PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

(11) International Publication Number:

WO 00/41096

Al
GOGF 17/27, 17/21, 15/00, 17/00 (43) International Publication Date: 13 July 2000 (13.07.00)
(21) International Application Number: PCT/US00/00268 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
(22) International Filing Date: 6 January 2000 (06.01.00) ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
(30) Priority Data: SD, SE, SG, SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG,
60/115,016 7 January 1999 (07.01.99) US UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
09/351,952 12 July 1999 (12.07.99) Us MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,

(71) Applicant: JUSTSYSTEM PITTSBURGH RESEARCH CEN-
TER, INC. [US/US]; 4616 Henry Street, Pittsburgh, PA
15213 (US).

(72) Inventors; WITBROCK, Michael, J.; 294 Waverly Avenue,
Newton, MA 02458 (US). MITTAL, Vibhu, O.; 4146
Murray Avenue, Pittsburgh, PA 15217 (US).

(74) Agents: BYRNE, Richard, L. et al.; Webb Ziesenheim Logsdon
Orkin & Hanson, P.C., 700 Koppers Building, 436 Seventh
Avenue, Pittsburgh, PA 15219-1818 (US).

BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: METHOD FOR PRODUCING SUMMARIES OF TEXT DOCUMENT

(57) Abstract

A computer method for preparing a summary string
(19) from a source document of encoded text (17). The
method comprises comparing a training set.of encoded text
documents (10) with manually generated summary strings
(11) associated therewith to learn probabilities (13) that a
given summary word or phrase will appear in summary
strings (19) given a source word or phrase appears in
encoded text documents (17) and constructing from the source
document a summary string containing summary words or
phrases (19) having the highest probabilities of appearing
in a summary string (19) based on the learned probabilities
established in the previous step.

10 corResponDiG | '
TRANING B!
DOCUMENTS g TRAIKING
SUNMARIES
7
) LANGUAGE MoDeL)
! GENERATOR(S
TRANSLATION MODEL |, (5
GENERATOR(S) 5
R l SUMMARY | LEXICAL N-GRAM
7 ??53&&’;‘%}%" LANGUAGE | SYNTACTIC N-GRAM,
TRANSLATION | crqugCES, SETS OF NODEL(S) [ETC.
WOEL(S) - { yopps WITH SYRTACTIC OR
r SEMANTIC RELATIONS, EIC.
17 fis
DOCUMENT(S) -
10 8€ SUMMARY SEARCH:
SUMMARIZED SELECTION OF SEQUENCE OF CHARACTERS OR

LEXEMES THAT JOINTLY OPTIMISES THE
INFORMATION CONTENT RETAINED FROM THE
DOCUMENT(S) TO BE SUMMARIZED AND
CONFORMANCE TO THE LEARNEG SUMMARY
STRUCTURE.

18

SUMMARIZATION
CONTROL
PARANETERS
(EGLENGTH)

GENERATED
SUMMARY OF
DOCUMENT(S)

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
VYAY

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 00/41096 PCT/US00/00268

METHOD FOR PRODUCING SUMMARIES OF TEXT DOCUMENT

BACKGROUND OF THE INVENTION

Extractive summarization 1is the process of

selecting and extracting text spans--usually whole
sentences--from a source document. The extracts are then
arranged in some order (usually the order as found in the
source document) to form a summary. In this method, the
quality of the summary is dependent on the scheme used to
select the text spans from the source document. Most of
the prior art uses a combination of lexical, frequency and
syntactic cues to select whole sentences for inclusion in
the summary. Consequently, the summaries cannot be shorter
than the shortest text span selected and cannot combine
concepts from different text spans in a simple phrase or
statement. U.S. Patent No. 5,638,543 discloses selecting
sentences for an extractive summary based on scoring
sentences based on lexical items appearing in the
sentences. U.S. Patent No. 5,077,668 discloses an
alternative sentence scoring scheme based upon markers of
relevance such as hint words like "important",
"significant" and "crucial". U.S. Patent No. 5,491,760
works on bitmap images of a page to identify key sentences
based on the visual appearance of hint words. U.S. Patent
Nos. 5,384,703 and 5,778,397 disclose selecting sentences
scored on the inclusion of the most frequently used non-
stop words in the entire text.

In contrast to the large amount of work that has
been undertaken in extractive summarization, there has been
much less work on generative methods of summarization. A
generative method of summarization selects words or phrases
(not whole sentences) and generates a summary based upon
the selected words or phrases. Early approaches to
generative methods are discussed in the context of the
FRUMP system. See DeJong, G.F., "An Overview of the FRUMP
System", Strategies for Natural Language Processing,

(Lawrence Erlbaum Associates, Hillsdale, NJ 1982). This

system provides a set of templates for extracting

information from news stories and presenting it in the form

10

15

20

25

30

35

WO 00/41096 PCT/US00/00268

of a summary. Neither the selection of content nor the
generation of the summary is learned by the system. The
selection templates are handcrafted for a particular
application domain. Other generative systems are known.
However, none of these systems can: (a) learn rules,
procedures, or templates for content selection and/or
generation from a training set or (b) generate summaries
that may be as short as a single noun phrase.

The method disclosed herein relates somewhat to
the prior art for statistically modeling of natural
language applied to language translation. U.S. Patent No.
5,510,981 describes a system that uses a translation model
describing correspondences between sets of words in a
source language and sets of words in a target language to
achieve natural language translation. This system proceeds
linearly through a document producing a rendering in the
target language of successive document text spans. It is
not directed to operate on the entire document to produce
a summary for the document.

SUMMARY OF THE INVENTION

As used herein, a ‘"summary string" is a
derivative representation of the source document which may,
for example, comprise an abstract, key word summary, folder
name, headline, file name or the like. Briefly, according
to this invention, there is provided a computer method for
generating a summary string from a source document of
encoded text comprising the steps of:

a) comparing a training set of encoded text
documents with manually generated summary strings
associated therewith to learn probabilities that a given
summary word or phrase will appear in summary strings given
that a source word or phrase appears in an encoded text
document; and

b) from the source document, generating a
summary string containing a summary word, words, a phrase
or phrases having the highest probabilities of appearing in

a summary string based on the learned probabilities

10

15

20

25

30

35

WO 00/41096 PCT/US00/00268

established in the previous step. Preferably, the summary
string contains the most probable summary word, words,
phrase or phrases for a preselected number of words in the
summary string.

In one embodiment, the training set of encoded
manually generated summary strings is compared to learn the
probability that a summary word or phrase appearing in a
summary string will follow another summary word or phrase.
Summary strings are generated containing the most probable
sequence of words and/or phrases for a preselected number
of words in the summary string.

In a preferred embodiment, the computer method,
according to this invention, comprises comparing a training
set of encoded text documents with manually generated
summary strings associated therewith to. learn the
probabilities that a given summary word or phrase will
appear in summary strings given a source word or phrase
appears in the encoded text considering the context in
which the source word or phrase appears in the encoded text
documents. For example, the context in which the source
words or phrases may be considered includes titles,
headings, standard paragraphs, fonts, bolding, and/or
italicizing.

In yet another preferred embodiment, the computer
method, according to this invention, further comprises
learning multiple probabilities that a summary word or
phrase will appear in a summary string given a source word
or phrase appears in the encoded text and considering the
various usages of the word or phrase in the encoded text,
for example, syntactic usages and semantic usages.

In a still further preferred embodiment,
according to this invention, the step for comparing a
training set of encoded manually generated summary strings
takes into consideration external information in the form
of queries, user models, past user interaction and other

biases to optimize the form of the generated summary
strings.

