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(57) Abstract

A computer method for preparing a summary string
(19) from a source document of encoded text (17). The
method comprises comparing a training set.of encoded text
documents (10) with manually generated summary strings
(11) associated therewith to learn probabilities (13) that a
given summary word or phrase will appear in summary
strings (19) given a source word or phrase appears in
encoded text documents (17) and constructing from the source
document a summary string containing summary words or
phrases (19) having the highest probabilities of appearing
in a summary string (19) based on the learned probabilities
established in the previous step.
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METHOD FOR PRODUCING SUMMARIES OF TEXT DOCUMENT

BACKGROUND OF THE INVENTION

Extractive summarization 1is the process of

selecting and extracting text spans--usually whole
sentences--from a source document. The extracts are then
arranged in some order (usually the order as found in the
source document) to form a summary. In this method, the
quality of the summary is dependent on the scheme used to
select the text spans from the source document. Most of
the prior art uses a combination of lexical, frequency and
syntactic cues to select whole sentences for inclusion in
the summary. Consequently, the summaries cannot be shorter
than the shortest text span selected and cannot combine
concepts from different text spans in a simple phrase or
statement. U.S. Patent No. 5,638,543 discloses selecting
sentences for an extractive summary based on scoring
sentences based on lexical items appearing in the
sentences. U.S. Patent No. 5,077,668 discloses an
alternative sentence scoring scheme based upon markers of
relevance such as hint words like "important",
"significant" and "crucial". U.S. Patent No. 5,491,760
works on bitmap images of a page to identify key sentences
based on the visual appearance of hint words. U.S. Patent
Nos. 5,384,703 and 5,778,397 disclose selecting sentences
scored on the inclusion of the most frequently used non-
stop words in the entire text.

In contrast to the large amount of work that has
been undertaken in extractive summarization, there has been
much less work on generative methods of summarization. A
generative method of summarization selects words or phrases
(not whole sentences) and generates a summary based upon
the selected words or phrases. Early approaches to
generative methods are discussed in the context of the
FRUMP system. See DeJong, G.F., "An Overview of the FRUMP
System", Strategies for Natural Language Processing,

(Lawrence Erlbaum Associates, Hillsdale, NJ 1982). This

system provides a set of templates for extracting

information from news stories and presenting it in the form
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of a summary. Neither the selection of content nor the
generation of the summary is learned by the system. The
selection templates are handcrafted for a particular
application domain. Other generative systems are known.
However, none of these systems can: (a) learn rules,
procedures, or templates for content selection and/or
generation from a training set or (b) generate summaries
that may be as short as a single noun phrase.

The method disclosed herein relates somewhat to
the prior art for statistically modeling of natural
language applied to language translation. U.S. Patent No.
5,510,981 describes a system that uses a translation model
describing correspondences between sets of words in a
source language and sets of words in a target language to
achieve natural language translation. This system proceeds
linearly through a document producing a rendering in the
target language of successive document text spans. It is
not directed to operate on the entire document to produce
a summary for the document.

SUMMARY OF THE INVENTION

As used herein, a ‘"summary string" is a
derivative representation of the source document which may,
for example, comprise an abstract, key word summary, folder
name, headline, file name or the like. Briefly, according
to this invention, there is provided a computer method for
generating a summary string from a source document of
encoded text comprising the steps of:

a) comparing a training set of encoded text
documents with manually generated summary strings
associated therewith to learn probabilities that a given
summary word or phrase will appear in summary strings given
that a source word or phrase appears in an encoded text
document; and

b) from the source document, generating a
summary string containing a summary word, words, a phrase
or phrases having the highest probabilities of appearing in

a summary string based on the learned probabilities
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established in the previous step. Preferably, the summary
string contains the most probable summary word, words,
phrase or phrases for a preselected number of words in the
summary string.

In one embodiment, the training set of encoded
manually generated summary strings is compared to learn the
probability that a summary word or phrase appearing in a
summary string will follow another summary word or phrase.
Summary strings are generated containing the most probable
sequence of words and/or phrases for a preselected number
of words in the summary string.

In a preferred embodiment, the computer method,
according to this invention, comprises comparing a training
set of encoded text documents with manually generated
summary strings associated therewith to. learn the
probabilities that a given summary word or phrase will
appear in summary strings given a source word or phrase
appears in the encoded text considering the context in
which the source word or phrase appears in the encoded text
documents. For example, the context in which the source
words or phrases may be considered includes titles,
headings, standard paragraphs, fonts, bolding, and/or
italicizing.

In yet another preferred embodiment, the computer
method, according to this invention, further comprises
learning multiple probabilities that a summary word or
phrase will appear in a summary string given a source word
or phrase appears in the encoded text and considering the
various usages of the word or phrase in the encoded text,
for example, syntactic usages and semantic usages.

In a still further preferred embodiment,
according to this invention, the step for comparing a
training set of encoded manually generated summary strings
takes into consideration external information in the form
of queries, user models, past user interaction and other

biases to optimize the form of the generated summary
strings.
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BRIEF DESCRIPTION OF THE DRAWING
Further features and other objects and advantages
will become clear from the following detailed description
made with reference to the drawing which is a schematic
diagram illustrating the processing of text to produce
summaries.
DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawing, a collection of

representative documents are assembled at 10 and
corresponding manually generated summaries are assembled at
11. These comprise a training set. They are encoded for
computer processing and stored in computer memory. They
may be preprocessed to add syntactic and semantic tags.
The documents and summaries are processed in the
translation model generator at 12 to build a translation
model 13 which is a file containing the probabilities that
a word found in a summary will be found in the document.
The translation model generator constructs a statistical
model describing the relationship between the text units or
the annotated text units in documents and the text units or
annotated text units used in the summaries of documents.
The translation model is used to identify items in a source
document 17 that can be used in summaries. These items may
include words, parts of speech ascribed to words, semantic
tags applied to words, phrases with syntactic tags, phrases
with semantic tags, syntactic or semantic relationships
established between words or phrases in the document,
structural information obtained from the document, such as
positions of words or phrases, mark-up information obtained
from the document such as the existence of bold face or
italics, or of headings or section numbers and so forth.
The summaries are processed by the language model
generator 14 to produce a summary language model 15. The
language model is a file containing the probabilities of
each word or phrase found in the training set summaries
following another word or phrase. The language model
generator builds a statistical model describing the likely
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order of appearance of text units or annotated text units
in summaries. The headlines or summaries may be
preprocessed to identify text items that can be used in
determining the typical structure of summaries. These text
items may include words, parts of speech ascribed to words,
semantic tags applied to words, phrases, phrases with
syntactic tags, syntactic or semantic relations established
between words or phrases, structure information, such as
positions of words or phrases in the summary, and so forth.

