发明名称

脉冲跨周期调制开关变换器低频波动抑制装置及方法

摘要

本发明公开了一种脉冲跨周期调制开关变换器低频波动抑制装置，包括控制电路和功率电路；控制电路包括电压检测装置、基准电压、比较器、D触发器、与门和驱动电路，电压检测装置和基准电压连接比较器，比较器连接D触发器，经与门，连接驱动电路；功率电路包括输入、开关装置、滤波装置、输出和RC积分装置，输入连接开关装置，经开关装置连接滤波装置和RC积分装置，经滤波装置和RC积分装置进入输出；驱动电路连接功率电路的开关装置。本发明的方法使开关电源在负载发生突变时，控制器能快速响应，使开关电源迅速恢复稳态，并且它的输出电压的纹波小，能跨周期调制，使变换器低频波动现象得到抑制，使电感电流与输出电压的纹波同步。
1. 脉冲跨周周期调制开关变换器低频波抑制装置，包括控制电路和功率电路，其特征在于；所述控制电路包括电压检测装置、基准电压、比较器、D触发器、与门和驱动电路，电压检测装置和基准电压都连接到比较器，比较器连接到D触发器，再经过与门，最后连接到驱动电路；所述功率电路包括输入、开关装置、滤波装置、输出和RC积分装置，输入连接到开关装置，经过开关装置后连接到滤波装置和RC积分装置，经过滤波装置和RC积分装置的作用后进入输出；所述控制电路的驱动电路连接到功率电路的开关装置。

2. 权利要求1中脉冲跨周周期调制开关变换器低频波抑制装置的抑制方法，具体步骤为：

 (1) 以时钟脉冲为基本信号，在每一个时钟周期开始的时刻，输出电压与基准电压比较，给后级D触发器提供控制信号；

 (2) 当输出电压大于基准电压时，比较器输出低电平，然后经过D触发器的同步和整形，使得时钟脉冲的上升沿将对应的控制信号通过，即控制电路不发出控制脉冲，屏障电源能量的输入；

 (3) 当输出电压小于基准电压时，比较器输出高电平，然后经过D触发器的同步和整形，使得时钟脉冲的上升沿将对应的控制脉冲输出，即控制电路发出控制信号，开关管在本周期内导通。

3. 根据权利要求2所述的脉冲跨周周期调制开关变换器低频波抑制方法，其特征在于；所述滤波装置包括电感和电容，开关装置导通时，输入对电感充电，同时RC积分装置对电感电流进行整流，同时将电感电流的信息反馈到输出。

4. 根据权利要求2所述的脉冲跨周周期调制开关变换器低频波抑制方法，其特征在于；当每个时钟的上升时刻来临时，D触发器和与门根据控制信号给出相应的控制信号。
脉冲跨周期调制开关变换器低频波抑制装置及方法

技术领域
[0001] 本发明涉及一种低频波动抑制系统及其抑制方法，特别涉及一种连续导电模式跨周期调制开关变换器低频抑制方法。

背景技术
[0002] 随着电力电子技术的高速发展，电力电子设备与人们的工作、生活的联系日益密切，而电子设备都离不开可靠的电源。由于开关电源相对于传统线性稳压电源具有效率高、体积小等方面的优势，使得开关电源技术逐渐成为人们应用和研究的热点。电力电子器件的飞速发展更是给开关电源提供了一个很大的发展空间，使其朝着体积小、重量轻、效率高、功率密度大等方向发展，引起业内人士的广泛关注，应用前景广阔。开关电源主要由功率变换器和控制器两部分构成。功率变换器又称为功率电路，主要包括开关装置、变压器装置和整流滤波电路。常见的功率变换器拓扑结构有 Buck 变换器（降压变换器）、Boost 变换器（升压变换器）、Buck-Boost 变换器（升降压变换器）、正激变换器、反激变换器等。控制电路能够检测功率变换电路输入或输出电压的变化，并据此产生相应开关信号控制功率变换电路开关装置的工作状态，从而调节传递给负载的能量以稳定开关电源输出。控制器的结构和工作原理由开关电源所采用的控制方法决定。对于同一功率电路拓扑，采用不同的控制方法会对系统的稳定性和动态性能等方面产生影响，因而控制方法的研究显得日益重要。目前，很多应用场合需要开关电源具有很好的瞬态响应速度，而采用传统的脉冲宽度调制 (PWM) 技术已很难满足这一要求。这就迫切的需要新的控制方法的出现。而脉冲跨周期调制具有轻载效率高的优点，非常适合用于待机工作模式。

[0003] 脉冲跨周期调制是一种变频、非线性调制方法。其工作原理为，每个开关周期开始时，时钟给出脉冲信号，控制器采样输出电压，当输出电压高于基准电压时，控制器不产生导通信号，即跨过一个开关周期，开关管处于截止状态，使输出电压下降；反之，当输出电压低于基准电压时，控制器产生控制脉冲作为开关管的驱动信号，输出电压上升。丰富的 PSM 技术比较简单，而且易实现。在负载较轻情况下效率高，工作频率高，频率特性好，功率管开关次数少，适用于小功率电源管理 IC。因此，PSM 技术比较限制运用到电感电流断续导电模式的情况。

