, J = 7.8 Hz, 2H), 7.54
(d, J = 9.9 Hz, 1H), 7.32 (t, J = 9.3 Hz, 1H), 7.14 (d, J = 9.6 Hz, 1H), 6.75 (d, J = 8.6 Hz, 4H),
6.25 - 5.95 (m, 1H), 5.24 - 4.98 (m, 1H), 1.43 (d, J = 6.6 Hz, 3H). ES/MS 503.3 (M+H+);

[0586] (S)-2,4-diamino-6-(1-(3-(3,5-difluorophenyl)-5-fluoro-8-methyl-4-oxo-3,4-
dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 35a): H NMR (400 MHz, DMSO) δ 7.77 (dd, J = 8.5, 5.5 Hz, 1H), 7.49 (d, J = 9.1 Hz, 1H), 7.31 (ddd, J = 19.3, 10.1, 7.6 Hz, 2H), 7.19 (d, J = 8.6 Hz, 1H), 5.16 - 4.76 (m, 1H), 2.57 (s, 3H), 1.41 (d, J = 6.6 Hz, 3H). ES/MS 467.2 (M+H+).

[0587] (S)-2,4-diamino-6-(1-(3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-
yl)propylamino)pyrimidine-5-carbonitrile (Compound 36a): H NMR (400 MHz, DMSO) δ 8.22 - 8.07 (m, 1H), 7.99 - 7.84 (m, 1H), 7.73 (d, J = 1.6 Hz, 1H), 7.64 - 7.43 (m, 2H), 7.39 - 7.25 (m, 1H), 7.20 (d, J = 8.5 Hz, 1H), 4.83 (dd, J = 12.9, 7.4 Hz, 1H), 2.10 - 1.89 (m, 1H), 1.89 - 1.61 (m, 1H), 0.85 - 0.69 (m, 3H). ES/MS 449.3 (M+H+);

[0588] (S)-2,4-diamino-6-(1-(3-(3,5-difluorophenyl)-5-fluoro-8-methyl-4-oxo-3,4-
dihydroquinazolin-2-yl)propylamino)pyrimidine-5-carbonitrile (Compound 37a): H NMR (400 MHz, DMSO) δ 7.93 - 7.64 (m, 2H), 7.49 (d, J = 9.0 Hz, 1H), 7.36 - 6.85 (m, 4H), 6.34 - 5.98 (m, 1H), 4.90 (dd, J = 13.5, 6.6 Hz, 1H), 2.55 (s, 3H), 2.15 - 1.93 (m, 1H), 1.77 (dt, J = 13.9, 6.9 Hz, 1H), 0.84 (t, J = 7.2 Hz, 3H). ES/MS 481.1 (M+H+);

[0589] (S)-2,4-diamino-6-(1-(3-(cyanophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-
yl)ethylamino)pyrimidine-5-carbonitrile (Compound 38a): H NMR (400 MHz, DMSO) δ 8.13 (s, 1H), 7.99 - 7.73 (m, 3H), 7.70 (d, J = 7.8 Hz, 1H), 7.65 - 7.52 (m, 2H), 7.46 - 7.22 (m, 2H), 4.87 (dd, J = 14.3, 7.7 Hz, 1H), 1.36 (d, J = 6.5 Hz, 3H). ES/MS 442.4 (M+H+);

[0590] (S)-2,4-diamino-6-(1-(8-methyl-4-oxo-3-(3-trifluoromethyl)phenyl)-3,4-
dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 39a): H NMR (400 MHz, DMSO) δ 8.08 (t, J = 25.4 Hz, 1H), 8.04 - 7.82 (m, 2H), 7.85 - 7.62 (m, 2H), 7.59 - 7.31 (m, 1H), 5.16 - 4.76 (m, 1H), 2.72 - 2.59 (m, 3H), 1.53 - 1.33 (m, 3H). ES/MS 481.2 (M+H+);

[0591] (S)-2,4-diamino-6-(1-(5-fluoro-4-oxo-3-(3-trifluoromethyl)phenyl)-3,4-
dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 40a): H NMR (400 MHz, DMSO) δ 8.08 (s, 1H), 8.02 - 7.77 (m, 3H), 7.76 - 7.55 (m, 3H), 5.13 - 4.68 (m, 1H), 1.37 (dd, J = 18.9, 6.6 Hz, 3H). ES/MS 485.4 (M+H+);
(S)-2,4-diamino-6-(l-(5-chloro-3-(3,5-dichlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 41a): H NMR (400 MHz, DMSO) δ 7.90 (s, 1H), 7.86 - 7.73 (m, 4H), 7.73 - 7.65 (m, 2H), 7.65 - 7.53 (m, 2H), 7.37 (t, J = 1.8 Hz, 1H), 4.95 (dd, J = 13.7, 6.7 Hz, 1H), 1.37 (d, J = 6.6 Hz, 3H). ES/MS 501.5 (M+H+);

(S)-2,4-diamino-6-(l-(3-(3,5-dichlorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 42a): H NMR (400 MHz, DMSO) δ 7.86 (td, J = 8.2, 5.6 Hz, 1H), 7.77 - 7.67 (m, 1H), 7.61 - 7.46 (m, 2H), 7.35 (dd, J = 17.2, 6.3 Hz, 2H), 5.12 - 4.72 (m, 1H), 1.37 (d, J = 6.6 Hz, 3H). ES/MS 486.3 (M+H+);

(S)-2,4-diamino-6-(l-(5-chloro-3-(3-chloro-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 43a): H NMR (400 MHz, DMSO) δ 8.01 - 7.74 (m, 1H), 7.74 - 7.54 (m, 1H), 7.55 - 7.18 (m, 4H), 5.06 - 4.74 (m, 1H), 1.36 (t, J = 6.1 Hz, 3H). ES/MS 486.1 (M+H+);

(S)-2,4-diamino-6-(l-(3-(3-chloro-5-fluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylamino)pyrimidine-5-carbonitrile (Compound 46a): H NMR (400 MHz, DMSO) δ 7.93 (dd, J = 22.1, 13.3 Hz, 1H), 7.87 - 7.74 (m, 1H), 7.69 (ddd, J = 14.1, 8.2, 1.2 Hz, 2H), 7.60 (m, 3H), 5.09 - 4.81 (m, 1H), 1.47 - 1.26 (m, 3H). ES/MS 498.2 (M+H+);

(S)-2,4-diamino-6-(l-(5-chloro-4-oxo-3-(3-(trifluoromethyl)phenyl)-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 47a): H NMR (400 MHz, DMSO) δ 8.01 (d, J = 38.7 Hz, 1H), 7.91 - 7.75 (m, 3H), 7.75 - 7.63 (m, 4H), 7.63 - 7.52 (m, 2H), 5.02 - 4.74 (m, 1H), 1.43 - 1.19 (m, 3H). ES/MS 500.1 (M+H+);
[0599] (S)-2,4-diamino-6-(l-(5-chloro-3-(3-cyano-5-fluorophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 48a): H NMR (400 MHz, DMSO) δ 8.00 (dd, J = 25.2, 16.0 Hz, 1H), 7.85 (dd, J = 26.3, 17.5 Hz, 2H), 7.73 - 7.56 (m, 2H), 5.11 - 4.81 (m, IH), 1.40 (d, J = 6.6 Hz, 3H). ES/MS 494.1 (M+H+);

[0600] (S)-2,4-diamino-6-(l-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 49a): H NMR (400 MHz, DMSO) δ 7.78 (t, J = 8.0 Hz, 1H), 7.63 (dd, J = 8.2, 1.2 Hz, 1H), 7.57 (dd, J = 7.8, 1.2 Hz, 1H), 7.57 - 7.45 (m, 5H), 6.79 (d, J = 7.0 Hz, 1H), 6.55 (br s, IH), 6.25 (br s, IH), 4.72 (dq, J = 6.45, 6.45 Hz, 1H), 1.29 (d, J = 6.8 Hz, 3H). ES/MS 433.1 (M+H+);

[0601] (S)-2,4-diamino-6-(l-(5,8-dichloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 50a): H NMR (400 MHz, DMSO) δ 7.98 (d, J = 8.6 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.55 - 7.38 (m, 5H), 7.9-6.9 (very broad, 3H), 4.91 (dq, J = 6.85, 6.85 Hz, 1H), 1.34 (d, J = 6.6 Hz, 3H). ES/MS 468.1 (M+H+);

[0602] (S)-2,4-diamino-6-(l-(5-chloro-3-(3,5-dimethoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 51a): H NMR (400 MHz, DMSO) δ 7.77 (t, J = 7.8 Hz, 1H), 7.64 (d,J = 8.0 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 6.73 (m, IH), 6.55 (m, IH), 6.47 (m, IH), 5.03 (m, IH), 3.73 (s, 3H), 3.68 (s, 3H), 1.37 (d, J = 6.6 Hz, 3H). ES/MS 493.1 (M+H+);

[0603] (S)-2,4-diamino-6-(l-(5-(difluoromethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 52a): H NMR (400 MHz, DMSO) δ 8.04-7.75 (m, 5H), 7.72-7.45 (m, 3H), 7.42-7.10 (m, 4H), 5.03-4.97 (m, IH), 1.40 (d, J = 7.7 Hz, 3H). ES/MS 485.1 (M+H+);

[0604] (S)-2,4-diamino-6-(l-(5-(difluoromethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propylamino)pyrimidine-5-carbonitrile (Compound 53a): H NMR (400 MHz, DMSO) δ 8.04-7.74 (m, 5H), 7.72-7.37 (m, 4H) 7.36-7.05 (m, 3H), 5.03-4.97 (m, IH), 2.06-1.95 (m, IH), 1.84-1.76 (m, IH), 0.80 (t, J = 7.4 Hz, 3H). ES/MS 499.1 (M+H+);

[0605] (S)-2,4-diamino-6-(l-(3-(3-(difluoromethyl)-5-fluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 54a): H NMR (400 MHz, DMSO) δ 8.05-7.33 (m, 9H), 7.29-6.81 (m, 3H), 5.05-4.86 (m, IH), 1.43-1.34 (m, 3H). ES/MS 485.1 (M+H+);
(S)-2,4-diamino-6-(l-(5-chloro-3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 55a): H NMR (400 MHz, DMSO) δ 7.93-7.57 (m, 6H), 7.55-7.30 (m, 3H), 7.26-6.92 (m, 3H), 5.05-4.87 (m, 1H), 1.44-1.36 (m, 3H). ES/MS 501.1 (M+H+);

(S)-2,4-diamino-6-(l-(8-(difluoromethyl)-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 56a): H NMR (400 MHz, DMSO) δ 8.31 (d, J = 7.8 Hz, 1H), 8.16 (d, J = 7.0 Hz, 1H), 7.91-7.05 (m, 12H), 5.03-4.93 (m, 1H), 1.37 (d, J = 6.7 Hz, 3H). ES/MS 449.1 (M+H+);

(S)-2,4-diamino-6-(l-(8-(difluoromethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 57a): H NMR (400 MHz, DMSO) δ 8.33 (d, J = 1.4 Hz, 1H), 8.19 (d, J = 1.4 Hz, 1H), 7.95-7.05 (m, 10H), 5.12-5.03 (m, 1H), 1.44 (d, J = 6.7 Hz, 3H). ES/MS 485.1 (M+H+);

(S)-2,4-diamino-6-(l-(8-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 58a): H NMR (400 MHz, DMSO) δ 8.08-7.90 (m, 2H), 7.86-7.70 (m, 3H), 7.65-7.50 (m, 4H), 7.47-7.20 (m, 4H), 5.01-4.92 (m, 1H), 1.38 (d, J = 6.6 Hz, 3H). ES/MS 417.1 (M+H+);

(S)-2,4-diamino-6-(l-(5,8-difluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 59a): H NMR (400 MHz, DMSO) δ 7.92-7.72 (m, 2H), 7.70-7.50 (m, 4H), 7.48-7.11 (m, 6H), 4.93-4.85 (m, 2H), 2.57 (s, 3H), 1.36 (d, J = 6.1 Hz, 3H). ES/MS 431.1 (M+H+);

(S)-2,4-diamino-6-(l-(8-fluoro-5-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 60a): H NMR (400 MHz, DMSO) δ 7.91 (br s, 1H), 7.78 (br s, 2H), 7.63 (t, J = 9.0 Hz, 1H), 7.57-7.47 (m, 3H), 7.46-7.37 (m, 3H), 7.37-7.24 (m, 2H), 4.95-4.86 (m, 2H), 2.51 (s, 3H), 1.36 (d, J = 6.2 Hz, 3H). ES/MS 431.1 (M+H+);

(S)-2,4-diamino-6-(l-(5-fluoro-8-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 61a): H NMR (400 MHz, DMSO) δ 7.87-7.60 (m, 4H), 7.58-7.42 (m, 6H), 7.40-7.11 (m, 2H), 4.95-4.87 (m, 2H), 2.57 (s, 3H), 1.35 (d, J = 6.7 Hz, 3H). ES/MS 431.1 (M+H+);

(S)-2,4-diamino-6-(l-(5-(difluoromethyl)-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 62a): H NMR (400 MHz, DMSO) δ 8.09-
7.65 (m, 7H), 7.62-7.13 (m, 7H), 4.99-4.90 (m, IH), 1.38 (d, \(J = 6.7 \) Hz, 3H). ES/MS 449.1 (M+H⁺);

[0614] (S)-2,4-diamino-6-((1-(3-(3-cyanophenyl)-5-(difluoromethyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 63a): H NMR (400 MHz, DMSO) \(\delta \) 8.19-8.01 (m, 3H), 8.00-7.83 (m, 6H), 7.81-7.60 (m, 4H), 5.03-4.90 (m, IH), 1.41 (d, \(J = 6.7 \) Hz, 3H). ES/MS 474.1 (M+H⁺);