The translation model 13 and summary language
model 15 along with a document 17 to be summarized and
summarization control parameters 18 are supplied to the
summary search engine 16 to select a sequence of items
(characters or lexemes) that Jointly optimize the
information content extracted from the source document to
be summarized. These are supplied to the summary
generation engine 19 which generates the summary.

The following Table is an example document for

explaining the practice of this invention:

Table 1

"The U.N. Security Council on Monday was to
address a dispute between U.N. chief weapons
inspector Richard Butler and Irag over which
disarmament documents Baghdad must hand over.

Speaking in an interview with CNN on Sunday
evening, Butler said that despite the latest
dispute with Iraqg, it was too soon to make a
judgment that the Iragis had broken last week's
agreement to unconditionally resume cooperation
with weapons inspector -- an agreement which
narrowly averted air strikes by the United States

and Britain."
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Some possible headline/summaries for the document
produced above are:

"Security Council to address Iragi document dispute."
"Iragi Weapons Inspections Dispute."

These summaries illustrate some of the reasoning
required for summarization. The system must decide (1)
what information to present in the summary, (2) how much
detail to include in the summary or how long the summary
can be, and (3) how best to phrase the information so that
it seems coherent. The two summaries above illustrate some
of the issues of length, content and emphasis.

The statistical models are produced by comparison
of a variety of documents and summaries for those documents
similar to those set forth above to learn for a variety of
parameter settings, mechanisms for both (1) content
selection for the most likely summaries of a particular
length and (2) generating coherent English (or any other
language) text to express the content. The learning for
both content selection and summary generation may take
place at a variety of conceptual levels ranging from
characters, words, word sequences or n-grams, phrases, text
spans and their associated syntactic and semantic tags. In
this case, prior to the comparison, the texts in the
training sets must be tagged.

Set forth in the following table is the text of
Table 1 after being tagged with syntactic parts of speech
using the LDC standard, e.g., DT: definite article, NNP:
proper noun, JJ: adjective.
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Table 2
The DT U.N._NNP Security NNP Council NNP on IN
Monday NNP was_VBD to_TO address_VB a_NN dispute NN
between IN U.N. NNP chief_ JJ weapons NNS
inspector NN Richard NNP Butler NNP and CC Irag NNP
over_IN which_WDT disarmament NN documents NNS
Baghdad NNP must_NN hand NN over. CD NN NN NN
Speaking VBG in_IN an_DT interview NN with IN
CNN_NNP on_IN Sunday NNP evening, NNP Butler NNP
said_VBD that_IN despite_ IN the DT latest JJS
dispute NN with IN Iraq, NNP it _PRP was_VBD too_ RB
soon_RB to_VBP make VB a_DT judgment NN that IN
the DT Iraqis_NNPS had_VBD broken VBN last JJ
week's NN agreement NN to_TO unconditionally RB
resume_ VB cooperation NN with NN weapons NNS
inspectors: NNS an_ DT agreement NN which WDT
narrowly RB averted VBP airstrikes_NNS by IN the DT
United NNP States_NNPS and_CC Britain. NNP.

Set forth in the following table is the text of
Table 1 after being tagged with semantic tags using the
TIPSTER/MUC standards; NE: named entity, TE: temporal
entity, LOC: location.
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Table 3
The [U.N. Security Council]-NE on [Monday]-TE was to
address a dispute between [U.N.]-NE chief weapons
inspecter [Richard Butler]-NE and [Iraq] -NE over
which disarmament documents [Baghdad]-NE must hand
over.
Speaking in an interview with [CNN]-NE on [Sunday] -
TE evening, [Butler]-NE said that despite the latest
dispute with [Irag]-NE, it was too soon to make a
judgment that the [Iragis]-NE had broken last week's
agreement to unconditionally resume cooperation with
weapons inspectors -- an agreement which narrowly
averted airstrikes by the [United States]-NE and
[Britain] -NE.

The training set is wused to model the
relationship between the appearance of some features (text
spans, labels, or other syntactic and semantic features of
the document) in the document, and the appearance of
features in the summary. This can be, in the simplest
case, a mapping between the appearance of a word in the
document and the likelihood of the same or another word
appearing in the summary.

The applicants used a training set of over
twenty-five thousand documents that had associated
headlines or summaries. These documents were analyzed to
ascertain the conditional probability of a word in a
document given that the word appears in the headline. In
the following table, the probabilities for words appearing
in the text of Table 1 are set forth.
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Table 4
Word Conditional Probability
Iraqi 0.4500
Dispute 0.9977
Weapons 1.000
Inspection 0.3223
Butler 0.6641

The system making use of the translation model
extracts words or phrases from the source text based upon
the probability these or other words will appear in
summaries.

The probability that certain subsets of words
individually likely to appear in summaries will appear in
combination can be calculated using Bayes theorem. Thus,
the probability that the phrase ‘"weapons inspection

dispute", or any ordering thereof may be expressed simply:

Pr ("weapons"| "weapons" in document)
*Pr ("inspection"| "inspection" in document)
*Pr ("dispute"| "dispute" in document).

Equivalently, this probability may be expressed:

Log (Pr ("weapons" | "weapons" in document))
+ Log(Pr("inspection"| "inspection" in document))
+ Log (Pr("dispute"| "dispute" in document)) .

More involved models can express the relationship
among arbitrary subsets, including subsequences, of the
words in the document and subsets of candidate words that
may appear in the summary. The more involved models can
express relationships among linguistic characterizations of
subsets of terms in the document and summaries such as
parts-of-speech tags, or parse trees.

The more involved models may express
relationships among these sets of terms and meta-
information related to the document or the summary, such as

length, derived statistics over terms (such as proportion
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of verbs or nouns in the document, average sentence length,
etc.), typographical information, such as typeface,
formatting information, such as centering, paragraph breaks
and so forth, and meta-information, such as provenance
(author, publisher, date of publication, Dewey or other
classification) recipient, reader, news group, media
through which presented (web, book, magazine, TV chiron or
caption).

