Title: PHARMACEUTICAL PREPARATION COMPRISING RECOMBINANT hCG

Abstract: Preparations including recombinant hCG (r hCG).
PHARMACEUTICAL PREPARATION COMPRISING RECOMBINANT HCG

The present invention relates to gonadotrophins for use in the treatment of infertility. In particular it relates to human chorionic gonadotropin (hCG).

The gonadotrophins are a group of heterodimeric glycoprotein hormones which regulate gonadal function in the male and female. They include follicle stimulating hormone (FSH), luteinising hormone (LH) and chorionic gonadotrophin (CG).

Human chorionic gonadotrophin (hCG) is naturally secreted by the anterior pituitary gland and functions to support follicular development and ovulation. hCG comprises a 92 amino acid alpha sub-unit, also common to the other glycoprotein hormones LH and FSH, and a 145 amino acid beta sub-unit unique to hCG, which dictates the hormone specificity. Each sub-unit is post translationally modified by the addition of complex carbohydrate residues. The alpha sub-unit contains 2-N-linked glycosylation sites at amino acids 52 and 78 and the beta sub-unit contains 2-N-linked glycosylation sites at amino acids 13 and 30 and four O-linked glycosylation sites at amino acids 121, 127, 132 and 138.

hCG extracted from the urine of pregnant women [Choragon (Ferring)] has been used for many years in infertility treatment. The production of hCG extracted from urine involves the collection and processing of large amounts of urine. A recombinant version of hCG, Ovitrelle (Serono), is available. This is expressed in Chinese hamster ovary (CHO) cells. The known recombinant hCG product has a different pharmacokinetic profile to hCG produced from humane urine. It is desirable to have an hCG product that more closely replicates or mimics the pharmacokinetic profile of the product produced from human urine.
There is considerable heterogeneity associated with hCG preparations which relates to differences in the amounts of various isoforms present. Individual hCG isoforms exhibit identical amino acid sequences but differ in the extent to which they are post-translationally modified; particular isoforms are characterised by heterogeneity of the carbohydrate branch structures and differing amounts of sialic acid (a terminal sugar) incorporation, both of which appear to influence the specific isoform bioactivity.

Glycosylation of natural hCG is highly complex. The glycans in naturally derived pituitary hCG can contain a wide range of structures that can include combinations of bi-, tri- and tetra-antennary glycans. The glycans can carry further modifications: core fucosylation, bisecting glucosamine, chains extended with acetyl lactosamine, partial or complete sialylation, sialylation with a2,3 and a2,6 linkages, and sulphated galactosamine substituted for galactose. Furthermore, there are differences between the distributions of glycan structures at the individual glycosylation sites.

The glycosylation of recombinant hCG ("rhCG") products reflects the range of glycosyl-transferases present in the host cell line. The existing rhCG product, Ovitrelle, is derived from engineered Chinese hamster ovary cells (CHO cells). The range of glycan modifications in CHO derived rhCG are more limited than those found on the natural products, derived from urine. Examples of the reduced glycan heterogeneity found in CHO derived rhCG include a lack of bisecting glucosamine and a reduced content of core fucosylation and acetyl lactosamine extensions. In addition, CHO cells are only able to add sialic acid using the a2,3 linkage (Kagawa et al., 1988, Takeuchi et al., 1988, Svensson et al., 1990). This is different from naturally produced hCG which contains glycans with a mixture of a2,3 and a2,6-linked sialic acid.

It has been demonstrated that a recombinant FSH preparation (Organon) differs in the amounts of FSH with an isoelectric point (pi) of
below 4 (considered the acidic isoforms) when compared to pituitary, serum or post-menopausal urine FSH (Ulloa-Aguirre et al. 1995). The amount of acidic isoforms in the urinary preparations of FSH was much higher as compared to the recombinant products, Gonal-f (Serono) and Puregon (Organon) (Andersen et al. 2004). This must reflect a lower molar content of sialic acid in rFSH since the content of negatively-charged glycan modified with sulphate is low in FSH. The lower sialic acid content, compared to natural FSH, is a feature of both commercially available FSH products and therefore must reflect a limitation in the manufacturing process (Bassett and Driebergen, 2005). The circulatory life-time of FSH has been documented for materials from a variety of sources. Some of these materials have been fractionated on the basis of overall molecular charge, as characterised by their pi, in which more acid equates to a higher negative charge. The major contributor to overall molecular charge is the total sialic content of each FSH molecule. For instance, rFSH (Organon) has a sialic acid content of around 8 mol/mol, whereas urine-derived FSH has a higher sialic acid content (de Leeuw et al. 1996). The corresponding plasma clearance rates in the rat are 0.34 and 0.14 ml/min (Ulloa-Aguirre et al. 2003). In another example where a sample of recombinant FSH was split into high and low pi fractions, the in vivo potency of the high pi (lower sialic acid content) fraction was decreased and it had a shorter plasma half-life (D'Antonio et al. 1999). The applicants have found that, similar to FSH, the known, CHO derived, recombinant hCG product (e.g. Ovitrelle) also has a lower amount of hCG with an isoelectric point (pi) of below 4 (considered the acidic isoforms) than urinary hCG, also reflecting a lower sialic acid content of the known rhCG product compared to urinary hCG.

The total sialic acid content of hCG and rhCG is not directly comparable since sialic acids are commonly linked in two ways. Pituitary/serum/urinary hCG contain both a2,3 and a2,6-linked sialic acid, with a predominance of the former. However, CHO cell derived recombinants only contain a2,3 (Kagawa et al, 1988, Takeuchi et al, 1988, Svensson et
a/., 1990). In other words, recombinant proteins expressed using the CHO system will differ from their natural counterparts in their type of terminal sialic acid linkages. This is another difference between natural and current recombinant products in addition to the lower overall sialic acid content of the latter, and is an important consideration in the production of biologicals for pharmaceutical use since the carbohydrate moieties may contribute to the pharmacological attributes of the molecule.

It is therefore desirable to have a rhCG product that more closely replicates or mimics the physiochemical and pharmacokinetic profile of the product produced from human urine. It is desirable to have a rhCG product that has improved pharmacokinetic property or properties compared to the known recombinant product.

According to the present invention there is provided recombinant hCG ("rhCG" or "rechCG") including a2, 3 sialylation and a2, 6 sialylation and, optionally, a2, 8 sialylation. The rhCG (or rhCG preparation) according to the invention may have a sialic acid content [expressed in terms of a ratio of moles of sialic acid to moles of protein] of 15 mol/mol or greater, for example of from 15 mol/mol to 25 mol/mol, for example from 17 mol/mol to 24 mol/mol, for example from 17.7 mol/mol to 23 mol/mol, for example from 18 mol/mol to 22 mol/mol, for example from 19 mol/mol to 21 mol/mol, for example from 19 mol/mol to 20 mol/mol. The rhCG (or rhCG preparation) according to the invention may have 10% or more of the total sialylation being a2,3-sialylation. For example, 45% to 80% of the total sialylation may be a2,3-sialylation, for example 50% to 70% of the total sialylation may be a2,3-sialylation, for example 55 to 65% of the total sialylation may be a2,3-sialylation. For example 65-85% of the total sialylation may be a2,3-sialylation. The rhCG (or rhCG preparation) of the invention may have 50% or less of the total sialylation being a2,6-sialylation. For example, 20-55% of the total sialylation may be a2,6-sialylation, for example, 30-50% of the total sialylation may be a2,6-sialylation, for example, 35-45% of the total sialylation may be a2,6-sialylation. For example 15-35% of the total sialylation may be a2,6-
sialylation. The rhCG (or rhCG preparation) of the invention may have 5% or less of the total sialylation being a2,8-sialylation, for example 0 to 4%, e.g. 0.1-4% of the total sialylation may be a2,8-sialylation. The rhCG (or rhCG preparation) of the invention may have no a2,8-sialylation.