[0004] 此外，目前使用的跨周期调制开关变换装置还存在如下不足。连续导电模式跨周期调制开关变换装置的输出电压纹波较大，并且该装置存在低频波动现象，而且该装置并不能有效抑制这个问题，而导致得不到工程应用。因而在很大程度上限制了控制电路的集成与推广。

发明内容
[0005] 本发明针对现有技术中连续导电模式跨周期调制开关变换装置存在的上述不足，本发明提供一种连续导电模式跨周期调制开关变换器低频波动抑制装置及方法。本发明的目的是通过电感电流注入式的方法，解决电路中纹波低频现象；本发明的另一个目的是抑制连续
导电模式跨周期调制开关变换器的低频波动。

[0006] 本发明的技术方案是：

脉冲跨周期调制开关变换器低频波动抑制装置，包括控制电路和功率电路；其特征在于：所述控制电路包括电压检测装置、基准电压、比较器、D触发器、与门和驱动电路，电压检测装置和基准电压都连接到比较器，比较器连接到D触发器，再经过与门，最后连接到驱动电路；所述功率电路包括输入、开关装置、滤波装置、输出和RC积分装置，输入连接到开关装置，经过开关装置后连接到滤波装置和RC积分装置，经过滤波装置和RC积分装置的作用后进入输出；所述控制电路的驱动电路连接到功率电路的开关装置。

[0007] 上述脉冲跨周期调制开关变换器低频波动抑制装置的抑制方法，具体步骤为：

(1) 以时钟脉冲为基本信号，在每一个时钟周期开始的时刻，输出电压与基准电压比较，给后级D触发器提供控制信号；

(2) 当输出电压大于基准电压时，比较器输出低电平，然后经过D触发器的同步和整形，使得时钟脉冲的上升沿将对应的控制信号跨过，即控制电路不发出控制脉冲，屏蔽电源能量的输入。

(3) 当输出电压小于基准电压时，比较器输出高电平，然后经过D触发器的同步和整形，使得时钟脉冲的上升沿将对应的控制脉冲输出，即控制电路发出控制信号，开关管在本周内导通。

[0008] 进一步，所述滤波装置包括电容和电容，开关装置导通时，输入对电感充电，同时RC积分装置对电感电流进行整流同时将电感电流的信息反馈到输出。

[0009] 进一步，当每个时钟的上升时刻来临时，D触发器和与门根据控制信号给出相应的控制信号。

[0010] 本发明的有益效果是：

1. 与传统的脉冲跨周期调制技术相比，采用本发明的开关电源在负载发生突变时，控制器能快速做出响应，使开关电源迅速恢复稳态；

2. 注入电流式电路最主要的特点是能够跨周期调制（PSM）CCM BUCK变换器低频波动现象进行抑制，使得电感电流与输出电压的纹波保持同步。

附图说明

[0011] 图1是本发明的控制系统实现装置结构框图；

图2是本发明实施例的普通电路结构示意图；

图3是本发明实施例的注入电流法电路结构示意图；

图4是本发明实施例的普通电路的输出电压纹波示意图；

图5是本发明实施例的注入电流法电路的输出电压纹波示意图；

图6是本发明实施例的普通电路的时域仿真波形图；

图7是本发明实施例的注入电流法电路的时域仿真波形图。

具体实施方式

[0012] 下面结合附图对本发明进行进一步详细说明。

[0013] 本发明的目的之一是通过电感电流注入式的方法，解决电路中纹波低频现象。所
采取的技术方案是根据电感、电阻和电容三者之间的关系，对输出电压的波纹和电感电流两者之间的相位进行调整，尽量使两者保持一致。所采用的具体技术方案为：当开关管闭合时，输入电源将同时通过电感和与其并联的 R 和 C，从而开关变换器的电感电流进行整流并提取电感电流的信号量。同时，电感电流的交流分量将通过耦合电容耦合到输出采样信号中。通过这种方法，可以使输出电压的纹波能够跟随电感电流的变化，使得两者几乎可以保持同步的关系。

本发明的另一个目的是抑制连续导电模式跨周期调制开关变换器的低频波动的装置。在同一发明构思下对应于抑制连续导电模式跨周期调制开关变换器的低频波动的装置。该注入电流整流装置由输入、开关装置、滤波装置、输出及 RC 分支电路组成。当开关装置打开时，输入经过滤波装置整流，同时对电感进行电冲。同时 RC 分支装置对滤波装置中的电感电流进行整流采样并反馈到输出，使得滤波装置中的电感电流与输出中输出电压的纹波保持同步一致。

