Title: CHEMOCHROMIC HYDROGEN SENSORS

Abstract: An irreversible chemochromic H₂ sensor includes supports including a plurality of metal oxide particles exclusive of titania, and a platinum group metal (PGM) compound on the supports. The PGM compound is an oxide, hydroxide hydrated oxide, PGM salt or a PGM complex. The chemochromic H₂ sensor can be a composite layer, wherein the gas permeable polymer provides a continuous phase that completely encapsulates the supports and the PGM compound.
Published:
— without international search report and to be republished upon receipt of that report (Rule 48.2(g))
CHEMOCHROMIC HYDROGEN SENSORS

FIELD

[0001] Disclosed embodiments relate to chemochromic-based hydrogen sensors.

BACKGROUND

[0002] One of the future alternatives to current fossil-based transportation fuels has been centered on hydrogen gas (H\textsubscript{2}). Currently, H\textsubscript{2} is the primary energy source of today's space exploration projects (e.g., as rocket propellant). It is also used in fuel cells that power a variety of machinery including automobiles. Furthermore, H\textsubscript{2} is an important industrial commodity produced and used in many industries. For example, it is used for the reduction of metal oxides (e.g. iron ore), ammonia synthesis, and production of hydrochloric acid, methanol and higher alcohols, aldehydes, hydrogenation of various petroleum, coal, oil shale and edible oils, among others. However, H\textsubscript{2} is a colorless, odorless gas, and is also a flammable gas with a lower explosive limit of about 4\% in air. Therefore reliable H\textsubscript{2} sensors are required to detect H\textsubscript{2} leaks wherever H\textsubscript{2} is produced, stored, or used.

[0003] To detect H\textsubscript{2}, sensors comprising a palladium alloy Schottky diode formed on a silicon substrate are known. These sensors are based on metal-oxide-semiconductor (MOS) technology that is used in the semiconductor industry. The gas sensing MOS structures comprise a H\textsubscript{2}-sensitive metal (palladium or its alloy) on a dielectric (e.g., an oxide) adherent to a semiconductor. This H\textsubscript{2} sensor has been commercialized and exploited for detecting H\textsubscript{2} leaks during pre-launches of space vehicles. Others have also used palladium or the like as a sensing element for detecting H\textsubscript{2}. A H\textsubscript{2} sensor containing an array of micromachined cantilever beams coated with palladium/nickel has also been disclosed.

[0004] Semiconductors with wide band-gap (e.g. gallium nitride) have also been used to make diodes for H\textsubscript{2} detection. One of the concerns for all of these types of sensors using
palladium or the like is the requirement of a high operating temperature (greater than 200°C) and further elevated temperatures (greater than 500°C) to reactivate the sensing element, bringing about lengthy analysis. Another issue is sensitivity of the sensing element to unintended compounds that are commonly found in the atmosphere, including water vapor, various hydrocarbons, and various reducing gases such as carbon monoxide and hydrogen sulfide.

Although not conventionally used, chemochromic H₂ sensors are known. Some chemochromic H₂ sensors lack field stability and have a tendency to crack and peel, and some can be washed off by precipitation and/or condensation. Moreover, some chemochromic H₂ sensors do not show selectivity to H₂. Thus, there remains a need for an improved, reliable and durable chemochromic H₂ sensor for a variety of applications, including space, transportation, oil refineries, and chemical plants.

SUMMARY

Disclosed embodiments include irreversible chemochromic H₂ sensors that comprise supports including a plurality of metal oxide particles exclusive of titania (TiO₂), and a platinum group metal (PGM) compound on the supports. The PGM compound can comprise an oxide, hydroxide hydrated oxide, PGM salt or PGM complex. The plurality of metal oxide particles exclusive of TiO₂ can comprise transition metal oxide particles, such as Group IV metal oxide particles, including ZrO₂, SrTiC₃ or SrZrC₃.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a depiction of an example two layer irreversible H₂ sensor comprising a composite layer including supports comprising a plurality of metal oxide particles, a PGM compound on the supports, and a gas permeable polymer that forms a
continuous phase that completely encapsulates both the supports and the PGM compound which are both embedded in the polymer, according to an embodiment of the invention.

[0008] FIG. 2 is color contrast vs. exposure time data for a variety of irreversible chemochromic H₂ sensors, according to various embodiments of the invention.

[0009] FIG. 3 is a table that provides an irreversible chemochromic H₂ sensor preparation matrix for a plurality of different embodiments of the invention.

DETAILED DESCRIPTION

[0010] Disclosed embodiments in this Disclosure are described with reference to the attached figures, wherein like reference numerals are used throughout the figures to designate similar or equivalent elements. The figures are not drawn to scale and they are provided merely to illustrate the disclosed embodiments. Several aspects are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the disclosed embodiments. One having ordinary skill in the relevant art, however, will readily recognize that the subject matter disclosed herein can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operations are not shown in detail to avoid obscuring structures or operations that are not well-known. This Disclosure is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with this Disclosure.