10

15

20

25

30

35

WO 00/41096 PCT/US00/00268

BRIEF DESCRIPTION OF THE DRAWING
Further features and other objects and advantages
will become clear from the following detailed description
made with reference to the drawing which is a schematic
diagram illustrating the processing of text to produce
summaries.
DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawing, a collection of

representative documents are assembled at 10 and
corresponding manually generated summaries are assembled at
11. These comprise a training set. They are encoded for
computer processing and stored in computer memory. They
may be preprocessed to add syntactic and semantic tags.
The documents and summaries are processed in the
translation model generator at 12 to build a translation
model 13 which is a file containing the probabilities that
a word found in a summary will be found in the document.
The translation model generator constructs a statistical
model describing the relationship between the text units or
the annotated text units in documents and the text units or
annotated text units used in the summaries of documents.
The translation model is used to identify items in a source
document 17 that can be used in summaries. These items may
include words, parts of speech ascribed to words, semantic
tags applied to words, phrases with syntactic tags, phrases
with semantic tags, syntactic or semantic relationships
established between words or phrases in the document,
structural information obtained from the document, such as
positions of words or phrases, mark-up information obtained
from the document such as the existence of bold face or
italics, or of headings or section numbers and so forth.
The summaries are processed by the language model
generator 14 to produce a summary language model 15. The
language model is a file containing the probabilities of
each word or phrase found in the training set summaries
following another word or phrase. The language model
generator builds a statistical model describing the likely

10

15

20

25

30

WO 00/41096 PCT/US00/00268

order of appearance of text units or annotated text units
in summaries. The headlines or summaries may be
preprocessed to identify text items that can be used in
determining the typical structure of summaries. These text
items may include words, parts of speech ascribed to words,
semantic tags applied to words, phrases, phrases with
syntactic tags, syntactic or semantic relations established
between words or phrases, structure information, such as
positions of words or phrases in the summary, and so forth.

The translation model 13 and summary language
model 15 along with a document 17 to be summarized and
summarization control parameters 18 are supplied to the
summary search engine 16 to select a sequence of items
(characters or lexemes) that Jointly optimize the
information content extracted from the source document to
be summarized. These are supplied to the summary
generation engine 19 which generates the summary.

The following Table is an example document for

explaining the practice of this invention:

Table 1

"The U.N. Security Council on Monday was to
address a dispute between U.N. chief weapons
inspector Richard Butler and Irag over which
disarmament documents Baghdad must hand over.

Speaking in an interview with CNN on Sunday
evening, Butler said that despite the latest
dispute with Iraqg, it was too soon to make a
judgment that the Iragis had broken last week's
agreement to unconditionally resume cooperation
with weapons inspector -- an agreement which
narrowly averted air strikes by the United States

and Britain."

10

15

20

25

WO 00/41096 PCT/US00/00268

Some possible headline/summaries for the document
produced above are:

"Security Council to address Iragi document dispute."
"Iragi Weapons Inspections Dispute."

These summaries illustrate some of the reasoning
required for summarization. The system must decide (1)
what information to present in the summary, (2) how much
detail to include in the summary or how long the summary
can be, and (3) how best to phrase the information so that
it seems coherent. The two summaries above illustrate some
of the issues of length, content and emphasis.

The statistical models are produced by comparison
of a variety of documents and summaries for those documents
similar to those set forth above to learn for a variety of
parameter settings, mechanisms for both (1) content
selection for the most likely summaries of a particular
length and (2) generating coherent English (or any other
language) text to express the content. The learning for
both content selection and summary generation may take
place at a variety of conceptual levels ranging from
characters, words, word sequences or n-grams, phrases, text
spans and their associated syntactic and semantic tags. In
this case, prior to the comparison, the texts in the
training sets must be tagged.

Set forth in the following table is the text of
Table 1 after being tagged with syntactic parts of speech
using the LDC standard, e.g., DT: definite article, NNP:
proper noun, JJ: adjective.

10

15

20

WO 00/41096 PCT/US00/00268

Table 2
The DT U.N._NNP Security NNP Council NNP on IN
Monday NNP was_VBD to_TO address_VB a_NN dispute NN
between IN U.N. NNP chief_ JJ weapons NNS
inspector NN Richard NNP Butler NNP and CC Irag NNP
over_IN which_WDT disarmament NN documents NNS
Baghdad NNP must_NN hand NN over. CD NN NN NN
Speaking VBG in_IN an_DT interview NN with IN
CNN_NNP on_IN Sunday NNP evening, NNP Butler NNP
said_VBD that_IN despite_ IN the DT latest JJS
dispute NN with IN Iraq, NNP it _PRP was_VBD too_ RB
soon_RB to_VBP make VB a_DT judgment NN that IN
the DT Iraqis_NNPS had_VBD broken VBN last JJ
week's NN agreement NN to_TO unconditionally RB
resume_ VB cooperation NN with NN weapons NNS
inspectors: NNS an_ DT agreement NN which WDT
narrowly RB averted VBP airstrikes_NNS by IN the DT
United NNP States_NNPS and_CC Britain. NNP.

Set forth in the following table is the text of
Table 1 after being tagged with semantic tags using the
TIPSTER/MUC standards; NE: named entity, TE: temporal
entity, LOC: location.

10

15

20

25

WO 00/41096 PCT/US00/00268

Table 3
The [U.N. Security Council]-NE on [Monday]-TE was to
address a dispute between [U.N.]-NE chief weapons
inspecter [Richard Butler]-NE and [Iraq] -NE over
which disarmament documents [Baghdad]-NE must hand
over.
Speaking in an interview with [CNN]-NE on [Sunday] -
TE evening, [Butler]-NE said that despite the latest
dispute with [Irag]-NE, it was too soon to make a
judgment that the [Iragis]-NE had broken last week's
agreement to unconditionally resume cooperation with
weapons inspectors -- an agreement which narrowly
averted airstrikes by the [United States]-NE and
[Britain] -NE.

The training set is wused to model the
relationship between the appearance of some features (text
spans, labels, or other syntactic and semantic features of
the document) in the document, and the appearance of
features in the summary. This can be, in the simplest
case, a mapping between the appearance of a word in the
document and the likelihood of the same or another word
appearing in the summary.

The applicants used a training set of over
twenty-five thousand documents that had associated
headlines or summaries. These documents were analyzed to
ascertain the conditional probability of a word in a
document given that the word appears in the headline. In
the following table, the probabilities for words appearing
in the text of Table 1 are set forth.

WO 00/41096 PCT/US00/00268

10

15

20

25

30

Table 4
Word Conditional Probability
Iraqi 0.4500
Dispute 0.9977
Weapons 1.000
Inspection 0.3223
Butler 0.6641

The system making use of the translation model
extracts words or phrases from the source text based upon
the probability these or other words will appear in
summaries.

The probability that certain subsets of words
individually likely to appear in summaries will appear in
combination can be calculated using Bayes theorem. Thus,
the probability that the phrase ‘"weapons inspection

dispute", or any ordering thereof may be expressed simply:

Pr ("weapons"| "weapons" in document)
*Pr ("inspection"| "inspection" in document)
*Pr ("dispute"| "dispute" in document).

Equivalently, this probability may be expressed:

Log (Pr ("weapons" | "weapons" in document))
+ Log(Pr("inspection"| "inspection" in document))
+ Log (Pr("dispute"| "dispute" in document)) .

