Title: SYSTEM AND METHOD FOR BAGGAGE RECLAIM

Abstract: An airport baggage reclaim system comprises passenger arrival verification means (14), e.g. a scanner for a passport or a boarding card, for extracting identification information associated with a passenger, thereby verifying the arrival of the passenger; flight identification means, responsive to receipt of the identification information associated with the passenger, for identifying the flight on which the passenger has arrived; and means for triggering the delivery of baggage for the identified flight in response to the arrival of one or more passengers from the identified flight as verified by the passenger arrival verification means. The items of baggage from a particular flight may be delivered to a baggage reclaim hall (16) after verification of the arrival of a predetermined number of passengers from the flight. Alternatively, the baggage may be temporarily stored in an arrival baggage store (24) and delivered to passengers individually on verification of passengers’ identity in the baggage reclaim hall (16).
DESCRIPTION

SYSTEM AND METHOD FOR BAGGAGE RECLAIM

The present invention relates to a system and method for baggage reclaim in airports.

In the known airport baggage reclaim process, when an aircraft has come to a final halt at the designated gate or designated position of the airport apron, the passengers disembark from the aircraft and head towards the arrivals hall (via the immigration area, if they have disembarked from an international flight) where they are directed to the baggage reclaim area where their baggage is collected from the reclaim unit (conveyor) which has been designated for that particular flight.

As the passengers make their way to the arrivals hall, the baggage from the disembarked aircraft is offloaded and is towed to the baggage reclaim area, where it is again offloaded onto the designated reclaim unit.

There are several problems which are frequently encountered with the existing reclaim process.

Firstly, the baggage may arrive at the designated reclaim unit before the passengers. As a consequence, baggage is not removed from the reclaim unit, which leads to congestion of the unit. It also prevents the reclaim unit from being used to deliver baggage from aircraft whose passengers have already arrived in the baggage reclaim area.
In addition, the early arrival of baggage increases the likelihood of baggage theft and baggage damage and an overloaded conveyor potentially raises health and safety issues.

The second frequently encountered problem is when the baggage for a particular flight arrives after the passengers for that flight have reached the baggage reclaim area. This results in congestion of the baggage reclaim area and potentially puts stress on facilities of the baggage reclaim area, for example on the number of baggage trolleys which will be taken by passengers in the arrivals hall waiting for their baggage to be delivered.

A third problem is that there is no efficient way to ensure timely delivery of baggage to premium class passengers. Although baggage for premium class passengers usually carries a distinctive label which designates the baggage as "priority" baggage, there is currently no reliable way of ensuring that the baggage is delivered in a timely fashion to premium class passengers, i.e. not too early or too late. Indeed, the tendency is for the "premium" baggage to be delivered as soon as possible, which then introduces a number of problems associated with the first issue discussed above, such as congestion of baggage reclaim units, increase in the likelihood of theft, etc.

It is an object of the present invention to overcome or alleviate the problems associated with the prior art.

In accordance with a first aspect of the present invention, an airport baggage reclaim system comprises:
passenger arrival verification means for extracting identification information associated with a passenger, verifying the arrival of the passenger;

flight identification means, responsive to receipt of the identification information associated with the passenger, for identifying the flight on which the passenger has arrived; and

means for triggering the delivery of baggage for the identified flight in response to the arrival of one or more passengers from the identified flight as verified by the passenger arrival verification means.

This allows delivery of baggage for a particular flight to the baggage reclaim area to be delayed until passengers from that flight are ready to collect it. In addition, if allows delivery of baggage for a particular flight to the baggage reclaim area be accelerated if passengers are ready to collect it.

Overall, the system allows the delivery of baggage for a particular flight to the reclaim area to be coordinated more closely to the arrival of passengers from that flight in the reclaim area.

The passenger arrival verification means may comprise means for inputting information by a passenger.

The passenger arrival verification means may comprise scanning means, e.g. means for scanning a passport, identity document, boarding card or baggage receipt.

Alternatively, or in addition, the passenger arrival verification means may comprise "passive" verification means, i.e. one which does not require a positive input from a passenger.
Examples of "passive" verification means include automatic face recognition means, means for reading information from a RF-enabled passport or other identifying document and means for detecting a signal from a wireless communication device such as a mobile telephone (cell phone), personal digital assistant (PDA) or personal computer, which device can be operated either by a passenger or by a member of the airport staff.