[0011] Notwithstanding that the numerical ranges and parameters setting forth the broad scope of this Disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however,
inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-ranges subsumed therein. For example, a range of "less than 10" can include any and all sub-ranges between (and including) the minimum value of zero and the maximum value of 10, that is, any and all sub-ranges having a minimum value of equal to or greater than zero and a maximum value of equal to or less than 10, e.g., 1 to 5.

[0012] This Disclosure includes new irreversible chemochromic H₂ sensors comprising supports including a plurality of metal oxide particles exclusive of TiO₂ and a PGM compound that functions as a H₂ sensitive pigment on the supports. The Inventors have discovered sensitive, reliable, and durable irreversible chemochromic H₂ sensors can utilize a wide variety of supports including support materials other than TiO₂, and the PGM compounds can include PGM salts or PGM complexes.

[0013] It is noted although PdO/TiO₂ for irreversible color changing H₂ sensors is known, disclosed irreversible color changing H₂ sensors comprising supports other than TiO₂ are based on an unexpected result. This point is evidenced in U.S. Pat. No. 5,849,073 to Sakamoto which discloses PGM oxides on TiO₂ supports that teaches (e.g., in Example 14, 6-1) that only TiO₂ is effective as the particle (i.e., support) to carry/support PdO. Other metal oxides are used as surface coatings to protect against weathering (two paragraphs before Example 1), but none were disclosed as particle supports for PGM oxides (e.g. PdO). Thus, the ability to utilize the supports other than TiO₂ for irreversible color changing H₂ sensors as disclosed herein represents an unexpected result.

[0014] In one embodiment, the chemochromic H₂ sensor comprises supports comprising a plurality of metal oxide particles exclusive of TiO₂, and a PGM compound on the supports. In another embodiment, the chemochromic H₂ sensor comprises supports comprising a plurality of metal oxide particles, and a PGM salt or a PGM complex on the supports.
As known in the art, chemochromic H₂ sensors can be either reversible sensors that are characterized by loss of color (referred to as "bleaching") after a generally short period of time after the color change takes place associated with H₂ detection, or irreversible color changing sensors that maintain their color after their color change. The chemistry for irreversible color changing H₂ sensors involves reduction of a PGM compound comprising an oxide, hydroxide, hydrated oxide, PGM salt or PGM complex, such as palladium oxide (PdO), in the presence of H₂ to elemental metal that is chemically stable at ambient conditions (i.e., it will not be oxidized by oxygen from air), to Pd metal in the case of PdO. In contrast, reversible color changing H₂ sensors (that are not disclosed herein) typically involve the partial reduction of Mo and W hexavalent compounds (e.g., polyoxometallates) enhanced by the catalytic action of PGM compounds or metals to Mo and W tetra- and pentavalent compounds that are easily oxidized by oxygen from air at ambient conditions back to their original oxidation state. For irreversible color changing H₂ sensors the support can play an active role in the chemical reaction of pigment, unlike irreversible color changing sensors where the support does not play an active role in the chemical reaction of the pigment. This chemical reaction for the claimed irreversible color changing H₂ sensors produces an irreversible color change, from beige to gray in the case of PdO pigment. Typically the supports comprise metal oxides, mixed metal oxides, and their salts that are colorless, white, or slightly colored. The metal oxides, mixed metal oxides and their salts can comprise at least one transition metal, such as titanium, zirconium and cerium (e.g., embodied as CeO₂). In one embodiment the supports comprise a plurality of Group IV metal oxide particles, such as ZrO_2, SrTiO_3, or SrZrO_3 particles. The particle size for the support particles can be in a range from 0.1 to 1.0 µm, and in one particular embodiment, from 0.2 to 0.25 µm to maximize opacity.
The PGM for the PGM compound can comprise one or more of palladium, iridium, ruthenium, platinum, rhodium, gold, and silver. The PGM compounds generally comprise PGM oxides, hydroxides, and hydrated oxides. In certain embodiments the PGM compounds comprise PGM salts (e.g., acetates, or other carboxylates such as propionates), or PGM complexes such as acetylacetonates, dichlorodiammine, tetraammine, and tetrachloropalladate.

The PGM salt can be an organic salt or an inorganic salt. In one particular embodiment the PGM salt comprises a carboxilate, such as palladium acetate, Pd(OCOC₃H₃)₂, or other carboxilates such as propionates. Exemplary inorganic salt examples include chlorides, sulfates, and iodide-based salts.

Using a PGM salt or PGM complex instead of a conventional PGM compound such as a PGM oxide, hydroxide, or hydrated oxide for the pigment can allow significant simplification in H₂ sensor preparation. The H₂ sensor preparation method using a PGM salt or PGM complex can be simplified because PGM salts or PGM complexes can be dissolved in a suitable solvent to form a PGM solution which can then be added to a slurry solution comprising support particles, followed by drying of the resulting solution. Accordingly, the neutralization and filtration stages generally needed when using conventional PGM compounds (e.g., PGM oxides, hydroxides, hydrated oxides) to form H₂ sensors are effectively eliminated. When the PGM salt or PGM complex has low solubility in water, such as the organic PGM salt palladium acetate, solvents such as weak organic acids (e.g., acetic acid) may be used.

