

(19) AUSTRALIAN PATENT OFFICE

(54) Title
Nucleic acid sequence and protein in addition to polypeptides coding for mannitol-dehydrogenases or parts thereof and the production and use thereof in diagnosis and therapy

(51)⁶ International Patent Classification(s)

C12N 15/09 (2006.01) 20060101ALI2006031
A61K 39/00 (2006.01) 0BMJP C12N
A61K 39/35 (2006.01) 1/19
A61P 37/08 (2006.01) 20060101ALI2006031
C12N 1/19 (2006.01) 0BMJP C12N
C12N 1/21 (2006.01) 1/21
C12N 9/04 (2006.01) 20060101ALI2006031
C12Q 1/32 (2006.01) 0BMJP C12N
C12Q 1/68 (2006.01) 9/04
C12R 1/84 (2006.01) 20060101ALI2005100
C12N 15/09 8BMEP C12Q
20060101AFI2006031 1/32
0BMJP A61K 20060101ALI2005100
39/00 8BMEP C12Q
20060101ALI2006031 1/68
0BMJP A61K 20060101ALN200510
39/35 08BMEP C12R
20060101ALI2006031 1/84
0BMJP A61P 20060101ALN200603
37/08 10BMJP
PCT/EP03/02873

(21) Application No: 2003219084 (22) Application Date: 2003.03.19

(87) WIPO No: WO03/083098

(30) Priority Data

(31) Number (32) Date (33) Country
102 14 082.0 2002.03.28 DE
102 33 676.8 2002.07.24 DE
20080306

(43) Publication Date: 2003.10.13
(43) Publication Journal Date: 2003.11.20

(71) Applicant(s)
Biomay AG

(72) Inventor(s)
Wally, Verena, Schneider, Peter, Breitenbach, Michael, Richter, Klaus, Simon-Nobbe, Birgit, Teige, Markus, Radauer, Christian, Ebner, Christof, Denk, Ursula

(74) Agent/Attorney
Davies Collison Cave, 255 Elizabeth Street, Sydney, NSW, 2000

(56) Related Art
Breitenbach et al (1997) Enolases and highly conserved fungal allergens International Archives of Allergy and Immunology 113(1-3): 114-117.
Noeldner et al (1994) Purification and characterisation of mannitol dehydrogenase from the fungal tomato pathogen Cladosporium fulvum Molecular Plant Pathology 45(4): 281-289.
Database SWISSPROT Accession No: Q96W29 Cladosporium fulvum, NADP-dependent mannitol dehydrogenase Pike et al
Vouge et al (1998) Molecular cloning of IGE-binding fragments of Alternaria alternata allergens International Archives of Allergy and Immunology 116(4):261-268.
Hult et al (1980) The distribution of the NADPH regenerating mannitol cycle among fungal species Archives of Microbiology 128(2): 253-255.

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
9. Oktober 2003 (09.10.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2003/083098 A3

(51) Internationale Patentklassifikation⁷: C12N 9/04, C07K 14/37, A61K 39/35

(21) Internationales Aktenzeichen: PCT/EP2003/002873

(22) Internationales Anmeldedatum:

19. März 2003 (19.03.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 14 082.0 28. März 2002 (28.03.2002) DE

102 33 676.8 24. Juli 2002 (24.07.2002) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BIOMAY PRODUKTIONS- UND
HANDELS-AKTIENGESELLSCHAFT [AT/AT]; Bohr-Gasse 7b, A-1030 Wien (AT).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SIMON-NOBBE, Birgit [AT/AT]; Ulrich-Schreierstr. 17, A-5020 Salzburg (AT). SCHNEIDER, Peter [AT/AT]; Höhenvöth 4, A-4894 Oberhofen (AT). DENK, Ursula [AT/AT]; Forsthausstr. 42, A-4060 Leonding (AT). WALLY, Verena [AT/AT]; Schrammeng. 12, A-5020 Salzburg (AT). RICHTER, Klaus [AT/AT]; Flurweg 1, A-5020 Salzburg (AT). RADAUFER, Christian [AT/AT]; Wurmserg. 21, A-1150 Wien (AT). TEIGE, Markus [DE/AT]; Weyringerg. 7, A-1040 Wien (AT). EBNER, Christof [AT/AT]; Heinrich Albrecht-G. 19, A-2345 Brunn am Gebirge (AT). BREITENBACH, Michael [AT/AT]; Lederwaschg. 22, A-5020 Salzburg (AT).