One of the advantages in learning a content
selection model is that the system can learn relationships
between summary terms that are not in the document and
terms that are in the document, and apply those
relationships to new documents thereby introducing new
terms in the summary.

Once a content selection model has been trained
on the training set, conditional probabilities for the
features that have been seen in the summaries can be
computed. The summary structure generator makes use of
these conditional probabilities to compute the most likely
summary candidates for particular parameters, such as
length of summary. Since the probability of a word
appearing in a summary can be considered to be independent
of the structure of the summary, the overall probability of
a particular candidate summary can be computed Dby
multiplying the probabilities of the content in the summary
with the probability of that content expressed using a
particular summary structure (e.g., length and/or word
order) .

Since there is no limitation on the types of
relationships that can be expressed in the content
selection model, variations on this invention can use
appropriate training sets to produce a cross-lingual or
even cross-media summary. For example, a table expressing
the conditional probability that an English word should
appear in a summary of a Japanese document could be used to

simultaneously translate and summarize Japanese documents.

10



10

15

20

25

30

WO 00/41096 PCT/US00/00268

An inventory of spoken word forms, together with
a concatenative synthesis algorithm and a table of
conditional probabilities that speech segments would be
used in a spoken summary of a particular document, could be
used to generate spoken summaries. Similarly,
corresponding video or other media could be chosen to
represent the content of documents.

Example

For use in generating summaries, the probability
of finding particular words in a summary is learned from
the training set. For certain words appearing in the text
set forth in Table 1, the learned probabilities are listed

in the following table:

Table 5
Word Log probability of word in Reuters headlines
Iraqgi -3.0852
Dispute -1.0651
Weapons -2.7098
Inspection -2.8417
Butler -1.0038

Also, for generating summaries, the probability
of finding pairs of words in sequence in the training set
summaries is learned. For certain words appearing in the
text set forth in Table 1, the learned probabilities are
listed in the following table:

Table 6
Word pair (word 1, word 2) Log probability of word 2

given word 1

Iragi weapons -0.7622
Weapons inspection -0.6543
Inspection dispute -1.4331

11
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To calculate the desirability of a headline
containing the sequence "Iraqi weapons inspection...", the
system multiplies the likelihood of seeing the word "Iragi™"
in a headline (see Table 5) by it being followed by
"weapons" and that being followed by "inspection" (see
Table 6). This may be expressed as follows:
Log(P("Iragi"))+Log (P ("weapons" |
"Iragi"))+Log (P ("inspection"| "weapons")),
which, wusing the wvalues in the tables, vyields a 1log
probability of -2.8496. Alternative sequences using the
same words, such as "Iragi dispute weapons", have
probabilities that can be calculated similarly. In this
case, the sequence "Iragi dispute weapons" has not appeared
in the training data, and is estimated using a back-off
weight. A back-off weight is a very small but non-zero
weight or assigned probability for words not appearing in
the training set.

These calculations can be extended to take into
account the likelihood of semantic and syntactic tags both
at the word or phrase level, or can be carried out with
respect to textual spans from characters on up. The
calculations can also be generalized to use estimates of
the desirability of sequences of more than two text spans
(for example, tri-gram (three-word sequence) probabilities
may be used).

Other measures of the desirability of word
sequences can be used. For example, the output of a neural
network trained to evaluate the desirability of a sequence
containing certain words and tags could be substituted for
the log probabilities used in the preceding explanation.
Moreover, other combination functions for these measures
could be used rather than multiplication of probabilities
or addition of log probabilities.

In general, the summary generator comprises any
function for combining any form of estimate of the

desirability of the whole summary under consideration such

12
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that this overall estimate can be used to make a comparison
between a plurality of possible summaries.

Even though the search engine and summary
generator have been presented as two separate processes,
there is no reason for these to be separate.

In the case of the phrase discussed above, the
overall weighting used in ranking can, as one possibility,
be obtained as a weighted combination of the content and

structure model log probabilities.

Alpha* (Log (Pr("Iragi"| "Iragi" in doc)) + Log (Pr ("weapons" |
"weapons" in doc))+

Log(Pr("inspection"| "inspection" in doc)))+

Beta* (Log (Pr ("Iraqgi" | start_of_sentencé))+Log(Pr((weapons”|
"Iragi"))+Log (Pr("inspection"| "weapons"))).

Using a combination of content selection models,
language models of user needs and preferences, and summary
parameters, a plurality of possible summaries, together
with estimates of their desirability, is generated. These
summaries are ranked in order of estimated desirability,
and the most highly ranked summary or summaries are
produced as the output of the system.

Depending on the nature of the language,
translation and other models, heuristic means may be
employed to permit the generation and ranking of only a
subset of the possible summary candidates in order to
render the summarization process computationally tractable.
In the first implementation of the system, Viterbi beam
search was used to greatly limit the number of candidates
produced. The beam search makes assumptions regarding the
best possible word in at the front position of a summary
and in consideration of the next position will not undo the
assumption concerning the first position. Other search
techniques, such as A* or IDA*, SMA¥*, may be employed to
comply with particular algorithmic or resource limitations.

An example of the results of commanding the
search to output the most highly ranked candidate for a

13
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variety of values of the summary length control parameter

is set forth in the following table.

Table 7
Number of Words String

Iraq

United States

Irag on Weapons

United States on Iraqg
United States in latest week

United States in latest week on Iraqg

N oy oW NN

United States on security cooperation

in latest week

The following computer code appendix contains
code in the Java language to implement this invention. The
UltraSummarise class 1s the main function that makes a
summarizer object, loads a story, creates a search object
and uses the Vocabulary class and story to produce a
summary . The ViteriSearch class defines the meat of the
operation. It takes the LanguageModel <class, the
TranslationModel class and the story and searches for
strings having the highest probability of being used in a
summary for the story. The LanguageModel class reads in a
file which is a model for summaries containing the
probabilities of each word following another. The
TranslationModel c¢lass reads in a file containing the
probabilities that a word will appear in a summary given
words in the story. The Story class reads in the story.
The Vocabulary class reads in a file that turns words into
numbers.

Those skilled in the computer programming arts
could implement the invention described herein in a number
of computer programming languages. It would not be
necessary to use an object oriented programming language

such as Java.