The H₂ sensor can further comprise an accelerator or contrast additive. For example, the accelerator or contrast additive can comprise MoO₃, (NH₄)_kM_OO₂, or polyoxometalates that include V, Nb, Ta, Cr, Mo or W.

One embodiment (a) comprises adding a PGM salt or PGM complex to a slurry of support particles comprising metal oxide particles exclusive of titania, and then
neutralizing the resulting mixture by adding an alkali or an acid, as required. In another embodiment (b), PGM salts or PGM complexes are added to an alkali or an acid, as needed, to a slurry of the support particles comprising metal oxide particles exclusive of titania, while maintaining the pH of the slurry from 3 to 11, such as from 6 to 11, and in the particular case mineral acid salts of the PGM are used, from 8 to 11, to neutralize the mixture. In yet another embodiment (c), a slurry of the support particles comprising metal oxide particles exclusive of titania is premixed with a higher amount of an alkali or an acid, as required, than required to neutralize the PGM salts or PGM complex, and then a PGM salt or PGM complex is added to neutralize. Embodiment (b) generally allows the fine PGM compounds to be present more uniformly on the surfaces of the support particles with a lower amount of the PGM compounds needed to be used. The alkalis for neutralization, if needed, can include sodium hydroxide, potassium hydroxide, sodium carbonate, and ammonia, for example. The acids for neutralization, if needed, can include hydrochloric acid, sulfuric acid, nitric acid, and acetic acid. The temperature for the neutralization reaction can be in the range of 50°C to 90°C.

[0023] The PGM compounds can be applied in an amount of 0.5 to 10% by weight, such as 1 to 5% by weight as expressed by the PGM based on the weight of the supports. The Inventors have recognized that an amount of PGM compound lower than 0.5% by weight may cause insufficient color change to detect gas leakage, while an amount of higher than 10% by weight can become uneconomical with no further improvement in the sensing function being expected.

[0024] The effectiveness of the \(\frac{3}{4} \) gas sensors, such as \(\text{H}_2 \) sensors disclosed herein, is typically evaluated by measuring the time necessary to reach a given level of color change, and by determining the total amount of color change. The latter is expressed as \(\Delta E \) and is measured by a colorimeter. \(\Delta E \) measures a difference in color by measuring specific parameters of the film (\(L, a, b \)). These parameters refer to a color system for measuring absolute chromaticity, \(L^*a^*b^* \) and color difference \(A(L^*a^*b^*) \) or \(\Delta E \). Color is defined in
three dimensions: hue, chroma (saturation) and lightness. L* = gradient from light to dark, a* = gradient from red to green, and b* = gradient from yellow to blue, and ΔE* = \[(Aa^*)^2 + (Ab^*)^2 \] \[\text{1/2} \]. This equation gives a standard measurement technique by which one can compare color changes from different chemochromic H_2 sensor film samples. The greater the ΔE* value, the greater the color contrast. Chemochromic H_2 sensor films can be analyzed both before and after exposure to H_2, allowing quantification of the intensity of the color change.

[0025] In one embodiment, a disclosed H_2 sensor includes a moisture-cured silicone polymer that forms a continuous/matrix phase that completely encapsulates the PGM compound and supports in a specified ratio to give a composition that responds in a controllable way to the presence of H_2. In this embodiment, the PGM compound, support particles and optional accelerant is generally 1 to 50 wt.% of the overall H_2 sensor, and is 2-20 wt.% in one embodiment. Upon evaluating a series of alternate supports for the chemochromic H_2 sensor including a silicone matrix, all, with the exception of those with very small particle size supports, gave ΔE* values equal or better to those of known PdO/TiO_2 chemochromic H_2 sensors as described below relative to FIG 2.

[0026] FIG. 1 is a depiction of an example irreversible two layer H_2 sensor 10 according to an embodiment of the invention. Chemochromic H_2 sensor 10 comprises a composite layer 1 including supports comprising a plurality of metal oxide particles, a PGM compound on the supports, and a gas permeable polymer that forms a continuous phase that completely encapsulates both the supports and the PGM compound which are both embedded in the polymer. Composite layer 1 is known in the material arts and is defined herein as a composite material, more specifically a functional composite material based on its chemochromic H_2 detection function.

[0027] Composite materials (or composites for short) are known in the material arts to be engineered materials made from two or more constituent materials with significantly
different physical or chemical properties which remain separate and distinct on a macroscopic level within the finished structure. In principle, composites can be constructed of any combination of two or more materials—metallic, organic, or inorganic; but the constituent forms are typically more restricted. The matrix is the body constituent, acting as a continuous phase having the other material(s) referred to as the additive phase (s) embedded therein, with the matrix serving to enclose the composite and give it bulk form. Major structural constituents are fibers, particles, laminae or layers, flakes, fillers, and matrices that determine the internal structure of the composite, usually being the additive phase, with particles generally being the additive phases for composite materials disclosed herein. An optional clear silicone layer 2 is also shown. The clear silicone layer 2 does not generally include any PGM compound.