[0615] (S)-2,4-diamino-6-((1-(3-(3-cyanophenyl)-8-fluoro-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 64a): H NMR (400 MHz, DMSO) \(\delta \) 8.15-8.13 (m, IH), 7.97-7.76 (m, 4H), 7.75-7.59 (m, 4H), 7.40-7.10 (m, 2H), 4.96-4.85 (m, IH), 2.68 (s, 3H), 1.39 (d, \(J = 6.7 \) Hz, 3H). ES/MS 456.1 (M+H⁺);

[0616] (S)-2,4-diamino-6-((1-(3-(3-(difluoromethyl)-5-fluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylamino)pyrimidine-5-carbonitrile (Compound 65a): H NMR (400 MHz, DMSO) \(\delta \) 7.92-7.31 (m, 9H), 7.27-6.81 (m, 3H), 4.86-4.66 (m, IH), 2.08-1.86 (m, IH), 1.85-1.73 (m, IH), 0.85-0.72 (m, 3H). ES/MS 499.1 (M+H⁺);

[0617] (S)-2,4-diamino-6-((1-(5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propylamino)pyrimidine-5-carbonitrile (Compound 66a): H NMR (400 MHz, DMSO) \(\delta \) 7.87-7.40 (m, 9H), 7.32-6.81 (m, 3H), 4.86-4.63 (m, IH), 1.44-1.36 (m, 3H), 2.08-1.86 (m, IH), 1.85-1.73 (m, IH), 0.85-0.72 (m, 3H). ES/MS 515.1 (M+H⁺);

[0618] (S)-2,4-diamino-6-((1-(8-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 67a): H NMR (400 MHz, DMSO) \(\delta \) 7.96 (bs, IH), 7.75 (bs, 1H), 7.70 (m, IH), 7.49 (m, 3H), 7.33 (m, IH), 7.16 (m, IH), 5.02 (m, IH), 1.44 (d, 3H). ES/MS: 487.1 (M+H⁺);

[0619] (S)-2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-8-methoxy-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 68a): H NMR (400 MHz, DMSO) \(\delta \) 7.96 (bs, IH), 7.75 (bs, 1H), 7.70 (m, IH), 7.49 (m, 3H), 7.33 (m, IH), 7.16 (m, IH), 5.02 (m, IH), 3.97 (s, 3H), 2.02 (m, 1H), 1.42 (d, 3H). ES/MS 465.1 (M+H⁺);

[0620] (S)-2,4-diamino-6-(((1-(3-(3,5-difluorophenyl)-6,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylamino)pyrimidine-5-carbonitrile (Compound 69a): H NMR (400 MHz, DMSO) \(\delta \) 7.97 (m, IH), 7.73 (m, 1H), 7.66 (bs, 2H), 7.51 (m, IH), 7.35 (m, IH), 7.18 (m, IH), 4.85 (m, IH), 2.02 (m, 1H), 1.84 (m, IH), 0.83 (t, 3H). ES/MS 485.1 (M+H⁺);
(S)-2,4-diamino-6-(((1-(3-(3,5-difluorophenyl)-6,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 70a): H NMR (400 MHz, DMSO) δ 7.98 (m, 1H), 7.78 (bs, 1H), 7.73 (m, 1H), 7.62 (bs, 1H), 7.50 (m, 1H), 7.34 (m, 1H), 7.15 (m, 1H), 5.03 (m, 1H), 1.42 (d, 3H). ES/MS calcd. For C_{2i}Hi_{4}F_{4}N_{0}O : 470.1, found m/z = 471.1 (M+H+);

(S)-2,4-diamino-6-(((l-(8-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 71a): H NMR (400 MHz, DMSO) δ 8.11 (m, 2H), 7.83 (bs, 1H), 7.67 (bs, 1H), 7.59 (t, 1H), 7.51 (m, 1H), 7.34 (m, 1H), 7.12 (m, 1H), 5.09 (m, 1H), 1.45 (d, 3H). ES/MS 469.1 (M+H+);

(S)-2,4-diamino-6-((l-(8-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile (Compound 72a): H NMR (400 MHz, DMSO) δ 8.10 (m, 2H), 7.75 (bs, 2H), 7.59 (t, 1H), 7.51 (m, 1H), 7.33 (m, 2H), 7.12 (m, 1H), 4.98 (m, 1H), 2.08 (m, 1H), 1.83 (m, 1H), 0.89 (t, 3H). ES/MS 483.1 (M+H+);

(S)-2,4-diamino-6-(((l-(5-chloro-3-(3,5-difluorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 73a): H NMR (400 MHz, DMSO) δ 7.78 (bs, 1H), 7.73 (bs, 1H), 7.72 (dd, 1H), 7.49 (m, 2H), 7.36 (m, 1H), 7.18 (m, 1H), 5.03 (m, 1H), 2.58 (s, 3H), 1.42 (d, 3H). ES/MS 483.1 (M+H+);

(S)-2,4-diamino-6-((l-(5,8-dichloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 74a): H NMR (400 MHz, DMSO) δ 8.04 (d, 1H), 7.76 (bs, 1H), 7.66 (bs, 1H), 7.63 (d, 1H), 7.49 (m, 1H), 7.35 (m, 1H), 7.14 (m, 1H), 5.05 (m, 1H), 1.43 (d, 3H). ES/MS 503.0 (M+H+);

(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 75a): H NMR (400 MHz, DMSO) δ 7.99 (m, 1H), 7.89 (bs, 1H), 7.79 (m, 1H), 7.78 (bs, 1H), 7.49 (m, 2H), 7.36 (m, 1H), 7.18 (m, 1H), 5.06 (m, 1H), 2.64 (s, 3H), 1.44 (d, 3H). ES/MS 449.1 (M+H+);

(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile (Compound 76a): H NMR (400 MHz, DMSO) δ 7.98 (m, 1H), 7.79 (bs, 2H), 7.78 (bs, 1H), 7.73 (bs, 2H), 7.49 (m, 2H), 7.36 (m, 1H), 7.19 (m, 1H), 4.95 (m, 1H), 2.63 (s, 3H), 2.06 (m, 1H), 1.80 (m, 1H), 0.86 (t, 3H). ES/MS 463.1 (M+H+);
(S)-2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile (Compound 77a): H NMR (400 MHz, DMSO) \(\delta \) 7.89 (m, 2H), 7.88 (bs, 2H), 7.56 (dd, IH), 7.51 (m, IH), 7.36 (m, 2H), 7.20 (m, IH), 4.81 (m, IH), 2.00 (m, IH), 1.84 (m, IH), 0.82 (t, 3H). ES/MS calcd. For \(C_{22}H_iF_{3}N_{0} \): 466.2, found \(m/z = 467.2 \) (M+H+);

(S)-2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile (Compound 78a): H NMR (400 MHz, DMSO) \(\delta \) 7.82 (t, IH), 7.82 (bs, 2H), 7.69 (dd, IH), 7.63 (dd, IH), 7.51 (m, IH), 7.35 (m, IH), 7.20 (m, IH), 4.80 (m, IH), 2.00 (m, IH), 1.83 (m, IH), 0.81 (t, 3H). ES/MS 483.1 (M+H+);

(S)-2,4-diamino-6-(l-(3-(3,5-difluorophenyl)-6,7-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 79a): H NMR (400 MHz, DMSO) \(\delta \) 8.09 - 8.05 (m, IH), 7.88 - 7.84 (m, 2H), 7.70 (s, IH), 7.48 - 7.46 (d, \(J = 8.8 \), IH), 7.33 - 7.28 (m, IH), 7.12 - 7.10 (d, \(J = 8.4 \), IH), 4.85 (dd, \(J = 13.6, 6.4 \) Hz, IH), 1.38 (d, \(J = 6.4 \) Hz, 3H). ES/MS 471.1 (M+H+);

2,4-diamino-6-((3-(3,5-difluorophenyl)-6,7-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)methylamino)pyrimidine-5-carbonitrile (Compound 80);

(S)-2,4-diamino-6-(l-(5-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 81a): H NMR (400 MHz, DMSO) \(\delta \) 7.90 - 7.85 (m, 2H), 7.75 (s, IH), 7.63 - 7.58 (m, IH), 7.56 (s, IH), 7.54 - 7.52 (m, 2H), 7.46 - 7.39 (m, 3H), 4.89 (dd, \(J = 13.6, 6.4 \) Hz IH), 1.38 (d, \(J = 6.4 \) Hz, 3H). ES/MS 417.2 (M+H+);

(S)-2,4-diamino-6-(l-(3-(3-cyanophenyl)-5-fluoro-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 82a): H NMR (400 MHz, DMSO) \(\delta \) 8.15 (s, IH), 7.97 - 785 (m, 3H), 7.80 - 7.63 (m, 4H), 7.31 - 7.25 (m, IH), 4.96 - 4.90(m, IH), 2.58 (s, 3H), 1.40 (t, \(J = 5.2 \) Hz, 3H). ES/MS 456.2 (M+H+);

(S)-2,4-diamino-6-(l-(3-(3-cyano-5-fluorophenyl)-5-fluoro-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 83a): H NMR (400 MHz, DMSO) \(\delta \) 8.06 - 8.00 (m, 2H), 7.96 - 7.91 (m, 2H), 7.84 - 7.75 (m, 2H), 7.65 - 7.62 (m, IH), 4.85 (dd, \(J = 13.0, 6.4 \) Hz, IH), 2.58 (s, 3H), 1.44 (d, \(J = 6.8 \) Hz, 3H). ES/MS 474.2 (M+H+);
(S)-2,4-diamino-6-((8-chloro-3-(3-cyanophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)methylamino)pyrimidine-5-carbonitrile (Compound 84);

(S)-2,4-diamino-6-((1-(6-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 85a);

(S)-2,4-diamino-6-((1-(6-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propylamino)pyrimidine-5-carbonitrile (Compound 86a);

(S)-5-(5-chloro-2-(1-(2,6-diamino-5-cyanopyrimidin-4-ylamino)ethyl)-4-oxoquinazolin-3(4H)-yl)isophthalonitrile (Compound 87a);

(S)-2,4-diamino-6-((1-(3-(3,5-bis(trifluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 88a);

(S)-5-(5-chloro-2-(1-(2,6-diamino-5-cyanopyrimidin-4-ylamino)ethyl)-4-oxoquinazolin-3(4H)-yl)isophthalonitrile (Compound 87a);

(S)-2,4-diamino-6-((1-(3-(3,5-bis(trifluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carboxamide (Compound 90a);

(S)-2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carboxamide (Compound 91a).

(S)-2-(1-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carboxamide (Compound 92a).

(S)-2-(1-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carboxamide (Compound 92a).
(S)-2,4-diamino-6-(1-(5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carboxamide (Compound 93a): 1H NMR (400 MHz, DMSO) δ 11.00 (s, 1H), 9.65 (s, 1H), 7.76 - 7.67 (m, 3H), 7.60 - 7.27 (m, 5H), 7.25 - 6.90 (m, 4H), 4.70 - 4.63 (m, 1H), 1.31 (d, J = 7.0 Hz, 3H). ES/MS 519.1 (M+H+);

(S)-5-chloro-2-(1-(2,6-diamino-5-(methylsulfonyl)pyrimidin-4-ylamino)ethyl)-3-
(3,5-difluorophenyl)quinazolin-4(3H)-one (Compound 94a);

(S)-2,4-diamino-6-(1-(5-(methylsulfonyl)-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-
yl)ethylamino)pyrimidine-5-carbonitrile (Compound 95a): 1H NMR (400 MHz, DMSO) δ 8.33 (dd, J = 7.1 and 2.0 Hz, 1H), 8.13 - 8.06 (m, 2H), 8.02 - 7.62 (m, 4H), 7.59 - 7.41 (m, 6H), 5.01 - 4.93 (m, 1H), 3.51 (s, 3H), 1.38 (d, J = 6.6 Hz, 3H). ES/MS 477.1 (M+H+);

(S)-2,4-diamino-6-(1-(3-(3,5-difluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 96a): 1H NMR (400 MHz, DMSO) δ 8.37 - 8.31 (m, 1H), 8.14 - 8.07 (m, 2H), 7.95 - 7.55 (m, 4H), 7.52 (d, J = 8.6 Hz, 1H), 7.40 - 7.25 (m, 2H), 7.15 (d, J = 9.0 Hz, 1H), 5.09 - 5.01 (m, 1H), 3.50 (s, 3H), 1.42 (d, J = 6.2 Hz, 3H). ES/MS 513.1 (M+H+);

(S)-2,4-diamino-6-(1-(3-(3-(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-
dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carboxamide (Compound 97a): 1H NMR (400 MHz, DMSO) δ 8.12 - 7.45 (m, 9H), 7.42 - 6.79 (m, 4H), 5.00 - 4.82 (m, 1H), 1.39 - 1.30 (m, 3H). ES/MS 467.1 (M+H+);

(S)-2,4-diamino-6-(1-(5-(difluoromethyl)-3-(3-(difluoromethyl)-5-fluorophenyl)-4-
oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carboxamide (Compound 99a): 1H NMR (400 MHz, DMSO) δ 8.07 - 7.87 (m, 4H), 7.82 - 7.30 (m, 6H), 7.25 - 6.78 (m, 3H), 5.08 - 4.93 (m, 1H), 1.43 - 1.36 (m, 3H). ES/MS 517.1 (M+H+);
(400 MHz, DMSO) δ 11.10 (br s, IH), 8.95 - 8.71 (m, IH), 7.84-7.35 (m, 12H), 7.26 - 6.83 (m, IH), 4.77 - 4.87 (m, IH), 1.32 - 1.22 (m, 3H). ES/MS 501.1 (M+H+);