14
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COMPUTER CODE APPENDIX

The following code in the Java language was written to implement the invention
described above. The UltraSummarise class is the main function that makes a summarizer
object, loads a story, creates a search object and uses the Vocabulary class and search object to
produce a summary. The ViterbiSearch class defines the meat of the operation. It takes the
LanguageModel class, the TranslationModel class and the story and searches for strings having
the highest probability of being used in a summary for the story. The LanguageModel class
reads in a file which is a model for summaries containing the probabilities of each word
following another word in a summary. The TranslationModel class reads in a file containing the
probabilities that a word will appear in a summary given words in the story. The Story class
reads in the story. The Vocabulary class reads in a file that turns words into numbers.

import java.util.Date;
import LanguageModel;
import TranslationModel;
import Story;

import Vocabulary;
import ViterbiSearch;

final public class UltraSummarise

{
final static int MAX_N_LEXEMES = 40000;
final static int MAX_N_BIGRAMS = 400000;
LanguageModel LM;
TranslationModel TRM;
Vocabulary Vcb;
boolean myboredom=true;

- String sty1,sty2; ‘
public UltraSummarise (String [] args) throws Exception
{

if (args.length >3) { myboredom=true; }

Vcb=new Vocabulary(args[0], MAX_N_LEXEMES); /name,maxnlexemes
LM=new LanguageModel(args[0], MAX_N_LEXEMESMAX N _BIGRAMS); // name,

maxnlexemes, maxnbigrams
TRM=new TranslationModel(args[0], MAX_N_LEXEMES); // name, maxnlexemes

styl=args[1]; sty2=args[2];

}
public void Run() throws Exception
{

Story Sty;

ViterbiSearch Search;

15
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Sty=new Story(styl, Vcb,MAX_N_LEXEMES); // storyname , maxnleximes
Search= new ViterbiSearch(myboredom,Vcb, L M.TRM);
Search.produceStringSummary(Sty,15);
}
public static void main (String [] args) throws Exception
{
System.out.printin(new Date());
if (args.length < 2) {
System.err.println("Usage java UltraSummarise corpusname story-file <bored>");
System.exit(1);
} |
UltraSummarise Ult=new UltraSummarise(args);
Ult.Run();
System.out.println(new Date()); |
System.exit (0);

import java.util. Hashtable;
import java.io.*;
import Vocabulary;

final public class LanguageModel {
int MAX_N_LEXEMES;
int MAX_LEX BIGRAMS;
// this is ugly, but it's not straightforward to avoid,
// since the bigram file doesn't start with a count. Later, perhaps force it to.

final static boolean verbose_debug=false;

int lastlexicalbigram;

int lastlexicalunigram;

float [] lexicalunigramprobs;

float [] lexicalunigrambackoffs;

float [] lexicalbigramprobs;

final float NOT_A_LOG_PROB = 5.0F; // n:log(n)==5 is not a probability

String corpusname;

16



WO 00/41096 ' PCT/US00/00268

Hashtable bigram_hashtable;
int bigram_hashtable_last_element = 0; //used by bigram_index below

static char [] mycharacters = {
'AI’IBI’VCl,'DI’IE|’1F',IG',VHl’lI|"J”’
'K,L,M,NO,'P,'Q,'R,'S",'T,
’Ul’lVl’lWV’YXI,IY'"'Zl"a!"b”lcl"d"
'e”lf’lgl,lh',li"l'l’lkl,lll,lml"n',
'Of’tpf’lql,lr"lSl"t"'ul’lvl,lwl,'xl’

'yl,lzl

K

static int range = mycharacters.length;

static StringBuffer keyspace = new StringBuffer("");

public LanguageModel (String setcorpusname, int MAX_N_LEXEMES,
int MAX_LEX BIGRAMS) throws Exception
{
corpusname = new String (setcorpusname);
lexicalunigramprobs = new float [MAX_N_LEXEMES];
lexicalunigrambackoffs = new float [MAX_N_LEXEMES];
lexicalbigramprobs = new float [MAX_LEX_BIGRAMS];
bigram_hashtable = new Hashtable(MAX_LEX_BIGRAMS);
System.out.println("Reading LM "+corpusname);
readLM();

}

public String getCorpusNamey()

{

return new String(corpusname);

}

// convert two bigram index elements into strings and store them into a hash table,
// look them up later
int bigram_index (int word1, int word2, boolean create_p) throws Exception {
String mytempstring = null;
int index;
keyspace.setLength(0);

index = word1;

while (index>0) {
keyspace.append(mycharacters{index % range]);
index /= range;

}
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keyspace.append(' ');
index = word2;
while (index>0) {
keyspace.append(mycharacters{index % range});
index /= range;
}
if (keyspace.length() >= 1024)
throw new Exception("something wrong with indices to bigram_index");

mytempstring=keyspace.toString();
/I System.out.print(mytempstring+ ",");

if (! (bigram_hashtable.containsKey(mytempstring))){
if (create_p) { o
bigram hashtable.put(mytempstring,
new Integer(bigram_hashtable_last_element++));
if (verbose_debug) System.out.println("Put hash entry for ["+mytempstring+
"] ="+word1+","+word2);
b
else {
if (verbose_debug) System.out.println("no hash entry for ["+mytempstring+
"]="+word1+","+word2);
return -1;
}

}

return ((Integer)(bigram_hashtable.get(mytempstring))).intValue();

}

void readLM() throws Exception

{
// read bigrams

try {
StreamTokenizer BigramFile =
new StreamTokenizer(new BufferedReader
(new InputStreamReader

(new FileInputStream(corpusname+".biprobs"))));
/1 see http://charts.unicode.org/Unicode.charts/glyphless/U0000.html
BigramFile.wordChars(0x0021,0x007¢); // basically all the characters
// that could concievably be in a word in English

int last_bi=-1;
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while (BigramFile.nexiToken() != BigramFile.TT_EOF){
if (BigramFile.ttype != BigramFile. TT_NUMBER){
System.out.printin(" Non number ["+BigramFile.sval="] in "
+corpusname+".biprobs");
System.exit(1);
}
int wl=(int)BigramFile.nval;
if (BigramFile.nextToken() == BigramFile. TT_EOF){
System.out.printin(" Number "+w1+" without second number in "
+corpusname=+".biprobs");
System.exit(1);
}
if (BigramFile.ttype != BigramFile. TT_NUMBER){
System.out.println(" Non number where second number expected ["
+BigramFile.sval+"] in "+corpusname+".biprobs");
System.exit(1);
}
int w2=(int)BigramFile.nval,
if (BigramFile.nextToken() = BigramFile.TT_EOF){
System.out.printIn(" Numbers "+w1-+","+w2+" without probability in "
+corpusname+".biprobs");
System.exit(1);
}
if (BigramFile.ttype != BigramFile. TT_NUMBER){
System.out.printin(" Non word in "+corpusname+".biprobs");
System.exit(1);
}
float prob = (float)BigramFile.nval;
if (verbose_debug)System.out.println((w1)+","+w2+" => "+prob);
int bi = bigram_index(w1,w2,true);
if (bi <last_bi){
System.err.printin("Got duplicate "+w1+","+w2+"both mappeed to "+bi);
}
last_bi=bi,
lexicalbigramprobs[bi}=prob;
lastlexicalbigram++;
}
}
catch (java.io.FileNotFoundException )
{
System.out.printin(" Couldn't open "+corpusname+".biprobs");
System.exit(1);
\
J
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catch (java.io.IOException ¢)
{
System.out.printin(" Problem reading "-corpusname~+".biprobs");
System.exit(1);