[0028] An example of the impact of support particle size on chemochromic H\textsubscript{2} sensor performance is demonstrated with samples containing Zr0\textsubscript{2}. The particle size of Zr0\textsubscript{2} is much less than the value of approximately 0.22 microns which the Inventors have found generally maximizes the opacity or hiding power of a chemochromic pigment. In this example, the resulting sample was translucent although the chemochromic color change was observable with H\textsubscript{2} exposure. Such a chemochromic H\textsubscript{2} sensor system can be an advantage since the events occurring behind the chemochromic system can be observed. With silicone chemochromic tapes the overcoat system developed for H\textsubscript{2} from behind an observer can be eliminated since the initial color change is readily apparent.

[0029] As described above, another disclosed embodiment comprises the addition of an accelerator to give color change rates comparable with Pd/Ti0\textsubscript{2} systems. In this embodiment, the irreversible H\textsubscript{2} sensor further comprises an accelerator or contrast additive mixed with the PGM compound selected from M0O\textsubscript{3}, (NH\textsubscript{4})\textsubscript{6}Mo\textsubscript{7}O\textsubscript{24}, and polyoxometalates that include V, Nb, Ta, Cr, Mo, or W. When the level of accelerator is optimized, the rate of color change can be increased by a factor of 2-5, and modest increases in ΔE* values are also observed.
EXAMPLES

[0030] Disclosed embodiments are further illustrated by the following specific Examples, which should not be construed as limiting the scope or content of this Disclosure in any way.

[0031] The irreversible chemochromic H₂ sensor preparation matrix is shown as Table 1 in FIG. 3 for the Examples described below. Data from the chemochromic H₂ exposure tests performed as described in the Examples is shown in FIG. 2.

[0032] Irreversible chemochromic H₂ sensors to be tested were tape casted. The tape-casting process included weighing out the pigment powder that is a mixture of metal oxide support particles and PGM compound(s), RTV 3145 silicone, and ammonium molybdate ([(NH₄)₆Mo₇O₂₄]) if used as an accelerant or contrast additive. The PGM compound mixed with a metal oxide support, (and optionally ammonium molybdate) were grinded in a mortar, and admixed with the RTV 3145 silicone. This mixture was then scraped up and applied to a flat piece of taped-down wax paper. A doctor blade was used to slowly draw out the silicone-pigment paste into a thin film. The film thickness of the samples prepared was typically 10 mils.

[0033] After letting the sheets cure overnight, the sheets were cut into sample sheets for the H₂ exposure tests. Each sample was cut into a 1 3/8 inch by 1 3/8 inch square. The wax paper was allowed to remain on the back side of each sample during the tests, due to the thinness of the sheet and its saran-wrap like tendency to stick together. Before testing, each sample was marked with a small cut near its upper left-hand corner, and then subjected to colorimetric measurements using a Konica-Minolta CR-10 instrument that gave the AL*, Aa*, and Ab* values at five locations on the sample sheet - each of its four corners, and in the middle. The sample was then placed (exposed side of membrane down) onto a badge-holder. H₂ produced by a H₂ generator was passed through a narrow tube into the bottom of the badge-holder. Samples were placed onto the badge-holder, and then capped at the top.
A shut-off valve was used to ensure a consistent and immediate exposure to the H₂ flow. Before each test, the H₂ flow was allowed to stabilize before switching to flow into the badge sample holder. Each sample was exposed to H₂ for a set length of time, and then taken out of the badge-holder and extent of color change measured by the Konica-Minolta CR-10 instrument at five locations on the sample sheet. This process repeated for as long as the sample color change was measurable. Collective testing times ranged from a few minutes to well over an hour, based on the kinetics of coloration.

Example 1: Reference PdO/SrTiO₂ H₂ sensor; related art.

As a basis for comparison to disclosed embodiments, a chemochromic H₂ sensor comprising PdO particles deposited on TiO₂ support particles was prepared. In a beaker, 50 mL of de-ionized (DI) water and 5.0 g of Aldrich TiO₂ sample were mixed. With a magnetic stir bar, the mixture was continuously stirred for one hour then heated to a temperature of 70°C. In a separate beaker, 10 mL of DI water, 0.25 g of PdCl₂, and 2.5 mL of concentrated HCl were mixed. The PdCl₂ solution was slowly added to the support solution, carefully. Saturated NaOH solution was used to maintain the pH at levels between 10 and 11. Once all of the PdCl₂ had been combined with the support, the pH of the solution was lowered to 8 using concentrated HCl while allowing the stirring to continue at 70°C for one hour. After one hour, heating was stopped and the solution was filtered. The residue was washed with DI water several times and placed in an oven, set at 100°C, until dry. Once dry, the PdO/TiO₂ chemochromic pigment sample was crushed into a powder and stored in a glass vial.

Example 2: PdO/SrTiO₃ H₂ sensor according to an embodiment of the invention.