[0652] (S)-2-((2,6-diamino-5-cyanopyrimidin-4-y1)amino)ethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazoline-8-carbonitrile (Compound 101a): H NMR (400 MHz, DMSO) δ 8.48 - 8.42 (m, 2H), 7.87 (bs, 1 H), 7.77 - 7.73 (m, IH), 7.74 (bs, 1 H), 7.51 - 7.49 (m, IH), 7.35 - 7.29 (m, IH), 7.08 - 7.05 (m, 1 H), 5.15 (m, IH), 1.48 (d, J = 6.4 Hz, 3H). ES/MS 460.1 (M+H+);

[0653] (S)-2,4-diamino-6-((1-(3,5-difluorophenyl)-5-fluoro-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile (Compound 102a): H NMR (400 MHz, DMSO) δ 8.11 - 8.08 (m, IH), 7.86 - 7.60 (2 bs, 3 H), 7.51 - 7.48 (m, IH), 7.44 - 7.39 (m, 1 H), 7.36 - 7.32 (m, IH), 7.13 - 7.11 (m, IH), 4.94 (m, IH), 2.06 (m, IH), 1.82 (m, IH), 0.88 (t, 3H). ES/MS 501.1 (M+H+);

[0654] (S)-2,4-diamino-6-((1-(3,5-difluorophenyl)-8-ethyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 103a): H NMR (400 MHz, DMSO) δ 8.00 (dd, J = 7.6, 1.2 Hz, IH), 7.84 (bs, 1 H), 7.78 (dd, J = 7.6, 1.6 Hz, IH), 7.77 (bs IH), 7.54 - 7.50 (m, 1 H), 7.37 - 7.32 (m, IH), 7.21 - 7.18 (m, IH), 5.06 (m, IH), 3.10 (m, 2 H), 1.43 (d, J = 6.8 Hz, 3H), 1.30 (t, J = 7.2 Hz, 3H). ES/MS 463.2 (M+H+);

[0655] (S)-5-chloro-2-(1-(2,6-diamino-5-chloropyrimidin-4-yl)amino)ethyl)-3-phenylquinazolin-4(3H)-one (Compound 104a): H NMR (400 MHz, DMSO) δ 7.80 (t, J = 8.0, IH), 7.72 (bs, 1 H), 7.69 (d, J = 1.2 Hz, IH), 7.69 (bs, IH), 7.67 (d, J = 1.2 Hz, IH), 7.61 (d, J = 1.2 Hz, IH), 7.59 (d, J = 1.2 Hz, IH), 7.54 - 7.52 (m, 2 H), 7.48 (bs, 2H), 7.43 - 7.40 (m, 3H), 7.31 (bs, IH), 4.85 (m, IH), 1.36 (d, J = 6.8 Hz, 3H). ES/MS 442.1 (M+H+);

[0656] (S)-2-(l-((2,6-diamino-5-chloropyrimidin-4-yl)propyl)-3-(3,5-difluorophenyl)-5-fluoroquinazolin-4(3H)-one (Compound 105a): H NMR (400 MHz, DMSO) δ 7.92 - 7.86 (m, 2H), 7.74 (d, J = 8 Hz, 1 H), 7.58 - 7.56 (m, 2H), 7.54 - 7.50 (m, 2H), 7.40 - 7.31 (m, 2 H), 7.01 - 6.93 (m, IH), 4.77 (m, IH), 2.02 (m, IH), 1.84 (m, IH), 0.84 (t, 3H). ES/MS 476.1 (M+H+);

[0657] (S)-2,4-diamino-6-(l-(5-chloro-3-(difluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 106a);
(S)-2,4-diamino-6-(1-(5-chloro-3-(3-isopropylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 107a);

(S)-2,4-diamino-6-(1-(5-chloro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 108a);

(S)-2,4-diamino-6-(1-(5-chloro-3-(3-methoxy-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compounds 109a-1 and 109a-2);

(S)-2,4-diamino-6-(1-(5-chloro-3-(5-fluoro-3-methoxy-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compounds 110a-1 and 110a-2).

(S)-2,4-diamino-6-(1-(5-methoxy-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 111a).

H NMR (400 MHz, DMSO) δ 8.05 - 7.54 (br. M, 4H), 7.75 (t, J = 8.2 Hz, 1H), 7.53 - 7.35 (m, 5H), 7.21 (dd, J = 8.1, 0.8 Hz, 1H), 7.09 - 7.03 (m, 1H), 4.89 - 4.77 (m, 1H), 3.82 (s, 3H), 1.31 (d, J = 6.6 Hz, 1H).

ES/MS 429.2 (M+H+).

(S)-2-(1-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile (Compound 112a).

H NMR (400 MHz, DMSO) δ 8.15 - 8.10 (m, 1H), 8.10 - 7.99 (m, 3H), 7.98 - 7.90 (m, 1H), 7.72 - 7.63 (m, 1H), 7.57 - 6.81 (br. M, 4H), 5.01 - 4.90 (m, 1H), 1.39 (d, J = 6.6 Hz, 3H). ES/MS 467.1 (M+H+).

(S)-3-(3-cyano-5-fluorophenyl)-2-(1-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile (Compound 113a).

H NMR (400 MHz, DMSO) δ 8.15 - 8.10 (m, 1H), 8.10 - 7.99 (m, 3H), 7.98 - 7.90 (m, 1H), 7.72 - 7.63 (m, 1H), 7.57 - 6.81 (br. M, 4H), 5.01 - 4.90 (m, 1H), 1.39 (d, J = 6.6 Hz, 3H). ES/MS 501.1 (M+H+).

(S)-2,4-diamino-6-((1-(3-(3-chloro-5-(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 114a).

H NMR (400 MHz, DMSO) δ 7.96-7.78 (m, 3H), 7.65-7.50 (m, 4H), 7.36-7.31 (m, 2H), 7.21-6.77 (m, 3H), 4.96-4.90 (m, 1H), 1.38-1.33 (m, 3H). ES/MS 501.1 (M+H+);

(S)-2,4-diamino-6-((1-(5-chloro-3-(3-chloro-5-(difluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 115a).

H NMR (400 MHz, DMSO) δ 7.96-7.78 (m, 3H), 7.65-7.50 (m, 4H), 7.36-7.31 (m, 2H), 7.21-6.77 (m, 3H), 4.96-4.90 (m, 1H), 1.38-1.33 (m, 3H). ES/MS 501.1 (M+H+).
MHz, DMSO) δ 7.96-7.75 (m, 3H), 7.72-7.64 (m, 2H), 7.63-7.50 (m, 4H), 7.21-6.78 (m, 3H), 4.97-4.87 (m, 1H), 1.39-1.31 (m, 3H). ES/MS 517.1 (M+H+);

[0667] (S)-2,4-diamino-6-((l-(3-(3-(difluoromethyl)phenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 116a): H NMR (400 MHz, DMSO) δ 8.36-8.31 (m, 1H), 8.18-8.05 (m, 2H), 8.00-7.40 (m, 7H), 7.35-6.83 (m, 3H), 5.08-4.92 (m, 1H), 3.51-3.48 (m, 3H), 1.44-1.35 (m, 3H). ES/MS 527.1 (M+H+);

[0668] (S)-2,4-diamino-6-((l-(3-(3-fluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 117a): H NMR (400 MHz, DMSO) δ 8.36-8.32 (m, 1H), 8.13-8.05 (m, 2H), 8.00-7.65 (m, 3H), 7.63-7.42 (m, 3H), 7.40-7.20 (m, 3H), 5.06-4.96 (m, 1H), 3.50 (s, 3H), 1.41 (d, J = 6.1 Hz, 3H). ES/MS 495.1 (M+H+);

[0669] (S)-2,4-diamino-6-((l-(3-(3,5-bis(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 118a): H NMR (400 MHz, DMSO) δ 8.10-7.86 (m, 3H), 7.84-7.66 (m, 3H), 7.60 (d, J = 8.2 Hz, 1H), 7.45-6.89 (m, 6H), 5.03-4.94 (m, 1H), 1.39 (d, J = 6.7 Hz, 3H). ES/MS 517.1 (M+H+);

[0670] (S)-2,4-diamino-6-((l-(3-(3,5-bis(difluoromethyl)phenyl)-5-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 119a): H NMR (400 MHz, DMSO) δ 8.08-7.95 (m, 1H), 8.04 (s, 1H), 7.90-7.66 (m, 6H), 7.64 (dd, J = 5.1 and 1.2 Hz, 1H), 7.33-6.90 (m, 4H), 5.02-4.94 (m, 1H), 1.39 (d, J = 6.7 Hz, 3H). ES/MS 533.1 (M+H+);

[0671] (S)-2,4-diamino-6-((l-(5-chloro-3-(3-(difluoroethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 120a): H NMR (400 MHz, DMSO) δ 7.87 - 7.72 (m, 2H), 7.72 - 7.64 (m, 1H), 7.62 - 7.46 (m, 4H), 5.04 - 4.83 (m, 1H), 5.04 - 4.70 (m, 1H), 1.93 (m, 4H), 1.42 - 1.22 (m, 3H).

[0672] (S)-2,4-diamino-6-((l-(3-(3-(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile (Compound 121a): H NMR (400 MHz, DMSO) δ 7.84 (m, 2H), 7.58 (m, 4H), 7.38 - 7.12 (m, 1H), 5.14 - 4.61 (m, 2H), 1.93 (dt, J = 34.0, 18.8 Hz, 4H), 1.34 (dd, J = 13.7, 6.5 Hz, 3H). ES/MS 467.1 (M+H+).

[0673] (S)-2-(l-(2,6-diamino-5-cyanopyrimidin-4-ylamino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-8-carbonitrile (Compound 122a).
[0674] (S)-2-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-8-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carbonitrile (Compound 132a). 1H NMR (400 MHz, DMSO-d_6) δ 8.10 (dd, $J = 8.4, 4.5$ Hz, 1H), 7.93 (dd, $J = 9.6, 8.4$ Hz, 1H), 7.84 - 7.50 (br. m, 4H), 7.49 - 7.37 (m, 3H), 7.35 - 6.90 (br. m, 2H), 4.92 - 4.80 (m, 1H), 1.32 (d, $J = 6.6$ Hz, 3H). ES/MS 442.1 (M+H$^+$).

[0675] (S)-2-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3,5-difluorophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazoline-5-carbonitrile (Compound 125a). 1H NMR (400 MHz, DMSO-4) δ 8.14 (dd, $J = 8.4, 4.5$ Hz, 1H), 7.97 (dd, $J = 9.6, 8.5$ Hz, 1H), 7.78 - 6.87 (br. m, 4H), 7.50 - 7.42 (m, 1H), 7.34 (tt, $J = 9.3, 2.4$ Hz, 1H), 7.21 - 7.13 (m, 1H), 5.01 - 4.87 (m, 1H), 1.37 (d, $J = 6.5$ Hz, 3H). ES/MS 478.1 (M+H$^+$).

[0676] (S)-5-chloro-2-((2,6-diamino-5-chloropyrimidin-4-yl)amino)ethyl)-8-fluoro-3-phenylquinazolin-4(3H)-one (Compound 127a). 1H NMR (400 MHz, DMSO-d_6) δ 7.82 - 7.70 (m, 2H), 7.61 (dd, $J = 8.8, 4.5$ Hz, 1H), 7.58 - 7.48 (m, 4H), 7.44 - 7.37 (m, 4H), 4.95 - 4.80 (m, 1H), 1.38 (d, $J = 6.6$ Hz, 3H). ES/MS 460.1 (M+H$^+$).

[0677] (S)-2,4-diamino-6-((1-(5-bromo-4-oxo-3-phenyl)-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 129a). 1H NMR (400 MHz, DMSO-d_6) δ 7.75 (dd, $J = 6.6, 2.5$ Hz, 1H), 7.70 - 7.59 (m, 2H), 7.57 - 7.34 (m, 5H), 6.77 (d, $J = 10$ Hz, 1H), 6.53 (s, 2H), 6.23 (s, 2H), 4.69 (h, $J = 6.6$ Hz, 1H), 1.26 (d, $J = 6.7$ Hz, 3H). ES/MS 477.1 (M+H$^+$).

[0678] (S)-2,4-diamino-6-((1-(5-bromo-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 130a). 1H NMR (400 MHz, DMSO-d_6) δ 7.80 (dt, $J = 5.1, 3.0$ Hz, 1H), 7.73 - 7.64 (m, 2H), 7.63 - 7.48 (m, 1H), 7.48 - 7.35 (m, 1H), 7.35 - 7.23 (m, 1H), 6.83 (td, $J = 7.7, 6.8, 4.1$ Hz, 1H), 6.54 (s, 2H), 6.25 (d, $J = 18.2$ Hz, 2H), 4.85 - 4.67 (m, 1H), 1.39 - 1.27 (m, 3H). ES/MS 495.1 (M+H$^+$).

[0679] (S)-2-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile (Compound 131a). 1H NMR (400 MHz, DMSO-Je) δ 8.12 - 8.05 (m, 1H), 8.04 - 7.95 (m, 2H), 7.64 - 7.51 (m, 1H), 7.51 - 7.39 (1, 2H), 7.39 - 7.26 (m, 1H), 6.84 (dd, $J = 6.8, 4.8$ Hz, 1H), 6.55 (s, 2H), 6.26 (d, $J = 17.5$ Hz, 2H), 4.87 - 4.72 (m, 1H), 1.41 - 1.28 (m, 3H). ES/MS 442.1 (M+H$^+$).

[0680] (S)-2,4-diamino-6-((3,3,3-trifluoro-1-(6-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile (Compound 132a). 1H NMR
(400 MHz, DMSO-4) δ 7.94 - 6.50 (m, 12H), 5.23 (t, J = 8.0 Hz, 1H), 3.53 (brs, 2H) 3.19 - 2.68 (m, 2H). ES/MS 485.2 (M+H)+.