More involved models can express the relationship
among arbitrary subsets, including subsequences, of the
words in the document and subsets of candidate words that
may appear in the summary. The more involved models can
express relationships among linguistic characterizations of
subsets of terms in the document and summaries such as
parts-of-speech tags, or parse trees.

The more involved models may express
relationships among these sets of terms and meta-
information related to the document or the summary, such as

length, derived statistics over terms (such as proportion

WO 00/41096 PCT/US00/00268

10

15

20

25

30

35

of verbs or nouns in the document, average sentence length,
etc.), typographical information, such as typeface,
formatting information, such as centering, paragraph breaks
and so forth, and meta-information, such as provenance
(author, publisher, date of publication, Dewey or other
classification) recipient, reader, news group, media
through which presented (web, book, magazine, TV chiron or
caption).

One of the advantages in learning a content
selection model is that the system can learn relationships
between summary terms that are not in the document and
terms that are in the document, and apply those
relationships to new documents thereby introducing new
terms in the summary.

Once a content selection model has been trained
on the training set, conditional probabilities for the
features that have been seen in the summaries can be
computed. The summary structure generator makes use of
these conditional probabilities to compute the most likely
summary candidates for particular parameters, such as
length of summary. Since the probability of a word
appearing in a summary can be considered to be independent
of the structure of the summary, the overall probability of
a particular candidate summary can be computed Dby
multiplying the probabilities of the content in the summary
with the probability of that content expressed using a
particular summary structure (e.g., length and/or word
order) .

Since there is no limitation on the types of
relationships that can be expressed in the content
selection model, variations on this invention can use
appropriate training sets to produce a cross-lingual or
even cross-media summary. For example, a table expressing
the conditional probability that an English word should
appear in a summary of a Japanese document could be used to

simultaneously translate and summarize Japanese documents.

10

10

15

20

25

30

WO 00/41096 PCT/US00/00268

An inventory of spoken word forms, together with
a concatenative synthesis algorithm and a table of
conditional probabilities that speech segments would be
used in a spoken summary of a particular document, could be
used to generate spoken summaries. Similarly,
corresponding video or other media could be chosen to
represent the content of documents.

Example

For use in generating summaries, the probability
of finding particular words in a summary is learned from
the training set. For certain words appearing in the text
set forth in Table 1, the learned probabilities are listed

in the following table:

Table 5
Word Log probability of word in Reuters headlines
Iraqgi -3.0852
Dispute -1.0651
Weapons -2.7098
Inspection -2.8417
Butler -1.0038

Also, for generating summaries, the probability
of finding pairs of words in sequence in the training set
summaries is learned. For certain words appearing in the
text set forth in Table 1, the learned probabilities are
listed in the following table:

Table 6
Word pair (word 1, word 2) Log probability of word 2

given word 1

Iragi weapons -0.7622
Weapons inspection -0.6543
Inspection dispute -1.4331

11

WO 00/41096 PCT/US00/00268

10

15

20

25

30

35

To calculate the desirability of a headline
containing the sequence "Iraqi weapons inspection...", the
system multiplies the likelihood of seeing the word "Iragi™"
in a headline (see Table 5) by it being followed by
"weapons" and that being followed by "inspection" (see
Table 6). This may be expressed as follows:
Log(P("Iragi"))+Log (P ("weapons" |
"Iragi"))+Log (P ("inspection"| "weapons")),
which, wusing the wvalues in the tables, vyields a 1log
probability of -2.8496. Alternative sequences using the
same words, such as "Iragi dispute weapons", have
probabilities that can be calculated similarly. In this
case, the sequence "Iragi dispute weapons" has not appeared
in the training data, and is estimated using a back-off
weight. A back-off weight is a very small but non-zero
weight or assigned probability for words not appearing in
the training set.

These calculations can be extended to take into
account the likelihood of semantic and syntactic tags both
at the word or phrase level, or can be carried out with
respect to textual spans from characters on up. The
calculations can also be generalized to use estimates of
the desirability of sequences of more than two text spans
(for example, tri-gram (three-word sequence) probabilities
may be used).

Other measures of the desirability of word
sequences can be used. For example, the output of a neural
network trained to evaluate the desirability of a sequence
containing certain words and tags could be substituted for
the log probabilities used in the preceding explanation.
Moreover, other combination functions for these measures
could be used rather than multiplication of probabilities
or addition of log probabilities.

In general, the summary generator comprises any
function for combining any form of estimate of the

desirability of the whole summary under consideration such

12

WO 00/41096 PCT/US00/00268

10

15

20

25

30

35

that this overall estimate can be used to make a comparison
between a plurality of possible summaries.

Even though the search engine and summary
generator have been presented as two separate processes,
there is no reason for these to be separate.

In the case of the phrase discussed above, the
overall weighting used in ranking can, as one possibility,
be obtained as a weighted combination of the content and

structure model log probabilities.

Alpha* (Log (Pr("Iragi"| "Iragi" in doc)) + Log (Pr ("weapons" |
"weapons" in doc))+

Log(Pr("inspection"| "inspection" in doc)))+

Beta* (Log (Pr ("Iraqgi" | start_of_sentencé))+Log(Pr((weapons”|
"Iragi"))+Log (Pr("inspection"| "weapons"))).

Using a combination of content selection models,
language models of user needs and preferences, and summary
parameters, a plurality of possible summaries, together
with estimates of their desirability, is generated. These
summaries are ranked in order of estimated desirability,
and the most highly ranked summary or summaries are
produced as the output of the system.

Depending on the nature of the language,
translation and other models, heuristic means may be
employed to permit the generation and ranking of only a
subset of the possible summary candidates in order to
render the summarization process computationally tractable.
In the first implementation of the system, Viterbi beam
search was used to greatly limit the number of candidates
produced. The beam search makes assumptions regarding the
best possible word in at the front position of a summary
and in consideration of the next position will not undo the
assumption concerning the first position. Other search
techniques, such as A* or IDA*, SMA¥*, may be employed to
comply with particular algorithmic or resource limitations.

An example of the results of commanding the
search to output the most highly ranked candidate for a

13

10

15

20

25

30

WO 00/41096 PCT/US00/00268

variety of values of the summary length control parameter

is set forth in the following table.

Table 7
Number of Words String

Iraq

United States

Irag on Weapons

United States on Iraqg
United States in latest week

United States in latest week on Iraqg

N oy oW NN

United States on security cooperation

in latest week

The following computer code appendix contains
code in the Java language to implement this invention. The
UltraSummarise class 1s the main function that makes a
summarizer object, loads a story, creates a search object
and uses the Vocabulary class and story to produce a
summary . The ViteriSearch class defines the meat of the
operation. It takes the LanguageModel <class, the
TranslationModel class and the story and searches for
strings having the highest probability of being used in a
summary for the story. The LanguageModel class reads in a
file which is a model for summaries containing the
probabilities of each word following another. The
TranslationModel c¢lass reads in a file containing the
probabilities that a word will appear in a summary given
words in the story. The Story class reads in the story.
The Vocabulary class reads in a file that turns words into
numbers.

Those skilled in the computer programming arts
could implement the invention described herein in a number
of computer programming languages. It would not be
necessary to use an object oriented programming language

such as Java.