In a beaker, 50 mL of de-ionized (DI) water and 5.0 g of Aldrich SrTiO₃ sample were mixed. With a magnetic stir bar, the mixture was continuously stirred for one hour, and then heated to a temperature of 70°C. In a separate beaker, 10 mL of DI water, 0.25 g of PdCl₂, and 2.5 mL of concentrated HCl were mixed. The PdCl₂ solution was slowly added to the support
solution, carefully. Saturated NaOH solution was used to maintain the pH at levels between 10 and 11. Once all of the PdCl₂ had been combined with the support particles, the pH of the solution was lowered to 8 using concentrated HCl and allowing the stirring to continue at 70°C for one hour. After one hour, heating was stopped and the solution was filtered. The residue was washed with DI water several times and placed in an oven, set at 100°C, until dry. Once dry, the PdO/SrTiO₃ chemochromic H₂ sensor sample was crushed into a powder and stored in a glass vial.

Example 3: PdO/ZrO₂ H₂ sensor according to an embodiment of the invention.

In a beaker, 50 mL of de-ionized (DI) water and 5.0 g of Fisher ZrO₂ sample were mixed. With a magnetic stir bar, the mixture was continuously stirred for one hour then heated to a temperature of 70°C. In a separate beaker, 10 mL of DI water, 0.25 g of PdCl₂, and 2.5 mL of concentrated HCl were mixed. The PdCl₂ solution was slowly added to the support solution, carefully. Saturated NaOH solution was used to maintain the pH at levels between 10 and 11. Once all of the PdCl₂ had been combined with the support particles, the pH of the solution was lowered to 8 using concentrated HCl and allowing the stirring to continue at 70°C for one hour. After one hour, heating was stopped and the solution was filtered. The residue was washed with DI water several times and placed in an oven, set at 100°C, until dry. Once dry, the PdO/ZrO₂ chemochromic H₂ sensor sample was crushed into a powder and stored in a glass vial.

Example 4: PdO/CeO₂ H₂ sensor according to an embodiment of the invention.

In a beaker, 50 mL of de-ionized (DI) water and 6.8 g of Aldrich CeO₂ sample were mixed. With a magnetic stir bar, the mixture was continuously stirred for one hour then heated to a temperature of 70°C. In a separate beaker, 10 mL of DI water, 0.25 g of PdCl₂, and 2.5 mL of concentrated HCl were mixed. The PdCl₂ solution was slowly added to the support solution, carefully. Saturated NaOH solution was used to maintain the pH at levels between 10 and 11.
Once all of the PdCl₂ had been combined with the support particles, the pH of the solution was lowered to 8 using concentrated HCl and allowing the stirring to continue at 70°C for one hour. After one hour, heating was stopped and the solution was filtered. The residue was washed with DI water several times and placed in an oven, set at 100°C, until dry. Once dry, the PdO/CeO₂ sample was crushed into a powder and stored in a glass vial.

Example 5: PdO/SrZrO₃-H₂ sensor according to an embodiment of the invention.

In a beaker, 50 mL of de-ionized (DI) water and 5.0 g of Aldrich SrZrO₃ sample were mixed. With a magnetic stir bar, the mixture was continuously stirred for one hour then heated to a temperature of 70°C. In a separate beaker, 10 mL of DI water, 0.25 g of PdCl₂, and 2.5 mL of concentrated HCl were mixed. The PdCl₂ solution was slowly added to the support solution, carefully. Saturated NaOH solution was used to maintain the pH at levels between 10 and 11. Once all of the PdCl₂ had been combined with the support particles, the pH of the solution was lowered to 8 using concentrated HCl and allowing the stirring to continue at 70°C for one hour. After one hour, heating was stopped and the solution was filtered. The residue was washed with DI water several times and placed in an oven, set at 100°C, until dry. Once dry, the PdO/SrZrO₃ sample was crushed into a powder and stored in a glass vial.

Example 6: Pd organic salt/TiO₂-H₂ sensor formed using a Pd organic salt according to an embodiment of the invention.

0.2 g of Pd(OCOCH₃)₂ was dissolved in 10 mL of glacial acetic acid at 70°C. 2 mL of the resulting solution was added to 3 g of TiO₂ (Aldrich) powder and the slurry was carefully mixed and left overnight to dry.

Example 7: Pd organic salt/TiO₂-H₂ sensor formed using a Pd organic salt according to an embodiment of the invention.
0.12 g of Pd\((\text{OCOCH}_2)_2\) was dissolved in 10 mL of glacial acetic acid at 70°C. The resulting solution was added to 2.5 g of Ti0\(_2\) (Aldrich) powder and the slurry was carefully mixed and left overnight to dry.

Example 8: Pd organic salt/ZrO\(_2\) \(\text{H}_2\) sensor formed using a Pd organic salt according to an embodiment of the invention.

0.12 g of Pd\((\text{OCOCH}_2)_2\) was dissolved in 10 mL of glacial acetic acid at 70°C. The resulting solution was added to 2.5 g of ZrO\(_2\) powder and the slurry was carefully mixed and left overnight to dry.

Example 9: Pd organic salt/MoC\(>3\) \(\text{H}_2\) sensor formed using a PGM organic salt according to an embodiment of the invention.