[0681] (S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-3,3,3-trifluoropropyl)amino)pyrimidine-5-carbonitrile (Compound 133a). H NMR (400 MHz, DMSO-4) δ 8.37 - 6.70 (m, 9H), 6.58 - 6.33 (m, 1H), 6.30 - 6.12 (m, 1H), 5.27 (td, J = 7.9, 4.4 Hz, 1H), 3.68 (d, J = 11.1 Hz, 1H), 3.22 - 2.87 (m, 2H). ES/MS 521.2 (M+H)+.

[0682] (R)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methoxyethyl)amino)pyrimidine-5-carbonitrile (Compound 135a). H NMR (400 MHz, DMSO-d6) δ 7.94 - 7.15 (m, 12H), 7.90 - 7.67 (m, 1H), 7.60 - 7.37 (m, 1H), 3.88 (dt, J = 10.6, 5.4 Hz, 1H), 3.66 (dt, J = 9.7, 6.0 Hz, 1H), 3.21 (s, 3H). ES/MS 499.3 (M+H)+;

[0683] (S)-2,4-diamino-6-((l-(3-(3,5-bis(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 136): H NMR (400 MHz, DMSO) δ 8.12 - 7.93 (m, 3H), 7.90 - 7.31 (m, 5H), 7.28 - 6.80 (m, 2H), 5.10 - 4.90 (m, 1H), 1.44 -1.36 (m, 3H). ES/MS 492.1 (M+H)+;

[0684] (S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile (Compound 138a): H NMR (400 MHz, DMSO) δ 8.18 - 7.98 (m, 5H), 7.91 - 7.31 (m, 5H), 7.28 - 6.80 (m, 2H), 5.10 - 4.90 (m, 1H), 1.44 -1.36 (m, 3H). ES/MS 492.1 (M+H)+;

[0686] (S)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 140a): H NMR (400 MHz, DMSO) δ 8.12 - 7.93 (m, 2H), 7.90 - 7.67 (m, 5H), 7.28 - 6.80 (m, 2H), 5.10 - 4.90 (m, 1H), 1.44 -1.36 (m, 3H). ES/MS 487.1 (M+H)+;

[0687] (S)-2,4-diamino-6-((l-(5-chloro-3-(3-difluoromethyl)-5-fluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 141a): H
NMR (400 MHz, DMSO) δ 8.00 - 7.95 (m, 2H), 7.85 - 7.51 (m, 4H), 7.51 - 7.38 (m, 3H), 7.26 - 6.81 (m, 2H), 5.05 - 4.88 (m, 1H). 1.44 - 1.35 (m, 3H). ES/MS 519.1 (M+H+);

[0688] (S)-2,4-diamino-6-((l-(3-(2-fluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 142a-l): H NMR (400 MHz, DMSO) δ 8.36 - 8.30 (m, 1H), 8.15 - 8.06 (m, 3H), 7.71 - 7.45 (m, 3H), 7.42 - 7.25 (m, 3H), 7.23 - 7.05 (m, 2H), 5.30 - 5.22 (m, 1H), 3.49 (s, 3H), 1.43 (d, J = 6.5 Hz, 3H). ES/MS 495.1 (M+H+);

[0689] (S)-2,4-diamino-6-((l-(3-(2-fluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 142a-2): H NMR (400 MHz, DMSO) δ 8.33 (d, J = 7.4, 1.4 Hz, 1H), 8.14 - 8.04 (m, 3H), 7.87 (br s, 2H), 7.71 - 7.39 (m, 4H), 7.36 - 7.10 (m, 2H), 5.01 - 4.94 (m, 1H), 3.49 (s, 3H), 1.35 (d, J = 6.5 Hz, 3H). ES/MS 495.1 (M+H+);

[0690] (S)-2,4-diamino-6-((l-(5-chloro-3-(2,6-difluorophenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 145a): H NMR (400 MHz, DMSO) δ 8.37 (br s, 1H), 7.88 (td, J = 8.0, 1.0 Hz, 1H), 7.79 - 7.61 (m, 4H), 7.50 - 7.38 (m, 1H), 7.28 (t, J = 8.9 Hz, 1H), 7.19 - 7.05 (m, 3H), 5.27 - 5.18 (m, 1H), 1.43 (d, J = 6.5 Hz, 3H). ES/MS 469.1 (M+H+);

[0691] (S)-2,4-diamino-6-((l-(3-(2,6-difluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 146a): H NMR (400 MHz, DMSO) δ 8.38 - 8.30 (m, 1H), 8.18 - 8.13 (m, 2H), 7.51 - 7.41 (m, 2H), 7.30 (t, J = 9.0 Hz, 1H), 7.12 - 7.07 (m, 2H), 5.34 - 5.25 (m, 1H), 3.48 (s, 3H), 1.45 (d, J = 6.5 Hz, 3H). ES/MS 513.1 (M+H+);

[0692] (S)-2,4-diamino-6-((l-(5,8-difluoro-3-(3-fluorophenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 148a): H NMR (400 MHz, DMSO) δ 7.93 - 7.61 (m, 5H), 7.57 - 7.41 (m, 2H), 7.41 - 7.29 (m, 2H), 7.27 - 7.20 (m, 2H), 4.96 - 4.82 (m, 1H), 1.38 - 1.32 (d, J = 6.5 Hz, 3H). ES/MS 453.1 (M+H+);

[0693] (S)-2,4-diamino-6-((l-(3-(3-cyanophenyl)-5,8-difluoro-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 149a): H NMR (400 MHz, DMSO) δ 8.11 - 8.08 (m, 1H), 7.91 (ddd, J = 8.0, 2.0, 1.2 Hz, 1H), 7.87 - 7.74 (m, 4H), 7.73 - 7.66 (m, 2H), 7.62 - 7.56 (m, 1H), 7.40 - 7.33 (m, 2H), 4.90 - 4.80 (m, 1H), 1.34 (d, J = 6.5 Hz, 3H). ES/MS 460.1 (M+H+);
(S)-2,4-diamino-6-((l-(5,8-difluoro-4-oxo-3-phenyl-3,4-dihydroquinoxalin-2-yl)propyl)amino)pyrimidine-5-carbonitrile (Compound 150a): 1H NMR (400 MHz, DMSO) δ 7.75 (td, J = 9.5, 4.2 Hz, 1H), 7.68 - 7.35 (m, 7H), 7.32 (ddd, J = 10.6, 9.1, 3.6 Hz, 1H), 7.11 (br s, 3H), 4.68 (td, J = 7.7, 4.5 Hz, 1H), 1.90 - 1.81 (m, 1H), 1.80 -1.69 (m, 1H), 0.66 (t, J = 7.3 Hz, 3H). ES/MS 449.1 (M+H+);

(S)-2,4-diamino-6-((l-(5,8-difluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile (Compound 151a): 1H NMR (400 MHz, DMSO) δ 7.81 - 7.72 (m, 2H), 7.60 - 7.40 (m, 4H), 7.40 - 7.19 (m, 5H), 4.75 - 4.64 (m, 1H), 1.96 - 1.82 (m, 1H), 1.83 - 1.70 (m, 1H), 0.72 (m, 3H). ES/MS 467.1 (M+H+);

(S)-2,4-diamino-6-((l-(3-(3-cyanophenyl)-5,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile (Compound 152): 1H NMR (400 MHz, DMSO) δ 8.11 (t, J = 1.8 Hz, 1H), 7.94 - 7.58 (m, 5H), 7.50 - 7.20 (m, 4H), 4.70 - 4.62 (m, 2H), 1.95 - 1.86 (m, 1H), 1.82 -1.73 (m, 1H), 0.79 - 0.69 (m, 3H). ES/MS 474.1 (M+H+);

(S)-2-(l-((2,6-diamino-5-chloropyrimidin-4-yl)amino)ethyl)-3-(3-fluorophenyl)-5-(methylsulfonyl)quinazolin-4(3H)-one (Compound 153a): 1H NMR (400 MHz, DMSO) δ 8.37 - 8.32 (m, 1H), 8.13 - 8.09 (m, 2H), 7.75 (d, J = 1.1 Hz, 1H), 7.64 - 7.32 (m, 6H), 7.32 - 7.20 (m, 2H), 5.04 - 4.95 (m, 1H), 3.51 (s, 3H), 1.45 - 1.41 (m, 3H). ES/MS 504.1 (M+H+);(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-8-iodo-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;

(S)-2,4-diamino-6-((l-(8-iodo-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;

(S)-2,4-diamino-6-((l-(6-fluoro-3-(3-fluorophenyl)-8-iodo-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;

(S)-2,4-diamino-6-((l-(6-fluoro-3-phenyl-8-iodo-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;

(S)-2,4-diamino-6-((l-(6-iodo-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;

(S)-2,4-diamino-6-((l-(3-(3-(difluoromethyl)phenyl)-8-iodo-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
[0702] (S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-6-fluoro-8-iodo-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile; (S)-2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-3-methylbutyl)amino)pyrimidine-5-carbonitrile (Compound 163a); H NMR (400 MHz, DMSO) δ 7.98 (t, J = 6.4 Hz, IH), 7.75 (bs, IH), 7.63 (dd, J = 1.2, 8.0 Hz, IH), 7.61 (dd, J = 1.2, 8.0 Hz, IH), 7.56 - 7.52 (m, IH), 7.46 - 7.40 (m, 2H), 4.78 (m, IH), 1.82 (m, IH), 1.64 (m, IH), 1.52 (m, IH), 0.82 (d, J = 6.8 Hz, 3H), 0.50 (d, J = 6.4 Hz, 3H). ES/MS 511.2 (M+H+)

[0703] 2,4-diamino-6-(((S,2S)-1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methylbutyl)amino)pyrimidine-5-carbonitrile (Compound 164a): H NMR (400 MHz, DMSO) δ 7.98 (bs, IH), 7.89 (t, J = 8.0 Hz, IH), 7.77 (dd, J = 1.2, 8.0 Hz, IH), 7.70 (dd, J = 1.2, 7.6 Hz, IH), 7.51-7.48 (m, IH), 7.39 - 7.33 (m, IH), 7.13 - 7.10 (m, IH), 4.91 (m, IH), 2.28 (m, IH), 1.56 (m, IH), 1.02 (m, IH), 0.95 - 0.82 (m, 6H). ES/MS 511.2 (M+H+)

[0704] (S)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-3,3,3-trifluoropropyl)amino)pyrimidine-5-carbonitrile (Compound 165a): H NMR (400 MHz, DMSO) δ 7.89 (t, J = 8.0 Hz, IH), 7.73 (dd, J = 1.2, 8.0 Hz, IH), 7.65 (dd, J = 1.2, 8.0 Hz, IH), 7.51-7.48 (m, IH), 7.39 - 7.34 (m, IH), 7.31 - 7.29 (m, IH), 5.22 (m, IH), 3.10 - 3.00 (m, 2H). ES/MS 537.1 (M+H+)

[0705] (S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-3,3,3-trifluoropropyl)amino)pyrimidine-5-carbonitrile (Compound 166a): H NMR (400 MHz, DMSO) δ 7.96 (bs, IH), 7.90 (dd, IH), 7.58 (d, J = 8.0 Hz, IH), 7.50 (m, IH), 7.42-7.34 (m, 2H), 7.29 (m, IH), 5.24 (m, IH), 3.17 - 3.02 (m, 2H). ES/MS 521.1 (M+H+)

[0706] (S)-2,4-diamino-6-((l-(5-chloro-3-(3-cyanophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-3-methylbutyl)amino)pyrimidine-5-carbonitrile (Compound 167a): H NMR (400 MHz, DMSO) δ 8.22 (t, J = 1.6 Hz, IH), 8.08 (t, J = 1.6 Hz, IH), 8.02 - 7.93 (m, 3H), 7.84 - 7.77 (m, 4H), 7.66 - 7.59 (m, 5H), 4.70 (m, 2H), 1.80 (m, 2H), 1.47 (m, 4H), 0.79 (m, 4H), 0.44 (d, J = 6.4 Hz, 3H), 0.32 (d, J = 6.0 Hz, 3H). ES/MS 500.1 (M+H+)

[0707] (S)-2,4-diamino-6-((l-(5-chloro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-3-methylbutyl)amino)pyrimidine-5-carbonitrile (Compound 168a): H NMR (400 MHz, DMSO) δ 7.80 - 7.76 (m, IH), 7.68 - 7.51 (m, 5H), 7.45 - 7.36 (m, IH), 4.70 (m, IH), 1.81 (m,
1.5H), 1.50 (m, 4H), 1.26 (m, 0.5H), 0.79 (m, 2H), 0.44 (d, J = 6.0 Hz, 1H), 0.32 (d, J = 6.0 Hz, 1H). ES/MS 493.1 (M+H+);

[S0708] (S)-2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)butyl)amino)pyrimidine-5-carbonitrile (Compound 175a). H NMR (400 MHz, DMSO-D6) δ 7.86 (td, J = 8.2, 5.4 Hz, 1H), 7.66 (s, 1H), 7.52 (t, J = 8.7 Hz, 1H), 7.43 - 7.03 (m, 3H), 4.81 (q, J = 6.9 Hz, 1H), 1.83 (q, J = 7.5 Hz, 2H), 1.20 (ddt, J = 43.6, 13.8, 6.8 Hz, 2H), 0.70 (t, J = 7.3 Hz, 3H). ES/MS 435.1 (M+H+).

[S0709] (S)-2,4-diamino-6-((1-(5-chloro-3-(3-cyanophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 176a). H NMR (400 MHz, DMSO-D6) δ 8.09 (t, J = 1.9 Hz, 1H), 8.06 - 7.80 (m, 3H), 7.82 - 7.50 (m, 3H), 6.99 - 6.64 (m, 1H), 6.49 (d, J = 5.9 Hz, 1H), 6.21 (d, J = 17.0 Hz, 1H), 4.73 (h, J = 6.6 Hz, 1H), 1.29 (d, J = 6.6 Hz, 3H). ES/MS 476.9 (M+H+).

