Office de la Proprieté Canadian

Intellectuelle Intellectual Property
du Canada Office

Un organisme An agency of
d'Industrie Canada Industry Canada

CA 2707635 C 2016/08/09

(11)(21) 2 707 635

(12 BREVET CANADIEN
CANADIAN PATENT

13) C

(86) Date de depot PCT/PCT Filing Date: 2008/12/22

(87) Date publication PCT/PCT Publication Date: 2009/07/16

(45) Date de délivrance/lssue Date: 2016/08/09

(85) Entree phase nationale/National Entry: 2010/06/01
(86) N° demande PCT/PCT Application No.: US 2008/087925 ZENZ, ERIC M., US
(87) N° publication PCT/PCT Publication No.: 2009/088727

(30) Priorte/Priority: 2008/01/08 (US11/971,206)

(72) Inventeurs/Inventors:
CUNEO, ANDREW R., US;
VWORLINE, BEN, US;

(73) Proprietaire/Owner:
MICROSOFT TECHNOLOGY LIC

(74) Agent: SMART & BIGGAR

(51) Cl.Int./Int.Cl. GO6F 9/00(2006.01),
GO6F 15/00(2006.01), GO6F 9/44 (2006.01)

=NSING, LLC, US

(54) Titre : SUPPORT D'ANNULATION A MULTIPLES NIVEAUX ASYNCHRONE DANS UNE GRILLE JAVASCRIPT
54) Title: ASYNCHRONOUS MULTI-LEVEL UNDO SUPPORT IN JAVASCRIPT GRID

102
r

CHANGE

COMPONENT

108
r

REVERSE
COMPONENT

(57) Abréegée/Abstract:

Architecture for multi-level undo on a client in grid-based applications. The architecture is a control driven cascading changes
system where change tracking works seamlessly In asynchronous (and synchronous) scenarios. A client application Is associated
with a grid object and, instantiates and configures the grid object. The application can initiate a change to data in the grid and/or
the user can edit the data in the grid directly. A result of the change Is a notification to the application, the notification including an
order key. The application consumes the notification and can then append new changes based on synchronous or asynchronous
computations by calling an update function using the order key. The application uses the key to attach further updates which are

properly collected together for undo/redo.

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - C]

‘ﬁr"_ﬂ
q
L4

DATA GRID

DATA

PO 191

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

CA 02707635 2010-06-01

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
16 July 2009 (16.07.2009)

N 00 0 D0 A

(10) International Publication Number

WO 2009/088727 A3

(1)

(21)

(22)

(25)

(26)
(30)

(71)

(72)

wo 2009/088727 A3 |11}) RO D AR AR

International Patent Classification:
GO6F 9/00 (2006.01) GO6F 15/00 (2006.01)
GO6F 9/44 (2006.01)

International Application Number:
PCT/US2008/087925

International Filing Date:
22 December 2008 (22.12.2008)

Filing Language: English
Publication Language: English
Priority Data.

11/971,206 8 January 2008 (08.01.2008) US

Applicant (for all designated States except US). MI-
CROSOFT CORPORATION [US/US]; One Microsott
Way, Redmond, Washington 98052-6399 (US).

Inventors: CUNEQ, Andrew R.; ¢c/o0 Microsoit Corpora-
tion, LCA, International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). WORLINE,
Ben; c/o Microsoft Corporation, LCA, International
Patents, One Microsoft Way, Redmond, Washington

(81)

98052-6399 (US). ZENZ, Eric M.; c/o Microsoit Corpo-
ration, LCA, International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ML,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, 8D, SE, SG,
SK, SL, SM, ST, SV, 8Y, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (urnless otherwise indicated, for every

00
1
106
CHANGE WEB
COMPONENT APPLICATION
110
DATA GRID
104
DATA

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI

[Continued on next page]

(54) Title: ASYNCHRONOUS MULTI-LEVEL UNDO SUPPORT IN JAVASCRIPT GRID

(87) Abstract: Architecture tor multi-level undo on a
client in grid-based applications. The architecture is a con-
trol driven cascading changes system where change track-
ing works seamlessly in asynchronous (and synchronous)
scenarios. A client application 1s associated with a grid ob-
ject and, instantiates and configures the grid object. The
application can initiate a change to data in the grid and/or
the user can edit the data in the grid directly. A result of
the change 1s a notification to the application, the notifica-
tion including an order key. The application consumes the
notification and can then append new changes based on
synchronous or asynchronous computations by calling an
update function using the order key. The application uses
the key to attach further updates which are properly col-
lected together for undo/redo.

CA 02707635 2010-06-01

wO 2009/088727 A3 I URVK VTR0 B O

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, Published:

NE, SN, TD, TG). — with international search report (Art. 21(3))
Declarations under Rule 4.17: — before the expiration of the time limit for amending the
— as to applicant's entitlement to apply for and be granted claims and to be republished in the event of receipt of
a patent (Rule 4.17(ii)) amendments (Rule 48.2(h))

— as to the applican!’s entitlement to claim the priority of (88) Date of publication of the international search report:
the earlier application (Rule 4.17(iii)) 8 October 2009

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

ASYNCHRONOUS MULTI-LEVEL UNDO SUPPORT IN JAVASCRIPT GRID

BACKGROUND
[0001] One of the main differentiators between desktop client applications and
“thin” web applications 1s the richness of the editing experience. Traditionally, web
applications transact data with the server according to individual post-backs, which
commit data to the server as the user navigates the application. Undoing a user action
1s oftentimes not possible once a user navigates away from a webpage. Conversely, a
user can interact with a client application more fluidly, only saving data when the user
is ready to do so. Moreover, if the user makes an editing mistake while working 1n
the client application, the user can select “undo” one or more times to revert the
changes with no effect to the saved file.
[0002] Many software technologies now require employees to interact with data on
enterprise servers through web-type applications. Consider the editing of structured
task data (e.g., adding/deleting tasks, assigning resources, changing scheduled data,
ctc.) commonly found 1n project servers, for example, but via a webpage. Without
multi-level undo capability, this experience can be perilous as users are not allowed to
undo actions. The user can perform frequent saves, but saving such datasets to the
server 18 a slow process. Thus, the effective edit performance decreases

proportionately with the user’s comfort for typing complex data into a webpage.

SUMMARY
[0003] The following presents a simplified summary 1n order to provide a basic
understanding of some novel embodiments described herein. This summary 18 not an
extensive overview, and 1t 1s not intended to 1dentify key/critical elements or to
delineate the scope thercof. Its sole purpose 1s to present some concepts 1n a
simplified form as a prelude to the more detailed description that 1s presented later.
[0004] The disclosed multi-level undo architecture 1s a control driven cascading
changes system where change tracking works seamlessly 1n asynchronous (and
synchronous) scenarios. Morecover, the undo transcends save actions, understands the
difference between implicit and explicit changes, and handles these changes

accordingly to provide context for the undo.

-1 -

10

15

20

25

CA 02707635 2013-12-18

51331-897

[0005] The client application is associated with a grid object that presents the data of

the application as a tabular representation, thereby supporting editing and'visualization. The
application, in part, instantiates and configures the grid object. The application can
programmatically initiate a change to data in the grid and/or the user can edit the data in the
grid directly. A result of the change is a notification to the application, the notification
including an order key. The application consumes the notification and can then append new
changes based on synchronous or asynchronous computations (e.g., scheduling) by calling an
update function using the order key. The application can use the key at any point in the future
to attach further updates to the change. The updates are properly collected together for

undo/redo.