The baggage reclaim system may further comprise means for unloading the baggage from an aircraft at a common location and means for sorting the baggage into transfer baggage and final destination baggage.

This can significantly reduce the minimum connection time (MCI) as compared with existing systems, in which transfer baggage and final destination baggage from the same aircraft is offloaded at different locations.

Preferably, the means for sorting baggage comprises means for retrieving information associated with each item of baggage,

The means for retrieving information is preferably configured to retrieve coded information, e.g. a bar code or RF1D tag.

In accordance with a second aspect of the present invention, an airport baggage reclaim method comprises:

- extracting identification Information associated with a passenger, and verifying the arrival of the passenger;

- identifying the flight on which the passenger has arrived, on the basis of the extracted identification information; and
delivering the baggage for the identified flight in response to verification of the
arrival of one or more passengers from the flight.

The step of extracting identification information associated with a passenger, and
verifying the arrival of the passenger, may comprise inputting information by a
passenger.

The passenger may scan a document, e.g. a passport, identity document, boarding
card or baggage receipt.

Alternatively, or in addition, the identification information associated with the
passenger may be extracted "passively", i.e. without the requirement for a positive
input from a passenger.

Examples of "passive" verification include automatic face recognition, reading
information from a RF-enabled passport or other identifying document and detecting
a signal from a wireless communication device such as a mobile telephone (cell
phone), personal digital assistant (PDA) or personal computer, which device can be
operated either by a passenger or by a member of the airport staff.

In one embodiment, the baggage from an aircraft is unloaded at a common location
and is sorted into transfer baggage and final destination baggage.

This significantly reduces the minimum connection time (MCT) as compared with
existing baggage reclaim methods, in which transfer baggage and final destination
baggage from an aircraft are offloaded at different locations.

Preferably, the baggage is sorted into transfer baggage and final destination
baggage by retrieving information associated with each item of baggage.
Preferably the baggage is sorted by sensing coded information, e.g. on a bar code or RFID tag.

In accordance with a third aspect of the present invention, an airport baggage reclaim system comprises:

5 passenger arrival verification means for extracting identification information associated with a passenger, verifying the arrival of the passenger;

means for identifying the passenger associated with each of a plurality of items of baggage offloaded from an aircraft;

means for delivering an item of baggage for a particular passenger at a baggage reclaim location in response to verification of the arrival of the passenger by the passenger arrival verification means.

This allows the baggage of a particular passenger to be delivered to the baggage reclaim location at approximately the same time as the passenger arrives at the reclaim location.

The passenger arrival verification means may comprise means for inputting information by a passenger.

The passenger arrival verification means may comprise scanning means, e.g. means for scanning a passport, identity document, boarding card or baggage receipt.

Alternatively, or in addition, the passenger arrival verification means may comprise "passive" verification means, i.e. one which does not require a positive input from a passenger.
Examples of "passive" verification means include automatic face recognition means, means for reading information from a RF-enabled passport or other identifying document and means for detecting a signal from a wireless communication device such as a mobile telephone (cell phone), personal digital assistant (PDA) or personal computer, which device can be operated either by a passenger or by a member of the airport staff.

The system may further comprise means for scanning an identifying mark on the plurality of items of baggage.

This allows each item of baggage to be specifically "tagged" to a particular passenger and allows each relevant item of baggage to be located and delivered to the passenger when the passenger is likely to be ready to collect them.

The scanning means may comprise means for scanning a baggage identification label.

The system may further comprise means for temporary storage of baggage offloaded from an aircraft.

After identifying each stem of luggage, it can be stored in a known location in temporary storage and then delivered to the passenger when he or she is ready to collect it.

Preferably, the system comprises means for transporting baggage for a particular passenger from the temporary storage means to a delivery location in response to verification of the arrival of the passenger by the passenger arrival verification means.
The passenger arrival verification means may be located in the vicinity of the location where the baggage is to be delivered to passengers.

The baggage reclaim system may further comprise means for unloading the baggage from an aircraft at a common location and means for sorting the baggage into transfer baggage and final destination baggage.

This can significantly reduce the minimum connection time (MCT) as compared with existing systems, in which transfer baggage and final destination baggage from the same aircraft is offloaded at different locations.

Preferably, the means for sorting baggage comprises means for retrieving information associated with each item of baggage.