}

System.out.println(lastlexicalbigram+" bigrams read");

// read unigrams
try {
lastlexicalunigram=0;
StreamTokenizer UnigramFile = .
new StreamTokenizer(new BufferedReader
(new InputStreamReader
(new FileInputStream(corpusname+".uniprobs"))));
/I see http://charts.unicode.org/Unicode.charts/glyphless/U0000.html
UnigramFile.wordChars(0x0021,0x007e); // basically all the characters
// that could concievably be in a word in English

while (UnigramFile.nextToken() != UnigramFile. TT_EOF){
if (UnigramFile.ttype != UnigramFile. TT_NUMBER){
System.out.println(" Non number ["+UnigramFile.sval+"] in "
+corpusname+".uniprobs");
System.exit(1);
}
int wl=(int)UnigramFile.nval,
if (UnigramFile.nextToken() = UnigramFile.TT_EOF){
System.out.printIn(" Numbers "+w1+" without probability in "
+corpusname+".uniprobs");
System.exit(1);
}
if (UnigramFile.ttype != UnigramFile. TT_NUMBER){
System.out.println(" Non word in "+corpusname+".uniprobs");
System.exit(1);
}
float prob = (float)UnigramFile.nval;
if (verbose_debug) System.out.printin((w1)+" => "+prob);

lexicalunigramprobs[w1]}=prob;

lastlexicalunigram++; .
}
}
catch (java.io.FileNotFoundException €)
{
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System.out.println(" Couldn't open "+corpusname=".uniprobs");
System.exit(1);
}
catch (Java.io.IOException €)
{
System.out.println(" Problem reading
System.exit(1);
}

System.out.printin(lastlexicalunigram+" unigrams read");

+corpusname=+".uniprobs");

// read unigrambackoffs

try {
int lastuniback=0;

StreamTokenizer UnibackFile =
new StreamTokenizer(new BufferedReader
(new InputStreamReader
(new FileInputStream(corpusname—+".unibackoff"))));
// see http://charts.unicode.org/Unicode.charts/glyphless/U0000.html
UnibackFile.wordChars(0x0021,0x007e); // basically all the characters
// that could concievably be in a word in English

while (UnibackFile.nextToken() != UnibackFile. TT_EOF){
if (UnibackFile.ttype != UnibackFile. TT_NUMBER){
System.out.println(" Non number ["+UnibackFile.sval+"] in "
+corpusname+".unibackoff");
System.exit(1);
}
int wl=(int)UnibackFile.nval;
if (UnibackFile.nextToken() = UnibackFile. TT_EOF){
System.out.printin(" Number "+w1+" without probability in "
+corpusname+".unibackoff");
System.exit(1);
}
if (UnibackFile.ttype != UnibackFile. TT_NUMBER){
System.out.printin(" Non word in "+corpusname+".unibackoff");
System.exit(1);
}
float prob = (float)UnibackFile.nval;
if (verbose_debug) System.out.println((w1)+" => "+prob);

lexicalunigrambackoffs{w1]=prob;
lastuniback++;
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)
}
System.out.printin(lastuniback+" unigrams backoffs read");

}
catch (java.io.FileNotFoundException €)
{
System.out.printIn(" Couldn't open "+corpusname=".unibackoff");
System.exit(1);
}
catch (Java.io.IOException e)
{
System.out.printIn(" Problem reading "-corpusname-".unibackoff");
System.exit(1);
}
} .
float bigram_probability(int word1, int word2) throws Exception

{

int bi_index = bigram_index (wordl, word2, false);

if (bi_index == -1)
return NOT_A_LOG_PROB;
else return lexicalbigramprobs[bi_index];

}

float backoff_weight(int w) {return lexicalunigrambackoffs[w];}
float unigram_probability(int w) {return lexicalunigrambackoffs[w];}

public float probability(int w1, int w2) throws Exception
{
//p(wd2{wd1)= if(bigram exists) p_2(wdl,wd2)
/ else bo_wt_1(wdl)*p_l(wd2)
float bigram_prob=bigram_probability(w1,w2);

if ({(NOT_A_LOG_PROB == bigram_prob)){
//System.out.println(w1+" "+w2+" bigram " +(bigram_prob));
return bigram_prob;
} else {
//System.out.printin(w1+" "+w2+" backoff "
+(backoff_weight(w1)+unigram_probability(w2)));
return
/1 -100000.0F;
(backoff weight(w1)+unigram_probability(w2))*3; // make backoff rather undesirable
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——

[

import java.io.*;

final public class TranslationModel {
float [] lexicaltranslationprobs;
String corpusname;
static boolean verbose debug = false;

public TranslationModel( String ThisCorpusName, int MaxNLexemes) {
lexicaltranslationprobs = new float [MaxNLexemes];
corpusname=ThisCorpusName;
System.out.printin("Reading Translation Model "+corpusname+".numtrprobs");
readTrModel();

}

public float probability(int w1)
{

return lexicaltranslationprobs{w1]; //log 1

}

void readTrModel() {
try {
int i=0;
StreamTokenizer TransFile =
new StreamTokenizer(new BufferedReader
(new InputStreamReader
(new FileInputStream(corpusname+".numtrprobs"))));
/1 see http://charts.unicode.org/Unicode.charts/glyphless/U0000.htm]
TransFile.wordChars(0x0021,0x007e); // basically all the characters
// that could concievably be in a word in English

while (TransFile.nextToken() != TransFile.TT_EOF){
if (TransFile.ttype != TransFile. TT_NUMBER){
System.out.printin(" Non number ["+TransFile.sval+"] in
"+corpusname-+".numtrprobs");
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}