14

WO 00/41096 PCT/US00/00268

COMPUTER CODE APPENDIX

The following code in the Java language was written to implement the invention
described above. The UltraSummarise class is the main function that makes a summarizer
object, loads a story, creates a search object and uses the Vocabulary class and search object to
produce a summary. The ViterbiSearch class defines the meat of the operation. It takes the
LanguageModel class, the TranslationModel class and the story and searches for strings having
the highest probability of being used in a summary for the story. The LanguageModel class
reads in a file which is a model for summaries containing the probabilities of each word
following another word in a summary. The TranslationModel class reads in a file containing the
probabilities that a word will appear in a summary given words in the story. The Story class
reads in the story. The Vocabulary class reads in a file that turns words into numbers.

import java.util.Date;
import LanguageModel;
import TranslationModel;
import Story;

import Vocabulary;
import ViterbiSearch;

final public class UltraSummarise

{
final static int MAX_N_LEXEMES = 40000;
final static int MAX_N_BIGRAMS = 400000;
LanguageModel LM;
TranslationModel TRM;
Vocabulary Vcb;
boolean myboredom=true;

- String sty1,sty2; ‘
public UltraSummarise (String [] args) throws Exception
{

if (args.length >3) { myboredom=true; }

Vcb=new Vocabulary(args[0], MAX_N_LEXEMES); /name,maxnlexemes
LM=new LanguageModel(args[0], MAX_N_LEXEMESMAX N _BIGRAMS); // name,

maxnlexemes, maxnbigrams
TRM=new TranslationModel(args[0], MAX_N_LEXEMES); // name, maxnlexemes

styl=args[1]; sty2=args[2];

}
public void Run() throws Exception
{

Story Sty;

ViterbiSearch Search;

15

WO 00/41096 PCT/US00/00268

Sty=new Story(styl, Vcb,MAX_N_LEXEMES); // storyname , maxnleximes
Search= new ViterbiSearch(myboredom,Vcb, L M.TRM);
Search.produceStringSummary(Sty,15);
}
public static void main (String [] args) throws Exception
{
System.out.printin(new Date());
if (args.length < 2) {
System.err.println("Usage java UltraSummarise corpusname story-file <bored>");
System.exit(1);
} |
UltraSummarise Ult=new UltraSummarise(args);
Ult.Run();
System.out.println(new Date()); |
System.exit (0);

import java.util. Hashtable;
import java.io.*;
import Vocabulary;

final public class LanguageModel {
int MAX_N_LEXEMES;
int MAX_LEX BIGRAMS;
// this is ugly, but it's not straightforward to avoid,
// since the bigram file doesn't start with a count. Later, perhaps force it to.

final static boolean verbose_debug=false;

int lastlexicalbigram;

int lastlexicalunigram;

float [] lexicalunigramprobs;

float [] lexicalunigrambackoffs;

float [] lexicalbigramprobs;

final float NOT_A_LOG_PROB = 5.0F; // n:log(n)==5 is not a probability

String corpusname;

16

WO 00/41096 ' PCT/US00/00268

Hashtable bigram_hashtable;
int bigram_hashtable_last_element = 0; //used by bigram_index below

static char [] mycharacters = {
'AI’IBI’VCl,'DI’IE|’1F',IG',VHl’lI|"J”’
'K,L,M,NO,'P,'Q,'R,'S",'T,
’Ul’lVl’lWV’YXI,IY'"'Zl"a!"b”lcl"d"
'e”lf’lgl,lh',li"l'l’lkl,lll,lml"n',
'Of’tpf’lql,lr"lSl"t"'ul’lvl,lwl,'xl’

'yl,lzl

K

static int range = mycharacters.length;

static StringBuffer keyspace = new StringBuffer("");

public LanguageModel (String setcorpusname, int MAX_N_LEXEMES,
int MAX_LEX BIGRAMS) throws Exception
{
corpusname = new String (setcorpusname);
lexicalunigramprobs = new float [MAX_N_LEXEMES];
lexicalunigrambackoffs = new float [MAX_N_LEXEMES];
lexicalbigramprobs = new float [MAX_LEX_BIGRAMS];
bigram_hashtable = new Hashtable(MAX_LEX_BIGRAMS);
System.out.println("Reading LM "+corpusname);
readLM();

}

public String getCorpusNamey()

{

return new String(corpusname);

}

// convert two bigram index elements into strings and store them into a hash table,
// look them up later
int bigram_index (int word1, int word2, boolean create_p) throws Exception {
String mytempstring = null;
int index;
keyspace.setLength(0);

index = word1;

while (index>0) {
keyspace.append(mycharacters{index % range]);
index /= range;

}

17

WO 00/41096 PCT/US00/00268

keyspace.append(' ');
index = word2;
while (index>0) {
keyspace.append(mycharacters{index % range});
index /= range;
}
if (keyspace.length() >= 1024)
throw new Exception("something wrong with indices to bigram_index");

mytempstring=keyspace.toString();
/I System.out.print(mytempstring+ ",");

if (! (bigram_hashtable.containsKey(mytempstring))){
if (create_p) { o
bigram hashtable.put(mytempstring,
new Integer(bigram_hashtable_last_element++));
if (verbose_debug) System.out.println("Put hash entry for ["+mytempstring+
"] ="+word1+","+word2);
b
else {
if (verbose_debug) System.out.println("no hash entry for ["+mytempstring+
"]="+word1+","+word2);
return -1;
}

}

return ((Integer)(bigram_hashtable.get(mytempstring))).intValue();

}

void readLM() throws Exception

{
// read bigrams

try {
StreamTokenizer BigramFile =
new StreamTokenizer(new BufferedReader
(new InputStreamReader

(new FileInputStream(corpusname+".biprobs"))));
/1 see http://charts.unicode.org/Unicode.charts/glyphless/U0000.html
BigramFile.wordChars(0x0021,0x007¢); // basically all the characters
// that could concievably be in a word in English

int last_bi=-1;

18

WO 00/41096 PCT/US00/00268

while (BigramFile.nexiToken() != BigramFile.TT_EOF){
if (BigramFile.ttype != BigramFile. TT_NUMBER){
System.out.printin(" Non number ["+BigramFile.sval="] in "
+corpusname+".biprobs");
System.exit(1);
}
int wl=(int)BigramFile.nval;
if (BigramFile.nextToken() == BigramFile. TT_EOF){
System.out.printin(" Number "+w1+" without second number in "
+corpusname=+".biprobs");
System.exit(1);
}
if (BigramFile.ttype != BigramFile. TT_NUMBER){
System.out.println(" Non number where second number expected ["
+BigramFile.sval+"] in "+corpusname+".biprobs");
System.exit(1);
}
int w2=(int)BigramFile.nval,
if (BigramFile.nextToken() = BigramFile.TT_EOF){
System.out.printIn(" Numbers "+w1-+","+w2+" without probability in "
+corpusname+".biprobs");
System.exit(1);
}
if (BigramFile.ttype != BigramFile. TT_NUMBER){
System.out.printin(" Non word in "+corpusname+".biprobs");
System.exit(1);
}
float prob = (float)BigramFile.nval;
if (verbose_debug)System.out.println((w1)+","+w2+" => "+prob);
int bi = bigram_index(w1,w2,true);
if (bi <last_bi){
System.err.printin("Got duplicate "+w1+","+w2+"both mappeed to "+bi);
}
last_bi=bi,
lexicalbigramprobs[bi}=prob;
lastlexicalbigram++;
}
}
catch (java.io.FileNotFoundException)
{
System.out.printin(" Couldn't open "+corpusname+".biprobs");
System.exit(1);
\
J

19

WO 00/41096

catch (java.io.IOException ¢)
{
System.out.printin(" Problem reading "-corpusname~+".biprobs");
System.exit(1);

}

System.out.println(lastlexicalbigram+" bigrams read");