[S0710] (S)-2,4-diamino-6-((1-(6-fluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile (Compound 178a). H NMR (400 MHz, DMSO-D6) δ 7.87 - 7.64 (m, 2H), 7.55 (tdd, J = 10.1, 5.0, 2.4 Hz, 1H), 7.48 - 7.15 (m, 2H), 6.67 (dd, J = 17.8, 7.5 Hz, 1H), 6.53 (d, J = 4.8 Hz, 2H), 6.20 (s, 2H), 4.69 - 4.46 (m, 1H), 1.92 - 1.58 (m, 2H), 0.67 (dt, J = 10.0, 7.3 Hz, 3H). ES/MS 449.3 (M+H+).

[S0711] (S)-2,4-diamino-6-((1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile (Compound 179a). H NMR (400 MHz, DMSO-D6) δ 8.05 - 7.57 (m, 3H), 7.61 - 7.39 (m, 3H), 7.39 - 6.85 (m, 4H), 4.71 (tt, J = 12.7, 5.9 Hz, 1H), 2.04 - 1.63 (m, 2H), 0.84 - 0.52 (m, 3H). ES/MS 449.4 (M+H+).

[S0712] (S)-2,4-diamino-6-((1-(5-chloro-3-(3-cyanophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 181a). H NMR (400 MHz, DMSO-D6) δ 7.85 (tdd, J = 8.2, 5.5, 1.0 Hz, 2H), 7.73 (bs, 2H), 7.58 - 7.18 (m, 5H), 4.89 (dt, J = 11.5, 6.7 Hz, 1H), 1.34 (dd, J = 6.6, 2.6 Hz, 3H). ES/MS 435.1 (M+H+).
[0714] (S)-2,4-diamino-6-((1-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carboxamide (Compound 188a-l). H NMR (400 MHz, DMSO-\(\delta\)) \(\delta\) 11.4 (bs, 2H), 8.98 (d, \(J = 6.9\) Hz, IH), 7.85 - 7.75 (m, IH), 7.69 - 7.45 (m, 8H), 4.78 (p, \(J = 6.6\) Hz, IH), 1.30 (d, \(J = 6.7\) Hz, 3H). ES/MS 451.1 (M+H+);

[0715] (S)-2,4-diamino-6-((1-(5-chloro-3-(5-methoxy-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 184a). H NMR (400 MHz, DMSO-4) \(\delta\) 7.80 (td, \(J = 8.0, 1.4\) Hz, IH), 7.74 - 7.56 (m, 2H), 7.28 - 7.11 (m, IH), 6.99 - 6.86 (m, IH), 6.80 - 6.71 (m, IH), 5.10-5.01 (m, IH), 3.79 (s, 1.2H), 3.73 (s, 1.8H), 2.27 - 2.11 (2 s, 3H), 1.41 - 1.34 (m, 3H). ES/MS 478.1 (M+H+).

[0716] (S)-2,4-diamino-6-((1-(5-chloro-3-(5-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 185a). H NMR (400 MHz, DMSO-J) \(\delta\) 8.05 (bs, 2H), 7.97-6.7 (m, 6H), 5.05 (m, IH), 3.84 (s, 3H), 1.44 - 1.37 (m, 3H). ES/MS 463.1 (M+H+).

[0717] (S)-2,4-diamino-6-((1-(5-chloro-3-(4-fluoro-3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 186a). H NMR (400 MHz, DMSO-4) \(\delta\) 8.05 (bs, 2H), 7.97-6.7 (m, 6H), 5.05 (m, IH), 3.84 (s, 3H), 1.44 - 1.37 (m, 3H). ES/MS 481.1 (M+H+).

[0718] (S)-2,4-diamino-6-((1-(5-chloro-3-(5-methoxy-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 187a-l). H NMR (400 MHz, DMSO-4) \(\delta\) 7.86 - 7.76 (m, IH), 7.69 (dd, \(J = 8.2, 1.2\) Hz, IH), 7.61 (dd, \(J = 7.8, 1.2\) Hz, IH), 7.24 - 7.17 (m, IH), 7.12 (d, \(J = 2.7\) Hz, IH), 6.91 (dd, \(J = 8.5, 2.7\) Hz, IH), 5.04 (p, \(J = 6.6\) Hz, IH), 3.76 (s, 3H), 1.95 (s, 3H), 1.37 (d, \(J = 6.5\) Hz, 3H). ES/MS 477.1 (M+H+).

[0719] (S)-2,4-diamino-6-((1-(5-chloro-3-(5-methoxy-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 187a-2). H NMR (400 MHz, DMSO-4) \(\delta\) 7.86 - 7.80 (m, IH), 7.71 (dd, \(J = 8.2, 1.2\) Hz, IH), 7.63 (dd, \(J = 7.8, 1.2\) Hz, IH), 7.32 - 7.25 (m, IH), 6.95 - 6.83 (m, 2H), 4.87 (p, \(J = 6.7\) Hz, IH), 3.66 (s, 3H), 1.98 - 1.92 (m, 3H), 1.46 - 1.29 (m, 3H). ES/MS 477.1 (M+H+).

[0720] (S)-2,4-diamino-6-((1-(5-chloro-3-(5-(difluoromethyl)-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 188a-l). H NMR (400 MHz, DMSO-4) \(\delta\) 7.79 (dt, \(J = 10.8, 8.0\) Hz, IH), 7.73 - 7.51 (m, 3H), 7.41 - 7.28 (m,
2H), 7.05 (t, J = 5.6 Hz, 1H), 5.16 (dd, J = 8.5, 6.0 Hz, 1H), 2.08 (s, 3H), 1.35 (d, J = 6.5 Hz, 3H). ES/MS 497.1 (M+H+).

[0721] (S)-2,4-diamino-6-[(l-(5-chloro-3-(5-(difluoromethyl)-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 188a-2). H NMR (400 MHz, DMSO-4) δ 8.08 (bs, 1H), 7.86 - 7.77 (m, 1H), 7.72 (dd, J = 8.2, 1.2 Hz, 1H), 7.62 (dd, J = 7.8, 1.2 Hz, 1H), 7.52 (d, J = 1.3 Hz, 1H), 7.44 (d, J = 6.8 Hz, 2H), 6.85 (t, J = 56.0 Hz, 1H), 4.77 (p, J = 6.6 Hz, 1H), 2.08 (s, 3H), 1.36 (d, J = 6.6 Hz, 3H). ES/MS 497.1 (M+H+).

[0722] (S)-2,4-diamino-6-[(l-(5-chloro-3-(3-(difluoromethyl)-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 189a-1). H NMR (400 MHz, DMSO-4) δ 8.33 (bs, 1H), 7.91 - 7.48 (m, 3H), 7.48 - 7.37 (m, 2H), 7.04 (t, J = 54.7 Hz, 1H), 5.28 (dt, J = 13.1, 6.7 Hz, 1H), 2.08 (s, 3H), 1.38 (d, J = 6.5 Hz, 3H). ES/MS 497.1 (M+H+).

[0723] (S)-2,4-diamino-6-[(l-(5-chloro-3-(3-(difluoromethyl)-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 189a-2). H NMR (400 MHz, DMSO-4) δ 7.98 (bs, 1H), 7.86 - 7.31 (m, 6H), 7.16 (t, J = 54.8 Hz, 1H), 4.80 (p, J = 6.6 Hz, 1H), 2.09 (s, 3H), 1.29 (d, J = 6.6 Hz, 3H). ES/MS 497.1 (M+H+).

[0724] (S)-2,4-diamino-6-[(l-(5-chloro-3-(3-(difluoromethyl)-5-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 190a). H NMR (400 MHz, DMSO-4) δ 7.82 (td, J = 8.0, 3.0 Hz, 1H), 7.70 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.62 (ddd, J = 7.8, 2.9, 1.2 Hz, 1H), 7.38 (m, 2H), 7.15 - 7.02 (m, 1H), 6.83 (t, J = 55.8 Hz, 1H), 5.17 - 4.92 (m, 1H), 3.82 (s, 0.5H), 3.77 (s, 0.5H), 1.41 (d, J = 6.5 Hz, 1.5H), 1.38 (d, J = 6.6 Hz, 1.5H). ES/MS 513.1 (M+H+).

[0725] (S)-2,4-diamino-6-[(l-(5-chloro-3-(2,5-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 191a-1). H NMR (400 MHz, DMSO-4) δ 7.78 (t, J = 8.0 Hz, 1H), 7.65 (dd, J = 8.3, 1.2 Hz, 1H), 7.56 (dd, J = 7.8, 1.1 Hz, 1H), 7.21 - 7.06 (m, 3H), 6.71 (d, J = 8.5 Hz, 1H), 6.51 (s, 2H), 6.12 (s, 2H), 4.98 (dq, J = 9.1, 6.5 Hz, 1H), 2.30 (s, 3H), 1.95 (s, 3H), 1.30 (d, J = 6.5 Hz, 3H). ES/MS 461.1 (M+H+).

[0726] (S)-2,4-diamino-6-[(l-(5-chloro-3-(2,5-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 191a-2). H NMR
(400 MHz, DMSO-4) \(\delta \) 7.93 (bs, 1H), 7.79 (td, \(J = 8.0, 0.9 \) Hz, 1H), 7.69 (dt, \(J = 8.2, 1.1 \) Hz, 1H), 7.59 (dt, \(J = 1.9, 1.1 \) Hz, 1H), 7.20 (d, \(J = 8.3 \) Hz, 1H), 7.03 (d, \(J = 6.1 \) Hz, 2H), 4.81 (p, \(J = 6.6 \) Hz, 1H), 2.13 (s, 3H), 1.96 (s, 3H), 1.33 (d, \(J = 6.6 \) Hz, 3H). ES/MS 461.1 (M+H+).

[0727] (S)-2,4-diamino-6-((l-(5-chloro-3-(3-fluoro-5-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 192a). H NMR (400 MHz, DMSO-4) \(\delta \) 7.78 (t, \(J = 8.0 \) Hz, 1H), 7.65 (ddd, \(J = 8.2, 3.4, 1.2 \) Hz, 1H), 7.58 (dd, \(J = 7.8, 1.1 \) Hz, 1H), 7.11 - 7.03 (m, 1H), 6.82 (m, 2H), 4.99 (d, \(J = 6.9 \) Hz, 1H), 3.75 (s, 1.5H), 3.69 (s, 1.5H), 1.36 (m, 3H). ES/MS 481.1 (M+H+).

[0728] (S)-2,4-diamino-6-((l-(5-chloro-3-(3-fluoro-5-(trifluoromethoxy)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 193a). H NMR (400 MHz, DMSO-4) \(\delta \) 7.85 - 7.75 (m, 1H), 7.72 - 7.56 (m, 4H), 7.50 - 7.34 (m, 1H), 7.26 (bs, 2H), 4.90 (dt, \(J = 45.4, 6.8 \) Hz, 1H), 1.36 (m, 3H). ES/MS 535.1 (M+H+).

[0729] (S)-5-chloro-2-(l-((2,6-diamino-5-fluoropyrimidin-4-yl)amino)ethyl)-3-phenylquinazolin-4(3H)-one (Compound 194a) H NMR (400 MHz, DMSO-J6) \(\delta \) 8.18 (bs, 1H), 7.84 - 7.75 (m, 1H), 7.66 (dd, \(J = 8.2, 1.2 \) Hz, 1H), 7.60 (dd, \(J = 7.8, 1.2 \) Hz, 1H), 7.56 - 7.51 (m, 2H), 7.50 - 7.40 (m, 3H), 7.37 (bs, 2H), 7.12 (bs, 1H), 4.72 (t, \(J = 6.8 \) Hz, 1H), 1.36 (d, \(J = 6.7 \) Hz, 3H). ES/MS 426.1 (M+H+).

[0730] (S)-8-chloro-3-(l-((2,6-diamino-5-chloropyrimidin-4-yl)amino)ethyl)-2-phenylishoquinolin-l(2H)-one (Compound 195a): 1H NMR (400 MHz, DMSO-J6) \(\delta \) 11.54 (brs, 1H), 7.77 - 7.42 (m, 6H), 7.40 - 7.30 (m, 4H), 7.24 (brs, 2H), 6.76 (s, 1H), 4.78 (p, \(J = 6.9 \) Hz, 1H), 1.33 (d, \(J = 6.8 \) Hz, 3H). ES/MS 442.1 (M+H+).

[0731] (S)-2,4-diamino-6-((l-(8-chloro-l-oxo-2-phenyl-l,2-dihydroisoquinolin-3-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 196a): H NMR (400 MHz, DMSO-J6) \(\delta \) 8.01 (s, 1H), 7.82 - 7.31 (m, 13zH), 6.78 (s, 1H), 4.79 (p, \(J = 6.5 \) Hz, 1H), 1.32 (d, \(J = 6.7 \) Hz, 3H). ES/MS 432.1 (M+H+).

[0732] (S)-2,4-diamino-6-((l-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)-2-methylpropyl)amino)pyrimidine-5-carbonitrile (Compound 197a).

[0733] (S)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methylpropyl)amino)pyrimidine-5-carbonitrile (Compound 198a).
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-fluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 199a-1).

(S)-2,4-diamino-6-((l-(5-chloro-3-(3-fluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 199a-2).

(S)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 200a-1).

(S)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 200a-2).

(S)-2,4-diamino-6-((l-(5-chloro-3-(5-fluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 201a-1).

(S)-2,4-diamino-6-((l-(5-chloro-3-(5-fluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 201a-2).

(S)-2,4-diamino-6-((l-(5-chloro-3-(2,3-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 202a-1).

(S)-2,4-diamino-6-((l-(5-chloro-3-(2,3-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 202a-2).