The applicants have developed a human derived recombinant hCG which has a more acidic profile than the CHO derived product, Ovitrelle, and which has a higher sialic acid content. The applicants' research indicates that the type of sialic acid linkage, a2,3- or a2,6-, can have a dramatic influence on biological clearance of hCG. Human cell lines, as opposed to CHO cell lines, can express recombinant hCG with sialic acids attached by both a2,3 and a2,6 linkages.

Recombinant hCG with a mixture of both a2,3 and a2,6-linked sialic acid was made by engineering a human cell line to express both rhCG and a2,3 sialyltransferase (Examples 4, 5a and 5b). The expressed product is highly acidic and carries a mix of both a2,3- and a2,6-linked sialic acids; the latter provided by the endogenous sialyl transferase activity. This has two advantages over rhCG expressed in conventional CHO cells: first the material is more highly sialylated due to the combined activities of the two sialyltransferases; and secondly the material more closely resembles the natural hCG. This is likely to be more biologically appropriate compared to CHO cell derived recombinant products that have produce only a2,3 linked sialic acid and have decreased sialic acid content.

The applicants have surprisingly found that rhCG of the invention may more closely replicate or mimic the physiochemical and pharmacokinetic profile of the natural human urinary product than other recombinant products. In other words, rhCG of the invention may be closer to the "natural" hCG. This may have significant advantages regarding dosing etc. Further, a more "natural" or more "human" product may be more desirable to the patient, who may desire therapy, although in a sense artificial, to be as "natural" as possible. There may be other advantages (e.g. pharmacokinetic advantages) in a recombinant hCG product having...
carbohydrate (e.g. glycan) structure which is closer to natural (e.g. human urinary) hCG than other recombinant products.

The invention is thus a recombinant version of hCG which carries a mix of a2,3 and a2,6 sialic acid and therefore more closely resembles natural hCG. It is expected that the use of this compound for controlled ovarian stimulation, in IVF techniques, and ovulation induction will result in a more natural stimulation of the ovary compared to existing recombinant products.

According to the present invention there is provided recombinant hCG ("rhCG" or "rechCG") (and/or a recombinant hCG preparation) including a2,3 sialylation and a2,6 sialylation. The rhCH or rhCG preparation may optionally further include a2,8 sialylation.

Herein term "recombinant hCG preparation" includes a preparation for e.g. pharmaceutical use which includes recombinant hCG. In embodiments of the invention, the rhCG may be present as a single isoform or as a mixture of isoforms.

The rhCG (or rhCG preparation) according to the invention may have a sialic acid content [expressed in terms of a ratio of moles of sialic acid to moles of protein] of 15 mol/mol or greater (Example 8), for example of from 15 mol/mol to 25 mol/mol, for example from 17 mol/mol to 24 mol/mol, for example from 17.7 mol/mol to 23 mol/mol, for example from 18 mol/mol to 22 mol/mol, for example from 19 mol/mol to 21 mol/mol, for example from 19 mol/mol to 20 mol/mol. The rhCG of the invention may be produced or expressed in a human cell line.

The rhCG (or rhCG preparation) according to the invention may have 10% or more of the total sialylation being a2,3-sialylation. For example, 20, 30, 40, 45, 50, 55, 60, 70, 80 or 90% or more of the total sialylation may be a2,3-sialylation. The rhCG (or rhCG preparation) may include a2,3-sialylation in an amount which is from 45% to 80% of the total sialylation, for example 50% to 70% of the total sialylation, for example 55...
to 65% of the total sialylation. The rhCG (or rhCG preparation) may include a2,3-sialylation in an amount which is from 65 to 85% of the total sialylation, for example from 70 to 80% of the total sialylation, for example from 71 to 79% of the total sialylation. The rhCG (or rhCG preparation) of the invention may have 50% or less of the total sialylation being a2,6-sialylation. For example 45, 40, 30, 20, 10, 5% or less of the total sialylation may be a2,6-sialylation. The rhCG (or rhCG preparation) may include a2,6-sialylation in an amount which is from 20-55% of the total sialylation, for example, 30-50% of the total sialylation, for example 35-45% of the total sialylation. The rhCG (or rhCG preparation) may include a2,6-sialylation in an amount which is from 15 to 35% of the total sialylation, for example from 20 to 30% of the total sialylation, for example from 21 to 29% of the total sialylation. The rhCG (or rhCG preparation) of the invention may have 5% or less of the total sialylation being a2,8-sialylation. For example 2.5% or less of the total sialylation may be a2,8-sialylation. The rhCG (or rhCG preparation) may include a2,8-sialylation in an amount which is from 0 to 4% of the total sialylation, for example 0.1 to 4% of the total sialylation, for example from 0.5 to 3% of the total sialylation, for example from 0.5 to 2.5% of the total sialylation. The rhCG (or rhCG preparation) of the invention may have no a2,8-sialylation. By sialylation it is meant the amount of sialic residues present on the hCG carbohydrate structures. a2,3-sialylation means sialylation at the 2,3 position (as is well known in the art) and a2,6 sialylation at the 2,6 position (also well known in the art). Thus "% of the total sialylation may be a 2,3 sialylation" refers to the % of the total number of sialic acid residues present in the hCG which are sialylated in the 2,3 position. The term "% of the total sialylation being a2,6-sialylation" refers to the % of the total number of sialic acid residues present in the hCG which are sialylated in the 2,6 position.

The rhCG (or rhCG preparation) according to the invention may have a sialic acid content (amount of sialylation per hCG molecule) of (based on the mass of protein, rather than the mass of protein plus carbohydrate) of 6% or greater (e.g. between 6% and 15%, e.g. between
7% and 13%, e.g. between 8% and 12%, e.g. between 11% and 15%, e.g. between 12% and 14%) by mass.

Recombinant hCG expressed in Chinese hamster ovary (CHO) cells includes exclusively a 2, 3 sialylation.

The rhCG of the invention may be produced or expressed in a human cell line. This may simplify (and render more efficient) the production method because manipulation and control of e.g. the cell growth medium to retain sialylation may be less critical than with known processes. The method may also be more efficient because there is less basic rhCG produced than in production of known rhCG products; more acidic rhCG is produced and separation/removal of basic hCG is less problematic. The rhCG may be produced or expressed in a Per.C6 cell line, a Per.C6 derived cell line or a modified Per.C6 cell line. The cell line may be modified using a2,3-sialyltransferase. The rhCG may include a2,6-linked sialic acids (a2,6 sialylation) provided by endogenous sialyl transferase activity [of the cell line]. Alternatively or additionally, the cell line may be modified using ct2,6-sialyltransferase.

The rhCG may be produced using a2,3- sialyltransferase. The rhCG may include a2,6-linked sialic acids (a2,6 sialylation) provided by endogenous sialyl transferase activity. The rhCG may be produced using a2,3- and/or a2,6-sialyltransferase.

According to the present invention in a further aspect there is provided a method of production of rhCG and/or an rhCG preparation as described herein (according to aspects of the invention) comprising the step of producing or expressing the rhCG in a human cell line, for example a Per.C6 cell line, a Per.C6 derived cell line or a modified Per.C6 cell line, for example a cell line which has been modified using a2,3-sialyltransferase.