[0005a] According to an aspect of the present invention, there is provided a computer-
implemented undo system, comprising: a change component for tracking asynchronous data
changes to data via a web application, where the asynchronous data changes are changes that
require asynchronous validations or augmentations; a reverse component for performing
multi-level undo/redo reverse operations on the asynchronous data changes, the reverse
component comprising an undo stack storing explicit changes and implicit changes, wherein
an undo command removes and reverts changes from the undo stack until an explicit change
1s reverted; a data grid for providing a tabular representation of the data stored in the web
application, comprising cells for recording the asynchronous data changes, to support editing
and visualization of the asynchronous data changes, the data grid sends a notification to the

web application associated with the asynchronous data changes wherein the notification

includes an order key that facilitates ordering of the changes at the grid relative to other data
changes; wherein the changes are associated with a server document and wherein explicit
changes are tracked in a change tracker data structure separate from the undo stack and the
grid; and a processor that executes computer-executable instructions associated with at least

the change component and reverse component.

[0005b] According to another aspect of the present invention, there is provided a
computer-implemented method of providing reverse operations in data, comprising acts of:

detecting asynchronous data changes in a server document of a web-based application on a

_9 .

10

15

20

25

CA 02707635 2013-12-18

51331-897

server via a client-based data grid including cells in a tabular representation for recording the
asynchronous data changes, to support editing and visualization of the asynchronous data
changes; assigning order keys to the asynchronous data changes in a change notification,
where the order keys signify relative ordering of the asynchronous data changes to be made at
the data grid; sending the change notifications from the data grid to the web-based application
and then to the server for asynchronous validation; receiving asynchronoﬁs validation
information from the server based on the notifications; ordering the asynchronous validation
information in the data grid according to the order keys; managing undo/redo operations in the
server document based on the order keys, wherein an undo stack stores explicit changes and
implicit changes, wherein an undo command removes and reverts changes from the undo
stack until an explicit change is reverted; wherein the asynchronous data changes are
assoclated with a server document and wherein explicit changes are tracked in a change
tracker data structure separate from the undo stack and the grid; and utilizing a processor that
executes 1nstructions stored in memory to perform at least the acts of detecting, assigning,

sending, receiving, ordering, and managing.

[0005¢] According to still another aspect of the present invention, there is provided a
computer-implemented method of providing reverse operations in data, comprising acts of
initiating data changes to a web document of a server via a client web application; storing the
changes as an ordered history of the changes in a client undo stack and storing change entries
In a separate client change tracker data structure for explicit changes that directly affect data,
the undo stack storing explicit changes and implicit changes, wherein the client change tracker
data structure is separate from the undo stack and the web document; validating the changes at
the server; receiving validation information asynchronously from the server into the web
application; managing undo/redo operations in the web document, based on the ordered
history of the changes, in the undo stack and the change entries in the change tracker, wherein
an undo command removes and reverts changes from the undo stack until an explicit change
1s reverted; and utilizing a processor that executes instructions stored in memory to perform at

least the acts of initiating, storing, validating, receiving, and managing.

10

15

20

25

CA 02707635 2015-11-23

>1331-897

[0005d] According to yet another aspect of the present invention, there is provided a
computer-readable medium having stored thereon computer executable instructions, that when

implemented by a processor, cause the processor to implement a method as described above

or detailed below.

[0005¢] According to a further aspect of the present invention, there is provided a
computer-implemented asynchronous validation system, comprising: a change component for
tracking asynchronous data changes to data via a web application, where the asynchronous
data changes are changes that require asynchronous validations or augmentations and include
explicit changes that directly affect data and implicit changes that do not affect data; a data
grid for providing a tabular representation of the data stored in the web application,
comprising cells for recording the asynchronous data changes, to support editing and
visualization of the asynchronous data changes, the data grid sends a notification to the web
application associated with the asynchronous data changes wherein the notification includes
an order key that facilitates ordering of the changes at the grid relative to other data changes,
the data grid receives asynchronous validation information from the server based on the
notifications and orders the asynchronous validation information in the data grid according to

the order keys; and a processor that executes computer-executable instructions associated with

at least the change component.

[00051] According to yet a further aspect of the present invention, there is provided a
computer-implemented method, comprising: detecting asynchronous data changes in a server
document of a web-based application on a server via a client-based data grid including cells in
a tabular representation for recording the asynchronous data changes, to support editing and
visualization of the asynchronous data changes, wherein the asynchronous data changes
include explicit changes that directly affect data and implicit changes that do not affect data;
assigning order keys to the asynchronous data changes in a change notification, where the
order keys signity relative ordering of the asynchronous data changes to be made at the data
grid; sending the change notifications from the data grid to the web-based application and

then to the server for asynchronous validation; receiving asynchronous validation information

from the server based on the notifications; ordering the asynchronous validation information

_7b -

10

15

20

25

CA 02707635 2015-11-23

)1331-897

in the data grid according to the order keys; and utilizing a processor that executes instructions
stored 1n memory to perform at least the acts of detecting, assigning, sending, receiving, and

ordering.

[0005g] According to still a further aspect of the present invention, there is provided a
computer-implemented method, comprising: initiating data changes to a web document of a
server via a client web application, wherein the data changes include explicit changes that
directly affect data and implicit changes that do not affect data; storing the changes as an
ordered history of the changes in a client undo stack and storing change entries in a separate
client change tracker data structure for explicit changes, the undo stack storing explicit
changes and implicit changes; validating the changes at the server; receiving validation
information asynchronously from the server into the web application; and utilizing a processor

that executes instructions stored in memory to perform at least the acts of initiating, storing,

validating, and receiving.

[0006] To the accomplishment of the foregoing and related ends, certain illustrative
aspects are described herein in connection with the following description and the annexed
drawings. These aspects are indicative, however, of but a few of the various ways in which
the principles disclosed herein can be employed and is intended to include all such aspects and

equivalents. Other advantages and novel features will become apparent from the following

detailed description when considered in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 1llustrates computer-implemented undo system.

[0008] FIG. 2 1llustrates an implementation of a client-server system that provides

multi-level data change reverse operations.

[0009] FIG. 3 illustrates an example of asynchronous undo/redo operations on data.

[0010] FI1G. 4 illustrates the final data updates based on the use of change keys to

address asynchronous out-of-order change processing.

- ¢ -

CA 02707635 2015-11-23

D1331-897

[0011] FIG. 5 illustrates a change tracker as part of the change component and an

undo stack as part of the reverse component.

[0012] FIG. 6 1llustrates the initial grid state of data in the grid, stack state of the undo

stack, and tracker state of the change tracker.

O [0013] FIG. 7 illustrates an implicit change and the effects on the stack state and

tracker state.

_2d -

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

[0014] FIG. 8 illustrates a change 1n the task name of the grid data and the effects
on the undo stack and change tracker.

[0015] FIG. 9 1llustrates execution of an undo operation.

[0016] FIG. 10 1llustrates a computer-implemented method of providing reverse
opcrations 1n data.

[0017] FIG. 11 1llustrates a method of processing explicit/implicit changes.

[0018] FIG. 12 1llustrates

[0019] FIG. 13 1llustrates a block diagram of a computing system operable to
execute multi-level undo 1n accordance with the disclosed architecture.

[0020] FIG. 14 1llustrates a schematic block diagram of an exemplary client-server

computing environment for multi-level undo processing.