The means for retrieving information is preferably configured to retrieve coded information, e.g. a bar code or RFID tag.

In accordance with a fourth aspect of the present invention, an airport baggage reclaim method comprises:

- extracting identification information associated with a passenger, verifying arrival of the passenger;
- identifying the passenger associated with each of a plurality of items of baggage unloaded from an aircraft;
- delivering an item of baggage for a particular passenger in response to verification of the arrival of the passenger.
The step of extracting identification information associated with a passenger may comprise inputting information by a passenger.

The passenger may scan a document, e.g. a passport, identity document, boarding card or baggage receipt.

Alternatively, or in addition, the identification information associated with the passenger may be extracted "passively", i.e. without the requirement for a positive input from a passenger.

Examples of "passive" verification include automatic face recognition, reading information from a RF-enabled passport or other identifying document and detecting a signal from a wireless communication device such as a mobile telephone (cell phone), personal digital assistant (PDA) or personal computer, which device can be operated either by a passenger or by a member of the airport staff.

The method may further comprise the step of scanning an identifying mark on the plurality of items of baggage, e.g. the step of scanning a baggage identification label.

The method may further comprise temporarily storing baggage offloaded from an aircraft.

The method may further comprise transporting temporarily stored baggage for a particular passenger to a delivery location in response to verification of the arrival of the passenger.

The step of extracting identification information may take place in the vicinity of the location where baggage is delivered to passengers.
In one embodiment, the baggage from an aircraft is unloaded at a common location and is sorted into transfer baggage and final destination baggage.

This significantly reduces the minimum connection time (MCT) as compared with existing baggage reclaim methods, in which transfer baggage and final destination baggage from an aircraft are offloaded at different locations.

Preferably, the baggage is sorted into transfer baggage and final destination baggage by retrieving information associated with each item of baggage.

Preferably the baggage is sorted by sensing coded information, e.g. on a bar code or RFID tag.

By way of example only, specific embodiments of the present invention will now be described with reference to the accompanying drawings, in which:

Fig. 1 is a diagrammatical illustration of a first embodiment of baggage reclaim system and method in accordance with the present invention;

Fig. 2 is a diagrammatic illustration of a first variation of the system and method of Fig. 1;

Fig. 3 is a diagrammatic illustration of a second variation of the system and method of Fig. 1; and

Fig. 4 is a diagrammatic illustration of a variation of the system and method of Fig. 2.

Fig. 1 is a diagrammatical illustration of the arrival of two flights, flight X and flight Y, at the pier 10 of an arrivals terminal 12 in an airport. The arrivals process essentially comprises four main stages, identified as 1 to 4 in Fig. 1, namely:
1. Disembarkation of passengers from the aircraft and transferring to the terminal

2. Queuing for, and passing through, the immigration area (for arrivals from international flights - for domestic flights passengers would not normally be required to pass through an immigration area).

3. Determining the baggage reclaim unit, as shown on display screens in the arrivals area.

4. Collecting the baggage delivered onto the appropriate baggage reclaim unit.

As shown at item 1, passengers from each aircraft disembark and make their way along the pier towards the arrivals area. On the journey to the arrivals area (and before the immigration area 2, for international flights), the passengers pass an identification device 14. The identification device 14 can take many forms, and indeed several different types of identification devices can be used, if desired. However, examples of the identification device 10 are a passport scanner, a boarding pass scanner or a baggage receipt scanner. For each of these, passengers would be prompted to take the necessary action.

Further options would be to extract passenger identification information passively, i.e. without the need for positive input from a passenger. For example, there may be one or more RF scanners which automatically read information from RF-enabled passports (or other identifying documents), which are becoming increasingly common and which will ultimately become universal. Other "passive" identification options include automatic face recognition and/or automatic passenger count recognition and detecting a signal from a wireless communication device such as a mobile telephone (cell phone), personal digital assistant (PDA) or personal
computer, which device can be operated either by a passenger or by a member of the airport staff.

If the passenger is directly identified by means which does not include the passenger's flight number, then it will be necessary to cross-reference the name of the passenger with the passenger list in order to identify the flight, but this can be done automatically by means of a computer. Information extracted from a boarding card or a baggage receipt will already include information which identifies the flight and thereby indicates that one or more passengers from a particular flight are at the identification unit 10.