The rhCG structure contains glycan moieties. Branching can occur with the result that the glycan may have 1, 2, 3, 4 or more terminal sugar
residues or "antennae", as is well known in the art. The rhCG of the invention may have glycans with sialylation present on mono-antennary and/or di-antennary and/or tri-antennary and/or tetra-antennary structures. The rhCG may include mono-sialylated, di- sialylated, tri- sialylated and tetra- sialylated glycan structures, for example with relative amounts as follows: 0.1-4% mono-sialylated; 35 - 45% di—sialylated; 0.5 - 8% tri—sialylated and 0 - 1 % tetra-sialylated (e.g. as shown by WAX analysis of charged glycans, as set out in Example 8 D). Preferably, the recombinant hCG of the invention includes mono (1S), di(2S), tri(3S) and tetra(4S) sialylated structures. Preferably, the relative amounts of sialylated structures are in the following ratios (1S:2S:4S:4S): 0.2-1%: 35-40%: 2.5-7%: 0.5-1 % (e.g. as shown by WAX analysis of charged glycans, as set out in Example 8 D).

According to the present invention in a further aspect there is provided rhCG produced (e.g. expressed) in a human cell line. The rhCG may include a2,3- and a2,6-sialylation. The rhCG may be produced or expressed in a Per.C6 cell line, a Per.C6 derived cell line or a modified Per.C6 cell line. The cell line may be modified using a2,3-sialyltransferase. The rhCG may include a2,6-linked sialic acids (a2,6 sialylation) provided by endogenous sialyl transferase activity [of the cell line]. Alternatively or additionally, the cell line may be modified using a2,6-sialyltransferase. The rhCG (or rhCG preparation) according to the invention may have a sialic acid content [expressed in terms of a ratio of moles of sialic acid to moles of protein] of 15 mol/mol or greater, for example of from 15 mol/mol to 25 mol/mol, for example of from 17 mol/mol to 24 mol/mol, for example from 17.7 mol/mol to 23 mol/mol, for example from 18 mol/mol to 22 mol/mol, for example from 19 mol/mol to 21 mol/mol, for example from 19 mol/mol to 20 mol/mol. The rhCG (or rhCG preparation) may have 10% or more of the total sialylation being a2,3-sialylation, for example 45% to 80% of the total sialylation may be a2,3-sialylation, for example 50% to 70% of the total sialylation may be a2,3-sialylation, for example 55 to 65% of the total sialylation may be a2,3-
sialylation. For example 65-85% of the total sialylation may be a2,3-
sialylation. The rhCG (or rhCG preparation) of the invention may have
50% or less of the total sialylation being a2,6-sialylation. For example, 20-
55% of the total sialylation may be a2,6- sialylation, for example, 30-50%
of the total sialylation may be a2,6- sialylation, for example, 35-45% of the
total sialylation may be a2,6- sialylation. For example 15-35% of the total
sialylation may be a2,6- sialylation. The rhCG (or rhCG preparation) of the
invention may have 5% or less of the total sialylation being a2,8-
sialylation, for example 0 to 4%, e.g. 0.5-4% of the total sialylation may be
0:2,8- sialylation. The rhCG (or rhCG preparation) of the invention may
have no a2,8-sialylation.

According to the present invention in a further aspect there is
provided a pharmaceutical composition comprising rhCG including a2,3-
sialylation and a2,6-sialylation (e.g. as set out above). The pharmaceutical
composition may further comprise FSH and/or LH.

FSH can be obtained by any means known in the art. FSH as used
herein includes human-derived and recombinant FSH. Human-derived
FSH can be purified from any appropriate source (e.g. urine) by any
method known in the art. The FSH may be recombinant FSH - for
example expressed in a human cell line. Methods of expressing and
purifying recombinant FSH are well known in the art.

LH can be obtained by any means known in the art. LH, as used
herein, includes human-derived and recombinant LH. Human-derived LH
can be purified from any appropriate source (e.g. urine) by any method
known in the art. Methods of expressing and purifying recombinant LH are
known in the art.

The pharmaceutical composition may be for the treatment of
infertility, e.g. for use in e.g. assisted reproductive technologies (ART),
ovulation induction or intrauterine insemination (IUI). The pharmaceutical
composition may be used, for example, in medical indications where
known hCG preparations are used. The present invention also provides
the use of rhCG and/or an rhCG preparation described herein (according to aspects of the invention) for, or in the manufacture of a medicament for, the treatment of infertility. The pharmaceutical compositions of the present invention can be formulated into well-known compositions for any route of drug administration, e.g. oral, rectal, parenteral, transdermal (e.g. patch technology), intravenous, intramuscular, subcutaneous, intrasusternal, intravaginal, intraperitoneal, local (powders, ointments or drops) or as a buccal or nasal spray. A typical composition comprises a pharmaceutically acceptable carrier, such as aqueous solution, non toxic excipients, including salts and preservatives, buffers and the like, as described in Remington's Pharmaceutical Sciences fifteenth edition (Matt Publishing Company, 1975), at pages 1405 to 1412 and 1461 - 87, and the national formulary XIV fourteenth edition (American Pharmaceutical Association, 1975), among others.

Examples of suitable aqueous and non-aqueous pharmaceutical carriers, diluents, solvents or vehicles include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), carboxymethylcellulose and suitable mixtures thereof, vegetable oils (such as olive oil), and injectible organic esters such as ethyl oleate.

The compositions of the present invention also can contain additives such as but not limited to preservatives, wetting agents, emulsifying agents, and dispersing agents. Antibacterial and antifungal agents can be included to prevent growth of microbes and includes, for example, paraben, chlorobutanol, phenol, sorbic acid, and the like. Furthermore, it may be desirable to include isotonic agents such as sugars, sodium chloride, and the like.

In some cases, to effect prolonged action it is desirable to slow the absorption of hCG (and other active ingredients, if present) from subcutaneous or intramuscular injection. This can be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of hCG then depends upon its rate of dissolution which, in turn, can depend upon crystal size and crystalline...
form. Alternatively, delayed absorption of a parenterally administered hCG combination form is accomplished by dissolving or suspending the hCG combination in an oil vehicle.

Injectable depot forms can be made by forming microencapsule matrices of the hCG (and other agents, if present) in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of hCG to polymer and the nature of the particular polymer employed, the rate of hCG release can be controlled. Examples of other biodegradable polymers include polyvinylpyrrolidone, poly(orthoesters), poly(anhydrides) etc. Depot injectable formulations are also prepared by entrapping the hCG in liposomes or microemulsions which are compatible with body tissues.

Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use. Injectable formulations can be supplied in any suitable container, e.g. vial, pre-filled syringe, injection cartridges, and the like.

Injectable formulations can be supplied as a product having pharmaceutical compositions containing hCG (optionally with FSH, LH etc.) If there is more than one active ingredient (i.e. hCG and e.g. FSH or LH) these may be suitable for administration separately or together. If administered separately, administration can be sequential. The product can be supplied in any appropriate package. For example, a product can contain a number of pre-filled syringes containing either hCG, FSH, or a combination of both FSH and hCG, the syringes packaged in a blister package or other means to maintain sterility. A product can optionally contain instructions for using the hCG and FSH formulations.

The pH and exact concentration of the various components of the pharmaceutical composition are adjusted in accordance with routine practice in this field. See GOODMAN and GILMAN's THE
PHARMACOLOGICAL BASIS FOR THERAPEUTICES, 7th ed. In a preferred embodiment, the compositions of the invention are supplied as compositions for parenteral administration. General methods for the preparation of the parenteral formulations are known in the art and are described in REMINGTON; THE SCIENCE AND PRACTICE OF PHARMACY, supra, at pages 780-820. The parenteral compositions can be supplied in liquid formulation or as a solid which will be mixed with a sterile injectable medium just prior to administration. In an especially preferred embodiment, the parenteral compositions are supplied in dosage unit form for ease of administration and uniformity of dosage.