DETAILED DESCRIPTION
[0021] The disclosed architecture bridges a major gap 1n the editing experience of
“thin” web applications by supporting multi-level undo on the client 1n grid-based
applications. This feature 1s useful to a number of online editing experiences as well.
For example, multi-level undo allows the user to feel more comfortable about editing
more data at once, and 1ncreases the user perception of the positive performance of
the application. Morcover, online versions of applications also can benefit such that
multiple changes within a record may be undone and redone so that a user has total
control over editing.
[0022] Reference 1s now made to the drawings, wherein like reference numerals
are used to refer to like elements throughout. In the following description, for
purposes of explanation, numerous specific details are set forth in order to provide a
thorough understanding thercof. It may be evident, however, that the novel
embodiments can be practiced without these specific details. In other instances,
well-known structures and devices are shown 1n block diagram form 1n order to
facilitate a description thercof.
[0023] FIG. 1 1illustrates a computer-implemented undo system 100. The system
100 mncludes a change component 102 for tracking asynchronous changes to data 104
via a web application 106. The system 100 further includes a reverse component 108

for performing reverse operations (¢.g., undo, redo) on the data changes to the data

_3 -

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

104 to previous states. The changes to the data 104 can be made via a data grid 110.
The changes to the data 104 can be made manually or programmatically via the grid
110.

[0024] The application 106 instantiates and configures the grid 110. The grid 110
1s a tabular representation of data that 1s stored 1n the application 106, supporting
editing and visualization. A change 1s the before and after versions of a cell’s data,
plus the action that was required to cause the cell value to change.

[0025] In onc embodiment, the web application 106 1s a browser application via
which changes are made to a web page hosted by a server. The user can then exercise
multi-level undo/redo reverse operations for changes made to the webpage document.
In another implementation, the web application 106 1s a browser that allows a user to
interact with local data, rather than network data, and exercise reverse operations such
as multi-level undo/redo.

[0026] FIG. 2 1llustrates an implementation of a client-server system 200 that
provides multi-level data change reverse operations. The system 200 shows the
system 100 of FIG.1, to wit, the change component 102 for tracking asynchronous
changes to the data 104 via the web application 106, and the reverse component 108
for performing reverse operations (¢.g., undo, redo) on the data changes to previous
states. The data changes are made manually and/or programmatically via the data
orid 110. Here, the data changes are applied to a web document (e.g., webpage) 200
of a web server 202. As edits are passed into the grid 110, change notifications are
sent to the server 202 via the application 106 for asynchronous validation. Once
validated, the changes are sent back to the grid 110 via the application 106 as updates
to the data 104.

[0027] FIG. 3 1llustrates an example 300 of asynchronous undo/redo operations on
data. An asynchronous change 1s a change that requires any number of asynchronous
validations or augmentations. When an entity makes changes to the grid data, the
result of this change 1s a notification to the application 106. Contained within this
notification 1s an order (or change) key. The application 106 consumes the
notification and then can append new changes based on some synchronous or
asynchronous computations (¢.g., scheduling) by calling an update function with that

order key. The application 106 1s free to use the order key at any point 1n the future to

_4

51331-897

CA 02707635 2013-12-18

attach further updates to this change. These updates are properly collected together
for undo/redo.

[0028) Here, two changes, denoted as A and B, are enteréd into the grid 110 that
require asynchronous validation. When the edits are made, the changes are captured
in order by the grid 110. Each change is tagged with an order key. For example,
change A is tagged with an order key A (azlso denoted change key A) and the second
change B (later in time than change A) 1S dénoted with a change key B. When a data
change is made, the grid 110 detects this and sends a notification to the application
106 (e.g., a browser), which the application 106 then sends the notification to the
server 202 for validation. The validation process at the server 202 can occur out-of-
order, or once the validation has completed, the server can send the previously ordered
validation out-of-order. T'hus, the order keys facilitate ordering the changes at the
grid 110,

[0029] In this example, a first change notification request 302 is sent from the grid
110 to the application 106 to account for the data change A, made in a second row to
a column having a field labeled Duration, and a new value of the duration set to five
days. In a subsequent data edit, the grid 110 sends a second change notification
request 304 to the application 106 to account for the data change B, made in a third
row to a column having a ficld labeled Duration, and a new value of the duration set
to seven days. The change notiﬁcation requests (302 and 304) are sent to the
application 106 in order (e.g., change A before change B). The application 106 then
forwards the notification requests (302 and 304) to the server 202, the server 202
validates the change requests (302 and 304) asynchronously, and returns the
validations back to the application 106. | _
[0030] Here, the server 202 begins a first validation process 306 for the first
change notification request 302. Next, the server 202 receives and begins a second
validation process 308 for the second change notification request 304. The server 202
completes the second validation process 308 before the first validation process 306.
Thus, a second update response 310 1s sent from the server 202 through the
application 106 to the grid 110 for updating the associated data. The second update
response 310 includes the order key B that signifies the order in which the data

change was made relative to the first data change A. The second update response 310

-5

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

also includes that the change was made 1n the third row, at a field labeled End Date,
and the new value for End Date of 5/27. This corresponds to the new value of seven
days 1n the second change notification request 304.

[0031] The server 202 then completes the first validation process 306 and sends a
first update response 312 through the application 106 to the grid 110 for updating the
associated data. The first update response 312 includes the order key A that signifies
the order 1n which the data change was made relative to the second data change B.
The first update response 312 also includes that the change was made 1n the second
row, at a field labeled End Date, and the new value for End Date of 5/25. This
corresponds to the new value of five days in the first change notification request 302.
Thus, the changes come back from validation out of order (change B before change
A).

[0032] FIG. 4 illustrates the final data updates based on the use of change keys to
address asynchronous out-of-order change processing. The results 400 of the requests
for the data changes which have occurred since the last save operation are shown.
When returned from the server 202, the results are placed and stored 1n the logical
order that the change (or order) keys dictate (change B after change A), rather than the
order in which the events actually occurred (change A after change B). Thus, the
changes 402 related to change A are stored together and denoted as occurring before
change B. Similarly, the changes 404 related to change B are stored together and
denoted as occurring after change A.

[0033] The undo and redo reverse operations are also handled 1n this way. Thus, 1f
a user were to select undo, both changes (Duration and End Date) associated with
change B would be undone, since that 1s the last change the user made, as indicated by
change key B, even though the update to change A was the last event the grid
encountered.

[0034] An entity (e.g., a user or system) interacts with the grid to make change to
data 1n the grid, either explicitly or implicitly. An explicit change 1s a change made to
the grid that directly affects data (e¢.g., changing a start date on a task). An implicit
change 1s a change that is made to the grid that has no effect on the data (e.g., resizing

a column).

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

[0035] FIG. 5 1illustrates a change tracker 500 as part of the change component 102
and an undo stack 502 as part of the reverse component 108. As an entity makes
changes to grid data, the type of each change 1s noted, and functions to execute and
undo are placed on the undo stack 502. The undo stack 502 1s a data structure that
stores an ordered history of the last set of actions. When an undo event happens,
operations are removed from the undo stack 502 and reverted until the first explicit
change 1s encountered. The first explicit change 1s the last action reverted. At this
point, the undo operation concludes. Subsequent undo operations are handled 1n the
same manner; an undo command will revert all implicit actions before the next
explicit action, and then revert the explicit action.

[0036] The effect of this system 1s that after an undo operation, the visual state of
the grid 1s restored before the undone action. All explicit changes are stored 1n a
separate structure (the change tracker 500) from the undo stack 502. This change
tracker 500 can be exported as a collection of cell-level changes.