(S)-2,4-diamino-6-((l-(5-chloro-3-(4-fluoro-2,3-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 203a-1).

(S)-2,4-diamino-6-((l-(5-chloro-3-(4-fluoro-2,3-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 203a-2).

(S)-2,4-diamino-6-((l-(5-chloro-3-(3,4-difluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 204a-1).

(S)-2,4-diamino-6-((l-(5-chloro-3-(3,4-difluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 204a-2).

(S)-2,4-diamino-6-((l-(5-chloro-3-(3-fluoro-5-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 205a).
Example 4b

Preparation of a Compound of Formula (I)

A. Preparation of a Compound of Formula (I) in which n=2, R¹ is F, R¹b=CN, m=l, R²=F, R3 is methyl, and R⁴ is cyano (Compound 154a)

To a solution of (S)-2,4-diamino-6-((l-(6-fluoro-3-(3-fluorophenyl)-8-iodo-4-oxo-3,4-dihydroquinazoline-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (560 mg, 1.0 mmol) in NMP (4 mL) was added cuprous cyanide (2.0 mmol, 180 mg) and tetrakis(triphenylphosphine)Pd(0) (0.10 mmol, 120 mg). The mixture was irradiated in microwave reactor at 150°C for one hour. Purification by flash chromatography (40g flash silica, 30 % EtOAc /Hexanes to 20 % MeOH/EtOAc), followed by HPLC eluting with 5% - 95% water/acetonitrile (0.1% v/v trifluoroacetic acid) provided (S)-2-(l-(2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-6-fluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazoline-8-carbonitrile as a white solid. H NMR (400 MHz, DMSO) δ 8.55 (dd, J = 2.8, 8.4 Hz, 1H), 8.20 (dd, J = 3.2, 8.0 Hz, 1H), 7.88-7.17 (m, 5H), 5.07 (m, 1H), 1.44 (d, J = 6.8 Hz, 3H). ES/MS 460.1 (M+H⁺);

B. Preparation of a Compound of Formula (I), varying R¹, R², and R³; and a compound of Formula (J), varying R¹, R², R³ and R⁴

To a solution of (S)-2,4-diamino-6-((l-(5-chloro-3-(3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 206a).
(S)-2-(l-(2,6-diamino-5-cyanopyrimidin-4-ylamino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-8-carbonitrile (Compound 122a).

(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-6-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazoline-8-carbonitrile (Compound 155a): H NMR (400 MHz, DMSO) δ 8.53 (dd, J = 2.8, 8.4 Hz, 1H), 8.19 (dd, J = 2.8, 8.0 Hz, 1H), 7.92-7.34 (m, 6H), 5.03 (m, 1H), 1.42 (d, J = 6.4 Hz, 3H). ES/MS 442.1 (M+H+);

(S)-2,4-diamino-6-((l-(8-methoxy-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile (Compound 156a): H NMR (400 MHz, DMSO) δ 7.70 (d, J =1.6 Hz, 1H), 7.68 (d, J = 1.6 Hz, 1H), 7.54-7.38 (m, 6H), 4.93 (m, 1H), 3.96 (s, 1H), 1.36 (d, J = 6.8 Hz, 3H). ES/MS 429.2 (M+H+);

(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-6-carbonitrile (Compound 159a): H NMR (400 MHz, DMSO) δ 8.56 (dd, J = 0.4, 2.0 Hz, 1H), 8.25 (dd, J = 2.4, 8.8 Hz, 1H), 7.86 (dd, J = 0.8, 8.8 Hz, 1H), 7.83 (bs, 2H), 7.66 (bs, 2H) 7.58 - 7.41 (m, 5H), 4.91 (m, 1H), 1.36 (d, J = 6.8 Hz 1H). ES/MS 424.1 (M+H+);

(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3-(difluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazoline-8-carbonitrile (Compound 160a): H NMR (400 MHz, DMSO) δ 8.47 - 8.41 (m, 2H), 8.04 (bs, 2H), 7.87 (bs, 2H), 7.83 - 7.48 (m, 5H), 5.10 (m, 1H), 3.30 (t, J = 6.8 Hz, 1H), 2.18 (t, J = 8.0 Hz, 1H), 1.91 (m, 1H), 1.45 (m, 3H). ES/MS 474.1 (M+H+);

(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazoline-8-carbonitrile (Compound 161a).

Biological Examples

Activity testing was conducted in the Examples below using methods described herein and those well known in the art.

Example B1

Characterization of Compounds of Formula (I)

This Example compares the biological activity of the compounds of formula (I) and Compounds V, X, Y and Z having the following structures:
Enzymatic activity of PI3K isoforms was measured to compare the PI3K isoform selectivity of the compounds tested, including selectivity to PI3K5. A cellular assay measuring basophil activation was used to assess the potency of the compounds tested. Hepatocyte stability was also measured to assess the potential half-life of the tested compounds in human subjects. Each of these biological experiments are described in further detail below.

Enzymatic activity of PI3K isoforms

Enzymatic activity of the class I PI3K isoforms in the presence of the compounds of Table 1 above and compounds X, Y and Z was measured using a time-resolved fluorescence resonance energy transfer (TR-FRET) assay.

The TR-FRET assay was used to monitor formation of the product 3,4,5-inositol triphosphate molecule (PIP3) as it competed with fluorescently labeled PIP3 for binding to the GRP-1 pleckstrin homology domain protein. An increase in phosphatidylinositol 3-phosphate product results in a decrease in TR-FRET signal as the labeled fluorophore is displaced from the GRP-1 protein binding site.
Class I PI3K isoforms were expressed and purified as heterodimeric recombinant proteins. All assay reagents and buffers for the TR-FRET assay were purchased from Millipore. PI3K isoforms were assayed under initial rate conditions in the presence of 25 mM Hapes (pH 7.4), and 2 X Km ATP (100-300 µM), 10 µM PIP2, 5% glycerol, 5 mM MgCl2, 50 mM NaCl, 0.05% (v/v) Chaps, 1 mM dithiothreitol, 1% (v/v) DMSO at the following concentrations for each isoform: PI3K α, β, and δ at 50 picomolar (pM) and PI3Kγ at 2 nanomolar (nM). After an assay reaction time of 30 minutes at 25°C, reactions were terminated with a final concentration of 10 mM EDTA, 10 nM labeled-PIP3, and 35 nM Europium labeled GRP-1 detector protein before reading TR-FRET on an Envision plate reader (Ex: 340 nm; Em: 615/665 nm; 100 µs delay and 500 µs read window).

Data are normalized based on a positive (luM wortmanin) and negative (DMSO) controls. The α, β, δ, and γ IC₅₀ values were calculated from the fit of the dose-response curves to a four-parameter equation. IC₅₀ are reported in units of nM. These assays generally produced results within 3-fold of the reported mean.

IC₅₀ values were obtained for all PI3K isoforms (α, β, δ, and γ), and Table 2 summarizes the IC₅₀ data collected for PI3K5 in this Example Bl.

Activity on Basophils

Effect on basophil activation was measured in human whole blood using the Flow2 CAST® kit (Buhlmann Laboratories AG, Baselstrasse, Switzerland) following the protocol provided by the manufacturer with minor modifications. Human whole blood was collected into K₂-EDTA venipuncture tubes. Whole blood samples were treated with either DMSO (0.3% final) or a serial dilution of compounds in DMSO for 60 minutes at 37°C. Basophils were then activated either with anti-FcsRI mAb or with fMLP. To activate basophils using the anti-FcsRI mAb; 50 µl of whole blood was mixed with 110 µl of stimulation buffer (B-BAT-STB) and 20 µl of anti-FcsRI (B-BAT-STCON). To activate basophils with fMLP; 50 µl of whole blood was mixed with 80 µl of stimulation buffer (B-BAT-STB) and 50 µl of fMLP (B-CCR-FMLP). Stimulation buffer was used as a negative control. 20 µl of the staining reagent (combination of anti-human CD63-FITC and anti-human CCR3-PE mAbs) was then added to each tube. The tubes were mixed gently and incubated for 25 min at 37°C. Subsequently, erythrocytes were lysed and fixed by the addition of 2 ml of lysing solution (B-BAT-LYR) for 10 min at room temperature. Cells were pelleted by centrifugation at 1200 rpm for 10 min at room temperature in a swing-out rotor. Supernatant was aspirated and cell pellet resuspended in 400 µl of wash
buffer. Flow cytometric analysis of the basophil activation was performed on a FC500MPL flow cytometer (Beckman Coulter Inc., Fullerton, CA). CCR3-staining and side scatter were applied to gate at least 200 basophils that expressed a high density of CCR3. The percent CD63 positive cells within the gated basophil population were determined in different treatment groups and normalized to the vehicle control (0.3% DMSO) with anti-FceRI mAb of fMLP stimulus as 100%. Final compound concentration was adjusted to correct for dilution effect of added reagents. The EC$_{50}$ values were calculated from the analysis of the dose-response curves to a four-parameter equation. All EC$_{50}$ values represent geometric mean values and are reported in units of nM. Table 2 below summarizes the EC$_{50}$ data collected from this Example B1.

Hepatocyte stability

[0765] This assay was used to evaluate the metabolic stability of test articles (TA) following incubation in cryopreserved hepatocytes by monitoring parent drug disappearance via LC/MC. The TA with 1 % final DMSO concentration was incubated with 1 million hepatocytes/ml at 2 µM substrate in duplicate. The incubation was carried out at 37°C with 5% CO$_2$ and saturating humidity. Samples were taken at 0, 1, 2, and 4 hours to monitor the disappearance of TA and a half-life ($t_{1/2}$) was determined. Table 2 below summarizes the $t_{1/2}$ values (e.g. $t_{1/2}^{a}$) collected from this Example B1.

[0766] Alternatively, assay reagents and/or conditions can be modified in determining the inhibitory activities to PI3K isomers. In additional studies, similar assay using TA and 0.01 % final DMSO concentration were incubated with 1 million hepatocytes/mL at 1 µM substrate in duplicate. The incubation was carried out at 37°C with 5% CO$_2$ and saturating humidity. Samples were taken at 0, 1, 3, and 6 hours to monitor the disappearance of TA and a half-life ($t_{i/2}$) was determined. Table 2 below summarizes the $t_{i/2}$ values (e.g. $t_{i/2}^{b}$) collected from this Example B1.