Depending upon the configuration of the particular airport, a judgement can then be taken as to when passengers from a particular flight are likely to start arriving in the reclaim hall 16 and the baggage which has been unloaded from the particular flight can then be offloaded onto an appropriate reclaim unit 18 at approximately the correct time. The identification of the correct reclaim unit for the baggage from a particular flight can be displayed on a series of screens, illustrated schematically at 20. Depending on the circumstances, the baggage from more than one flight might be offloaded onto the same reclaim unit 18.

As a further alternative, subject to cooperation with the immigration authorities, the scanning of a passport at the immigration area 2 can take the place of a separate identification unit 10, although this is likely to provide insufficient time for the baggage to be offloaded onto the appropriate reclaim unit 18, at least for the earliest passengers of a particular flight who pass through immigration. Moreover, this would
not be an appropriate solution for domestic flights, where it is not necessary to pass through immigration.

The process may take place automatically. Alternatively, or in addition, there may be a reclaim control unit, indicated generally at 22, for manual input of information and/or control of the system, if desired.

By using the above process and method, it is possible more accurately to coordinate the offloading of bags for a particular flight onto the appropriate reclaim unit with the arrival of passengers from that flight. It should also be noted that the trigger to commence offloading of baggage for a particular flight onto the designated reclaim unit could be from a single passenger or could be after a predetermined number of passengers have from a particular flight have been identified at the identification device 14.

A second embodiment of the present invention is illustrated in Fig. 2.

One potential disadvantage with the first embodiment is that it treats passengers on a "batch" basis, namely that it uses the information provided by a passenger to identify the flight on which the passenger has travelled, and uses that information to trigger the offloading of all of the baggage for that flight onto the appropriate baggage reclaim unit, irrespective of whether a particular passenger is ready to collect his or her baggage. The second embodiment of the invention aims to associate particular baggage items with the relevant passenger rather than to handle the passengers on a "batch" basis.

The second embodiment, illustrated that diagrammatically in Fig. 2 is very similar to that of Fig. 1 and the same reference numerals denote corresponding features.
However, in addition to the arrangement of Fig. 1, the second embodiment includes an arrived baggage cache or store 24 into which all incoming bags are offloaded.

In one arrangement, each bag is identified uniquely by a bar code or other identifying information applied to the individual piece of baggage. This operation can take place either manually or automatically. Each item of baggage is then stored separately in a known location in the arrived baggage cache 24 and can be offloaded automatically onto a delivery conveyor and thereby delivered to the appropriate reclaim unit 18. In this case, it is necessary for each passenger to be identified, whether by way of passport, boarding card, baggage receipt, face recognition device, signal from a wireless communication device, etc., and upon providing such information, the specific items of baggage associated with that passenger will be delivered to the appropriate reclaim unit 18 after a time which corresponds approximately to the length of time estimated for the journey from the identification device, through immigration (if appropriate) and to the reclaim hall.

In an alternative arrangement, baggage from a particular flight is "batch coded", i.e. all items of baggage from a particular flight (perhaps with the exception of baggage for premium class passengers, which may be treated separately) are given the same code, either individually or as a batch, and then stored in the arrived baggage cache 24, either at separate locations in the cache or in a batch. The batch of items is then offloaded onto the appropriate baggage reclaim unit 18 when a predetermined number of passengers (one or more, depending on the circumstances) have been identified as described previously, perhaps after an appropriate delay corresponding to the length of time estimated for the journey from the identification device through immigration (if appropriate) and to the reclaim hall.
In each of these alternative arrangements, hardware (e.g. an alphanumeric keypad connected to the baggage arrivals control system) would be required to generate the relevant batch identification code at the baggage input load point adjacent to each reclaim.

The second embodiment can also be modified, if desired, depending upon the configuration of the airport and the time take to deliver baggage from the arrived baggage cache to the appropriate reclaim units. If the delivery time from the arrived baggage cache 24 is only a matter of seconds, then the identification unit 14' can be moved downstream in the passenger's route, perhaps to immediately after immigration, or indeed adjacent to the appropriate reclaim unit, depending upon the circumstances.

The second embodiment would also facilitate the delivery of luggage for premium class passengers to a dedicated baggage reclaim area, if desired.