[0037] The undo stack 502 and the change tracker 500 are independent structures.
When a change occurs, that change 1s pushed onto the undo stack 502, and an entry
for that change 1s made 1n the change tracker 500 1f the change was explicit. If the
change 1s implicit, the change 1s not logged 1n the change tracker 500.

[0038] When an undo event occurs, the change 1s removed from the undo stack
502 and the change tracker 500, and the new value 18 noted 1n the change tracker 500.
If the change existed m the change tracker 500, that change 1s removed. If the change
does not exist in the change tracker 500, the action to revert the change (which itself
1s a change) 1s added to a change log. When a save operation occurs the changes are
read from the change tracker 500, committed to the datasource, and the change tracker
500 1s cleared.

[0039] The effect of this system 1s that an entity can undo actions that occurred
prior to the save event because the information necessary to undo a change 1s stored 1n
the undo stack 502. Similarly, the change tracker 500 can function 1n the absence of
the undo stack 502.

[0040] Figures 6-9 1llustrate a series of diagrams for exemplifying changes that
occur 1n the state of grid data, the undo stack, and the change tracker. FIG. 6 shows

the mitial grid state 600 of data in the grid, stack state 602 of the undo stack, and

_7 -

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

tracker state 604 of the change tracker. The changes will occur in rows two and three
of the grid data.

[0041] The entity then makes an explicit change by deciding that painting the
fence should take two days instead of one day. The change grid state 606 includes a
change 1n the second row 1n the Duration column to two days. In the case of a project
as part of a project management application, for example, a change 1in duration causes
a change 1n the end date, also called Finish (a cascading change). A cascading
transaction 18 created encompassing both changes. Thus, the field information in the
second row 1 the Finish column changes from Mon 5/21/xx to Tue 5/22/xx, as
indicated 1n changed grid state 606.

[0042] These Duration and Finish changes are pushed onto the undo stack as
indicated 1n the stack state 608. Additionally, the tracker state 610 reflects the
changes. FIG. 7 shows an implicit change and the effects on the stack state and
tracker state. Here, the entity hides the Finish column thereby changing to the grid
state 612, which pushes the change onto the undo stack changing to the stack state
614, but does not change the tracker state 610 of the change tracker. The entity saves
the project, which causes the tracker state 610 in the change tracker to be cleared to
stack state 616, as the grid’s data 1s now consistent with the server data.

[0043] FIG. ¥ illustrates a change 1n the task name of the grid data and the effects
on the undo stack and change tracker. The entity changes the grid state 618 based on
a change 1n the task name 1in row three from ‘Clean-up tools’ to ‘Clean-up project’.
The stack state 620 reflects the change pushed onto the stack, and the tracker reflects
tracker state 622.

[0044] FIG. 9 1llustrates execution of an undo operation. The undo reverts the last
explicit change by popping the change from the undo stack and the change tracker, as
shown 1n the stack state 622 and tracker state 626 (no change from before). The
entity then executes undo once more, which reverts both the implicit change and the
remaining explicit change. This cascading effect removes the change from the undo
stack to a stack state 628, adds an inverse change to the change tracker to a tracker

state 630, and changes the grid state back to grid state 632, which 1s the same as grid
state 600 of FIG. 6.

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

[0045] Following 1s a series of flow charts representative of exemplary
methodologies for performing novel aspects of the disclosed architecture. While, for
purposes of simplicity of explanation, the one or more methodologies shown herein,
for example, in the form of a flow chart or flow diagram, are shown and described as
a serics of acts, 1t 15 to be understood and appreciated that the methodologies are not
limited by the order of acts, as some acts may, 1n accordance therewith, occur n a
different order and/or concurrently with other acts from that shown and described
herein. For example, those skilled 1n the art will understand and appreciate that a
methodology could alternatively be represented as a series of interrelated states or
events, such as in a state diagram. Moreover, not all acts 1llustrated in a methodology
may be required for a novel implementation.

[0046] FIG. 10 1llustrates a computer-implemented method of providing reverse
operations 1n data. At 1000, data changes 1n a server document of a server are
detected via a client-based grid. At 1002, order keys are assigned to the changes 1n a
change notification. At 1004, the change notifications are sent to the server for
validation. At 1006, asynchronous validation information 1s received from the server
based on the notifications. At 1008, the validation information 1s ordered in the grid
according to the order keys. At 1010, undo/redo operations 1n the server document
arc managed based on the order keys.

[0047] FIG. 11 illustrates a method of processing explicit/implicit changes. At
1100, a change 1n data 1s received via a grid. At 1102, the type of change and a
function to undo/redo the change are stored in an undo stack. At 1104, a reverse
operation (e.g., redo, undo) 1s received. At 1106, the undo operations are removed
from the stack and reverted until the first explicit change 1s encountered (which 1s the
last action reverted).

[0048] FIG. 12 illustrates a computer-implemented method of providing reverse
operations 1n data. At 1200, data changes are nitiated to a web document of a server
via a client web application. At 1202, the changes are stored as an ordered history of
the changes 1n a client undo stack and change entries 1n a client change tracker. At
1204, the changes are validated at the server. At 1206, validation information 1s
recerved asynchronously from the server into the web application. At 1208,

undo/redo operations 1n the web document are managed at the client based on the

0.

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

ordered history of the changes 1n the undo stack and the change entries 1n the change
tracker.

[0049] As used in this application, the terms “component” and “system™ are
intended to refer to a computer-related entity, either hardware, a combination of
hardware and software, software, or software 1n execution. For example, a
component can be, but 1s not limited to being, a process running on a processor, a
processor, a hard disk drive, multiple storage drives (of optical and/or magnetic
storage medium), an object, an executable, a thread of execution, a program, and/or a
computer. By way of 1llustration, both an application running on a server and the
server can be a component. One or more components can reside within a process
and/or thread of execution, and a component can be localized on one computer and/or
distributed between two or more computers.

[0050] Referring now to FIG. 13, there 1s 1llustrated a block diagram of a
computing system 1300 operable to execute multi-level undo 1n accordance with the
disclosed architecture. In order to provide additional context for various aspects
thercof, FIG. 13 and the following discussion are intended to provide a brief, general
description of a suitable computing system 1300 1n which the various aspects can be
implemented. While the description above 1s 1n the general context of computer-
executable 1nstructions that may run on one or more computers, those skilled 1n the art
will recognize that a novel embodiment also can be implemented 1n combination with
other program modules and/or as a combination of hardware and software.

[0051] Generally, program modules include routines, programs, components, data
structures, ctc., that perform particular tasks or implement particular abstract data
types. Morecover, those skilled 1n the art will appreciate that the inventive methods
can be practiced with other computer system configurations, including single-
processor or multiprocessor computer systems, minicomputers, mainframe computers,
as well as personal computers, hand-held computing devices, microprocessor-based or
programmable consumer electronics, and the like, each of which can be operatively
coupled to one or more associated devices.

[0052] The 1llustrated aspects can also be practiced in distributed computing

environments where certain tasks are performed by remote processing devices that are

- 10 -

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

linked through a communications network. In a distributed computing environment,
program modules can be located in both local and remote memory storage devices.
[0053] A computer typically includes a variety of computer-readable media.
Computer-readable media can be any available media that can be accessed by the
computer and includes volatile and non-volatile media, removable and non-removable
media. By way of example, and not limitation, computer-readable media can
comprise computer storage media and communication media. Computer storage
media includes volatile and non-volatile, removable and non-removable media
implemented 1n any method or technology for storage of information such as
computer-readable instructions, data structures, program modules or other data.
Computer storage media includes, but 1s not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital video disk (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store the desired
information and which can be accessed by the computer.