0.2 g of Pd\((\text{OCOCH}_2)_2\) was dissolved in 10 mL of glacial acetic acid at 70°C. 2 mL of the resulting solution was added to 3 g of molybdenum anhydride (M0O\(_3\)) and the slurry was carefully mixed and left overnight to dry.

Example 10: \(\text{H}_2\) sensors including silicone for complete encapsulation.

0.3-0.6 g of selected \(\text{H}_2\) sensor powder as prepared in Examples 1-9 was manually admixed with enough moisture curing silicone sealant (Dow Corning R 3145 RTV Adhesive/Sealant-Clear) to give 3-10 g total (see Table 1 in FIG. 3, samples SR-1-5H to SR-1-6G). The uncured \(\text{H}_2\) sensor powder/sealant was used to prepare a rubber sheet indicator. A flat piece of wax paper was placed on top of the lab bench onto which the uncured pigment/sealant was spread using a draw down blade so that a uniform sheet of material was deposited ready for curing. After 24-48 hours, a thin rubbery sheet was removed with wax paper still attached to the film. Cut up pieces of this wax paper back sheet were used as a hydrogen indicator tapes by exposing them to hydrogen gas. After the time indicated in FIG. 2 with exposure to hydrogen gas, the original white-to-beige color of the cured compound changed to gray. Upon removal from hydrogen chamber, the gray color remained.

Example 11: \(\text{H}_2\) sensors including accelerants.
In an experiment to demonstrate accelerant action, M0O₃ or (NH₄)₀M0₂⁻₄ was added to H₂ sensors according to embodiments of the invention in levels varying from 1 to as much as 40 metal ion equivalent per PGM (e.g., Pd) atom content of the H₂ sensor which gave a chemochromic H₂ sensor that showed a visually darker color upon contact with H₂ than without the molybdenum complex and/or oxide. In addition, the extent and rate of color change was also found to significantly increase compared to that without the molybdenum complex and/or oxide as demonstrated in FIG. 2.

Example 12: Encapsulated PdO/MoO₃H₂ sensor

0.5 g of selected Pd organic salt/MoC>3 H₂ sensor powder as described above in the Example 9 was manually admixed with enough moisture curing silicone sealant (Dow Corning R 3145 RTV Adhesive/Sealant-Clear) to give 3 g total (see Table 1, samples SR-1-6I-K and SR-1-6L-N). The uncured pigment/sealant was used to prepare a rubber sheet indicator. A flat piece of wax paper was placed on top of the lab bench onto which the uncured pigment/sealant was spread using a draw down blade so that a uniform sheet of material was deposited ready for curing. After 24-48 hrs, a thin rubbery sheet was removed with wax paper still attached to the film. Cut up pieces of this wax paper back sheet were used as a hydrogen indicator tapes by exposing them to hydrogen gas. After the time indicated in FIG. 2 with exposure to hydrogen gas, the original white-to-beige color of the cured compound changed to gray. Upon removal from H₂ chamber, the gray color remained.

Note that in this Example, the color intensity far exceeds that of other samples. This is likely due to the additional chemochromic effect provided by the molybdenum anhydride (M0O₃) support. It is known that upon exposure to H₂, M0O₃ is transformed into its reduced blue-colored form (M0O₃-N). However, this process is very slow (as the blank (i.e., no pigment) batch that includes only M0O₃ as the support clearly shows in FIG. 2). The presence of Pd organic salt is believed to provide the auto-catalytic effect and significantly accelerates the reduction of M0O₃ to its reduced form. On the other hand, the reduced form of
Mo-oxide promotes further transformation of Pd organic salt to metallic Pd. The combined effect results in an almost pitch black coloration of the Pd/MoC>3 ¾ sensor. It should be noted, however, that after prolonged period of time (days) some bleaching effect of the pigment is possible due to oxidation of the reduced form of Mo-oxide to its original oxidized form. This effect however, does not alter the coloration achieved due to reduction of Pd organic salt to metallic Pd.

Color contrast measurements, ΔE*, of the ¾ sensors were conducted inside a RTV matrix with a pigment to matrix ratio of 3 (or 6) to 100 (film). The samples’ colorimetric parameters a*, b*, and L* were measured before and after exposure to 100% ¾ gas and ΔE* values were determined. Results are shown in FIG. 2.

[0049] While various disclosed embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Numerous changes to the subject matter disclosed herein can be made in accordance with this Disclosure without departing from the spirit or scope of this Disclosure. In addition, while a particular feature may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.

[0050] Thus, the breadth and scope of the subject matter provided in this Disclosure should not be limited by any of the above explicitly described embodiments. Rather, the scope of this Disclosure should be defined in accordance with the following claims and their equivalents.

[0051] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms "including," "includes,"
"having," "has," "with," or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term "comprising."

[0052] Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which embodiments of the invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
CLAIMS

1. A chemochromic H₂ sensor, comprising:

 supports comprising a plurality of metal oxide particles exclusive of titania,

 and

 a platinum group metal (PGM) compound on said supports, said PGM compound comprising an oxide, hydroxide, hydrated oxide, PGM salt or PGM complex,

 wherein said chemochromic H₂ sensor is an irreversible color changing sensor that changes color in a presence of H₂.