System.exit(1);

}

int index=(int) TransFile.nval,

if (TransFile.nextToken() = TransFile. TT_EOF){
System.out.printin(" Number "+index~+" without string in "

+corpusname-+".numtrprobs");

System.exit(1);

}

if (TransFile.ttype != TransFile. TT_NUMBER){
System.out.printIn(" Non float in "+corpusname+".numtrprobs");
System.exit(1);

}

lexicaltranslationprobs[index]=(float)TransFile.nval;

if (verbose_debug) System.out.println((index)+ " => "+( lexicaltranslationprobs[index]));

i++;

b

System.out.println((i)+" translation probs read");

}

catch (java.io.FileNotFoundException €)

{

}

System.out.printin(" Couldn't open "+corpusname+".numtrprobs");
System.exit(1);

catch (java.io.IOException €)

{

}

System.out.println(" Problem reading "+corpusname+".numtrprobs");
System.exit(1);

import java.util.Date;
import java.io.*;
import Vocabulary;

public class Story {
final static boolean verbose debug=false;
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static String storyvocabname;
private int n_unique_lexemes;
private int [] unique_lexemes;
private int [] lexeme used;

public Story (String storyname, Vocabulary Vocab, int MAX N _LEXEMES){
storyvocabname=storyname;
unique_lexemes = new int [MAX N _LEXEMES];
lexeme_used = new int [MAX N_LEXEMES];

// use plain initVocab() if you have numeric stories
initVocabFromTextFile(Vocab);

}

int termCount() {
return n_unique_lexemes;
}
int term(int i){
return unique_lexemes[i-1];

}

void initVocabFromTextFile(Vocabulary Vocab) {
// Read the current story vocab
try {
n_unique lexemes=0;
StreamTokenizer VCBFile =
new StreamTokenizer(new BufferedReader
(new InputStreamReader
(new FileInputStream(storyvocabname))));

while (VCBFile.nextToken() != VCBFile.TT_EOF){

String tok;

if (VCBFile.ttype = VCBFile.TT_NUMBER){
tok=(String.valueOf(VCBFile.nval)).toLowerCase();

}else if (VCBFile.ttype = VCBFile.TT_WORD){
tok=VCBFile.sval.toLowerCase().replace(".',’ ).replace(",' ").replace(’,"," ).trim();

telse
I { System.out.println("Story.java Found funny thing in "+storyvocabname+" type

"+VCBFile.ttype);

tok="<unknown>";
continue;

}

1 System.out.println(" "+tok+" "+Vocab.toIndex(tok));
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if (Vocab.toIndex(tok) >=0 ){
if (0 = lexeme_used[Vocab.toIndex(tok)]){
unique_lexemes[n_unique_lexemes++]=Vocab.toIndex(1ok);
lexeme_used[Vocab.toIndex(tok)]+;
}
}
if (verbose_debug)
System.out.println((n_unique_lexemes-1)+
" ->"+(unique_lexemes[n_unique_lexemes-1)));
}
//'" n_unique_lexemes --; // Undo extra increment
System.out.printin("Using vocabulary of "+(n_unique_lexemes)+" words");
}

catch (java.io.FileNotFoundException e)

{
System.out.printin(" Couldn't open "+storyvocabname);
System.exit(1);

}

catch (java.io.IOException e)

{
System.out.printIn(" Problem reading "+storyvocabname);
System.exit(1);

}

}

void initVocab() {

/I Read the current story vocab token indices

try {

n_unique lexemes=0;

StreamTokenizer VCBFile =
new StreamTokenizer(new BufferedReader

(new InputStreamReader
(new FileInputStream(storyvocabname))));

while (VCBFile.nextToken() != VCBFile. TT_EOF){

if (VCBFile.ttype != VCBFile.TT_NUMBER){
System.out.println(" Non number in "+storyvocabname);
System.exit(1);

} .

unique_lexemes{n_unique_lexemes++]=(int)VCBFile.nval;

if (verbose_debug)
System.out.println((n_unique_lexemes-1)+

" .>"+(unique_lexemes[n_unique_lexemes-11]));
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//" n_unique_lexemes --; // Undo extra increment
System.out.println("Using vocabulary of "~(n_unique_lexemes+1)+" words");

catch (java.io.FileNotFoundException e)

{
System.out.printIn(" Couldn't open "—storyvocabname);
System.exit(1);
}
catch (java.io.IOException e)

{ |
System.out.printin(" Problem reading "+storyvocabname);
System.exit(1);

}

}

public static void main (String [] args) throws Exception {

int MAX_N_LEXEMES = 100000;

Vocabulary Vocab;

Story CurrentStory;

System.out.printin(new Date());

if (args.length < 1) {
System.err.println("Usage Story corpusname textualstory™);
System.exit(1);

}

Vocab=new Vocabulary(args[0],MAX N_LEXEMES); //name,maxniexemes

CurrentStory=new Story(args[1],Vocab, MAX N_LEXEMES);

System.out.println(new Date());

System.exit (0);

}

import java.util. Hashtable;

import java.io.*;

/* The vocabulary used by the search, It has a method
It provides mehods that convert the lexical items used by the language model
Into strings for output*/

public class Vocabulary {

final static boolean verbose_debug = false;
String [] vocab_words;
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Hashtable vocab_index:
Int start_sent;
int end_sent;

public Vocabulary (String corpusname,int MAX N_LEXEMES){
vocab_words = new String [MAX_N_LEXEMES];
vocab_index = new HashtableMAX_N_LEXEMES);
// Read the current story vocab names
try {
StreamTokenizer VCBFile = ‘
new StreamTokenizer(new BufferedReader
(new InputStreamReader
(new FileInputStream(corpusname+".numvocab"))));
/1 see http://charts.unicode.org/Unicode.charts/glyphless/U0000.html
VCBFile.wordChars(0x0021,0x007¢); // basically all the characters
// that could concievably be in a word in English

while (VCBFile.nextToken() != VCBFile.TT_EOF){
if (VCBFile.ttype != VCBFile. TT_NUMBER){
System.out.println(" Non number ["+VCBFile.sval+"] in "+corpusname-+".numvocab
"+VCBFile.lineno());
System.exit(1);
}
int index=(int)VCBFile.nval;
if (VCBFile.nextToken() == VCBFile.TT_EOF){
System.out.println(" Number "+index+" without string in "
+corpusname+".numvocab "+VCBFile.lineno());
System.exit(1);
!
/l read in string that has been quoted by the massage program,
/I and strip the quotes off (java kind of rules compared to c)
vocab_words[index]=VCBFile.sval.replace("",' ").trim().toLowerCase();
if (vocab_index.containsKey(vocab_words[index])) {
System.out.printin("Repeated Vocab term "+vocab_words[index]+" at index "+ index);