[0054] With reference again to FIG. 13, the exemplary computing system 1300 for
implementing various aspects includes a computer 1302 having a processing unit
1304, a system memory 1306 and a system bus 1308. The system bus 1308 provides
an interface for system components including, but not limited to, the system memory
1306 to the processing unit 1304. The processing unit 1304 can be any of various
commercially available processors. Dual microprocessors and other multi-processor
architectures may also be employed as the processing unit 1304.

[0055] The system bus 1308 can be any of several types of bus structure that may
further interconnect to a memory bus (with or without a memory controller), a
peripheral bus, and a local bus using any of a variety of commercially available bus
architectures. The system memory 1306 can include non-volatile memory (NON-
VOL) 1310 and/or volatile memory 1312 (¢.g., random access memory (RAM)). A
basic mput/output system (BIOS) can be stored 1n the non-volatile memory 1310
(e.g., ROM, EPROM, EEPROM, ctc.), which BIOS stores the basic routines that help
to transfer information between elements within the computer 1302, such as during
start-up. The volatile memory 1312 can also include a high-speed RAM such as static
RAM for caching data.

- 11 -

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

[0056] The computer 1302 further includes an mternal hard disk drive (HDD)
1314 (e.g., EIDE, SATA), which internal HDD 1314 may also be configured for
external use m a suitable chassis, a magnetic floppy disk drive (FDD) 1316, (¢.g., to
read from or write to a removable diskette 1318) and an optical disk drive 1320, (e.g.,
reading a CD-ROM disk 1322 or, to read from or write to other high capacity optical
media such as a DVD). The HDD 1314, FDD 1316 and optical disk drive 1320 can
be connected to the system bus 1308 by a HDD interface 1324, an FDD interface
1326 and an optical drive interface 1328, respectively. The HDD interface 1324 for
external drive implementations can mclude at least one or both of Universal Serial
Bus (USB) and IEEE 1394 interface technologies.

[0057] The drives and associated computer-readable media provide nonvolatile
storage of data, data structures, computer-cxecutable instructions, and so forth. For
the computer 1302, the drives and media accommodate the storage of any data in a
suitable digital format. Although the description of computer-readable media above
refers to a HDD, a removable magnetic diskette (¢.g., FDD), and a removable optical
media such as a CD or DVD, 1t should be appreciated by those skilled 1n the art that
other types of media which are readable by a computer, such as zip drives, magnetic
casscttes, flash memory cards, cartridges, and the like, may also be used 1n the
exemplary operating environment, and further, that any such media may contain
computer-executable mstructions for performing novel methods of the disclosed
architecture.

[0058] A number of program modules can be stored in the drives and volatile
memory 1312, including an operating system 1330, one or more application programs
1332, other program modules 1334, and program data 1336. The one or more
application programs 1332, other program modules 1334, and program data 1336 can
include the change component 102, data 104, web application 106, reverse component
108, data grid 110, change notifications (302 and 304), update responses (310 and
312), change tracker 500, undo stack 502, grid states (600, 606, 612, 618, and 632),
stack state (602, 608, 614, 620, 624 and 628), and tracker state (604, 610, 616, 622,
626 and 630), for example.

[0059] All or portions of the operating system, applications, modules, and/or data

can also be cached 1n the volatile memory 1312. It 1s to be appreciated that the

- 12 -

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

disclosed architecture can be implemented with various commercially available
opcerating systems or combinations of operating systems.

[0060] A user can enter commands and information into the computer 1302
through one or more wire/wireless input devices, for example, a keyboard 1338 and a
pointing device, such as a mouse 1340. Other input devices (not shown) may mclude
a microphone, an IR remote control, a joystick, a game pad, a stylus pen, touch
screen, or the like. These and other mnput devices are often connected to the
processing unit 1304 through an 1mnput device interface 1342 that 1s coupled to the
system bus 1308, but can be connected by other interfaces such as a parallel port,
IEEE 1394 serial port, a game port, a USB port, an IR 1nterface, etc.

[0061] A monitor 1344 or other type of display device 1s also connected to the
system bus 1308 via an interface, such as a video adaptor 1346. In addition to the
monitor 1344, a computer typically includes other peripheral output devices (not
shown), such as speakers, printers, etc.

[0062] The computer 1302 may operate 1in a networked environment using logical
connections via wire and/or wireless communications to one or more remote
computers, such as a remote computer(s) 1348. The remote computer(s) 1348 can be
a workstation, a server computer, a router, a personal computer, portable computer,
microprocessor-based entertainment appliance, a peer device or other common
network node, and typically includes many or all of the elements described relative to
the computer 1302, although, for purposes of brevity, only a memory/storage device
1350 1s 1llustrated. The logical connections depicted include wire/wireless
connectivity to a local area network (LAN) 1352 and/or larger networks, for example,
a wide arca network (WAN) 1354. Such LAN and WAN networking environments
arc commonplace 1n offices and companies, and facilitate enterprise-wide computer
networks, such as intranets, all of which may connect to a global communications
network, for example, the Internet.

[0063] When used 1n a LAN networking environment, the computer 1302 18
connected to the LAN 1352 through a wire and/or wireless communication network
interface or adaptor 1356. The adaptor 1356 can facilitate wire and/or wireless

communications to the LAN 1352, which may also include a wireless access point

_ 13 -

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

disposed therecon for communicating with the wireless functionality of the adaptor
1356.

[0064] When used 1n a WAN networking environment, the computer 1302 can
include a modem 1358, or 1s connected to a communications server on the WAN
1354, or has other means for establishing communications over the WAN 1354, such
as by way of the Internet. The modem 13358, which can be internal or external and a
wire and/or wireless device, 1s connected to the system bus 1308 via the input device
interface 1342. In a networked environment, program modules depicted relative to
the computer 1302, or portions thercof, can be stored in the remote memory/storage
device 1350. It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications link between the
computers can be used.

[006S] The computer 1302 1s operable to communicate with wire and wireless
devices or entities using the IEEE 802 family of standards, such as wireless devices
operatively disposed 1 wireless communication (e.g., IEEE 802.11 over-the-air
modulation techniques) with, for example, a printer, scanner, desktop and/or portable
computer, personal digital assistant (PDA), communications satellite, any piece of
cquipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news
stand, restroom), and telephone. This includes at least Wi-F1 (or Wireless Fidelity),
WiMax, and Bluetooth™ wireless technologies. Thus, the communication can be a
predefined structure as with a conventional network or simply an ad hoc
communication between at least two devices. Wi-F1 networks use radio technologies
called IEEE 802.11x (a, b, g, ¢tc.) to provide secure, reliable, fast wircless
connectivity. A Wi-F1 network can be used to connect computers to cach other, to the
Internet, and to wire networks (which use IEEE 802.3-related media and functions).
[0066] Referring now to FIG. 14, there 1s 1llustrated a schematic block diagram of
an exemplary client-server computing environment 1400 for multi-level undo
processing. The environment 1400 includes one or more client(s) 1402. The client(s)
1402 can be hardware and/or software (¢.g., threads, processes, computing devices).
The client(s) 1402 can house cookie(s) and/or associated contextual information, for

example.