2. The chemochromic H₂ sensor of claim 1, wherein said plurality of metal oxide particles comprise transition metal oxide particles.

3. The chemochromic H₂ sensor of claim 2, wherein said transition metal oxide particles comprise Group IV metal oxide particles.

4. The chemochromic H₂ sensor of claim 3, wherein said Group IV metal oxide particles comprise ZrO₂, SrTiC₃ or SrZrC₃.

5. The chemochromic H₂ sensor of claim 1, wherein a PGM in said PGM compound comprises palladium, iridium, ruthenium, platinum, rhodium, gold or silver.
6. The chemochromic H₂ sensor of claim 1, wherein said PGM compound comprises said PGM salt, and wherein said PGM salt comprises a PGM organic salt.

7. The chemochromic H₂ sensor of claim 1, wherein said PGM compound comprises said PGM complex.

8. The chemochromic H₂ sensor of claim 1, further comprising a gas permeable polymer, wherein said chemochromic H₂ sensor comprises a composite layer, and wherein said gas permeable polymer provides a continuous phase that completely encapsulates said supports and said PGM compound.

9. The chemochromic H₂ sensor of claim 8, wherein said gas permeable polymer comprises silicone.

10. The chemochromic H₂ sensor of claim 9, wherein said chemochromic H₂ sensor is translucent when formulated into said gas permeable polymer comprising silicone.

11. The chemochromic H₂ sensor of claim 1, further comprising an accelerator or contrast additive selected from the group consisting of M0O₃, (NH₄)₆Mo₇O₂₄, and polyoxometalates that include V, Nb, Ta, Cr, Mo or W.
12. The chemochromic ¾ sensor of claim 1, wherein said PGM compound comprises PdO.
FIG. 2

- SR-1-5H PdO/ TiO₂ - Aldrich
- SR-1-5K PdO/SrTiO₃
- SR-1-5S PdO/SrZrO₃
- SR-1-5U PdO/TiO₂
- SR-1-5V PdO/SrTiO₃
- SR-1-5Z PdO/SrZrO₃
- SR-1-6A PdO/SrTiO₃ + (177.6%)
 Ammonium Molybdate
- SR-1-6B PdO/SrZrO₃ + (181.5%)
 Ammonium Molybdate
- SR-1-6C PdO/SrZrO₃ + (21.4%)
 Ammonium Molybdate
- SR-1-6D PdO/SrTiO₃ + (20.9%)
 Ammonium Molybdate
- SR-1-6E PdO/SrZrO₃ + (64.2%)
 Ammonium Molybdate
 SR-1-6F PdOAc/TiO₂ (F)
 SR-1-6G PdOAc/MoO₃
 SR-1-6I PdO/SrTiO₃ + AM (62.7%)
 SR-1-6J PdO/SrZrO₃ + AM (90.6%)
 SR-1-6K SrZrO₃/PdO+AM (92.7%)
 SR-1-6L Blank - No Pigment
 SR-1-6M PdOAc (on SM OX40-3NSF ZrO₂)
 SR-1-6N PdOAc (on TiO₂)
Table 1. Pigment preparation matrix