Detailed description of the invention

The present invention will now be described in more detail with reference to the following Examples and to the attached drawings in which:

Figure 1 shows a plasmid map of the phCGalpha/beta expression vector;

Figure 2 shows the a2,3-sialyltransferase (ST3GAL4) expression vector;

Figure 3 shows the a2,6-sialyltransferase (ST6GAL1) expression vector;

Figure 4 shows the detection of rhCG Isoforms in human cell line derived recombinant hCG preparations according to the invention (track 3, 4) by IEF stained with Coomassie Blue, compared with preparations of the prior art (track 1, 2);

Figure 5 shows metabolic clearance rates (MCRs) of a2,3-sialyltransferase engineered Per.C6 hCG samples; and

Figure 6 shows long term MCRs of a2,3 sialyltransferase engineered Per.C6 rhCG samples

Sequence Selection

Human hCG

The coding region of the gene for the hCG alpha polypeptide was used according to Fiddes and Goodman (1979). The sequence is banked as
AH007338 and at the time of construction there were no other variants of this protein sequence. The sequence is referred to herein as SEQ ID 1.

The coding region of the gene for hCG beta polypeptide was used according to Fiddes and Goodman (1980). The sequence is banked as NP_000728 and is consistent with the protein sequences of CGbeta3, CGbeta5 and CGbeta7. The sequence is referred herein as SEQ ID 2.

Sialyltransferase

a2,3-Sialyltransferase - The coding region of the gene for beta-galactoside alpha-2,3-sialyltransferase 4 (a2,3-sialyltransferase, ST3GAL4) was used according to Kitagawa and Paulson (1994). The sequence is banked as L23767 and referred herein as SEQ ID 3.

c2,6-Sialyltransferase - The coding region of the gene for beta-galactosamide alpha-2,6-sialyltransferase 1 (a2,6-sialyltransferase, ST6GAL1) was used according to Grundmann et al. (1990). The sequence is banked as NM_003032 and referred herein as SEQ ID 4.

EXAMPLES

Example 1 Construction of the hCG expression vector

The coding sequence of hCG alpha polypeptide (AH007338, SEQ ID 1) and hCG beta polypeptide (NP_000728, SEQ ID 2) were amplified by PCR using the primer combinations CGa-fw and CGa-rev and CGb-fw and CGb-rec respectively.

CGa-fw 5'-CCAGGATCCGCCACCATGGATTACTACAGAAAAATATGC-3'
CGa-rev S'-GGATGGCTAGCTTAAGATTTGTGATAATAAC-S'
CGb-fw 5'-CCAGGCGCGCCACCATGGAGATGTTCCAGGGGTCTGC -3'
CGb-rev 5'-CCGGGGTTAACCTTATTGTGGGAGGATCGGGG-3'

The resulting amplified hCG beta DNA was digested with the restriction enzymes AscI and HpaI and inserted into the AscI and HpaI sites on the
CMV driven mammalian expression vector carrying a neomycin selection marker. Similarly the hCG alpha DNA was digested with BamHI and NheI and inserted into the sites BamHI and NheI on the expression vector already containing the hCG beta polypeptide DNA.

The vector DNA was used to transform the DH5α strain of E.coli. Colonies were picked for amplification and, of the number which included the vector containing both hCG alpha and beta, twenty were selected for sequencing. All colonies selected for sequencing contained the correct sequences according to SEQ ID 1 and SEQ ID 2. Plasmid phCG A+B was selected for transfection (Figure 1).

Example 2 Construction of the ST3 expression vector
The coding sequence of beta-galactoside alpha-2,3-sialyltransferase (ST3, L23767, SEQ ID 3) was amplified by PCR using the primer combination 2,3STfw and 2,3STrev.

2,3STfw 5'-CCAGGATCCGGCCACCATGTGTCTGTGCCAGGTGCAAGC-3'
2,3STrev 5'-TTTTTTCTTAAAGTCAGAAGGTTCTTG-3'

The resulting amplified ST3 DNA was digested with the restriction enzymes BamHI and AflII and inserted into the BamHI and AflII sites on the CMV driven mammalian expression vector carrying a hygromycin resistance marker. The vector was amplified as previously described and sequenced. Clone pST3#1 (Figure 2) contained the correct sequence according to SEQ ID 3 and was selected for transfection.

Example 3 Construction of the ST6 expression vector
The coding sequence of beta-galactosamide alpha-2,6-sialyltransferase (ST6, NM_003032, SEQ ID 4) was amplified by PCR using the primer combination 2,6STfw and 2,6STrev.

2,6STfw 5'--CCAGGATCCGGCCACCATGTGTCTGTGCCAGGTGCAAGC-3'
2,6STrev 5'-TTTTTTCTTAAAGTCAGAAGGTTCTTG-3'
The resulting amplified ST6 DNA was digested with the restriction enzymes BamHI and AflW and inserted into the SamHI and AflW sites on the CMV driven mammalian expression vector carrying a hygromycin resistance marker. The vector was amplified as previously described and sequenced. Clone pST6#1 (Figure 3) contained the correct sequence according to SEQ ID 4 and was selected for transfection.

Example 4 Stable expression of phCG A+B in PER.C6 cells.

Transfection isolation and screening of clones.

Per.C6 clones producing hCG were generated by expressing both polypeptide chains of hCG from a single plasmid (see Example 1).

To obtain stable clones a liposome based transfection agent was used with the phCG A+B construct. Stable clones were selected in Per.C6 selection media supplemented with 10% FCS and containing G418. Three weeks after transfection G418 resistant clones grew out. A total of 389 clones were selected for isolation. The isolated clones were cultured in selection medium until 70-80% confluent. Supernatants were assayed for hCG protein content using an hCG selective ELISA and pharmacological activity at the hCG receptor in cloned cell line, using a cAMP accumulation assay. Clones (118) expressing functional protein were progressed for culture expansion to 24 well, 6 well and T80 flasks.

Studies to determine productivity and quality of the material from 47 clones were initiated in T80 flasks to generate sufficient material. Cells were cultured in supplemented media as previously described for 7 days and the supernatant harvested. Productivity was determined using the hCG selective ELISA. The isoelectric profile of the material was determined (using the method described in Example 6). The information from the IEF was used to select clones for metabolic clearance rate analysis. Clones with sufficient productivity and quality were selected for sialyltransferase engineering.
Example 5a Level of sialylation is increased in cells that over express a2,3-sialyltransferase. Stable expression of pST3 in hCG expressing PER.C6 cells; Transfection isolation and screening of clones.

Per.C6 clones producing highly sialylated hCG were generated by expressing a2,3 sialyltransferase from separate plasmids (see Example 2) in Per.C6 cells already expressing both polypeptide chains of hCG (see Example 4). Clones produced from PER.C6® cells as set out in Example 4 were selected for their characteristics including productivity, good growth profile, production of functional protein, and produced hCG which included some sialylation.

Stable clones were generated as previously described in Example 4. Clones from the a2,3-sialyltransferase program were isolated, expanded and assayed. The final clone number for the a2,3-study was five. The a2,3-sialyltransferase clones were adapted to serum free media and suspension conditions.

As before clones were assayed using a hCG selective ELISA, functional response in an hCG receptor cell line, IEF (Example 6). They were also assessed for metabolic clearance rate (Example 9) and USP hCG Bioassay (Example 10). Results were compared to a commercially available recombinant hCG (Ovitrelle, Serono) and the parental hCG Per.C6 cell lines. Representative samples are shown in the Examples and Figures.

In conclusion expression of hCG together with a2,3-sialyltransferase in Per.C6 cells results in increased levels of sialylated hCG compared to cells expressing hCG only.

Example 5b Stable expression of pST3 in hCG expressing PER.C6 cells - a different method

The alpha beta heterodimer produced above (Example 4) had a low level of sialylation resulting in a very basic IEF profile. As indicated above (Example 5a) expression of hCG together with a2,3-sialyltransferase in
Per.C6 cells results in increased levels of sialylated hCG compared to cells expressing hCG only.