A third embodiment, which is a second variation of the system and method of Fig. 1 is illustrated diagrammatically in Fig. 3. The third embodiment is very similar to that of Fig. 1 and the same reference numerals denote corresponding features.

The difference between the embodiments of Figs 1 and 3 lies in the treatment of baggage after being unloaded from an aircraft. With the embodiment of Fig. 1, when baggage is unloaded, it is placed into either a unit load device (ULD) or a loose load baggage cart. Normally, both baggage to be transferred ("transfer baggage") and final destination baggage (i.e. baggage to be returned to arriving passengers) are coupled up in trains of multiple ULDs or baggage carts, which are then driven across
the apron to the baggage unloading points for transfer baggage and final destination baggage.

Certain unloading points are for transfer baggage only and others are for destination baggage only. The final destination baggage is normally unloaded before the transfer baggage, but this order can be reversed. The minimum connection time (MCT) dock starts when the brakes are applied to the aircraft. Further time inputs are recorded when the first and last pieces of transfer baggage are unloaded at the correct transfer baggage unloading point and at the correct final destination baggage unloading point. The sequential nature of the unloading at different points for transfer baggage and final destination baggage is inefficient and results in increased MCTs.

In the embodiment of Fig. 3, the baggage is unloaded from the aircraft onto ULDs or loose load baggage carts, as for the Fig. 1 embodiment. However, all of the items of baggage from a particular flight are unloaded from the ULDs or baggage carts at the same unloading point of one of a series of unloaded baggage sorting devices 26. The sorting devices have one or more readers configured to identify each item of baggage, typically by reading a bar code label or an RFID tag applied to each item of baggage at the time of check-in. On the basis of the information retrieved from each item of baggage, it is determined whether the item is an item of transfer baggage or an item of final destination baggage. This can be done on the basis of information extracted by the one or more readers (e.g. if the relevant information is contained within a bar code or stored on a RFID tag) or by looking up a database which identifies the final destination of each item of baggage. The items of baggage identified as transfer baggage are treated accordingly and the items of final
destination baggage are sent to the appropriate baggage reclaim unit 18, as for the first embodiment.

The fourth embodiment, illustrated diagrammatically in Fig. 4, is very similar to the embodiments of Fig. 2 and 3 and the same reference numerals are used to identify corresponding features. The difference between the embodiments of Figs. 2 and 4 is that, as for the embodiment of Fig. 3, all of the items of baggage from each aircraft are unloaded at the same unloading point of one of a plurality of unloaded baggage sorting devices 28, identical to those of Fig. 3. However, instead of directing final destination baggage to the baggage reclaim units as in Fig. 3, it is instead directed to an arrival baggage store 24 and is then treated in the same way as in the embodiment of Fig. 2.

The invention is not restricted to the details of the foregoing embodiments.
CLAIMS

1. An airport baggage reclaim system comprising:

 passenger arrival verification means for extracting identification information associated with a passenger, verifying the arrival of the passenger;

 flight Identification means, responsive to receipt of the identification information associated with the passenger, for identifying the flight on which the passenger has arrived; and

 means for triggering the delivery of baggage for the identified flight in response to the arrival of one or more passengers from the identified flight as verified by the passenger arrival verification means.

2. An airport baggage reclaim system as claimed in claim 1, wherein the passenger arrival verification means comprises means for inputting information by a passenger,

3. An airport baggage reclaim system as claimed in claim 2, wherein the passenger arrival verification means comprises scanning means.

4. An airport baggage reclaim system as claimed in claim 3, wherein the passenger arrival verification means comprises means for scanning a passport, identity document, boarding card or baggage receipt.

5. An airport baggage reclaim system as claimed in any of the preceding claims, wherein the passenger arrival verification means comprises passive verification means.
8. An airport baggage reclaim system as claimed in claim 5, wherein the passenger arrival verification means comprises automatic face recognition means.

7. An airport baggage reclaim system as claimed in claim 5 or claim 6, wherein the passenger arrival verification means comprises means for reading information from a RF-enabled passport or other identifying document.

8. An airport baggage reclaim system as claimed in any of claims 5 to 7, wherein the passenger arrival verification means comprises means for detecting a signal from a wireless communication device.

9. An airport baggage reclaim system as claimed in any of claims 1 to 8, further comprising means for unloading the baggage from an aircraft at a common location and means for sorting the baggage into transfer baggage and final destination baggage.