(74) Anwälte: KELLER, Günter nsw.; LEDERER & KELLER, Prinzregentenstrasse 16, 80538 München (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), curasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 25. März 2004

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

A3

WO 2003/083098

54) Title: NUCLEIC ACID SEQUENCE AND PROTEIN IN ADDITION TO POLYPEPTIDES CODING FOR MANNIT-DEHYDROGENASES OR PARTS THEREOF AND THE PRODUCTION AND USE THEREOF IN DIAGNOSIS AND THERAPY

(54) Bezeichnung: NUCLEINSÄURESEQUENZ UND PROTEIN SOWIE POLYPEPTIDE KODIEREND FÜR MANNIT-DEHYDROGENASEN ODER DEREN TEILE SOWIE DEREN HERSTELLUNG UND VERWENDUNG IN DIAGNOSTIK UND THERAPIE

(57) Abstract: The invention relates to polypeptides made of mannitol-dehydrogenase of Cladosporium herbarum and Alternaria alternata nucleic acids coding therefor and the use thereof in diagnosis and therapy.

(57) Zusammenfassung: Offenbart werden Polypeptide aus der Mannit-Dehydrogenase von Cladosporium herbarum und Alternaria alternata, hierfür kodierende Nukleinsäuren und deren Verwendung in Diagnostik und Therapie.

2003219084 18 Dec 2007

-1-

In certain people, allergic reactions are caused by a wide range of substances. Not only allergies to components of animals, such as, for example, cat hairs, but also allergies to plants and plant parts, such as the pollen of flowers, 5 are known. However, allergies to microorganisms such as, for example, molds, are also known.

The present invention relates to the major allergen of the mold *Cladosporium herbarum*. It has been found within the 10 scope of the present invention that, surprisingly, this major allergen is a mannitol dehydrogenase (MtDH). The present invention furthermore relates to a major allergen of *Alternaria alternata*.

15 Accordingly, a first aspect of the present invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:4, 5 or 6 or comprising at least 100 consecutive amino acids from the amino acid sequence of SEQ ID NO:1 or 8, wherein the polypeptide is an allergen.

20 In a second aspect, the present invention provides an isolated polypeptide comprising at least 100 consecutive amino acids from the amino acid sequence of SEQ ID NO:11 wherein the polypeptide is an allergen.

25 In a third aspect, the present invention provides a vaccine for desensitizing patients to a mould allergy, comprising at least one allergen as defined in the first or second aspect.

30

2003219084 18 Dec 2007

PIWPDOCSORMUKRZUKRZ/Spec1(220317) spec doc-17.12.2007

-1a-

In a fourth aspect, the present invention provides the use of an allergen as defined in the first or second aspect for the preparation of a vaccine.

5 In a fifth aspect, the present invention provides the use of an allergen as defined in the first or second aspect for the diagnostic detection of a disease.

In a sixth aspect, the present invention provides use of a
10 polynucleotide for detecting a mannitol dehydrogenase, wherein the polynucleotide comprises at least eight consecutive nucleotides from the nucleotide sequence of SEQ ID NO:2, 7 or 12, wherein the nucleotide sequences of SEQ ID NOS:2, 7 and 12 encode mannitol dehydrogenases.

15 In a seventh aspect, the present invention provides a vector for transforming a host cell, wherein the vector comprises a polynucleotide comprising at least eight consecutive nucleotides from the nucleotide sequence of SEQ ID NO:2, 7
20 or 12, wherein the nucleotide sequences of SEQ ID NOS:2, 7 and 12 encode mannitol dehydrogenase.

In an eighth aspect, the present invention provides a host cell transformed with a vector as defined in the seventh
25 aspect.

In a ninth aspect, the present invention provides a method for the preparation of an allergen as defined in the first or second aspect, wherein a host cell as defined in the eighth aspect is cultured, the polypeptide expressed and purified.

2003219084 18 Dec 2007

-1b-

The present invention relates to a polypeptide which has at least 10 consecutive amino acids from the amino acid sequence with the sequence ID No. 1. The amino acid sequence is shown in Fig 1, as is the corresponding DNA sequence. The invention also relates to the polypeptides with the seq ID No. 4, 5 and 6.