A double transfection of the hCG alpha and beta subunit genes together with the a2,3 sialyltransferase enzyme gene into Per.C6 cells in suspension cell culture format was performed. Cell lines were generated by co-transfecting the hCG vector (dual alpha/beta, Example 1) and the vector encoding a2,3-sialyltransferase (Example 2) under serum free conditions. Clones produced from PER.C6® cells were selected for their characteristics including productivity, good growth profile, production of functional protein, and produced hCG which included some sialylation. Clones were isolated, expanded and assayed.

As before clones were assayed using a hCG selective ELISA, functional response in an hCG receptor cell line, IEF (Example 6). They were also assessed for metabolic clearance rate (Example 9) and USP hCG Bioassay (Example 10). Results were compared to a commercially available recombinant hCG (Ovitrelle, Serono) and the parental hCG Per.C6 cell lines. Representative samples are shown in the Examples and Figures (see Examples 6, 9, 10, Figs 4 and 5). The recombinant hCG produced by the clones (that is, recombinant hCG according to the invention) has significantly improved sialylation (i.e. on average more hCG isoforms with high numbers of sialic acids), compared to hCG expressed without a2,3- sialyltransferase and Ovitrelle (see Examples 6 and 8, Fig 4).

Example 6 Analysis of the isoelectric point pi of Per.C6 produced hCG isoforms by isoelectric focussing.

Electrophoresis is defined as the transport of charged molecules through a solvent by an electrical field. The mobility of a biological molecule through an electric field will depend on the field strength, net charge on the molecule, size and shape of the molecule, ionic strength and properties of the medium through which the molecules migrate.
Isoelectric focusing (IEF) is an electrophoretic technique for the separation of proteins based on their pi. The pi is the pH at which a protein has no net charge and will not migrate in an electric field. The sialic acid content of the hCG isoforms subtly alters the pi point for each isoform, which can be exploited using this technique to visualise the Per.C6 hCG isoforms from each clone.

The isoelectric points of the Per.C6 produced hCG isoforms in cell culture supernatants were analyzed using isoelectric focussing. Cell culture media from Per.C6 hCG clones were produced as described in Example 4, 5a and 5b.

Per.C6 hCG samples were separated on Novex® IEF Gels containing 5% polyacrylamide under native conditions on a pH 3.0 - 7.0 gradient in an ampholyte solution pH 3.0 - 7.0. Proteins were visualised using Coomassie Blue staining, using methods well known in the art.

Figure 4 shows the detection of rhCG Isoforms by IEF stained with Coomassie Blue in compositions according to the invention (Track 3, 10 µg, and Track 4, 15pg) and the CHO derived composition of the prior art, Ovitrelle (Track 1, Ovitrelle, 10 pg, and Track 2, Ovitrelle, 15pg). The bands represent isoforms of hCG containing different numbers of sialic acid molecules. Using this method clones producing hCG isoforms with a higher number of sialic acid molecules were identified. Figure 4 indicates that human cell line derived recombinant hCGs engineered with α2,3-sialyltransferase (compositions according to the invention) have a more acidic profile than Ovitrelle.

Example 7 Analysis of the Sialic acid linkages of Per.C6 hCG

Glycoconjugates were analyzed using a lectin based glycan differentiation method. With this method glycoproteins and glycoconjugates bound to nitrocellulose can be characterized. Lectins selectively recognize a particular moiety, for example α2,3 linked sialic acid. The lectins applied
are conjugated with the steroid hapten digoxigenin which enables immunological detection of the bound lectins.

Purified Per.C6 hCG from a parental clone (no additional sialyltransferase), and a a2,3-sialyltransferase engineered clone were separated using standard SDS-PAGE techniques. A commercially available recombinant hCG (Ovitrelle, Serono) was used as a standard.

Sialic acid was analyzed using the DIG Glycan Differentiation Kit (Cat. No. 11 210 238 001, Roche) according to the manufacturers instructions. Positive reactions with Sambucus nigra agglutinin (SNA) indicated terminally linked (2-6) sialic acid. Positive reactions with Maackia amurensis agglutinin II (MAA): indicated terminally linked (a2-3) sialic acid.

In summary the parental clone contained low levels of both a2,3- and o:2,6- sialic acid. The clones engineered with a2,3-sialyltransferase contained high levels of a2,3- sialic acid linkages and low levels of a2,6-sialic acid linkages. The standard control Ovitrelle only contains a2,3-sialic acid linkages. This is consistent with what is known about recombinant proteins produced in Chinese Hamster ovary (CHO) cells (Kagawa et al., 1988, Takeuchi et al., 1988, Svensson et al., 1990).

In conclusion, engineering of Per.C6 hCG cells with a2,3- sialyltransferase successfully increased the number of sialic acid molecules conjugated to the recombinant hCG in the sample.

Examples 8A and 8B Quantification of total Sialic acid
Sialic acid is a protein-bound carbohydrate considered to be a mono-saccharide and occurs in combination with other mono-saccharides like galactose, mannose, glucosamine, galactosamine and fucose. The total sialic acid on purified rhCG according to the invention was measured using a method based on the method of Stanton et. al. (J. Biochem. Biophys. Methods. 30 (1995), 37 - 48).
Example 8A
The total sialic acid content of Per.C6 recombinant hCG modified with a2,3- sialyltransferase (e.g. Example 5a, Example 5b) was measured and found to be greater than 15 mol/mol, [expressed in terms of a ratio of moles of sialic acid to moles of protein], for example greater than 18 mol/mol, for example 19.1 mol/mol. This can be compared to Ovitrelle which has total sialic acid content of 17.6 mol/mol.

Example 8B
The total sialic acid content of Per.C6 recombinant hCG modified with a2,3- sialyltransferase 080019-19 (prepared by the methods of Example 5b, above) was measured and found to be 20 mol/mol, [expressed in terms of a ratio of moles of sialic acid to moles of protein]. Again, this may be favourably compared with Ovitrelle which has total sialic acid content of 17.6 mol/mol. This Example (080019-19) was tested to quantify the relative amounts of a2,3 and a2,6 sialic acid (Example 8C).

Example 8C - Quantification of relative amounts of a2,3 and a2,6 sialic acid
The relative percentage amounts of a2,3 and a2,6 sialic acid on purified rhCG [Example (080019-19)], and two other Examples prepared by the methods of Example 5] were measured using known techniques - HPLC with Normal-phase (NP).

To quantify the alpha 2,3 and 2,6 sialic acid in O-link glycans the following analysis was performed. The O-linked glycans were cleaved from the hCG sample using an Orela Glycan Release Kit and separated on NP-HPLC. Samples of the extracted, pooled, glycans (extracted as above) were digested with different sialidases to determine the linkages. This Enzymatic degradation of glycans was performed using alpha 2-3,6,8 sialidase and alpha 2-3, sialidase. The enzymatic digested glycans were then re-separated on the NP column, and the O-Glycans were identified
on the NP-HPLC using prepared standards. The relative percentages were calculated and are shown in the following table (SA = Sialic Acid).

<table>
<thead>
<tr>
<th>Structure</th>
<th>% SA</th>
<th>080019-19</th>
<th>09PD-84-04</th>
<th>09PD84-006-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>α 2,3 SA</td>
<td>59</td>
<td></td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>α 2,6 SA</td>
<td>41</td>
<td></td>
<td>37</td>
<td>37</td>
</tr>
</tbody>
</table>

The relative percentages were found to be in the ranges 55% - 65% (e.g. 59%) for α2,3 sialylation; and 35 to 45% (e.g. 41%) for α2,6 sialylation.

Example 8D Quantification of relative amounts mono, di, tri and tetra antennary sialylated structures

The relative percentage amounts of mono, di, tri and tetra sialylated structures on glycans extracted from purified rhCG (the three samples used in Example 8C) were measured using known techniques.