图 1 中，虚线框外为控制电路，包括：电压检测装置、基准电压、比较器 S、D 触发器、与门和驱动电路。连接关系如下：电压检测装置和基准电压都连接到比较器，后传输到 D 触发器，再经与门，最后连接到驱动电路。虚线框内为功率电路，包括输入、开关装置、滤波装置、输出和 RC 分支电路。连接关系：输入连接到开关装置，经过开关装置后传输到滤波装置和 RC 分支，经过滤波装置的作用后输出。

对比图 2、图 3 和图 1，各器件之间的对应关系分别为：输入电压 E 对应输入，开关管（MOSFET）S 与二极管 D 对应开关装置，电感 L、电容 C 对应滤波装置，RC 分支电路对应 RC 分支装置负载 R 对应输出，基准电压 Vref 对应基准电压，比较器对比较器，D 触发器对 D 触发器，与门对应与门，驱动电路对应驱动电路。

图 2、图 3 中具体的连接情况为：输入电压 E 的正极与开关管（MOSFET）S 的漏极相接，负极与二极管 D 的阳极、电容 C 的一端和负载 R 的一端（输出负极）相接；开关管（MOSFET）S 的源极与二极管 D 的阴极和电感 L 的一端相接，电感 L 的另一端与电容 C 的一端和负载 R 的一端（输出正极）相接。RC 分支电路的一端与开关管（MOSFET）S 的源极相接，另一端与输出端相接；输出端端与比较器的负端相连，比较器的正端连接基准电压，比较器的输出端与 D 触发器的输入端相连，输出端与与门的输入端相连，与门的另一输入端与时钟脉冲相连，最后，与门的输出端与驱动电路的输入端相连，驱动电路的输出端与开关管（MOSFET）S 的控制端相连。

控制方法的实现如下：

步骤 1：开关 S 导通，电源 E 对电感 L 充电同时 RC 分支电路对电感电流进行整流同时将电感电流的信息反馈到输出。

步骤 2：输出电压与基准电压进行比较，给后级 D 触发器提供控制信号。

步骤 3：当每个时钟的上升时刻来临时，D 触发器和与门根据控制信号给出相应的控制信号。

图 4 至图 7 显示了连续导电模式跨周期调制开关变换器低频波动抑制技术在 Buck 变换器中的应用。

具体的工作过程与原理为：时钟脉冲为基本信号，在每一个时钟周期的开始时刻，输出电压与基准电压比较，输出电压大于基准电压，比较器将输出低电平，然后经过 D
触发器的同步和整形，使得时钟脉冲的上升沿将对应的控制信号跨过，即控制电路不发出控制脉冲，屏蔽电源的输入，从而降低输出电压；当输出电压小于基准电压，比较器将输出高电平，然后经过D触发器的同步和整形，使得时钟脉冲的上升沿将对应的控制脉冲输出，即控制电路发出控制信号，开关管在本周期内导通，从而提高输出电压。

0023 仿真结果分析：
图6中：上部为变换器电感电流时域仿真波形；中部为变换器输出电压时域仿真波形；下部为控制器输出的驱动信号时域仿真波形。

0024 由图7中：上部为注入电流法电路电感电流时域仿真波形；中部为注入电流法电路输出电压时域仿真波形；下部为控制器输出的驱动信号时域仿真波形。

0025 图4，图5，图6，图7均为采用PSIM软件对本发明的控制方法进行时域仿真的结果。图4和图5中的横轴均为时间ms，纵轴为输出电压V。图6、图7中的横轴均为时间ms，上部的纵轴为电感电流A，中部纵轴为输出电压V，下部的纵轴为驱动信号幅值Vref。图4和图5可知，二者变换器的输出电压比较。很明显，注入电流式的输出电压纹波比较小。图6中仿真条件：\(L = 15 \) V，\(V_o = 5 \) V，\(V_{ref} = 2.5 \) V，\(f = 20 \) kHz，\(L = 200 \) μH，\(C = 470 \) μF，\(R = 2 \) Ω。当\(R_{ESR} = 5 \) mΩ时，PSM控制连续导电模式Buck变换器存在纹波低频现象。由图可知，当\(t = 16.70 \) ms时，\(V_o = 4.435 \) V。

当\(t = 16.74 \) ms时，\(V_o = 4.361 \) V。可见，PSM控制CCM Buck变换器的输出电压得不到及时调整，而产生纹波低频现象。为了使输出电压的纹波与电感电流保持同步，R、电容等电路的时间常数必须满足\(\tau \gg \max [t_{on}，t_{off}] \)。所以，图7中的仿真条件：\(V_{ref} = 2.5 \) V，\(R = 300 \) kΩ，\(C = 33 \) nF，\(C = 100 \) nF。由图可知，当\(R_{ESR} = 5 \) mΩ时，输出采样电压的纹波能够跟随电感电流的变化，让两者能够保持同步变化。

0026 本发明除了可用于控制上述实施例中的功率变换器外，也可用于Boost变换器、Buck-boost变换器、正激变换器等功率电路组成的开关电源。