[0767] The symbols used in Table 2 below are as follows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>###</td>
<td>$<=1$ nM</td>
</tr>
<tr>
<td>####</td>
<td>$>=1$ nM AND <10 nM</td>
</tr>
<tr>
<td>#####</td>
<td>$>=10$ nM AND <50 nM</td>
</tr>
<tr>
<td>######</td>
<td>$>=50$ nM</td>
</tr>
<tr>
<td>*=</td>
<td>$<=1$ h</td>
</tr>
<tr>
<td>**=</td>
<td>$>=1$ AND <3 h</td>
</tr>
<tr>
<td>***=</td>
<td>$>=3$ AND <6 h</td>
</tr>
<tr>
<td>****=</td>
<td>$>=6$ AND <10 h</td>
</tr>
<tr>
<td>*****=</td>
<td>$>=10$ h</td>
</tr>
<tr>
<td>Compound</td>
<td>IC<sub>50</sub></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>1a</td>
<td>#####</td>
</tr>
<tr>
<td>2a</td>
<td>#####</td>
</tr>
<tr>
<td>3a</td>
<td>###</td>
</tr>
<tr>
<td>4a</td>
<td>#####</td>
</tr>
<tr>
<td>5a</td>
<td>#####</td>
</tr>
<tr>
<td>6a</td>
<td>#</td>
</tr>
<tr>
<td>7a</td>
<td>###</td>
</tr>
<tr>
<td>8a</td>
<td>####</td>
</tr>
<tr>
<td>9a</td>
<td>###</td>
</tr>
<tr>
<td>10a</td>
<td>###</td>
</tr>
<tr>
<td>11a</td>
<td>###</td>
</tr>
<tr>
<td>12a</td>
<td>###</td>
</tr>
<tr>
<td>13a</td>
<td>#</td>
</tr>
<tr>
<td>14a</td>
<td>#</td>
</tr>
<tr>
<td>15a</td>
<td>#####</td>
</tr>
<tr>
<td>16a</td>
<td>###</td>
</tr>
<tr>
<td>17a</td>
<td>###</td>
</tr>
<tr>
<td>18a</td>
<td>####</td>
</tr>
<tr>
<td>19a</td>
<td>####</td>
</tr>
<tr>
<td>20a</td>
<td>###</td>
</tr>
<tr>
<td>21a</td>
<td>###</td>
</tr>
<tr>
<td>22a</td>
<td>###</td>
</tr>
<tr>
<td>23a</td>
<td>####</td>
</tr>
<tr>
<td>24a</td>
<td>###</td>
</tr>
<tr>
<td>25a</td>
<td>####</td>
</tr>
<tr>
<td>26a</td>
<td>#</td>
</tr>
<tr>
<td>27a</td>
<td>#</td>
</tr>
<tr>
<td>28a</td>
<td>#</td>
</tr>
<tr>
<td>29a</td>
<td>#</td>
</tr>
<tr>
<td>30a</td>
<td>#</td>
</tr>
<tr>
<td>31a</td>
<td>###</td>
</tr>
<tr>
<td>32a</td>
<td>#</td>
</tr>
<tr>
<td>33a</td>
<td>#</td>
</tr>
<tr>
<td>34a</td>
<td>#</td>
</tr>
<tr>
<td>35a</td>
<td>###</td>
</tr>
<tr>
<td>36a</td>
<td>#</td>
</tr>
<tr>
<td>37a</td>
<td>#</td>
</tr>
<tr>
<td>38a</td>
<td>#</td>
</tr>
<tr>
<td>39a</td>
<td>#</td>
</tr>
<tr>
<td>40a</td>
<td>###</td>
</tr>
<tr>
<td>41a</td>
<td>###</td>
</tr>
<tr>
<td>42a</td>
<td>#</td>
</tr>
<tr>
<td>43a</td>
<td>#</td>
</tr>
<tr>
<td>44a</td>
<td>#</td>
</tr>
<tr>
<td>45a</td>
<td>#</td>
</tr>
<tr>
<td>46a</td>
<td>#</td>
</tr>
<tr>
<td>47a</td>
<td>###</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>48a</td>
<td>##</td>
</tr>
<tr>
<td>49a</td>
<td>####</td>
</tr>
<tr>
<td>50a</td>
<td>####</td>
</tr>
<tr>
<td>51a</td>
<td>###</td>
</tr>
<tr>
<td>52a</td>
<td>###</td>
</tr>
<tr>
<td>53a</td>
<td>###</td>
</tr>
<tr>
<td>54a</td>
<td>##</td>
</tr>
<tr>
<td>55a</td>
<td>#####</td>
</tr>
<tr>
<td>56a</td>
<td>#</td>
</tr>
<tr>
<td>57a</td>
<td>#</td>
</tr>
<tr>
<td>58a</td>
<td>###</td>
</tr>
<tr>
<td>59a</td>
<td>###</td>
</tr>
<tr>
<td>60a</td>
<td>#####</td>
</tr>
<tr>
<td>61a</td>
<td>###</td>
</tr>
<tr>
<td>62a</td>
<td>#####</td>
</tr>
<tr>
<td>63a</td>
<td>###</td>
</tr>
<tr>
<td>64a</td>
<td>####</td>
</tr>
<tr>
<td>65a</td>
<td>#</td>
</tr>
<tr>
<td>66a</td>
<td>###</td>
</tr>
<tr>
<td>67a</td>
<td>###</td>
</tr>
<tr>
<td>68a</td>
<td>#</td>
</tr>
<tr>
<td>69a</td>
<td>#</td>
</tr>
<tr>
<td>70a</td>
<td>#</td>
</tr>
<tr>
<td>71a</td>
<td>###</td>
</tr>
<tr>
<td>72a</td>
<td>#</td>
</tr>
<tr>
<td>73a</td>
<td>###</td>
</tr>
<tr>
<td>74a</td>
<td>###</td>
</tr>
<tr>
<td>75a</td>
<td>###</td>
</tr>
<tr>
<td>76a</td>
<td>#</td>
</tr>
<tr>
<td>77a</td>
<td>###</td>
</tr>
<tr>
<td>78a</td>
<td>###</td>
</tr>
<tr>
<td>79a</td>
<td>#</td>
</tr>
<tr>
<td>80</td>
<td>#</td>
</tr>
<tr>
<td>81a</td>
<td>###</td>
</tr>
<tr>
<td>82a</td>
<td>#</td>
</tr>
<tr>
<td>83a</td>
<td>#</td>
</tr>
<tr>
<td>84</td>
<td>#</td>
</tr>
<tr>
<td>85a</td>
<td>#</td>
</tr>
<tr>
<td>86a</td>
<td>#</td>
</tr>
<tr>
<td>87a</td>
<td>#</td>
</tr>
<tr>
<td>88a</td>
<td>#</td>
</tr>
<tr>
<td>89a</td>
<td>###</td>
</tr>
<tr>
<td>90a</td>
<td>###</td>
</tr>
<tr>
<td>91a</td>
<td>#</td>
</tr>
<tr>
<td>92a</td>
<td>###</td>
</tr>
<tr>
<td>94a</td>
<td>#</td>
</tr>
<tr>
<td>95a</td>
<td>###</td>
</tr>
<tr>
<td>96a</td>
<td>###</td>
</tr>
<tr>
<td>97a</td>
<td>###</td>
</tr>
<tr>
<td>98a</td>
<td>#</td>
</tr>
<tr>
<td>99a</td>
<td>###</td>
</tr>
<tr>
<td>100a</td>
<td>###</td>
</tr>
<tr>
<td>101a</td>
<td>###</td>
</tr>
<tr>
<td>102a</td>
<td>#</td>
</tr>
<tr>
<td>103a</td>
<td>#</td>
</tr>
<tr>
<td>104a</td>
<td>#</td>
</tr>
<tr>
<td>105a</td>
<td>#</td>
</tr>
<tr>
<td>106a</td>
<td>###</td>
</tr>
<tr>
<td>107a</td>
<td>#</td>
</tr>
<tr>
<td>108a</td>
<td>#</td>
</tr>
<tr>
<td>109a-1</td>
<td>#</td>
</tr>
<tr>
<td>109a-2</td>
<td>#</td>
</tr>
<tr>
<td>110a-1</td>
<td>#</td>
</tr>
<tr>
<td>110a-2</td>
<td>#</td>
</tr>
<tr>
<td>111a</td>
<td>#</td>
</tr>
<tr>
<td>112a</td>
<td>#</td>
</tr>
<tr>
<td>113a</td>
<td>#</td>
</tr>
<tr>
<td>114a</td>
<td>#</td>
</tr>
<tr>
<td>115a</td>
<td>#</td>
</tr>
<tr>
<td>116a</td>
<td>#</td>
</tr>
<tr>
<td>117a</td>
<td>#</td>
</tr>
<tr>
<td>118a</td>
<td>#</td>
</tr>
<tr>
<td>119a</td>
<td>#</td>
</tr>
<tr>
<td>120a</td>
<td>#</td>
</tr>
<tr>
<td>121a</td>
<td>#</td>
</tr>
<tr>
<td>122a</td>
<td>#</td>
</tr>
<tr>
<td>123a</td>
<td>#</td>
</tr>
<tr>
<td>124a</td>
<td>#</td>
</tr>
<tr>
<td>125a</td>
<td>#</td>
</tr>
<tr>
<td>126a</td>
<td>#</td>
</tr>
<tr>
<td>127a</td>
<td>#</td>
</tr>
<tr>
<td>128a</td>
<td>#</td>
</tr>
<tr>
<td>129a</td>
<td>#</td>
</tr>
<tr>
<td>130a</td>
<td>#</td>
</tr>
<tr>
<td>131a</td>
<td>#</td>
</tr>
<tr>
<td>132a</td>
<td>#</td>
</tr>
<tr>
<td>133a</td>
<td>#</td>
</tr>
<tr>
<td>134a</td>
<td>#</td>
</tr>
<tr>
<td>135a</td>
<td>#</td>
</tr>
<tr>
<td>136a</td>
<td>#</td>
</tr>
<tr>
<td>137a</td>
<td>#</td>
</tr>
<tr>
<td>138a</td>
<td>#</td>
</tr>
<tr>
<td>140a</td>
<td>#</td>
</tr>
<tr>
<td>141a</td>
<td>#</td>
</tr>
<tr>
<td>142a-1</td>
<td>#</td>
</tr>
<tr>
<td>143a</td>
<td>#</td>
</tr>
<tr>
<td>144a</td>
<td>#</td>
</tr>
<tr>
<td>145a</td>
<td>#</td>
</tr>
<tr>
<td>146a</td>
<td>#</td>
</tr>
<tr>
<td>147a</td>
<td>#</td>
</tr>
<tr>
<td>148a</td>
<td>#</td>
</tr>
<tr>
<td>149a</td>
<td>#</td>
</tr>
<tr>
<td>150a</td>
<td>#</td>
</tr>
</tbody>
</table>
The results from this Example B 1 demonstrate that certain compounds of formula (I) have greater activities in the cellular assay and/or greater stability in human hepatocytes (i.e. longer half-life), for instance, than compounds X, Y, V, and Z. Table 3 below shows the t₁/₂ and EC₅₀ values of Compounds 1a, 49a, 182, X, Y, V, and Z.

Table 3.

<table>
<thead>
<tr>
<th>Compound 1a</th>
<th>Compound 49a</th>
<th>Compound X</th>
<th>Compound Y</th>
<th>Compound Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁/₂ a</td>
<td>>9 hours</td>
<td>>10 hours</td>
<td><1 hour</td>
<td><2 hours</td>
</tr>
<tr>
<td>t₁/₂ b</td>
<td>>1 hour</td>
<td>>4 hours</td>
<td><2</td>
<td><2 hours</td>
</tr>
<tr>
<td>EC₅₀</td>
<td><0.5 nM</td>
<td><0.5 nM</td>
<td>>5 nM</td>
<td>>15 nM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound 182</th>
<th>Compound V</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁/₂ a</td>
<td>>20 hours</td>
</tr>
<tr>
<td>t₁/₂ b</td>
<td><1 hour</td>
</tr>
<tr>
<td>EC₅₀</td>
<td><2 nM</td>
</tr>
</tbody>
</table>

t₁/₂ a: the t₁/₂ values for TA with 1 % final DMSO
t₁/₂ b: the t₁/₂ values for TA with 0.01 % final DMSO.
What is claimed is:

1. A compound having the structure of formula (J):

 \[
 \begin{array}{c}
 \text{(R)}_n \text{O} \\
 \text{A} \text{R}^3 \\
 \text{HN} \text{N} \text{N} \text{NH}_2 \\
 \text{NH}_2 \\
 \end{array}
 \]

 \((J) \),

 or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein:

 - \(A \) is N or CH;
 - \(n \) is 0, 1, 2, or 3;
 - each \(R^1 \) is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, hydroxy, unsubstituted or substituted cycloalkyl, \(S_0_2 R^1 \), or \(C(0)NR^1 \), wherein each \(R^1 \), \(R^1_s \) and \(R^1_i \) is independently hydrogen or unsubstituted or substituted alkyl;
 - \(m \) is 0, 1, 2, or 3;
 - each \(R^2 \) is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, or unsubstituted or substituted alkoxy;
 - \(R^3 \) is hydrogen or unsubstituted or substituted alkyl; and
 - \(R^4 \) is cyano, \(\text{CON(R}^4 \text{)}_2 \), \(S_0_2 \)-alkyl, halo, or haloalkyl, where each \(R^4 \) is independently hydrogen, or unsubstituted or substituted alkyl.

2. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein the compound is a compound having the structure of formula (I):

 \[
 \begin{array}{c}
 \text{(R)}_n \text{O} \\
 \text{A} \text{R}^3 \\
 \text{HN} \text{N} \text{N} \text{NH}_2 \\
 \text{NC} \text{N} \text{N} \text{NH}_2 \\
 \end{array}
 \]

 \((I) \).
or a pharmaceutically acceptable salt thereof, wherein:

n is 0, 1, 2, or 3;

each R^1 is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, hydroxy, unsubstituted or substituted cycloalkyl, SO_2R^1, or $C(0)NR^1$, wherein each R^1, R^1s and R^1t is independently hydrogen or unsubstituted or substituted alkyl;

m is 0, 1, 2, or 3;

each R^2 is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, or unsubstituted or substituted alkoxy; and

R^3 is hydrogen or unsubstituted or substituted alkyl.

3. The compound of claim 1 or 2, or a pharmaceutically acceptable salt thereof, wherein each R^1 is independently fluoro, chloro, cyano, methyl, CHF$_2$, CF$_3$, methoxy, or hydroxy.

4. The compound of any one of claims 1 to 3, or a pharmaceutically acceptable salt thereof, wherein n is 1 or 2.

5. The compound of any one of claims 1 to 4, or a pharmaceutically acceptable salt thereof, wherein each R^3 is independently fluoro, chloro, iodo, cyano, methoxy, CHF$_2$, or CF$_3$.

6. The compound of any one of claims 1 to 5, or a pharmaceutically acceptable salt thereof, wherein m is 1 or 2.

7. The compound of any one of claims 1 to 6, or a pharmaceutically acceptable salt thereof, wherein R^3 is methyl or ethyl.

8. The compound of claim 2, or a pharmaceutically acceptable salt thereof, wherein:

n is 1, 2, or 3;

each R^1 is independently halo, cyano or unsubstituted or substituted alkyl;

m is 1, 2, or 3;

each R^2 is independently halo or cyano; and

R^3 is unsubstituted or substituted alkyl.

9. The compound of claim 2, or a pharmaceutically acceptable salt thereof, wherein:

n is 1:
R1 is halo;
m is 2;
each R2 is independently halo;
R3 is unsubstituted or substituted alkyl.

10. The compound of claim 2, or a pharmaceutically acceptable salt thereof, wherein n is 2 and m is 2, and the compound is of formula (IA-1):

\[\text{(IA-1),} \]

or a pharmaceutically acceptable salt thereof, wherein:

- each R1a, R1b is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, unsubstituted or substituted alkoxy, hydroxy, or unsubstituted or substituted cycloalkyl;
- each R2a and R2b is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, or unsubstituted or substituted alkoxy; and
- R3 is unsubstituted or substituted alkyl.

11. The compound of claim 10, or a pharmaceutically acceptable salt thereof, wherein:

- each R1a and R1b is independently hydrogen, halo, cyano, or unsubstituted or substituted alkyl; and
- each R2a and R2b is independently hydrogen, halo, or cyano.

12. The compound of claim 2, or a pharmaceutically acceptable salt thereof, wherein n is 1 and m is 2, and the compound is of formula (IB-1):
13. The compound of claim 2, or a pharmaceutically acceptable salt thereof, wherein:
 \(R^{1a} \) is halo, cyano, unsubstituted or substituted alkyl, or haloalkyl;
 each \(R^{2a} \) and \(R^{2b} \) is independently hydrogen, halo or cyano; and
 \(R^3 \) is unsubstituted or substituted alkyl.