Each sample of rhCG was immobilized (gel block), washed, reduced, alkylated and digested with PNGase F overnight. The N-glycans were then extracted and processed. N-glycans for NP-HPLC and WAX-HPLC analysis were labelled with the fluorophore 2AB as detailed in Royle et al.

Weak anion exchange (WAX) HPLC to separate the N-glycans by charge (Example 8C) was carried out as set out in Royle et al, with a Fetuin N-glycan standard as reference. Glycans were eluted according to the number of sialic acids they contained. All samples included mono (1S), di(2S), tri(3S) and tetra(4S) sialylated structures. The relative amounts of sialylated structures were found to be in the following ratios (1S:2S:4S:4S): 0.1-4%: 35-45%: 0.5-8%: 0-1%.
A preferred example, 080019-19, included mono (1S), di(2S), tri(3S) and tetra(4S) sialylated structures. The relative amounts of sialylated structures were in the following ratios (1S:2S:4S:4S): 0.1-4%: 35-45%: 0.5-8%: 0-1 %.

Example 9 Determination of the metabolic clearance rates of rhCG

To determine the metabolic clearance rate (MCR) of Per.C6 hCG samples engineered using α2,3- sialyltransferase (e.g. Example 5a, 5b), conscious female rats (3 animals per clone) were injected into the tail vein at time zero with a bolus of rhCG (1 - 10 pg/rat, based on ELISA quantification of samples, DRG EIA 1288). Blood samples (400 µl) were taken from the tip of the tail at 1, 2, 4, 8, 12, 24 and 32 hours after test sample injection. Serum was collected by centrifugation and assayed for hCG content by ELISA (DRG EIA 1288). The MCR of Per.C6 hCG samples engineered using α2,3- sialyltransferase showed that the half life was similar to the standard (Figure 5). Figure 6 shows that other hCG samples engineered using α2,3- sialyltransferase may have improved half life compared to the standard (Figure 6).

Example 10 - hCG Bioassay according to (JSP)

A hCG Bioassay was carried out, to assay the hCG specific activity. The activity was measured according to USP (USP Monographs: Chorionic Gonadotropin, USPC Official 8/1/09-1/30/09), using Ovitrelle as a standard. Ovitrelle has a biological activity of 26,000 IU/mg (Curr Med Res Opin. 2005 Dec; 21(12): 1969 - 76). The acceptance limit was >21,000 IU hCG/mg. The biological activity for a sample of human cell line derived hCG recombinant hCG engineered with α2,3- sialyltransferase (having sialic acid content 19.1 mol/mol - see Example 8) was 27,477 IU hCG/mg.

Example 11 Production and purification overview

A procedure was developed to produce recombinant hCG in PER.C6 cells that were cultured in suspension in serum free medium. The procedure is
described below and was applied to several hCG-producing PER.C6 cell lines.

Recombinant hCG from an a2,3- clone was prepared using a using a modification of the method described by Lowry et al. (1976).

For the production of PER.C6-hCG, the cell lines were adapted to a serum-free medium, i.e., Excell 525 (JRH Biosciences). The cells were first cultured to form a 70%-90% confluent monolayer in a T80 culture flask. On passage the cells were re-suspended in the serum free medium, Excell 525 + 4 mM L-Glutamine, to a cell density of 0.3x10^6 cells/ml. A 25 ml cell suspension was put in a 250 ml shaker flask and shaken at 100 rpm at 37°C at 5% CO_2. After reaching a cell density of > 1x10^6 cells/ml, the cells were sub-cultured to a cell density of 0.2 or 0.3x10^6 cells/ml and further cultured in shaker flasks at 37°C, 5% CO_2 and 100 rpm.

For the production of hCG, the cells were transferred to a serum-free production medium, i.e., VPRO (JRH Biosciences), which supports the growth of PER.C6 cells to very high cell densities (usually > 10^7 cells/ml in a batch culture). The cells were first cultured to > 1x10^6 cells/ml in Excell 525, then spun down for 5 min at 1000 rpm and subsequently suspended in VPRO medium + 6 mM L-glutamine to a density of 1x10^6 cells/ml. The cells were then cultured in a shaker flask for 7-10 days at 37°C, 5% CO2 and 100 rpm. During this period, the cells grew to a density of > 10^7 cells/ml. The culture medium was harvested after the cell viability started to decline. The cells were spun down for 5 min at 1000 rpm and the supernatant was used for the quantification and purification of hCG. The concentration of hCG was determined using ELISA (DRG EIA 1288).

Thereafter, purification of hCG was carried out using a modification of the method described by Lowry et al. (1976). This was achieved by chromatography on DEAE cellulose, gel filtration on Sephadex G100, adsorption chromatography on hydroxyapatite, and preparative polyacrylamide electrophoresis.
During all chromatographic procedures, the presence of immunoreactive recombinant hCG was confirmed by RIA (DRG EIA 1288) and IEF (Example 6).

References

SEQ ID 1

5 Human chorionic gonadotropin alpha polypeptide

Sequence number AH007338

Nucleotide sequence of hCG alpha

10

1 ATGGATTACT ACAGAAAATA TGCAGCTATC TTTCTGGTCA CATTGTGGGT
TGTTCTGCAT
61 GGTCTCCATT CCGCTCCTGA TGTGCAAGAT TGCCCAGAAAT GCACGCTACA
GGAAAACCCA
15 121 TTCTTCTCCC AGCCGGGTGC CCCAAATTCT CAGTGCTAGG GCACGCTGCTT
CTCTAGAGCA
181 TATCCCACTC CACTAAGGTC CAAGAAGACG ATGTTGGTCC AAAAGAACGT
CACCTCAGAG
241 TCCACTTGTCT GTGTAGCTAA ATCATATAAC AGGGTCACAG TAATGGGGGG

Protein sequence of hCG alpha

25

1 MKTLQFFFLF CCWKAICCNS CELTNITAI EKEECRFCIS INTTWCAGYC
YTRDLVYKDP
61 ARPKIQKTCT FKELVYETVR VPGCAHHADS LYTYPVATQC HCGKCDSDST
DCTVRGLGPS
121 YCSSFGEMKE

SEQ ID 2

Human Chorionic Gonadotrophin beta polypeptide

35 Accession number NP_000728

Nucleotide sequence of hCG beta

40

Nucleotide sequence

1 ATGGAGATGT TCCAGGGGCT GCCAGTGCTTTG CTGCTGCTGA GCATGGGCGG
GACATGGGCA
61 TCCACTTGTCT GTGTAGCTAA ATCATATAAC AGGGTCACAG TAATGGGGGG
GACATGGGCA

27
121 GAGGGCTGCC CCGTGTGCAT CACCGTCAAC ACCACCATCT GTGCCGGCTA
CTGCCCCACC
181 ATGACCCGCG TGCTGCAGGG GGTCCTGCCG GCCCTGCCTC GCGGCGTGAA
CAACTACCGC
5 241 GATGTGCGCT TCGAGTCCCT CCGCCTCCCT GGCTGCCCAC GGCGCGTGAA
CCCGTGCCGC
301 TCCTAGCCCC TGGCCTCAG CTGTCATGCT GCACCTGCAC GCGCAGCAC
CCTGACTGC
361 GGGGTCTCCA AGGACACCAC CTGGACCTGT GATGACCCCT GCTTCCAGGA
CTCTGACTGC
10 CTCCTCCTCC
421 TCAAAGGCCCT CCTCCCCCAG CTTCCTAAGT CATCCTGGAC TCCCGGGGCC
CTCGGACACC
481 CCGATCCTCC CACAAATA
15 Protein sequence of hCG beta