} else {
vocab_index.put(vocab_words[index],new Integer(index));
}
if (verbose_debug) System.out.printin((index)+ " => "+( vocab_words[index]));
}
}
catch (java.io.FileNotFoundException €)
{

28



WO 00/41096

System.out.printin(" Couidn't open "—corpusname~".numvocab"});
System.exit(1);
catch (java.io.IOException e)

System.out.printin(" Problem reading

System.exit(1);
1
4

"

+corpusname=".numvocab");

b

// read sentence start and end markers
try {
StreamTokenizer StartStopFile = .
new StreamTokenizer(new BufferedReader
(new InputStreamReader
. (new FileInputStream(corpusname-".startend"))));
// see http://charts.unicode.org/Unicode.charts/glyphless/U0000.html
StartStopFile.wordChars(0x0021,0x007e); // basically all the characters
// that could concievably be in a word in English

while (StartStopFile.nextToken() != StartStopFile.TT_EQF){
if (StartStopFile.ttype != StartStopFile.TT_NUMBER){
System.out.printIn(" Non number ["+StartStopFile.sval+"] in "
+corpusname+".startend");
System.exit(1);
}
start_sent=(int)StartStopFile.nval;
if (StartStopFile.nextToken() == StartStopFile.TT_EOF){
System.out.printIn(" Number "+start_sent+" without second in "
+corpusname+".startend");
System.exit(1);
}
if (StartStopFile.ttype != StartStopFile. TT_NUMBER){
System.out.printIn(" Non word in "+corpusname-+".startend");
System.exit(1);

}

end_sent = (int)StartStopFile.nval;

}
}
catch (java.io.FileNotFoundException )
{ |
System.out.printin(" Couldn't open "+corpusname+".startend");
System.exit(1);
}

catch (java.io.IOException e)
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System.out.printin(" Probiem reading
System.exit(1);

public int startsenttoken (){
return start_sent;

}

public int endsenttoken (){

return end_sent;
}

public String toString(int i) {
return vocab_words{i];
}

public int tolndex(String s){
if (vocab_index.containsKey(s)){
return ((Integer)(vocab_index.get(s))).intValue();
} else return(-1);
}
}

/* Need to make this general, so that the probabilities for each
transition come from an externally supplied method */

import java.util.Date;
import java.io.*;
import QSortAlgorithm;
import Vocabulary;

public class ViterbiSearch

{

final static int MAX_N_SENSES = 40000;
final static int MAX_SENT_LEN = 10;

final public static float LOG_BOREDOM_DISCOUNT = -100.0F

final static float beam_width = 3.0F;
final static int MIN_BEAM_SIZE = 20;
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}

void setUpSearchStates (Story Sty){
n_current_states=0;
System.out.println ("Viterbi Search using story with "+(Sty.termCount())=+" words");
curr_start_sent=0;
SetSearch_state(curr_start_sent,Vocab.startsenttoken());
curr_end_sent=Sty.termCount()+1;
SetSearch_state(curr_end_sent,Vocab.endsenttoken());
int i;
for (1=1; i1<=Sty.termCount();i++) {

SetSearch_state(i,Sty.term(1));

}

}

void SetSearch_state(int state, int value){
search_states[state]=value;

/I System.out.printIn("State:"+state+" word:"+value);
state_to_lexeme[state]=value;
n_current_states=java.lang.Math.max(n_current_states,state+1);

}

/**********************************

* The following code section does the

* actual viterbi search
b e sfe ke e ek st b ek o ke sk e o ok sk sk e Kok e KKK |

// change these later to dynamic size, since easy in java
int [][] backpointers
=new int [MAX_SENT_LEN][MAX_N_SENSES];

// only actually need 2 slices, but this is clearer
float [][] scores
= new float [MAX SENT_LEN][MAX_N_SENSES];

int [] currentscoreindices = new int [MAX_N_SENSES];
float [] currentscores = new float [MAX_N_SENSES];

void backtrack(int pos_in_sent, int from_state)

{

if (pos_in_sent>=0)
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backtrack(pos_in_sent-1,backpointers{pos_in_sent]{from_state]);

System.out.print(Vocab.toString(search_states[from_state])+" ");/+"("+from_state+"
"+search_states[from_state]+") ");

}

// This backtracks through the current path to date,
/" discouraging the selection of words already in the path
/I -- multiple occurrances are multiply discouraging.
// This is not a terribly good idea, since it can't undo decisions earlier on,
// it may pick a non optimal repetition disallowing path
float discount_by_boredom_level(float bored_probability,
int pos_in_sent, int from_word,

int word_to_match){
if (pos_in_sent>=0){
if (from_word==word_to_match) {
/ System.out.print("BORED!"+word_to_match);
bored_probability += LOG_BOREDOM_DISCOUNT;

}
bored_probability=
discount_by_boredom_level(bored_probability,
pos_in_sent-1,
backpointers[pos_in_sent][from_word],
word_to_match);
}
return bored_probability;
}
void dump()
{

int word_in_sent;

int this_vocab;

for (word_in_sent=0;word_in_sent<MAX_SENT_LEN; word_in_sent++){
System.out.println (word_in_sent);
for (this_vocab = 0; this_vocab < n_current_states; this_vocab++){

System.out.printIn(this_vocab+"<-"+backpointers[word_in_sent][this_vocab]+"
"+scores{word_in_sent][this_vocab]);

}
System.out.println("\n");

}

}
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public void produceStringSummary (Story Sty, int length) throws Exception {
setUpSearchStates(Sty);
doSearch();

}

void doSearch() throws Exception {

/I System.out.printin("doSearch ncurrentstates is "+n_current_states+"\n curr_start_Sent=
"+Vocab.toString(curr_start_sent)+" ("+curr_start_sent+")"+"curr_end_Sent=
"+Vocab.toString(curr_end_sent)+" ("+curr_end_sent+")");