// read unigrams
try {
lastlexicalunigram=0;
StreamTokenizer UnigramFile = .
new StreamTokenizer(new BufferedReader
(new InputStreamReader
(new FileInputStream(corpusname+".uniprobs"))));
/I see http://charts.unicode.org/Unicode.charts/glyphless/U0000.html
UnigramFile.wordChars(0x0021,0x007e); // basically all the characters
// that could concievably be in a word in English

while (UnigramFile.nextToken() != UnigramFile. TT_EOF){
if (UnigramFile.ttype != UnigramFile. TT_NUMBER){
System.out.println(" Non number ["+UnigramFile.sval+"] in "
+corpusname+".uniprobs");
System.exit(1);
}
int wl=(int)UnigramFile.nval,
if (UnigramFile.nextToken() = UnigramFile.TT_EOF){
System.out.printIn(" Numbers "+w1+" without probability in "
+corpusname+".uniprobs");
System.exit(1);
}
if (UnigramFile.ttype != UnigramFile. TT_NUMBER){
System.out.println(" Non word in "+corpusname+".uniprobs");
System.exit(1);
}
float prob = (float)UnigramFile.nval;
if (verbose_debug) System.out.printin((w1)+" => "+prob);

lexicalunigramprobs[w1]}=prob;

lastlexicalunigram++; .
}
}
catch (java.io.FileNotFoundException €)
{

20

PCT/US00/00268

WO 00/41096 PCT/US00/00268

System.out.println(" Couldn't open "+corpusname=".uniprobs");
System.exit(1);
}
catch (Java.io.IOException €)
{
System.out.println(" Problem reading
System.exit(1);
}

System.out.printin(lastlexicalunigram+" unigrams read");

+corpusname=+".uniprobs");

// read unigrambackoffs

try {
int lastuniback=0;

StreamTokenizer UnibackFile =
new StreamTokenizer(new BufferedReader
(new InputStreamReader
(new FileInputStream(corpusname—+".unibackoff"))));
// see http://charts.unicode.org/Unicode.charts/glyphless/U0000.html
UnibackFile.wordChars(0x0021,0x007e); // basically all the characters
// that could concievably be in a word in English

while (UnibackFile.nextToken() != UnibackFile. TT_EOF){
if (UnibackFile.ttype != UnibackFile. TT_NUMBER){
System.out.println(" Non number ["+UnibackFile.sval+"] in "
+corpusname+".unibackoff");
System.exit(1);
}
int wl=(int)UnibackFile.nval;
if (UnibackFile.nextToken() = UnibackFile. TT_EOF){
System.out.printin(" Number "+w1+" without probability in "
+corpusname+".unibackoff");
System.exit(1);
}
if (UnibackFile.ttype != UnibackFile. TT_NUMBER){
System.out.printin(" Non word in "+corpusname+".unibackoff");
System.exit(1);
}
float prob = (float)UnibackFile.nval;
if (verbose_debug) System.out.println((w1)+" => "+prob);

lexicalunigrambackoffs{w1]=prob;
lastuniback++;

21

WO 00/41096 PCT/US00/00268

)
}
System.out.printin(lastuniback+" unigrams backoffs read");

}
catch (java.io.FileNotFoundException €)
{
System.out.printIn(" Couldn't open "+corpusname=".unibackoff");
System.exit(1);
}
catch (Java.io.IOException e)
{
System.out.printIn(" Problem reading "-corpusname-".unibackoff");
System.exit(1);
}
} .
float bigram_probability(int word1, int word2) throws Exception

{

int bi_index = bigram_index (wordl, word2, false);

if (bi_index == -1)
return NOT_A_LOG_PROB;
else return lexicalbigramprobs[bi_index];

}

float backoff_weight(int w) {return lexicalunigrambackoffs[w];}
float unigram_probability(int w) {return lexicalunigrambackoffs[w];}

public float probability(int w1, int w2) throws Exception
{
//p(wd2{wd1)= if(bigram exists) p_2(wdl,wd2)
/ else bo_wt_1(wdl)*p_l(wd2)
float bigram_prob=bigram_probability(w1,w2);

if ({(NOT_A_LOG_PROB == bigram_prob)){
//System.out.println(w1+" "+w2+" bigram " +(bigram_prob));
return bigram_prob;
} else {
//System.out.printin(w1+" "+w2+" backoff "
+(backoff_weight(w1)+unigram_probability(w2)));
return
/1 -100000.0F;
(backoff weight(w1)+unigram_probability(w2))*3; // make backoff rather undesirable

22

WO 00/41096 PCT/US00/00268

——

[

import java.io.*;

final public class TranslationModel {
float [] lexicaltranslationprobs;
String corpusname;
static boolean verbose debug = false;

public TranslationModel(String ThisCorpusName, int MaxNLexemes) {
lexicaltranslationprobs = new float [MaxNLexemes];
corpusname=ThisCorpusName;
System.out.printin("Reading Translation Model "+corpusname+".numtrprobs");
readTrModel();

}

public float probability(int w1)
{

return lexicaltranslationprobs{w1]; //log 1

}

void readTrModel() {
try {
int i=0;
StreamTokenizer TransFile =
new StreamTokenizer(new BufferedReader
(new InputStreamReader
(new FileInputStream(corpusname+".numtrprobs"))));
/1 see http://charts.unicode.org/Unicode.charts/glyphless/U0000.htm]
TransFile.wordChars(0x0021,0x007e); // basically all the characters
// that could concievably be in a word in English

while (TransFile.nextToken() != TransFile.TT_EOF){
if (TransFile.ttype != TransFile. TT_NUMBER){
System.out.printin(" Non number ["+TransFile.sval+"] in
"+corpusname-+".numtrprobs");

23

WO 00/41096 PCT/US00/00268

}

System.exit(1);

}

int index=(int) TransFile.nval,

if (TransFile.nextToken() = TransFile. TT_EOF){
System.out.printin(" Number "+index~+" without string in "

+corpusname-+".numtrprobs");

System.exit(1);

}

if (TransFile.ttype != TransFile. TT_NUMBER){
System.out.printIn(" Non float in "+corpusname+".numtrprobs");
System.exit(1);

}

lexicaltranslationprobs[index]=(float)TransFile.nval;

if (verbose_debug) System.out.println((index)+ " => "+(lexicaltranslationprobs[index]));

i++;

b

System.out.println((i)+" translation probs read");

}

catch (java.io.FileNotFoundException €)

{

}

System.out.printin(" Couldn't open "+corpusname+".numtrprobs");
System.exit(1);

catch (java.io.IOException €)

{

}

System.out.println(" Problem reading "+corpusname+".numtrprobs");
System.exit(1);

import java.util.Date;
import java.io.*;
import Vocabulary;

public class Story {
final static boolean verbose debug=false;

24

WO 00/41096 PCT/US00/00268

static String storyvocabname;
private int n_unique_lexemes;
private int [] unique_lexemes;
private int [] lexeme used;

public Story (String storyname, Vocabulary Vocab, int MAX N _LEXEMES){
storyvocabname=storyname;
unique_lexemes = new int [MAX N _LEXEMES];
lexeme_used = new int [MAX N_LEXEMES];

// use plain initVocab() if you have numeric stories
initVocabFromTextFile(Vocab);

}

int termCount() {
return n_unique_lexemes;
}
int term(int i){
return unique_lexemes[i-1];