1 MEMFQGLLLL LLLSMGGTWA SKEPLRPRCR PINATLAVEK EGCPVCITVN
TTCICAGYCPT
51 MTRVLQGVLP ALPQVVCNYR DVRFESI RLPGCPGRGPVW SYAVALSQG
20 ALCRRSTTDC
121 GGPKDHPLTC DDPRFDQDSSS SKAPPPLPS PSRLPGPSDT PILPO

SEQ ID 3

Beta-galactoside alpha-2,3-sialyltransferase 4

Accession Number L23767

30 Nucleotide sequence of ST3GAL4

1 ATGTGTCCCTG CAGGCTGGAA GCTCCTGGCC ATGTGGCTCT TGCTCCTGGT
CGTCACTGGT
61 TGGTATTCCA TCTCCCGGGA AGACAGGTAC ATCGAGCTTT TTTATTTTCC
CATCCCAAGAG
35 121 AAGAGAGGCC CGTGCCCTCCA GGGTGAGGCA GAGAGCAAGG CCTCTAAGCT
CTTGGCAAC
181 TACTCCGGGA ATCAGGCCTA CTCGGGCGG CTTGAGGATT ATTCTGCGT
CAAGACGCCA
40 241 TCTGCTACG TGGGACCAAG GGGAGTGAGG ATCTGCTCCT CCGGGTGGCTA
CCGATCCTCC
301 GCCATCACCA GCTCCTCCAT CCCCCAAGAAC ATCCAGAGCC TCAGGTGCTG
CCGCTGCTGGT

28
361 GTCGTGGGGA ACGGGCACCG GCTGCGGAAC AGCTCACTGG GAGATGCCAT
CAACAAGTAC
421 GATGTGGTCA TCAGATTGAA CAATGCCCCA GTGGCTGGCT ATGAGGCTGA
CTGGGGCTCC
5 481 AAGACCAACCA TCGGCTCTTT CTACCCTGAA GTGGCTGGCT ATGAGGGTGA
AGTAGAAAAC
541 AACCCAGACA CACTCCTCGT CCTGGTAGCT TTCAAGGCAA TGGACTTCCA
CTGGATTGAG
601 ACCATCTCTGA GTGATAAGAA GCGGCTGGCA AAGGGTTTCT GGAACAGCC
CGTGGGCTCC
421 GATGTGGTCA TCAGATTGAA CAATGCCCCA GTGGCTGGCT ATGAGGCTGA
CTGGGGCTCC
661 TGGGATGTCA ATCCCTAACA GATTGGATT TCTTCATGGA GATTGCAGCT
721 GACAAACTGC TGAGCCTGCC AATGCAACAG CTCATGGA TTAAGCAGAA
GCCCACCAGC
781 GGCCCTGTGG CCCTGCCTCA CCCTGCCACT TCTGTGACT TGGTGACCAT
TGCGGTCTTT
841 GGCTACCCAG ACGCCTACAA CAAGAAGCAG TCCCTACATT A
901 AAGGCCATGG TGACACGCGG TCTTCATGGA TCAGGATGG GAGCTATCAA
GAACCTCAGC TCTTTTCT
10 TCCCTCTACG

Protein Sequence of ST3GAL4

25 1 MCPAGWKLLA MLALVLVVMV WYSISREDRY IELFYFPipe KKEPCLQGEA
ESKASKLFGN
61 YSRDQQPIFLR LEDYFWKVTP SAYELPYGTK GSEDLLLRLV AITSSISIPKN
IQSLRRCRVC
121 VVNGNHRLRN SSLGDAINKY DYMIRLNNAP VAGYEGDBGS KTTMRLFYPE
SAHFDPKVEN
181 NPDTLLV承认 FKAMDFHWIE TILSDKQKRQ KGFWKQPL P WDVPDQKIRI
LNPFMEIAA
241 DKLLSLPMQK PRKKIQKT T PLLAIALH LCDLVIHAGF GYPDAYSNNQQ
TIHYYEQITL
301 KSMAGHSHN SQEALAIKM LEMGAIKNLT SF

SEQ ID 4

Beta-galactosamide alpha-2,6-sialyltransferase 1

Accession number NM_003032
Nucleotide sequence of ST6GAL1

1 ATGATTCACA CCAACCTGAA GAAAAAGTTC AGCTGCTGCG TCCTGGTCTT
5 TCTTCTGTTT
61 GCAGTCATCT GTGTTGGGAA GAAAAAGAAG AAAGGGAGTT ACTATGATTC
CTTTAAATTG
121 CAAACCAAGG AATTCCAGGT GTTAAAGAGT CTGGGGAAT TGGCCATGGG
GTCTGATTCG
181 CAGTCTGTAT CCTCAAGCAG CACCCAGGAC CCCACAGGG GCCGCCAGAC
CCTCGGCAGT
241 CTAGCAAGGCG TAGCAAGGCG CAAACCAAGG AATTCCAGGT GTTAAAGAGT
GCAGTCATCT
301 TCTTCAAAAA ACCTTATCCC TAGGCTGCAA AAGATCTGGA AGAATTACCT
AGAGGCTCTG
361 AAGTACAAGG TGTCTTACAA GGGGCCAGGA CCAGGCATCA AGTTCAAGTC
AGAGGCCCTG
421 CCGTGCACCC TCCGGGACCA TGTGAATGTA TCCATGGTAG AGGTCACAGA
ACTAGGCAGA
481 AATACCTCCTG AATGGGAGGG TTATCTGCCC AAGGAGAGCA TTAGGACCAA
GCTGGGCCT
541 TGGGCAGGT GTCTGCTGCG GTCGTCAGCG GGATCTCTGA AGTCCTCCCA
ACTAGGCAGA
601 GAAATCGATG TTCTTTCACAA TAGGCTGCAA AAGATCTGGA AGAATTACCT
AGAGGCCCTG
661 CAACCTTCAA CAAGATGTGG GCACAAAAAC TACCATTCGC CTGATGAACT
GGACCCATCT
721 AAAGCGCTTCC TCAAAGACAG TTTGTACAAT GAAGGAATCC TAATTGTATG
GGCTGGGCCT
781 GTATACCTCA CAGATATGGG GGATGCTTGG TATGGGACAT TCTTCAAGAA
GTATACCTCA
841 TACCAAGACTT ATCGTGAAGCT GCACCCCAAT CAGCCCTTTT ACATCCTCAA
CCATCCTCTG
901 CCAATGAAAC ATGCTGGAAG TCTTCAAGAA ATCTCCCAAG TTCTTATGCC
GGCTGGGCCT
961 CCAATGAAAC ATGCTGGAAG TCTTCAAGAA ATCTCCCAAG TTCTTATGCC
GGCTGGGCCT
1021 TATGAGTTCC TCCCATCCAA GCGCAAGACT GACGTGTGCT ACTACTACCA
GCTGGGCCT
1081 GATAGTGCCT GCACGATGGG TGCCTACCAC CCGCTGCTCT ATGAGAAGAA
GGCTGGGCCT
1141 CATCTCAACC AGGGCACAGA TGAGGACATC TGCCTTTG GAAAAGCCAC
ACTGCTTGGCG
Protein Sequence of ST6GAL1