- 14 -

51331-897

CA 02707635 2013-12-18

[0067] The environment 1400 also includes one or more server(s) 1404. The
server(s) 1404 can also be hardware and/or software (e.g., threads, processes,
computing devices). The servers 1404 can house threads to perform transformations
by employing the architecture, for example. One possible communication between a
chient 1402 and a server 1404 can be in the form of a data packet adapted to be
transmitted between two or more computer processes. The data packet may include a
cookie and/or associated contextual information, for example. The environment 1400
includes a communication framework 1406 (e.g., a global communication network
such as the Internet) that can be employed to facilitate communications between the
client(s) 1402 and the server(s) 1404.

[0068] Communications can be facilitated via a wire (including optical fiber)
and/or wireless technology. The client(s) 1402 are operatively connected to one or
more client data store(s) 1408 that can be employed to store information local to the
client(s) 1402 (e.g., cookie(s) and/or associated contextual information). Similarly,
the server(s) 1404 are operatively connected to one or more server data store(s) 1410
that can be employed to store information local to the servers 1404.

[0069] The client(s) 1402 can include the web application 106 and client data
store(s) 1408 can include the data 104. The server(s) 1404 can include the server 202

~ and asynchronous validation processes (306 and 308), and the server data store(s)

1410 can include the document 200.

[0070] What has been described above includes examples of the disclosed
architecture. It is, of course, not possible to describe every conceivable combination
of components and/or methodologies, but one of ordinary skill in the art may
recognize that many further combinations and permutations are possible.
Accordingly, the novel architecture is intended to embrace all such alterations,
modifications and variations that fall within the scope of the appended

claims. Furthermore, to the extent that the term “includes” is used in either the
detailed description or the claims, such term is intended to be inclusive in a manner
similar to the term “comprising” as “‘comprising” is interpreted when employed as a

transitional word in a claim.

.15 -

10

15

20

|
CA 02707635 2015-04-23

51331-897

CLAIMS:

]. A computer-implemented undo system, comprising:

a change component for tracking asynchronous data changes to data via a web
application, where the asynchronous data changes are changes that require asynchronous

validations or augmentations;

a reverse component for performing multi-level undo/redo reverse operations
on the asynchronous data changes, the reverse component comprising an undo stack storing
explicit changes and implicit changes, wherein an undo command removes and reverts

changes from the undo stack until an explicit change 1s reverted;

a data grid for providing a tabular representation of the data stored in the web
application, comprising cells for recording the asynchronous data changes, to support editing
and visualization of the asynchronous data changes, the data grid sends a notification to the
web application associated with the asynchronous data changes wherein the notification

includes an order key that facilitates ordering of the changes at the grid relative to other data

changes;

wherein the changes are associated with a server document and wherein
explicit changes are tracked in a change tracker data structure separate from the undo stack

and the grid; and

a processor that executes computer-executable instructions associated with at

least the change component and reverse component.

2. The system of claim 1, wherein the asynchronous data changes are associated

with a webpage.

3. The system of claim 1, wherein the web application is a browser application.

- 16 -

10

15

20

CA 02707635 2015-04-23

51331-897

4. The system of claim 1, wherein the data grid is a client-based data grid, and
wherein the asynchronous data changes include before and after versions of the data in a cell,

and an action to cause the cell data to change.

5. The system of claim 4, wherein the asynchronous data changes are made

manually or programmatically via the grid.

6. The system of claim 1, wherein the reverse operations restore the data to a state

that existed according to at least two previous changes.

7. The system of claim 1, wherein the processor sends the notification to the data

grid via the web application.

8. The system of claim 1, wherein the undo stack and the change tracker data

structure are client-based.

9. A computer-implemented method of providing reverse operations in data,

comprising acts of:

detecting asynchronous data changes in a server document of a web-based
application on a server via a client-based data grid including cells 1n a tabular representation

for recording the asynchronous data changes, to support editing and visualization of the

asynchronous data changes;

assigning order keys to the asynchronous data changes in a change notification,
where the order keys signify relative ordering of the asynchronous data changes to be made at

the data grid;

sending the change notifications from the data grid to the web-based

application and then to the server for asynchronous validation;

receiving asynchronous validation information from the server based on the

notifications;

217 -

10

15

20

25

CA 02707635 2015-04-23

51331-897

ordering the asynchronous validation information in the data grid according to

the order keys;

managing undo/redo operations in the server document based on the order
keys, wherein an undo stack stores explicit changes and implicit changes, wherein an undo
command removes and reverts changes from the undo stack until an explicit change is

reverted;

wherein the asynchronous data changes are associated with a server document
and wherein explicit changes are tracked in a change tracker data structure separate from the

undo stack and the grid; and

utilizing a processor that executes instructions stored in memory to perform at

least the acts of detecting, assigning, sending, receiving, ordering, and managing.

10. The method of claim 9, further comprising cascading changes through an undo

stack and the change tracker data structure based on the changes in the data grid.

11. A computer-implemented method of providing reverse operations in data,

comprising acts of:

initiating data changes to a web document of a server via a client web

application;

storing the changes as an ordered history of the changes in a client undo stack
and storing change entries in a separate client change tracker data structure for explicit
changes that directly affect data, the undo stack storing explicit changes and implicit changes,

wherein the client change tracker data structure is separate from the undo stack and the web

document;
validating the changes at the server;

receiving validation information asynchronously from the server into the web
application;

~18 -

10

15

20

25

CA 02707635 2015-11-23

>1331-897

managing undo/redo operations in the web document, based on the ordered
history of the changes, in the undo stack and the change entries in the change tracker, wherein
an undo command removes and reverts changes from the undo stack until an explicit change

1s reverted; and

utilizing a processor that executes instructions stored in memory to perform at

least the acts of 1nitiating, storing, validating, receiving, and managing.

12. The method of claim 11, further comprising exposing the data changes and

visualization of the data changes via a client data grid.

13. The method of claim 11, further comprising undoing changes in the web

document that have occurred before a save operation performed in the web application.

14. The method of claim 11, further comprising, in response to a save operation,

reading changes from the change tracker, committing the changes to a datasource, and

clearing the change tracker.

15. The method of claim 11, wherein the ordered history of the changes 1s based on

a change key assigned to each change.

16. The method of claim 11, further comprising exporting changes as a collection

of cell-level changes.

17. A computer-readable medium having stored thereon computer executable
instructions, that when implemented by a processor, cause the processor to implement the

method of any one of claims 9 to 16.
18. A computer-implemented asynchronous validation system, comprising:

a change component for tracking asynchronous data changes to data via a web

application, where the asynchronous data changes are changes that require asynchronous

validations or augmentations and include explicit changes that directly affect data and implicit

changes that do not affect data;
- 19 .-

10

15

20

25

CA 02707635 2015-11-23

S1331-897

a data grid for providing a tabular representation of the data stored in the web
application, comprising cells for recording the asynchronous data changes, to support editing
and visualization of the asynchronous data changes, the data grid sends a notification to the
web application associated with the asynchronous data changes wherein the notification
includes an order key that facilitates ordering of the changes at the grid relative to other data
changes, the data grid receives asynchronous validation information from the server based on

the notifications and orders the asynchronous validation information 1n the data grid according

to the order keys; and

a processor that executes computer-executable instructions associated with at

least the change component.

19. The system of claim 18, wherein the client application appends to the

notification new changes based on at least one of a synchronous computation or an

asynchronous computation.

20. The system of claim 18, wherein the client application calls an update function

using the order key.

21. The system of claim 18 further comprising a reverse component for performing
multi-level undo/redo reverse operations on the asynchronous data changes, the reverse
component comprising an undo stack storing explicit changes and implicit changes and a

change tracker data structure storing entries for the explicit changes.