}

void initVocabFromTextFile(Vocabulary Vocab) {
// Read the current story vocab
try {
n_unique lexemes=0;
StreamTokenizer VCBFile =
new StreamTokenizer(new BufferedReader
(new InputStreamReader
(new FileInputStream(storyvocabname))));

while (VCBFile.nextToken() != VCBFile.TT_EOF){

String tok;

if (VCBFile.ttype = VCBFile.TT_NUMBER){
tok=(String.valueOf(VCBFile.nval)).toLowerCase();

}else if (VCBFile.ttype = VCBFile.TT_WORD){
tok=VCBFile.sval.toLowerCase().replace(".',’).replace(",' ").replace(’,",").trim();

telse
I { System.out.println("Story.java Found funny thing in "+storyvocabname+" type

"+VCBFile.ttype);

tok="<unknown>";
continue;

}

1 System.out.println(" "+tok+" "+Vocab.toIndex(tok));

25

WO 00/41096 PCT/US00/00268

if (Vocab.toIndex(tok) >=0){
if (0 = lexeme_used[Vocab.toIndex(tok)]){
unique_lexemes[n_unique_lexemes++]=Vocab.toIndex(1ok);
lexeme_used[Vocab.toIndex(tok)]+;
}
}
if (verbose_debug)
System.out.println((n_unique_lexemes-1)+
" ->"+(unique_lexemes[n_unique_lexemes-1)));
}
//'" n_unique_lexemes --; // Undo extra increment
System.out.printin("Using vocabulary of "+(n_unique_lexemes)+" words");
}

catch (java.io.FileNotFoundException e)

{
System.out.printin(" Couldn't open "+storyvocabname);
System.exit(1);

}

catch (java.io.IOException e)

{
System.out.printIn(" Problem reading "+storyvocabname);
System.exit(1);

}

}

void initVocab() {

/I Read the current story vocab token indices

try {

n_unique lexemes=0;

StreamTokenizer VCBFile =
new StreamTokenizer(new BufferedReader

(new InputStreamReader
(new FileInputStream(storyvocabname))));

while (VCBFile.nextToken() != VCBFile. TT_EOF){

if (VCBFile.ttype != VCBFile.TT_NUMBER){
System.out.println(" Non number in "+storyvocabname);
System.exit(1);

} .

unique_lexemes{n_unique_lexemes++]=(int)VCBFile.nval;

if (verbose_debug)
System.out.println((n_unique_lexemes-1)+

" .>"+(unique_lexemes[n_unique_lexemes-11]));

26

WO 00/41096 PCT/US00/00268

//" n_unique_lexemes --; // Undo extra increment
System.out.println("Using vocabulary of "~(n_unique_lexemes+1)+" words");

catch (java.io.FileNotFoundException e)

{
System.out.printIn(" Couldn't open "—storyvocabname);
System.exit(1);
}
catch (java.io.IOException e)

{ |
System.out.printin(" Problem reading "+storyvocabname);
System.exit(1);

}

}

public static void main (String [] args) throws Exception {

int MAX_N_LEXEMES = 100000;

Vocabulary Vocab;

Story CurrentStory;

System.out.printin(new Date());

if (args.length < 1) {
System.err.println("Usage Story corpusname textualstory™);
System.exit(1);

}

Vocab=new Vocabulary(args[0],MAX N_LEXEMES); //name,maxniexemes

CurrentStory=new Story(args[1],Vocab, MAX N_LEXEMES);

System.out.println(new Date());

System.exit (0);

}

import java.util. Hashtable;

import java.io.*;

/* The vocabulary used by the search, It has a method
It provides mehods that convert the lexical items used by the language model
Into strings for output*/

public class Vocabulary {

final static boolean verbose_debug = false;
String [] vocab_words;

27

WO 00/41096 PCT/US00/00268

Hashtable vocab_index:
Int start_sent;
int end_sent;

public Vocabulary (String corpusname,int MAX N_LEXEMES){
vocab_words = new String [MAX_N_LEXEMES];
vocab_index = new HashtableMAX_N_LEXEMES);
// Read the current story vocab names
try {
StreamTokenizer VCBFile = ‘
new StreamTokenizer(new BufferedReader
(new InputStreamReader
(new FileInputStream(corpusname+".numvocab"))));
/1 see http://charts.unicode.org/Unicode.charts/glyphless/U0000.html
VCBFile.wordChars(0x0021,0x007¢); // basically all the characters
// that could concievably be in a word in English

while (VCBFile.nextToken() != VCBFile.TT_EOF){
if (VCBFile.ttype != VCBFile. TT_NUMBER){
System.out.println(" Non number ["+VCBFile.sval+"] in "+corpusname-+".numvocab
"+VCBFile.lineno());
System.exit(1);
}
int index=(int)VCBFile.nval;
if (VCBFile.nextToken() == VCBFile.TT_EOF){
System.out.println(" Number "+index+" without string in "
+corpusname+".numvocab "+VCBFile.lineno());
System.exit(1);
!
/l read in string that has been quoted by the massage program,
/I and strip the quotes off (java kind of rules compared to c)
vocab_words[index]=VCBFile.sval.replace("",' ").trim().toLowerCase();
if (vocab_index.containsKey(vocab_words[index])) {
System.out.printin("Repeated Vocab term "+vocab_words[index]+" at index "+ index);

} else {
vocab_index.put(vocab_words[index],new Integer(index));
}
if (verbose_debug) System.out.printin((index)+ " => "+(vocab_words[index]));
}
}
catch (java.io.FileNotFoundException €)
{

28

WO 00/41096

System.out.printin(" Couidn't open "—corpusname~".numvocab"});
System.exit(1);
catch (java.io.IOException e)

System.out.printin(" Problem reading

System.exit(1);
1
4

"

+corpusname=".numvocab");

b

// read sentence start and end markers
try {
StreamTokenizer StartStopFile = .
new StreamTokenizer(new BufferedReader
(new InputStreamReader
. (new FileInputStream(corpusname-".startend"))));
// see http://charts.unicode.org/Unicode.charts/glyphless/U0000.html
StartStopFile.wordChars(0x0021,0x007e); // basically all the characters
// that could concievably be in a word in English

while (StartStopFile.nextToken() != StartStopFile.TT_EQF){
if (StartStopFile.ttype != StartStopFile.TT_NUMBER){
System.out.printIn(" Non number ["+StartStopFile.sval+"] in "
+corpusname+".startend");
System.exit(1);
}
start_sent=(int)StartStopFile.nval;
if (StartStopFile.nextToken() == StartStopFile.TT_EOF){
System.out.printIn(" Number "+start_sent+" without second in "
+corpusname+".startend");
System.exit(1);
}
if (StartStopFile.ttype != StartStopFile. TT_NUMBER){
System.out.printIn(" Non word in "+corpusname-+".startend");
System.exit(1);

}

end_sent = (int)StartStopFile.nval;

}
}
catch (java.io.FileNotFoundException)
{ |
System.out.printin(" Couldn't open "+corpusname+".startend");
System.exit(1);
}

catch (java.io.IOException e)

29

PCT/US00/00268

WO 00/41096

System.out.printin(" Probiem reading
System.exit(1);

public int startsenttoken (){
return start_sent;

}

public int endsenttoken (){

return end_sent;
}

public String toString(int i) {
return vocab_words{i];
}

public int tolndex(String s){
if (vocab_index.containsKey(s)){
return ((Integer)(vocab_index.get(s))).intValue();
} else return(-1);
}
}