<table>
<thead>
<tr>
<th></th>
<th>MIHTNLKKKF</th>
<th>SCCVLVFLLF</th>
<th>AVICVWEKK</th>
<th>KGSYYDSFKL</th>
<th>QTFQVVLKS</th>
<th>LGKLAMGSDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>QSVSSSSTQD</td>
<td>PHRGRQTLGS</td>
<td>LRGLAKAKPE</td>
<td>ASFQVWNKDS</td>
<td>SSKNLIPRLQ</td>
<td>KIWKNNYLSMN</td>
</tr>
<tr>
<td>121</td>
<td>KYKVSYKPG</td>
<td>PGIKFSAEAL</td>
<td>RCHLRDHVNV</td>
<td>SMVEVTDFPF</td>
<td>NTSEWEGYLP</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>KESIRTKAGP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>WGRCAVVSSA</td>
<td>GSLKSSLQGR</td>
<td>EIDDHDAVLR</td>
<td>FNGAPTANFQ</td>
<td>QDVGTKTTIR</td>
<td>LMNSQLVTTE</td>
</tr>
<tr>
<td>241</td>
<td>KRFLKDSLYN</td>
<td>EGILIVWDS</td>
<td>VYHSDIPKWy</td>
<td>QNPDYNNFFNN</td>
<td>YKTYRLHPN</td>
<td>QPFYILKQPQM</td>
</tr>
<tr>
<td>15</td>
<td>PWELWDILQE</td>
<td>ISPEEIQPNP</td>
<td>PSSGMLGIII</td>
<td>MMTCVDQVDI</td>
<td>YEFLPSKRKT</td>
<td>DVCYYYQKFF</td>
</tr>
<tr>
<td>361</td>
<td>DSACTMGAYH</td>
<td>PLLYEKTNLV</td>
<td>HLNQGTDEDI</td>
<td>YLLGKATLP</td>
<td>FRTHC</td>
<td></td>
</tr>
</tbody>
</table>
Claims

1. Recombinant hCG (rhCG) including a2,3- and a2,6-sialylation.

2. Recombinant hCG according to claim 1 having a sialic acid content [expressed in terms of a ratio of moles of sialic acid to moles of protein] of 15 mol/mol or greater.

3. Recombinant hCG according to claim 1 or claim 2 having a sialic acid content of from 15 mol/mol to 25 mol/mol.

4. Recombinant hCG according to any preceding claim wherein 10% or more of the total sialylation is a2,3-sialylation and/or wherein 50% or less of the total sialylation is a2,6-sialylation.

5. Recombinant hCG according to any preceding claim wherein 45% to 80% of the total sialylation is a2,3-sialylation.

6. Recombinant hCG according to any preceding claim wherein 20% to 55% of the total sialylation is a2,6-sialylation.

7. Recombinant hCG according to any preceding claim which further includes a2,8-sialylation.

8. Recombinant hCG according to any preceding claim wherein the sialic acid content is 6% or greater by mass.

9. Recombinant hCG according to any preceding claim produced or expressed in a human cell line.

10. Recombinant hCG according to any preceding claim produced or expressed in a Per.C6 cell line, a Per.C6 derived cell line or a modified Per.C6 cell line.

11. Recombinant hCG according to claim 9 or 10 wherein the cell line has been modified using a2,3-sialyltransferase.
12. Recombinant hCG according to any of claims 9 to 11 which includes a2,6-linked sialic acids (a2,6 sialylation) provided by endogenous sialyl transferase activity.

13. Recombinant hCG expressed in a human cell line.

14. A recombinant hCG preparation including a2,3- and a2,6-sialylation.

15. A pharmaceutical composition comprising rhCG including a2,3-sialylation and a2,6-sialylation.

16. Recombinant hCG according to claim 13 or a preparation according to claim 14 or a pharmaceutical composition according to claim 15 which includes a sialic acid content [expressed in terms of a ratio of moles of sialic acid to moles of protein] of 15 mol/mol or greater, optionally wherein 10% or more of the total sialylation is a2,3-sialylation and/or optionally wherein 50% or less of the total sialylation is a2,6-sialylation.

17. A pharmaceutical composition (optionally for use in the treatment of infertility) comprising rhCG according to any of claims 1 to 13 or 16 and/or a preparation according to claim 14 or 16, optionally further comprising FSH and/or LH.

18. A method of treatment of infertility comprising a step of administering to a subject a composition comprising rhCG according to any of claims 1 to 13 or 16 and/or a preparation according to any of claims 14 or 16 and/or a pharmaceutical composition according to any of claims 15 or 17.

19. The use of rhCG according to any of claims 1 to 13 or 16 and/or an rhCG preparation according to any of claims 14 or 16 in the manufacture of a medicament for the treatment of infertility.

20. A method of production of rhCG according to any of claims 1 to 13 or 16 and/or an rhCG preparation according to any of claims 14 or 16
comprising the step of producing or expressing the rhCG in a human cell line.

21. A recombinant hCG according to any of claims 1 to 13 or 16 including mono (1S), di(2S), tri(3S) and tetra(4S) sialylated structures.

22. A recombinant hCG according to claim 22 wherein the relative amounts of sialylated structures are in the following ratios (1S:2S:4S:4S): 0.2-1 : 35-40: 2.5-7: 0.5-1.
hCGα

CMV

CGA

BGHp(A)

f1 ori

SV40 ori

Neo

SV40 p(A)

ColE1

BGH p(A)

CMV

Amp

phCGα+b

hCGβ

Fig 1
Legend:
2. Ovitrelle – 10µg.
Fig 5

IV PK in rat: rechCG with serum free culture medium and Ovidrel,
(n=2,3, mean +/- SD)
Figure 6

Clearance of hCG 8PD-81-02 08009-15 (from clone 1-G2) compared to Ovitrelle (Serono)

Normalized concentration (ng/ml)

Time (hours)

- BTG hCG 1
- BTG hCG 2
- Ovitrelle 3
- Ovitrelle 4
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION NO

PCT/GB201Q/001854

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07K14/59

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, EMBASE, BIOSIS, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y, P 2009/127826 AI (FERRING INTERNAT CT SA [CH]; COTTINGHAM IAN [GB]; PLASKIN DANI [IL]:) 22 October 2009 (2009-10-22) page 5, line 4 - page 12, line 2; examples 8a, 8b, 8c 1-22

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered to be obvious when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone

"Z" document member of the same patent family

Date of the actual completion of the international search

20 January 2011

Date of mailing of the international search report

31/01/2011

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Ridazwick Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Donath, Cornelia
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>KESSLER M J ET AL: "STRUCTURE AND LOCATION OF THE 0 GLYCOSIDIC CARBOHYDRATE UNITS OF HUMAN CHORIONIC GONADOTROPIN", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 254, no. 16, 1979, pages 7909-7914, XP002563495, ISSN: 0021-9258 the whole document</td>
<td>1.9, 11-15, 17</td>
</tr>
<tr>
<td>Y</td>
<td>WO 03/08100 A (CRUCELL HOLLAND BV [NL] ; OPSTELTEN DI RK JAN ELBERTUS [NL] ; KAPTEYN J0H) 8 May 2003 (2003-05-08) page 15, line 1 - page 20, line 28 page 25, line 2 - page 32, line 29 page 34, line 24 - page 38, line 8; example 7</td>
<td>1-22</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>wO 2009127826 AI</td>
<td>22-10-2009</td>
<td>AR 071479 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2009237479 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2268666 Al</td>
</tr>
<tr>
<td>wO 2005080585 A</td>
<td>01-09-2005</td>
<td>AU 2005215889 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2557725 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007522179 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008226681 Al</td>
</tr>
<tr>
<td>wO 2005Q76O13 A</td>
<td>18-08-2005</td>
<td>AT 476666 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2554968 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1711834 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1711834 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2350298 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008199892 Al</td>
</tr>
<tr>
<td>wO 03038100 A</td>
<td>08-05-2003</td>
<td>BR 0213402 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2465Q07 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1578838 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 200602163 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1440157 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4583029 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005507426 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005164917 Al</td>
</tr>
<tr>
<td>wO 2004105788 A</td>
<td>09-12-2004</td>
<td>AU 2004243256 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0410968 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2524755 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1826135 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101156945 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1633389 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006526609 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20060005417 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070118195 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA05012967 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 543403 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004248784 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006135421 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008119394 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200509814 A</td>
</tr>
</tbody>
</table>