// first state probabilities are transitions out of <s>

for (int this_state = 0; this_state <n_current_states; this_state-~){

backpointers{0][this_state]=curr_start_sent;

scores[0][this_state] -
=LMod.probability(search_states[curr_start_sent],

search_states[this_state])

+TrMod.probability(search_states[this_state]);

// Beam search

currentscores[this_state]=scores[0][this_state];

currentscoreindices[this_state]=this_state;

}

// Beam search

quicksort.sort(currentscores, currentscoreindices);

for (int word_in_sent=1;word_in_sent<MAX_SENT_LEN; word_in_sent++){

int best_state=curr_start_sent;
float best_score=-100000.0F;

// Beam search - don't consider states with log probs (beam_width) times smaller
// than best score
int current_beam = 0;
for (int from_state_i = 0; from_state_i <n_current_states; from_state_i++){
I System.out.println("From state i:"+from_state_i+" n_current_states:"+
n_current_states+" Current
Scores["+((n_current_states-1)-from_state_i)+"]:"+(currentscores[(n_current_states-1)-from_stat
e_i])+" Current Scores
indices["+((n_current_states-1)-from_state_i)+"]:"+(currentscoreindices[(n_current_states-1)-fro
m_state_i]));
if (from_state_i >=MIN_BEAM_SIZE) &&
(currentscores[(n_current_states-1)-from_state_i]
< (currentscores[n_current_states-1] * beam_width)))
break;
current_beam=from_state_i;
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for (int this_state = 0; this_state < n_current_states; this_state=){
float max_score= -1000000.0F;
int current_back=curr_start_sent;
for (int from_state_i = 0; from_state_i <= current_beam; from_state_i++){
float test_score;
int from_state = currentscoreindices[(n_current_states-1)-from_state_iJ;

1 System.out.printin("state "+this_state+" from i:"+from_state_i+" from:"+
from_state);

// Never repeat a state immediately, or make a transition out of EOS
if ((from_state = this_state)
|| (from_state = curr_end_sent))
continue;
if ((word_in_sent > 1) && (from_state == curr_start_sent))
continue;

test_score=scores[word_in_sent-1][from_state]
+LMod.probability(search_states[from_state],search_states{this_state]);
if (test_score >max_score){
current_back=from_state;
max_score=test_score;

}
}

float bored_probability=TrMod.probability(search_states[this_state]);
if (boredom)
bored_probability=
discount_by_boredom_level(bored_probability,
word_in_sent-1,current_back,this_state);
scores[word_in_sent][this_state]=max_score+bored_probability;

/1 Save scores for sorting, so can do beam search
currentscores(this_state}=max_score+bored_probability;
currentscoreindices(this_state]=this_state;

backpointers{word_in_sent][this_state]=current_back;
/I we need to check if the best state now is end of sent, and stop if so
if (scores[word_in_sent][this_state] > best_score){

best_score = scores{word_in_sent][this_state];

best_state = this_state;

}
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!

5
// Beam Search
quicksort.sort(currentscores, currentscoreindices);

System.out.print(word_in_sent+":");
if (best_state == curr_end_sent) System.out.print ("* ");

backtrack(word_in_sent, curr_end_sent);
System.out.println(" "+scores[word_in_sent][curr_end_sent]+" Beam "+(current_beam-+1));

}
/I dump();

}

1
s
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As used in the following claims, a "summary
string" 1is a derivative representation of the source
document which may, for example, comprise an abstract, key
word summary, folder name, headline, file name or the like.

Having thus defined our invention in the detail
and particularity required by the Patent Laws, what is
desired to be protected by Letters Patent is set forth in

the following claims.
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WHAT TS CLAIMED IS:

1. A computer method for preparing a summary
string from a source document of encoded text, the method
comprising the steps of:

a) comparing a training set of encoded text
documents with manually generated summary strings
associated therewith to learn probabilities that a given
summary word or phrase will appear in summary strings given
a source word or phrase appears in an encoded text
document; and

b) constructing from the source document a
summary string containing summary words or phrases having
the highest probabilities of appearing in a summary string
based on the learned probabilities established in the

previous step.

2. The computer method according to claim 1,
comprising constructing a summary string containing the
most probable summary word, words, phrase or phrases for a
preselected number of words or phrases in the summary

string.

3. The computer method according to claim 2,
comprising comparing the training set of encoded text
documents with manually generated summary strings to learn
the probability that a summary word or phrase appearing in
a summary string will follow another summary word or phrase
and constructing a summary string containing the most
probable word or sequence of words and/or phrases for a

preselected number of words in the summary string.

4, The computer method according to claim 1,
comprising comparing a corpus of encoded text documents
with manually generated summary strings associated
therewith to learn the probabilities that a given summary
word or phrase will appear in summary strings given a
source word or phrase appears in the encoded text
considering the context in which the source word or phrase

appears in the encoded text documents.
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5. The computer method according to claim 4,
wherein the contexts in which the source words or phrases
are considered include titles, headings and standard
paragraphs.

6. The computer method according to claim 4,
wherein the contexts in which the source words or phrases

are considered include fonts, bolding and italicizing.

7. The computer method according to claim 4,
further comprising learning multiple probabilities that a
summary word or phrase will appear in a summary string
given a source word or phrase appears in the encoded text
considering the various usages of the word or phrase in the

encoded text.

8. The computer method according to claim 7,
wherein the usages in which the source words are considered

are syntactic usages.

9. The computer method according to claim 8,
wherein the syntactic usages include the word or phases
part of speech.

10. The computer method according to claim 7,
wherein the usages in which the source words or phrases are

considered are semantic usages.

11. The computer method according to claim 10,
wherein the usages in which source words or phrases are
considered include usage categories selected from the
TIPSTER/MUC standards.

12. The computer method according to claim 10,
wherein the usages in which source words or phrases are
considered include usage categories selected from the group
AGENT, CIRCUMSTANCE, CIRCUMSTANCE/TEMPORAL,

5 COMMUNICATIVE ACTION and OBJECT.
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13. The computer method according to claim 4,
wherein the step for comparing a corpus of encoded text
documents with manually generated summary strings takes
into consideration external information in the form of
queries, user models, past user interaction and other
biases to optimize the form of the summary strings

constructed in the summary constructing step.

14. The computer method according to claim 1,
comprising producing summaries in a different language from
the source document by uéing a training set of an encoded

text document in one language with manual summaries in
another language.
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