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein:

- A is N or CH;
- n is 0, 1, 2, or 3;
- each R₁ is independently halo, cyano, OR₁ₓ, C(=0)OR₁ₓ, S₀₂R₁ₓ, or C(=0)N(R₁ₓ)₂,
 wherein R₁ₓ is independently hydrogen, or unsubstituted or substituted alkyl;
- m is 0, 1, 2, or 3;
- each R₂ is independently halo, cyano, unsubstituted or substituted alkyl, unsubstituted or substituted haloalkyl, or unsubstituted or substituted alkoxy;
- R³ is hydrogen, unsubstituted or substituted alkyl, or unsubstituted or substituted haloalkyl; and
- R₄ is cyano, CON(R₄ₓ)₂, halo, or haloalkyl, where each R₄ₓ is independently hydrogen, or unsubstituted or substituted alkyl.

15. The compound of any one of claims 1 to 14, or a pharmaceutically acceptable salt thereof, wherein the compound is the (⁻⁻)-enantiomer.

16. A compound selected from the group consisting of:

- (S)-2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
- (S)-2,4-diamino-6-((1-(5-hydroxy-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
- (S)-2,4-diamino-6-((1-(8-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
- (S)-2,4-diamino-6-((1-(5-chloro-8-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
- (S)-2,4-diamino-6-((1-(5-chloro-3-(3-chlorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
- (S)-2,4-diamino-6-((1-(3-(3-chlorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
- (S)-2-(1-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carbonitrile;
- (S)-2,4-diamino-6-((1-(5-chloro-3-(3-chlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(6-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl) 5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl) 6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-cyanophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3-cyanophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3-chlorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluorophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-8-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-cyano-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-5,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3-5-difluorophenyl)-8-fluoro-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(6-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-5,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-5,6-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3-cyano-5-fluorophenyl)-8-fluoro-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3-cyano-5-fluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-fluoro-3-(3-fluoro-5-(trifluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-4-oxo-8-(trifluoromethyl)-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-5-fluoro-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3-cyanophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(8-methyl-4-oxo-3-(3-(trifluoromethyl)phenyl)-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-fluoro-4-oxo-3-(3-(trifluoromethyl)phenyl)-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3,5-dichlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-dichlorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3-chloro-5-fluorophenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-(3-chloro-5-fluorophenyl)-5-fluoro-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3-fluoro-5-(trifluoromethyl)phenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-fluoro-4-oxo-3-(3-(trifluoromethyl)phenyl)-3,4-
dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-4-oxo-3-(3-(trifluoromethyl)phenyl)-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3-cyano-5-fluorophenyl)-8-fluoro-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3,5-dimethoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5,8-dichloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3,5-dimethoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-(difluoromethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-(difluoromethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(1-(3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(8-(difluoromethyl)-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(8-(difluoromethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(8-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5,8-difluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(8-fluoro-5-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-fluoro-8-methyl-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-(difluoromethyl)-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-(3-cyanophenyl)-5-(difluoromethyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-(3-cyanophenyl)-8-fluoro-5-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-(3-(difluoromethyl)-5-fluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(8-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3,5-difluorophenyl)-8-methoxy-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3,5-difluorophenyl)-6,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3,5-difluorophenyl)-6,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(8-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(8-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5,8-dichloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3,5-difluorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3,5-difluorophenyl)-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-y)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-y)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-6,7-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
2,4-diamino-6-((1-(3,5-difluorophenyl)-6,7-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)methyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-(3-cyanophenyl)-5-fluoro-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-(3-cyano-5-fluorophenyl)-5-fluoro-8-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
2,4-diamino-6-((1-(8-chloro-3-(3-cyanophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)methyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(6-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(6-chloro-3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-5-(5-chloro-2-(1-(2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxoquinazolin-3(4H)-yl)isophthalonitrile;
(S)-2,4-diamino-6-((1-(3-(3,5-bis(trifluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(8-chloro-3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carboxamide;
(S)-2-(1-(2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carboxamide;
(S)-2-(1-(2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carboxamide;
(S)-5-chloro-2-(1-(2,6-diamino-5-chloropyrimidin-4-ylamino)ethyl)-3-phenylquinazolin-4(3H)-one;
(S)-2-(l-(2,6-diamino-5-chloropyrimidin-4-ylamino)propyl)-3-(3,5-difluorophenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2,4-diamino-6-(l-(5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carboxamide;
(S)-5-chloro-2-(l-(2,6-diamino-5-(methylsulfanyl)pyrimidin-4-ylamino)ethyl)-3-(3,5-difluorophenyl)quinazolin-4(3H)-one;
(S)-2,4-diamino-6-(l-(5-(methylsulfanyl)-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-(l-(3-(3,5-difluorophenyl)-5-(methylsulfanyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-(l-(5-(difluoromethyl)-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carboxamide;
(S)-2,4-diamino-6-(l-(3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carboxamide;
(S)-2,4-diamino-6-(l-(5-chloro-3-(3-(difluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carboxamide;
(S)-2,4-diamino-6-(l-(5-chloro-3-(3-isopropylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-(l-(3-(3-fluorophenyl)-5-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile;
(S)-5-chloro-2-(l-((2,6-diamino-5-chloropyrimidin-4-yl)amino)ethyl)-3-phenylquinazolin-4(3H)-one;
(S)-2-l-((2,6-diamino-5-chloropyrimidin-4-yl)amino)propyl)-3-(3,5-difluorophenyl)-5-fluoroquinazolin-4(3H)-one;
(S)-2,4-diamino-6-(l-(5-chloro-3-(3-(difluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-(l-(5-chloro-3-(3-isopropylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-(l-(5-chloro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile; and
(S)-2,4-diamino-6-((1-(5-chloro-3-(3-methoxy-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethylamino)pyrimidine-5-carbonitrile,
or a pharmaceutically acceptable salt thereof.

17. The compound of claim 16, wherein the compound is:
(S)-2,4-diamino-6-((1-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
or
(S)-2,4-diamino-6-((1-(3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile,
or a pharmaceutically acceptable salt thereof.

18. A compound selected from the group consisting of:
(S)-2,4-diamino-6-((1-(5-methoxy-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2-(1-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile;
(S)-3-(3-cyano-5-fluorophenyl)-2-(1-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-chloro-5-(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-chloro-3-(3-chloro-5-(difluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-(3-(difluoromethyl)phenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-(3-fluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((1-(3-(3,5-bis(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-bis(difluoromethyl)phenyl)-5-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(2,2-difluoroethyl)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(2,2-difluoroethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-8-carbonitrile;
(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-8-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carbonitrile;
(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile;
(S)-5-chloro-2-(l-((2,6-diamino-5-chloropyrimidin-4-yl)amino)ethyl)-8-fluoro-3-phenylquinazolin-4(3H)-one;
(S)-2,4-diamino-6-((l-(5-bromo-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-bromo-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile;
(S)-2,4-diamino-6-((3,3,3-trifluoro-l-(6-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-3,3,3-trifluoropropyl)amino)pyrimidine-5-carbonitrile;
(R)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methoxyethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-bis(difluoromethyl)phenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-bis(difluoromethyl)phenyl)-5-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3-(difluoromethyl)-5-fluorophenyl)-4-oxo-3,4-dihydroquinazoline-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-(difluoromethyl)-5-fluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(2-fluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile
(S)-2,4-diamino-6-((l-(3-(2-fluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(2,6-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(2,6-difluorophenyl)-5-(methylsulfonyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5,8-difluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3-cyanophenyl)-5,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5,8-difluoro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5,8-difluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3-cyanophenyl)-5,8-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2-(l-((2,6-diamino-5-chloropyrimidin-4-yl)amino)ethyl)-3-(3-fluorophenyl)-5-(methylsulfonyl)quinazolin-4(3H)-one;
(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-6-fluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazoline-8-carbonitrile;
(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-6-fluoro-4-oxo-3-phenyl-3,4-dihydroquinazoline-8-carbonitrile;
(S)-2,4-diamino-6-(l-(8-methoxy-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-6-carbonitrile;
(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3-(difluoromethyl)phenyl)-4-oxo-3,4-dihydroquinazoline-8-carbonitrile;
(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-3-(3,5-difluorophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazoline-8-carbonitrile;
(S)-2-(l-((2,6-diamino-5-cyanopyrimidin-4-yl)amino)ethyl)-4-oxo-3-phenyl-3,4-dihydroquinazoline-5-carboxylic acid;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-3-methylbutyl)amino)pyrimidine-5-carbonitrile;
2,4-diamino-6-(((1S,2S)-l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methylbutyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-3,3,3-trifluoropropyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(3-(3,5-difluorophenyl)-5-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)-3,3,3-trifluoropropyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-cyanophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carboxamide;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-methoxy-4-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(4-fluoro-3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carboxamide;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-cyanophenyl)-6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-fluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-fluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-fluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-fluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-fluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-fluoro-3-(3-fluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carboxamide;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carboxamide;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(5-methoxy-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(5-(difluoromethyl)-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-(difluoromethyl)-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-(difluoromethyl)-5-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(2,5-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-fluoro-5-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-fluoro-5-(trifluoromethoxy)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-5-chloro-2-((l-((2,6-diamino-5-fluoropyrimidin-4-yl)amino)ethyl)-3-phenylquinazolin-4(3H)-one;
(S)-2,4-diamino-6-((l-(8-chloro-l-oxo-2-phenyl-l,2-dihydroisoquinolin-3-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)-2-methylpropyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3,5-difluorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methylpropyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-fluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-fluoro-5-(trifluoromethoxy)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(5-fluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(2,3-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(4-fluoro-2,3-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(4-fluoro-2,3-dimethylphenyl)-4-oxo-3,4-dihydroquinoxalin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3,4-difluoro-2-methylphenyl)-4-oxo-3,4-dihydroquinoxalin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile;
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-fluoro-5-methoxyphenyl)-4-oxo-3,4-dihydroquinoxalin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile; and
(S)-2,4-diamino-6-((l-(5-chloro-3-(3-methoxyphenyl)-4-oxo-3,4-dihydroquinoxalin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile,
or a pharmaceutically acceptable salt thereof.

19. A pharmaceutical composition comprising:
a compound of any one of claims 1 to 18 or a pharmaceutically acceptable salt thereof; and
at least one pharmaceutically acceptable vehicle.

20. A method for treating a human, who has or is suspected of having a disease or condition responsive or believed to be responsive to the inhibition of PI3K5 activity, comprising administering to the human a compound of any one of claims 1 to 18 or a pharmaceutically acceptable salt thereof.

21. The method of claim 20, wherein the disease or condition is an inflammatory disorder, an autoimmune disease, or a cancer.

22. The method of claim 20, wherein the disease or condition is lymphoma, multiple myeloma, or leukemia.

23. The method of claim 20, wherein the disease or condition is acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), myelodysplasia syndrome (MDS), myeloproliferative disease (MPD), chronic myeloid leukemia (CML), multiple myeloma (MM), non-Hodgkin's lymphoma (NHL), mantle cell lymphoma (MCL), follicular lymphoma, Waldenstrom's macroglobulinemia (WM), T-cell lymphoma, B-cell lymphoma, diffuse large B-cell lymphoma (DLBCL), pancreatic cancer, bladder cancer, colorectal cancer, breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal
cancer, head and neck cancer, melanoma, neuroendocrine cancer, CNS cancer, brain cancer, bone cancer, soft tissue sarcoma, non-small cell lung cancer, small-cell lung cancer, colon cancer, systemic lupus erythematosus (SLE), myasthenia gravis, rheumatoid arthritis (RA), acute disseminated encephalomyelitis, idiopathic thrombocytopenic purpura, multiple sclerosis (MS), Sjoegren’s syndrome, autoimmune hemolytic anemia, asthma, rheumatoid arthritis, multiple sclerosis, or lupus.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 INV. C07D403/12 A61K31/506 A61K31/517 C07D239/90 A61P35/00
 A61P37/00 A61P29/00

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 C07D A61K

 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

 Electronic database consulted during the international search (name of database and, where practicable, search terms used)
 EPO-Internal CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT
 Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

 [X] Further documents are listed in the continuation of Box C. [X] See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 A document member of the same patent family

 Date of actual completion of the international search 4 February 2014
 Date of mailing of the international search report 19/02/2014

Name and mailing address of the ISA/
 European Patent Office, P.B. 5818 Patentlaan 2
 NL-2280 HV Rijswijk
 Tel. (+31-70) 340-2040,
 Fax: (+31-70) 340-3016
 Sotoca Usi na, E

Authorized officer

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ameriks M K ET AL: "Small Molecule Inhibitors of Phosphotidyl Inositol 3-Kinase (PI3K) delta, and gamma”, COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, BENTHAM SCI ENCE PUBLISHERS LTD, NETHERLANDS, vol. 9, no. 8, 1 May 2009 (2009-05-01), pages 738-753, XP002556393, ISSN: 1568-0266, DOI: 10.2174/156802609789044434; the whole document</td>
<td>1-23</td>
</tr>
<tr>
<td>A</td>
<td>Verheijen Jer0en C ET AL: "Phosphatidylinositol 3-kinase (PI3K) inhibitors as anti cancer drugs”, DRUGS OF THE FUTURE, PROUS SCIENCE, ES, vol. 32, no. 6, 1 June 2007 (2007-06-01), pages 537-547, XP002503896, ISSN: 0377-8282, DOI: 10.1358/DOF.2007.03206.1107995; the whole document</td>
<td>1-23</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2011146882 A1</td>
<td>24-11-2011</td>
<td>AU 2011255218 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2799579 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103002738 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2571357 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013526586 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012059000 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011146882 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2009204487 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2711446 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2711558 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101965335 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101965336 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2240451 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2240452 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011508782 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011509259 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100125240 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100126287 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 587004 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 587051 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 187425 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 187426 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011046165 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009088986 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009088990 A1</td>
</tr>
<tr>
<td>WO 2013032591 A1</td>
<td>07-03-2013</td>
<td>AU 2012302197 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201311663 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013053362 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013032591 A1</td>
</tr>
</tbody>
</table>