22. The system off claim 21, wherein an undo command removes entries from the
change tracker data structure for explicit changes, and removes and reverts changes from the

undo stack until an explicit change is reverted.

23. The system of claim 21, wherein the reverse operations restore the data to a

state that existed according to at least two previous changes.

24, The system of claim 21, wherein the undo stack and the change tracker data

structure are client-based.

210 -

10

15

20

CA 02707635 2015-11-23

51331-897

23. The system of claim 18, wherein the asynchronous data changes are associated

with a webpage and wherein the web application is a browser application.

26. The system of claim 18, wherein the data grid is a client-based data grid, and
wherein the asynchronous data changes include before and after versions of the data in a cell,

and an action to cause the cell data to change.
27. A computer-implemented method, comprising:

detecting asynchronous data changes in a server document of a web-based
application on a server via a client-based data grid including cells in a tabular representation

for recording the asynchronous data changes, to support editing and visualization of the

asynchronous data changes, wherein the asynchronous data changes include explicit changes

that directly affect data and implicit changes that do not affect data;

assigning order keys to the asynchronous data changes in a change notification,

where the order keys signify relative ordering of the asynchronous data changes to be made at

the data grid;

sending the change notifications from the data grid to the web-based

application and then to the server for asynchronous validation;

receiving asynchronous validation information from the server based on the

notifications;

ordering the asynchronous validation information in the data grid according to

the order keys; and

utilizing a processor that executes instructions stored in memory to perform at

least the acts of detecting, assigning, sending, receiving, and ordering.

28. The method of claim 27 further comprising appending to the notification

changes based on scheduling by calling an update function using the order key.

-1 -

10

15

20

25

CA 02707635 2015-11-23

51331-897

29. The method of claim 27 further comprising managing undo/redo operations in
the server document based on the order keys, wherein an undo stack stores explicit changes
and implicit changes and a change tracker data structure stores entries for the explicit changes,
wherein an undo command removes entries from the change tracker data structure for explicit
changes, and removes and reverts changes from the undo stack until an explicit change is

reverted.

30. The method of claim 29, further comprising cascading changes through the

undo stack and the change tracker data structure based on the changes in the data grid.

31. A computer-implemented method, comprising:

initiating data changes to a web document of a server via a client web
application, wherein the data changes include explicit changes that directly affect data and

implicit changes that do not affect data;

storing the changes as an ordered history of the changes in a client undo stack
and storing change entries in a separate client change tracker data structure for explicit

changes, the undo stack storing explicit changes and implicit changes;
validating the changes at the server;

recerving validation information asynchronously from the server into the web

application; and

utilizing a processor that executes instructions stored in memory to perform at

least the acts of initiating, storing, validating, and receiving.

32. The method of claim 31 further comprising managing undo/redo operations in
the web document, based on the ordered history of the changes, in the undo stack and the
change entries in the client change tracker, wherein an undo command removes entries from

the change tracker data structure for explicit changes, and removes and reverts changes from

the undo stack until an explicit change is reverted.

_79

10

15

CA 02707635 2015-11-23

51331-897

33. The method of claim 32, further comprising undoing changes in the web

document that have occurred before a save operation performed in the web application.

34, The method of claim 32, further comprising, in response to a save operation,
reading changes from the change tracker, committing the changes to a datasource, and

clearing the change tracker.

35. The method of claim 31, further comprising sending a notification to the client
web application wherein the notification includes an order key that facilitates ordering of the
changes at the grid relative to other data changes, the data grid receives asynchronous
validation information from the server based on the notifications and orders the asynchronous

validation information in the data grid according to the order keys.

36. The method of claim 35 further comprising using the order key to append to

the notification new changes based on at least one of a synchronous computation or an

asynchronous computation.

37. The method of claim 31, further comprising exporting changes as a collection

of cell-level changes.

38. A computer-readable medium having stored thereon computer executable
instructions, that when implemented by a processor, cause the processor to implement the

method of any one of claims 27 to 37.