<table>
<thead>
<tr>
<th>Batch ID</th>
<th>Pigment (Pd Compound/Support) + Accelerant (Mo Compound)</th>
<th>Weight of Pigment, g</th>
<th>Pd in Pigment, g-mol</th>
<th>Refer to Example #</th>
<th>Weight of Hyd Ammonium Molybdate, g</th>
<th>Accelerant Mo Content, g-mol</th>
<th>Mo/Pd Atomic Ratio</th>
<th>Weight of RTV 3145, g</th>
<th>Pigment Concentration in Silicone, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-1-5H</td>
<td>PdO/TiO₂ (Alrich)</td>
<td>0.298</td>
<td>8.1E-05</td>
<td>1</td>
<td>none</td>
<td>none</td>
<td>0.0</td>
<td>9.997</td>
<td>3</td>
</tr>
<tr>
<td>SR-1-5K</td>
<td>PdO/Sr₂TiO₄ (Alrich)</td>
<td>0.2996</td>
<td>8.2E-05</td>
<td>2</td>
<td>none</td>
<td>none</td>
<td>0.0</td>
<td>9.9993</td>
<td>3</td>
</tr>
<tr>
<td>SR-1-5S</td>
<td>PdO/SrZrO₃ (Alrich)</td>
<td>0.2998</td>
<td>8.2E-05</td>
<td>5</td>
<td>none</td>
<td>none</td>
<td>0.0</td>
<td>10.0005</td>
<td>5</td>
</tr>
<tr>
<td>SR-1-5U</td>
<td>PdO/TiO₂ (Alrich)</td>
<td>0.5995</td>
<td>0.00016</td>
<td>1</td>
<td>none</td>
<td>none</td>
<td>0.0</td>
<td>9.9997</td>
<td>6</td>
</tr>
<tr>
<td>SR-1-5V</td>
<td>PdO/Sr₁TiO₄ (Alrich)</td>
<td>0.5996</td>
<td>0.00016</td>
<td>2</td>
<td>none</td>
<td>none</td>
<td>0.0</td>
<td>9.9999</td>
<td>6</td>
</tr>
<tr>
<td>SR-1-5Z</td>
<td>PdO/SrZrO₃ (Alrich)</td>
<td>0.5998</td>
<td>0.00016</td>
<td>5</td>
<td>none</td>
<td>none</td>
<td>0.0</td>
<td>9.9998</td>
<td>6</td>
</tr>
<tr>
<td>SR-1-6A</td>
<td>PdO/Sr₂TiO₄ + Ammonium Molybdate (AM)</td>
<td>0.6009</td>
<td>0.00017</td>
<td>2 & 11</td>
<td>0.2549</td>
<td>0.00144337</td>
<td>3.6</td>
<td>10.0012</td>
<td>6</td>
</tr>
<tr>
<td>SR-1-6B</td>
<td>PdO/SrZrO₃ + AM</td>
<td>0.5982</td>
<td>0.00016</td>
<td>5 & 11</td>
<td>0.2544</td>
<td>0.00144994</td>
<td>8.6</td>
<td>9.9998</td>
<td>6</td>
</tr>
<tr>
<td>SR-1-6C</td>
<td>PdO/SrZrO₃ + AM</td>
<td>0.5978</td>
<td>0.00016</td>
<td>5 & 11</td>
<td>0.0292</td>
<td>0.00016539</td>
<td>1.0</td>
<td>9.9982</td>
<td>6</td>
</tr>
<tr>
<td>SR-1-6D</td>
<td>PdO/Sr₂TiO₄ (Alrich) + AM</td>
<td>0.6002</td>
<td>0.00017</td>
<td>2 & 11</td>
<td>0.0299</td>
<td>0.00016926</td>
<td>1.0</td>
<td>9.9994</td>
<td>6</td>
</tr>
<tr>
<td>SR-1-6E</td>
<td>PdO/SrZrO₃ + AM</td>
<td>0.5993</td>
<td>0.00017</td>
<td>5 & 11</td>
<td>0.0899</td>
<td>0.0005032</td>
<td>3.1</td>
<td>9.9977</td>
<td>6</td>
</tr>
<tr>
<td>SR-1-6F</td>
<td>Pd[OCOCH₂]₂/TiO₂ (P)</td>
<td>0.5006</td>
<td>2.9E-05</td>
<td>6</td>
<td>none</td>
<td>none</td>
<td>0.0</td>
<td>3.0024</td>
<td>16.7</td>
</tr>
<tr>
<td>SR-1-6G</td>
<td>Pd[OCOCH₂]₂/MoO₃</td>
<td>0.4995</td>
<td>2.9E-05</td>
<td>9</td>
<td>none</td>
<td>0.00114151</td>
<td>39.0</td>
<td>3.0047</td>
<td>16.7</td>
</tr>
<tr>
<td>SR-1-6H</td>
<td>PdO/Sr₂TiO₄ (Alrich) + AM</td>
<td>0.3008</td>
<td>8.2E-05</td>
<td>2 & 11</td>
<td>0.0475</td>
<td>0.00026904</td>
<td>3.3</td>
<td>4.9984</td>
<td>6</td>
</tr>
<tr>
<td>SR-1-6I</td>
<td>PdO/Sr₂TiO₄ + AM</td>
<td>0.3</td>
<td>8.2E-05</td>
<td>2 & 11</td>
<td>0.0662</td>
<td>0.00037495</td>
<td>4.6</td>
<td>4.9999</td>
<td>6</td>
</tr>
<tr>
<td>SR-1-6K</td>
<td>PdO/SrZrO₃ + AM</td>
<td>0.2999</td>
<td>8.2E-05</td>
<td>5 & 11</td>
<td>0.0665</td>
<td>0.00037666</td>
<td>4.6</td>
<td>5.0001</td>
<td>6</td>
</tr>
<tr>
<td>SR-1-6M</td>
<td>Pd[OCOCH₂]₂/ZrO₂*</td>
<td>0.5005</td>
<td>0.0001</td>
<td>8</td>
<td>none</td>
<td>none</td>
<td>0.0</td>
<td>2.9996</td>
<td>16.7</td>
</tr>
<tr>
<td>SR-1-6L</td>
<td>No pigment – only molybdenum anhydride as support</td>
<td>0.5002</td>
<td>none</td>
<td>12</td>
<td>none</td>
<td>0.0003475</td>
<td>--</td>
<td>2.9986</td>
<td>none</td>
</tr>
<tr>
<td>SR-1-6N</td>
<td>Pd[OCOCH₂]₂/TiO₂</td>
<td>0.4998</td>
<td>0.0001</td>
<td>7</td>
<td>none</td>
<td>none</td>
<td>0.0</td>
<td>2.9996</td>
<td>16.7</td>
</tr>
</tbody>
</table>

* Stanford Material OX 40-3NSF zirconia.

^ Hydrated ammonium molybdate, [(NH₄)₆Mo₇O₂₄·4H₂O.

FIG. 3