The complete sequence of a polypeptide encoding a mannitol dehydrogenase is furthermore disclosed. Seq. ID No. 7 represents the nucleic acid sequence and seq. ID no. 8 the amino acid sequence thereof. The sequences are shown in Figure 3.

The present invention relates to a

15

polypeptide which has at least 10 consecutive amino acids from the amino acid sequence with the sequence ID No. 11. The amino acid sequence is shown in Fig. 4; it constitutes a major allergen which has been isolated 5 from *Alternaria alternata*.

The amino acid sequence of the major allergen from *Alternaria alternata*, which is mannitol dehydrogenase, is shown in Fig. 5 in the one-letter code, together 10 with the DNA sequence encoding it (sequence ID No. 12) and the flanking nucleotide sequences at the 5' and the 3' end.

A polypeptide according to the invention preferably has 15 at least one epitope. An epitope is understood as meaning a region to which antibodies can bind. In principle, there are linear epitopes. In this case, the amino acids which form the epitope are arranged next to one another. However, what are known as the 20 confirmation epitopes are more frequent. These confirmation epitopes are formed by the folding of the polypeptide. Here, amino acids which are not adjacent in the sequence can come into spatial vicinity owing to the three-dimensional folding of the polypeptide, and 25 this surface structure is bound by an antibody.

Preferably, the epitopes are specific for one mold. In principle, antibodies against virtually all amino acid sequences can be generated with the aid of suitable 30 techniques, for example using adjuvants. The polypeptides according to the invention, however, play an important role in diagnostics and therapy. This is why the polypeptides according to the invention preferably have specific epitopes, the epitopes being 35 specific for one mold. Frequently, proteins or polypeptides which originate from a certain organism have similarities to a corresponding protein or polypeptide which originates from a related organism. It is therefore possible that antibodies which are

directed against an epitope of a certain mold also react with a corresponding epitope of a related mold.

The more specific an epitope, the less antibodies which
5 are directed against it will react with an epitope of a homologous polypeptide from a related organism. Thus, the polypeptides according to the invention preferably have those epitopes which are specific for a mold. The polypeptides especially preferably have those epitopes
10 which are specific for a mold of the genus *Cladosporium*. The polypeptides very especially preferably have an epitope which is specific for *Cladosporium herbarum*. Antibodies which are directed against such an epitope do not react with other
15 polypeptides.

It has been found within the scope of the present invention that the polypeptide with the amino acid sequence ID No. 1 encodes a mannitol dehydrogenase. The
20 present invention also relates to parts of this amino acid sequence with at least 11 amino acids. The polypeptides according to the invention preferably have at least 20 consecutive amino acids from the sequence with the sequence ID No. 1. More preferred are those
25 polypeptides which have at least 50 consecutive amino acids, and very especially preferred are those polypeptides which have at least 100 consecutive amino acids from the amino acid sequence with the sequence ID No. 1.

30 The invention also relates to a polypeptide from the N-terminus with the sequence PGQQATKHESLLDQLS (seq. ID No. 4) and to two polypeptides from the C-terminal end with the sequence LDTGLSDFVVK (seq. ID No. 5) and
35 MGRDGLAKEL (seq. ID No. 6).

The invention also relates to a polypeptide with the sequence ID No. 8 and to parts of this polypeptide which comprise an epitope. The parts according to the

invention of the sequence ID No. 8 have at least 11, preferably at least 20, more preferably at least 50 and very especially preferably at least 100 consecutive amino acids from the amino acid sequence with the 5 sequence ID No. 8.

The present invention furthermore relates to a polypeptide with the sequence ID No. 11 and to parts of this polypeptide which comprise an epitope. Such 10 epitopes are specific for Alternaria, more precisely for Alternaria alternata. The parts according to the invention of the sequence ID No. 11 have at least 11, preferably at least 20, more preferably at least 50 and especially preferably at least 100 consecutive amino 15 acids from the amino acid sequence with the sequence ID No. 11.

These polypeptides preferably have at least one epitope. For example, it is possible, with the aid of 20 hydrophilicity/hydrophobicity examinations, to identify those parts of the polypeptide which are especially suitable for immunological reactions. This can be done for example with the aid of suitable computer programs.