10. An airport baggage reclaim system as claimed in claim 9, wherein the means for sorting baggage comprises means for retrieving information associated with each item of baggage.

11. An airport baggage reclaim system as claimed in claim 10, wherein the means for retrieving information is configured to receive coded information, e.g. on a barcode or RFID tag.

12. An airport baggage reclaim method comprising:

 extracting identification information associated with a passenger, and verifying the arrival of the passenger;
identifying the flight on which the passenger has arrived, on the basis of the extracted identification information; and

delivering the baggage for the identified flight in response to verification of the arrival of one or more passengers from the flight.

13. An airport baggage reclaim method as claimed in claim 12, wherein the step of extracting identification information associated with a passenger, and verifying the arrival of the passenger, comprises inputting information by a passenger.

14. An airport baggage reclaim method as claimed in claim 13, wherein the passenger scans a document.

15. An airport baggage reclaim method as claimed in claim 14, wherein the passenger scans a passport, identity document, boarding card or baggage receipt.

16. An airport baggage reclaim method as claimed in any of claims 12 to 15, wherein identification information associated with the passenger is extracted passively.

17. An airport baggage reclaim method as claimed in claim 18, wherein identification information associated with the passenger is extracted by means of automatic face recognition.

18. An airport baggage reclaim method as claimed in claim 18 or claim 17, wherein identification information associated with the passenger is extracted by reading information from a RF-enabled passport or other identifying document.
19. An airport baggage reclaim method as claimed in any of claims 18 to 18, wherein identification information associated with the passenger is extracted by detecting a signal from a wireless communication device.

20. An airport baggage reclaim method as claimed in any of claims 12 to 19, wherein the baggage from an aircraft is unloaded at a common location and is sorted into transfer baggage and final destination baggage.

21. An airport baggage reclaim method as claimed in claim 20, wherein the baggage is sorted into transfer baggage and final destination baggage by retrieving information associated with each item of baggage,

22. An airport baggage reclaim method as claimed in claim 21, wherein the baggage is sorted by sensing coded information, e.g. on a bar code or RFID tag.

23. An airport baggage reclaim system comprising:

 passenger arrival verification means for extracting identification information associated with a passenger, verifying the arrival of the passenger;

 means for identifying the passenger associated with each of a plurality of items of baggage offloaded from an aircraft;

 means for delivering an item of baggage for a particular passenger in response to verification of the arrival of the passenger by the passenger arrival verification means,

24. An airport baggage reclaim system as claimed in claim 23, wherein the passenger arrival verification means comprises means for inputting information by a passenger.
25. An airport baggage reclaim system as claimed in claim 24, wherein the passenger arrival verification means comprises scanning means.

28. An airport baggage reclaim system as claimed in claim 25, wherein the passenger arrival verification means comprises means for scanning a passport, identity document, boarding card or baggage receipt.

27. An airport baggage reclaim system as claimed in any of claims 23 to 28, wherein the passenger arrival verification means comprises passive verification means.

28. An airport baggage reclaim system as claimed in claim 27, wherein the passenger arrival verification means comprises automatic face recognition means.

29. An airport baggage reclaim system as claimed in claim 27 or claim 28, wherein the passenger arrival verification means comprises means for reading information from a RF-enabled passport or other identifying document.

30. An airport baggage reclaim system as claimed in any of claims 27 to 29, wherein the passenger arrival verification means comprises means for detecting a signal from a wireless communication device.

31. An airport baggage reclaim system as claimed in any of claims 23 to 30, comprising means for scanning an identifying mark on the plurality of items of baggage.

32. An airport baggage reclaim system as claimed in claim 31, comprising means for scanning a baggage identification label.
33. An airport baggage reclaim system as claimed in any of claims 23 to 32, further comprising means for temporary storage of baggage offloaded from an aircraft.

34. An airport baggage reclaim system as claimed in claim 33, comprising means for transporting baggage for a particular passenger from the temporary storage means to a delivery location in response to verification of the arrival of the passenger by the passenger arrival verification means.

35. An airport baggage reclaim system as claimed in any of claims 23 to 34, wherein the passenger arrival verification means is located in the vicinity of the location where the baggage is to be delivered to passengers.