273 -

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

1714

102 106

CHANGE WEB

COMPONENT APPLICATION

108 110

REVERSE

COMPONENT DALA GRID

104

DATA

CA 02707635 2010-06-01

WO 2009/088727 PCT/US2008/087925
2114
200
S
202
SERVER
200
102 106

CHANGE WEB

COMPONENT APPLICATION

108 110

REVERSE DATA GRID

COMPONENT

104

DATA

FIG. 2

CA 02707635 2010-06-01

WO 2009/088727 PCT/US2008/087925
3/14
'(— 300

302
CHANGE NOTIFICATION

ENTITY

CHANGE KEY: A EDITS
202 106 FIELD: DURATION 110
SERVER NEW VALUE: 5 DAYS

306

CHANGE NOTIFICATION
CHANGE KEY: B
ROW: 3
FIELD: DURATION
NEW VALUE: 7 DAYS

ASYNCH
VALIDATION

OF CHANGE A

308

UPDATE
ASYNCH

VALIDATION APP CHANGE KEY: B GRID
ROW: 3

FIELD: END DATE
NEW VALUE: 5/27

OF CHANGE B

UPDATE
CHANGE KEY: A

ROW: 2
FIELD: END DATE
NEW VALUE: 5/25

FIG. 3

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

4/14

402

CHANGE NOTIFICATION

CHANGE KEY: A

ROW: 2 ROW: 2

FIELD: DURATION FIELD: END DATE

NEW VALUE: 5 DAYS NEW VALUE: 5/25

404

CHANGE NOTIFICATION

CHANGE KEY: B

ROW: 3 ROW: 3

FIELD: DURATION FIELD: END DATE

NEW VALUE: 7DAYS NEW VALUE: 5/27

WO 2009/088727

CA 02707635 2010-06-01

5/14

102

CHANGE
COMPONENT

S00

CHANGE
TRACKER

108

REVERSE
COMPONENT

502

FIG. 5

PCT/US2008/087923

CA 02707635 2010-06-01

PCT/US2008/087923

WO 2009/088727

c/14

€T/S<-{HSINIA T}
¢ <-INOLLVINA' T}

dIADV UL
HONVHD 40 ALV.LS

019 A

||

dAADV YL
HONVHD 40 ALV.LS

¥09 A

9 OIA

LTS AHSINIA 3 3 TTdDALVAddN
OANN

LTS HHSINIACS Y TTADALYAdN
ALNDAXA

{TANOLLVYINA TS 3 TTADALVYddN
:OdNN
{CANOLLVINA TSy TTADALVddN
ALNDAXA

ADVLS OANI(]1 4O HLV LS

809 S

||

ADVLS OANI(] HO ALVLS
09 S

—
o

AVAI XX/1¢/¢ NOW | XX/TT/¢ NOIN
SAVAC

S TOOL d[1"NVAT)
XX/¢d/S AL | XX/1¢/¢ NOW | HONHA AHL LNIVd

AVAI XX/1¢/¢ NOW | XX/T7/¢ NON | HIONHA AH.L ANHS

NOILLVAdd LIdV.LS HNVN 2SV.L

AlrdD 40 HLV.LS

AVAI XX/1¢/¢ NOW | XX/TZ/¢ NON | STTOOL d[1I-NVHATD
AvVAl XX/T¢/¢ NOW | XX/Td/¢ NON | HIONAA dHL LNIVd

AVAI XX/1¢/¢ NOW | XX/T/¢ NON | HIONHA AH.L ANHS

NOILLVAd LIV.LS HNVN SV L

009 ArdO 40 LV LS

CA 02707635 2010-06-01

PCT/US2008/087923

WO 2009/088727

/7114

dAAODVHL HONVHD 40 HLV LS
919 S

€T/S<-{HSINIA' T}
¢ <-INOILLVINA'¢}

dAAODVHL HONVHD 40 HLVLS

LTS HHSINIA ¢y 1TADA1LVdAdd

OaN
LEYSHHSINIA 28y 1TaDALVAdd

1
1
1

ALNDAXA

{TAINOILLVENA 2 3 TTADALYVAd
OON

{CINOILLVENA Ty T1ADALVAd

1
1
1

ALNDAXH

{HSINIA SNINNTODMOHS
OdNN

{HSINIA SNINNTODAAIH
ALNDAXA

ADVLS OAN[] 4O HLV LS

LTS HHSINIA ¢y 1TADA1LVdAdd

OaN
LEYSHHSINIA 28y 1TaDALVAdd

1
1
1

ALNDAXA

{TAINOILLVENA 2 3 TTADALYVAd
OON

{CINOILLVENA Ty T1ADALVAd

1
1
1

ALNDAXH

{HSINIA SNINNTODMOHS
OdNN

{HSINIA SNINNTODAAIH
ALNDAXA

V19 Py

ADVLS OAN[] 4O HLV LS

L OIA

AvVAl XX/1¢/¢ NOW | §TOO0OL d1I"NVAT)
SAVAC XX/1¢/¢ NOW | dONdd HH.L LNIVd

AvVAl XX/T¢/¢ NOW | dIONHA AHL ANAS

NOILLVdd

LIV.LS

HAVN SV L

ArdD 40 HLV.LS

AvVAl XX/1¢/¢ NOW | §TOO0OL d1I"NVAT)
SAVAC XX/1¢/¢ NOW | dONdd HH.L LNIVd
AvVAl XX/T¢/¢ NOW | dIONHA AHL ANAS

NOILLVdd

LIV.LS

HAVN SV L

ArdD 40 HLV.LS

CA 02707635 2010-06-01

PCT/US2008/087923

WO 2009/088727

8/14

LDACOUd dAN-NVATD, <-{AINVN € §

AADVHL ADNVHD 40 HLV.LS
a9 S

8 OIA

.

LTS
OaN
LEYSHHSINIA ¢y 1TTADALYAdd

{HSINIA 25y 113D41Lvdd

1
1
1

ALNDAXH

{TAINOILLVINA T T1ADALVAd
OON

1
1

{CINOILLVENA T TTADALVAdN
ALNDAXA

{HSINIASNINNTODMOHS
OdNN
{HSINIA S NINNTODAAIH
ALNDAXA

{STO {ANVN € TTADALVAd
OaN

1
1

LD " HANVYN € TTADALVAdN
ALNDAXA

ADVLS OANI] HO ALV.LS

0¢9 S

AVd XX/1¢¢ NOW | LOdIOdd d(1"NVH T
SAVAC XX/T¢S NOW | JdONHA HHL LNIVd
AVd XX/1¢/¢ NOW HINAA AHL ANAS

NOILLVdd

HNVN JSV.L

ArdD 40 dLVLS

CA 02707635 2010-06-01

PCT/US2008/087923

WO 2009/088727

9/14

CT/S<-{HSINIA T}

[<-{NOLLVINA'C}

dAAODVHL HONVHD 40 HLVLS
0€9 S

AADVHL ADNVHD 40 HLV.LS
979 S

6 OIA

ADVLS OANI(]1 4O HLV LS
8¢9 S

LTS {HSINIA 25y 1T1TADALVdAdd
OON
LEYSHHSINIA ¢y 1TTADALYAdd

1
1
1

ALNDAXH

{TAINOILLVINA T T1ADALVAd
OON
{CINOILLVENA T 3 T1ADALYVAd

1
1
1

ALNDAXA

{HSINIASNINNTODMOHS
OdNN
{HSINIA S NINNTODAAIH
ALNDAXA

ADVLS OANI(] HO ALVLS
Va9 S

|

o
K
il
-

cg ArdO 40 LV LS

AVd XX/T¢S NOWN | STTOOL d(1"NVHT)
SAVAC XX/T¢S NOW | JdONHA HHL LNIVd 4

AVd XX/1¢/¢ NOW HINAA AHL ANAS |
NOILLVdd LIV.LS HNVN JSV.L

ArdD 40 dLVLS

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

10/14

START

DETECT DATA CHANGES IN SERVER
DOCUMENT OF SERVER VIA CLIENT-
BASED GRID

1000

ASSIGN ORDER KEYS TO CHANGES IN 1002
CHANGE NOTIFICATION

SEND CHANGE NOTIFICATION TO 1004
SERVER FOR VALIDATION

RECEIVE ASYNCHRONOUS
VALIDATION INFORMATION FROM

1006

SERVER BASED ON NOTIFICATIONS

ORDER VALIDATION INFORMATION IN 1008
GRID ACCORDING TO ORDER KEYS

MANAGE UNDO/REDO OPERATIONS IN
SERVER DOCUMENT BASED ON ORDER

KEYS

STOP

FIG. 10

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

11/14

START
RECEIVE CHANGE IN DATA VIA 1100
GRID

STORE TYPE OF CHANGE AND
FUNCTION TO EXECUTE UNDO/

1102
REDO OPERATION IN STACK

RECEIVE REVERSE OPERATION 1104

REMOVE UNDO OPERATIONS FROM
STACK AND REVERT UNTIL FIRST

1106

EXPLICIT CHANGE ENCOUNTERED

STOP

FIG. 11

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

12/14

START

INITIATE DATA CHANGES TO WEB
DOCUMENT OF SERVER VIA CLIENT
WEB APPLICATION

1200

STORE CHANGES AS ORDERED
HISTORY OF CHANGES IN CLIENT 1202
UNDO STACK AND CHANGE ENTRIES
IN CHANGE TRACKER

VALIDATE CHANGES AT SERVER 1204

RECEIVE VALIDATION INFORMATION
ASYNCHRONOUSLY FORM SERVER
INTO WEB APPLICATION

1206

MANAGE UNDO/REDO OPERATIONS
IN WEB DOCUMENT BASED ON
ORDERED HISTORY OF CHANGES IN
UNDO SACK AND CHANGE ENTRIES
IN CHANGE TRACKER

1208

STOP

FIG. 12

CA 02707635 2010-06-01

WO 2009/088727 PCT/US2008/087925
13/14
{— 1300
1302
lf-1330
PROCESSING 1304 OPERATING SYSTEM
UNIT 1"1332
1308 1306 i_ﬁ_P_P}_I%_TzQN_S__:
e 1334

1312

1336
e o
DATA !
o
r-———7 71 _. _ _,|, _
1324 | 1314 r\ -*’V_ 1314

INTERFACE

h——#

BUS

1322
DEVICE
INTERFACE
COMPUTER(S)
1350
NETWORK AN

ADAPTOR (WIRED/WIRELESS)

FIG. I3

CA 02707635 2010-06-01
WO 2009/088727 PCT/US2008/087925

14/14

1402 1404

CLIENT(S) SERVER(S)

COMMUNICATION
FRAMEWORK

1408 1410

1406

CLIENT DATA STORE(S) SERVER DATA STORE(S)

FIG. 14

CHANGE

COMPONENT

102

106

WEB
APPLICATION

REVERSE
COMPONENT

108

110

DATA GRID

104

DATA

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - abstract drawing