/* Need to make this general, so that the probabilities for each
transition come from an externally supplied method */

import java.util.Date;
import java.io.*;
import QSortAlgorithm;
import Vocabulary;

public class ViterbiSearch

{

final static int MAX_N_SENSES = 40000;
final static int MAX_SENT_LEN = 10;

final public static float LOG_BOREDOM_DISCOUNT = -100.0F

final static float beam_width = 3.0F;
final static int MIN_BEAM_SIZE = 20;

30

—corpusname—".startend");

PCT/US00/00268

WO 00/41096 PCT/US00/00268

}

void setUpSearchStates (Story Sty){
n_current_states=0;
System.out.println ("Viterbi Search using story with "+(Sty.termCount())=+" words");
curr_start_sent=0;
SetSearch_state(curr_start_sent,Vocab.startsenttoken());
curr_end_sent=Sty.termCount()+1;
SetSearch_state(curr_end_sent,Vocab.endsenttoken());
int i;
for (1=1; i1<=Sty.termCount();i++) {

SetSearch_state(i,Sty.term(1));

}

}

void SetSearch_state(int state, int value){
search_states[state]=value;

/I System.out.printIn("State:"+state+" word:"+value);
state_to_lexeme[state]=value;
n_current_states=java.lang.Math.max(n_current_states,state+1);

}

/**********************************

* The following code section does the

* actual viterbi search
b e sfe ke e ek st b ek o ke sk e o ok sk sk e Kok e KKK |

// change these later to dynamic size, since easy in java
int [][] backpointers
=new int [MAX_SENT_LEN][MAX_N_SENSES];

// only actually need 2 slices, but this is clearer
float [][] scores
= new float [MAX SENT_LEN][MAX_N_SENSES];

int [] currentscoreindices = new int [MAX_N_SENSES];
float [] currentscores = new float [MAX_N_SENSES];

void backtrack(int pos_in_sent, int from_state)

{

if (pos_in_sent>=0)

31

WO 00/41096 PCT/US00/00268

backtrack(pos_in_sent-1,backpointers{pos_in_sent]{from_state]);

System.out.print(Vocab.toString(search_states[from_state])+" ");/+"("+from_state+"
"+search_states[from_state]+") ");

}

// This backtracks through the current path to date,
/" discouraging the selection of words already in the path
/I -- multiple occurrances are multiply discouraging.
// This is not a terribly good idea, since it can't undo decisions earlier on,
// it may pick a non optimal repetition disallowing path
float discount_by_boredom_level(float bored_probability,
int pos_in_sent, int from_word,

int word_to_match){
if (pos_in_sent>=0){
if (from_word==word_to_match) {
/ System.out.print("BORED!"+word_to_match);
bored_probability += LOG_BOREDOM_DISCOUNT;

}
bored_probability=
discount_by_boredom_level(bored_probability,
pos_in_sent-1,
backpointers[pos_in_sent][from_word],
word_to_match);
}
return bored_probability;
}
void dump()
{

int word_in_sent;

int this_vocab;

for (word_in_sent=0;word_in_sent<MAX_SENT_LEN; word_in_sent++){
System.out.println (word_in_sent);
for (this_vocab = 0; this_vocab < n_current_states; this_vocab++){

System.out.printIn(this_vocab+"<-"+backpointers[word_in_sent][this_vocab]+"
"+scores{word_in_sent][this_vocab]);

}
System.out.println("\n");

}

}

32

WO 00/41096 PCT/US00/00268

public void produceStringSummary (Story Sty, int length) throws Exception {
setUpSearchStates(Sty);
doSearch();

}

void doSearch() throws Exception {

/I System.out.printin("doSearch ncurrentstates is "+n_current_states+"\n curr_start_Sent=
"+Vocab.toString(curr_start_sent)+" ("+curr_start_sent+")"+"curr_end_Sent=
"+Vocab.toString(curr_end_sent)+" ("+curr_end_sent+")");

// first state probabilities are transitions out of <s>

for (int this_state = 0; this_state <n_current_states; this_state-~){

backpointers{0][this_state]=curr_start_sent;

scores[0][this_state] -
=LMod.probability(search_states[curr_start_sent],

search_states[this_state])

+TrMod.probability(search_states[this_state]);

// Beam search

currentscores[this_state]=scores[0][this_state];

currentscoreindices[this_state]=this_state;

}

// Beam search

quicksort.sort(currentscores, currentscoreindices);

for (int word_in_sent=1;word_in_sent<MAX_SENT_LEN; word_in_sent++){

int best_state=curr_start_sent;
float best_score=-100000.0F;

// Beam search - don't consider states with log probs (beam_width) times smaller
// than best score
int current_beam = 0;
for (int from_state_i = 0; from_state_i <n_current_states; from_state_i++){
I System.out.println("From state i:"+from_state_i+" n_current_states:"+
n_current_states+" Current
Scores["+((n_current_states-1)-from_state_i)+"]:"+(currentscores[(n_current_states-1)-from_stat
e_i])+" Current Scores
indices["+((n_current_states-1)-from_state_i)+"]:"+(currentscoreindices[(n_current_states-1)-fro
m_state_i]));
if (from_state_i >=MIN_BEAM_SIZE) &&
(currentscores[(n_current_states-1)-from_state_i]
< (currentscores[n_current_states-1] * beam_width)))
break;
current_beam=from_state_i;

33

WO 00/41096 PCT/US00/00268

for (int this_state = 0; this_state < n_current_states; this_state=){
float max_score= -1000000.0F;
int current_back=curr_start_sent;
for (int from_state_i = 0; from_state_i <= current_beam; from_state_i++){
float test_score;
int from_state = currentscoreindices[(n_current_states-1)-from_state_iJ;

1 System.out.printin("state "+this_state+" from i:"+from_state_i+" from:"+
from_state);

// Never repeat a state immediately, or make a transition out of EOS
if ((from_state = this_state)
|| (from_state = curr_end_sent))
continue;
if ((word_in_sent > 1) && (from_state == curr_start_sent))
continue;

test_score=scores[word_in_sent-1][from_state]
+LMod.probability(search_states[from_state],search_states{this_state]);
if (test_score >max_score){
current_back=from_state;
max_score=test_score;

}
}

float bored_probability=TrMod.probability(search_states[this_state]);
if (boredom)
bored_probability=
discount_by_boredom_level(bored_probability,
word_in_sent-1,current_back,this_state);
scores[word_in_sent][this_state]=max_score+bored_probability;

/1 Save scores for sorting, so can do beam search
currentscores(this_state}=max_score+bored_probability;
currentscoreindices(this_state]=this_state;

backpointers{word_in_sent][this_state]=current_back;
/I we need to check if the best state now is end of sent, and stop if so
if (scores[word_in_sent][this_state] > best_score){

best_score = scores{word_in_sent][this_state];

best_state = this_state;

}

34

WO 00/41096 PCT/US00/00268

!

5
// Beam Search
quicksort.sort(currentscores, currentscoreindices);

System.out.print(word_in_sent+":");
if (best_state == curr_end_sent) System.out.print ("* ");

backtrack(word_in_sent, curr_end_sent);
System.out.println(" "+scores[word_in_sent][curr_end_sent]+" Beam "+(current_beam-+1));

}
/I dump();

}

1
s

35

WO 00/41096 PCT/US00/00268

As used in the following claims, a "summary
string" 1is a derivative representation of the source
document which may, for example, comprise an abstract, key
word summary, folder name, headline, file name or the like.

Having thus defined our invention in the detail
and particularity required by the Patent Laws, what is
desired to be protected by Letters Patent is set forth in

the following claims.