36. An airport baggage reclaim system as claimed in any of claims 23 to 35, further comprising means for unloading the baggage from an aircraft at a common location and means for sorting the baggage into transfer baggage and final destination baggage,

37. An airport baggage reclaim system as claimed in claim 38, wherein the means for sorting baggage comprises means for retrieving information associated with each item of baggage.

38. An airport baggage reclaim system as claimed in claim 37, wherein the means for retrieving information is configured to retrieve coded information, e.g. on a bar code or RFID tag.

39. An airport baggage reclaim method comprising:
extracting identification information associated with a passenger, verifying
arrival of the passenger;

identifying the passenger associated with each of a plurality of items of
baggage unloaded from an aircraft;

delivering an item of baggage for a particular passenger in response to
verification of the arrival of the passenger.

40. An airport baggage reclaim method as claimed in claim 39, wherein the step
of extracting identification information associated with a passenger comprises
inputting information by a passenger.

41. An airport baggage reclaim method as claimed in claim 40, wherein the
passenger scans a document.

42. An airport baggage reclaim method as claimed in claim 41, wherein the
passenger scans a passport, identity document, boarding card or baggage receipt.

43. An airport baggage reclaim method as claimed in any of claims 39 to 42,
wherein identification information associated with the passenger is extracted
passively.

44. An airport baggage reclaim method as claimed in claim 43, wherein the
identification information associated with the passenger is extracted by means of
automatic face recognition.
45. An airport baggage reclaim method as claimed in claim 43 or claim 44, wherein identification information associated with the passenger is extracted by reading information from a RF-enabled passport or other identifying document.

46. An airport baggage reclaim method as claimed in any of claims 43 to 45, wherein identification information associated with the passenger is extracted by detecting a signal from a wireless communication device.

47. An airport baggage reclaim method as claimed in any of claims 39 to 48, comprising the step of scanning an identifying mark on the plurality of items of baggage.

48. An airport baggage reclaim method as claimed in claim 47, comprising the step of scanning a baggage identification label.

49. An airport baggage reclaim method as claimed in any of claims 39 to 48, comprising temporarily storing baggage offloaded from an aircraft.

50. An airport baggage reclaim method as claimed in claim 49, comprising transporting temporarily stored baggage for a particular passenger to a delivery location in response to verification of the arrival of the passenger.

51. An airport baggage reclaim method as claimed in any of claims 39 to 50, wherein the step of extracting identification information takes place in the vicinity of the location where baggage is delivered to passengers.

52. An airport baggage reclaim method as claimed in any of claims 39 to 51, wherein the baggage from an aircraft is unloaded at a common location and is sorted into transfer baggage and final destination baggage.
53. An airport baggage reclaim method as claimed in claim 52, wherein the baggage is sorted into transfer baggage and final destination baggage by retrieving information associated with each item of baggage.

54. An airport baggage reclaim method as claimed in claim 53, wherein the baggage is sorted by sensing coded information, e.g. on a bar code or RRD tag.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. G06Q10/00
ADD.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
G06Q B64F B65G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, INSPEC, IBM-TDB, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>paragraph [0010] - paragraph [0039]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0049] - paragraph [0052]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0054] - paragraph [0062]</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 3 695 462 A (SULLIVAN NORMAN M) 3 October 1972 (1972-10-03) abstract</td>
<td>1-54</td>
</tr>
<tr>
<td></td>
<td>col umn 4, line 40 - col umn 5, line 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col umn 8, line 29 - line 59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col umn 10, line 15 - col umn 12, line 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0030]</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another invention or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance: the claimed invention cannot be considered without the teachings of the document
"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone
"E" document member of the same patent family

Date of the actual completion of the international search: 13 February 2012
Date of mailing of the international search report: 28/02/2012

Name and mailing address of the ISA/ EPO
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer
Bohner, Michael
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2010076796 A1</td>
<td>25-03-2010</td>
<td>CN 101683898 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102008048741 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2168873 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010076796 A1</td>
</tr>
<tr>
<td>US 3695462 A</td>
<td>03-10-1972</td>
<td>JP 52029502 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3695462 A</td>
</tr>
<tr>
<td>US 2009295544 A1</td>
<td>03-12-2009</td>
<td>CN 101643117 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102008025248 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2128826 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009295544 A1</td>
</tr>
<tr>
<td>DE 102006030608 A1</td>
<td>10-01-2008</td>
<td>NONE</td>
</tr>
</tbody>
</table>