36

10

WO 00/41096 PCT/US00/00268
WHAT TS CLAIMED IS:

1. A computer method for preparing a summary
string from a source document of encoded text, the method
comprising the steps of:

a) comparing a training set of encoded text
documents with manually generated summary strings
associated therewith to learn probabilities that a given
summary word or phrase will appear in summary strings given
a source word or phrase appears in an encoded text
document; and

b) constructing from the source document a
summary string containing summary words or phrases having
the highest probabilities of appearing in a summary string
based on the learned probabilities established in the

previous step.

2. The computer method according to claim 1,
comprising constructing a summary string containing the
most probable summary word, words, phrase or phrases for a
preselected number of words or phrases in the summary

string.

3. The computer method according to claim 2,
comprising comparing the training set of encoded text
documents with manually generated summary strings to learn
the probability that a summary word or phrase appearing in
a summary string will follow another summary word or phrase
and constructing a summary string containing the most
probable word or sequence of words and/or phrases for a

preselected number of words in the summary string.

4, The computer method according to claim 1,
comprising comparing a corpus of encoded text documents
with manually generated summary strings associated
therewith to learn the probabilities that a given summary
word or phrase will appear in summary strings given a
source word or phrase appears in the encoded text
considering the context in which the source word or phrase

appears in the encoded text documents.

37

WO 00/41096 PCT/US00/00268

5. The computer method according to claim 4,
wherein the contexts in which the source words or phrases
are considered include titles, headings and standard
paragraphs.

6. The computer method according to claim 4,
wherein the contexts in which the source words or phrases

are considered include fonts, bolding and italicizing.

7. The computer method according to claim 4,
further comprising learning multiple probabilities that a
summary word or phrase will appear in a summary string
given a source word or phrase appears in the encoded text
considering the various usages of the word or phrase in the

encoded text.

8. The computer method according to claim 7,
wherein the usages in which the source words are considered

are syntactic usages.

9. The computer method according to claim 8,
wherein the syntactic usages include the word or phases
part of speech.

10. The computer method according to claim 7,
wherein the usages in which the source words or phrases are

considered are semantic usages.

11. The computer method according to claim 10,
wherein the usages in which source words or phrases are
considered include usage categories selected from the
TIPSTER/MUC standards.

12. The computer method according to claim 10,
wherein the usages in which source words or phrases are
considered include usage categories selected from the group
AGENT, CIRCUMSTANCE, CIRCUMSTANCE/TEMPORAL,

5 COMMUNICATIVE ACTION and OBJECT.

38

WO 00/41096 PCT/US00/00268

13. The computer method according to claim 4,
wherein the step for comparing a corpus of encoded text
documents with manually generated summary strings takes
into consideration external information in the form of
queries, user models, past user interaction and other
biases to optimize the form of the summary strings

constructed in the summary constructing step.

14. The computer method according to claim 1,
comprising producing summaries in a different language from
the source document by uéing a training set of an encoded

text document in one language with manual summaries in
another language.

39

WO 00/41096 PCT/US00/00268

1/1
TRamiNG Lo CORRESPONDING |)
DOCUMENTS TRAINING
SUMMARIES
Y 14
U - | LANGUAGE MODEL}
1 TOR
TRANSLATION MODEL | - GENERATOR(S)
GENERATOR(S) | s
Y /J
13 SUMMARY | LEXICAL N-GRAM
ARACTER
i g’gg@gm‘g@ WORD LANGUAGE | SYNTACTIC N-GRAM,
TR@S&E’?“ SEQUENCES, SETS OF MODEL(S) | ETC.
WORDS WITH SYNTACTIC OR
SEMANTIC RELATIONS, ETC.
17 1§
/J Y Y f
DOCUMENT(S)
10 BE > SUMMARY SEARCH:
SUMMARIZED SELECTION OF SEQUENCE OF CHARACTERS OR
LEXEMES THAT JOINTLY OPTIMISES THE
9 INFORMATION CONTENT RETAINED FROM THE

DOCUMENT(S) TO BE SUMMARIZED AND

SUMMARIZATION CONFORMANCE TO THE LEARNED SUMMARY

CONTROL STRUCTURE.
PARAMETERS
(E.G.LENGTH)
, 19
)
GENERATED
SUMMARY OF

DOCUMENT(S)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US00/00268

A, CLASSIFICATION OF SUBJECT MATTER
IPC(7T) : G O6F 17/27, 17/21, 15/00, 17/00
US CL :704/1, 9, 10; 707/530, 531, 532
According to International Patent Classification (IPC) or to both national classification and 1PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 704/1,9, 10; 707/530, 531, 532

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terins used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 5,778,397 A (KUPIEC ET AL) 07 JULY 1998, Abstract, col. 4, | 1-14
lines 7-65, col. 5, lines 17-32, col. 10, lines 5-13, col. 12, lines 3--
64, col. 16, lines 1-65.

Y US 5,638,543 A (PEDERSEN ET AL) 10 JUNE 1997, Abstract. 1-14
A US 5,848,191 A (CHEN ET AL) 08 DECEMBER 1998, abstract. 1-14
Y US 5,077,668 A (DOI) 31 DECEMBER 1991, Abstarct. 1-14

Y US 5,297,027 A (MORIMOTO ET AL) 22 MARCH 1994, FIGURE| 1-14
5, COL. 4, lines 41-67, col. 5, lines 1-26.

Further documents are listed m the continuation of Box C. D See patent [amily annex.

Special categories of ened documents T tater document pubhshed after the smternational filing date or prionity
. date and not in conflict with the application but cited to understand
A document definmg the general state of the art which 1s not considered the principle or theory underlymg the mvention

10 be of parucular relevance

. . . "X document ol particular relevance. the clamed mvention cannot be
B carbier document pubhshed on or atter the international filimg date

: considered novel or cannot be considered to nvolve an inventve step
LT Jdocument which may throw doubts on prionity clammis) or which s when the document 1s 1aken alone

cited to estabhsh the publicaton date of another citation or other

special reason tas specifiedt YT document ol particular relevance, the clmmed mvenuon cannot be

considered to nvolve an anventive siep when the document s

0 document referring 1o an vral disclosure. use. extubition or other combmed with one or more ather such documents, such comtnnation
means bemyp obvious toa person skilled i e art
“pr docament published prior o the mniernational tiling date vat fater than Nt document member of the same patent tamily
the prioeiy date clamed :
Date of the actual completion of the nternational search Date of maihng of the international scarch report
05 APRIL 2000 2 6 APR 2000
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks Vi
Box PCT Patri . A
. . atrick N. Edouard 2)
Washington. D.C. 20231 el K Jrf
Faesimile No. (703) 305-3230 Telephone No. (7037 308-6725

Form PCT/ISA/210 (sccond sheet) (July 1998)«

INTERNATIONAL SEARCH REPORT International application No.

PCT/US00/00268
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,708,825 A (SOTOMAYOR) 13 JANUARY 1998, Abstract. 1-14
Y US 5,384,703 A (WITHGOTT ET AL) 24 JANUARY 1995, 1-14
abstract.

Form PCT/ISA/210 (continuation of second sheet) (July 1998)«

INTERNATIONAL SEARCH REPORT International application No.
PCT/US00/00268

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data basc and where practicable terms used):

WEST/EAST
search terms: (summar$ or conden$ or abstract$) same (document or text or file) and (likelohood or probability or
frequency near2 occurrence) and (7048.ccls. or 707S.ccls.)

Form PCT/ISA/210 (extra sheet) (July 1998)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