25 As an alternative, it is also possible to prepare fragments of the sequence with the aid of what is known as the Pepscan method and to test the short fragments for relevant epitopes by reacting them with sera from allergic patients. Moreover, it must be identified 30 whether the epitopes are epitopes which are specific for a mold, in particular for a mold from the genus Cladosporium and/or Alternaria and in particular for Cladosporium herbarum and/or Alternaria alternata. This determination is carried out using suitable serum 35 panels.

Cladosporium is a fungal genus which belongs to the molds. Cladosporium species are very frequent and occur preferentially in bogs, in forests and in gardens since

they grow readily on rotten plants or on leaves. Moreover, they are found in greenhouses and in insufficiently cleaned refrigerators. Cladosporium also grows on textiles, for example linen fabrics.

5 Cladosporium can trigger allergic reactions such as, for example, running nose, cough, sneezing, urticaria or asthma (mold allergy).

Alternaria is a fungal genus which belongs to the molds. Alternaria species occur preferentially in bogs, in forests and in gardens since they grow readily on rotten plants or on leaves. On domestic premises, they are mainly found in flour, fruit and vegetables. However, they also grow on a variety of textiles, for 15 example linen fabrics. Alternaria can trigger allergic reactions such as, for example, running nose, cough, sneezing, urticaria or asthma (mold allergy).

Owing to the disclosure of the amino and nucleic acid sequence, it is possible, with the aid of recombinant techniques, to prepare shorter fragments of the complete sequence recombinantly in bacteria, for example in *E. coli*, or in higher organisms, for example insect cells, yeasts or eukaryotic cells. It is 25 precisely short polypeptides that can also be provided readily via the chemical route with the aid of solid-phase synthesis.

The present invention furthermore relates to a vaccine 30 which can be employed for desensitizing patients to a mold allergy. In the desensitization, patients who suffer from an allergy are brought into contact with a small amount of an antigen, whereby it is intended that neutralizing IgE antibodies are formed. The antigens 35 with which the patient has come into contact are bound by these neutralizing antibodies. The antigen-antibody binding of antibodies of the IgE type, which trigger allergic reactions, are thereby avoided. The polypeptides according to the invention can therefore

be used for preparing a vaccine. To this end, the recombinantly produced, or else chemically produced, polypeptides can be incorporated into a suitable vaccine formulation. In addition to the polypeptides, 5 the vaccine formulation can also comprise conventional additives and formulation auxiliaries, as well as adjuvants.

The present invention also relates to the use of a 10 polypeptide according to the invention for a diagnostic detection of a disease. Such a disease usually takes the form of an allergy. The polypeptides are employed in a suitable diagnostic detection system. This may take the form of a radioimmunoassay (RIA), or 15 preferably also an ELISA (enzyme-linked immunosorbent assay). The usual configuration of such a diagnostic assay is known.

Another aspect of the present invention relates to 20 nucleotides from the nucleotide sequence with the sequence ID No. 2. The nucleotide sequence with the sequence ID No. 2 is likewise shown in Figure 1. It is part of the gene for the *Cladosporium herbarum* mannitol dehydrogenase according to the invention.

25 A further aspect of the present invention relates to polynucleotides with the nucleotide sequence of the sequence ID No. 7. Parts of this nucleotide sequence are likewise the subject-matter of the invention. With 30 the aid of this nucleotide sequence or parts thereof, a desired polypeptide can be produced recombinantly in suitable host cells.

A further aspect of the present invention relates to 35 polynucleotides with the nucleotide sequence, sequence ID No. 12. This is a nucleotide sequence which encodes the *Alternaria alternata* mannitol dehydrogenase and nucleotide sequences which are immediately adjacent to the coding region. Parts of this nucleotide sequence

are also the subject-matter of the present invention.

A polynucleotide according to the invention has at least eight consecutive nucleotides, preferably at 5 least 12, more preferably at least 20 and most preferably at least 50 consecutive nucleotides. For some fields of application, the nucleotides must be longer, in which case the polynucleotides have at least 100 consecutive nucleotides selected from the sequence 10 ID No. 2, ID No. 7 or sequence ID No. 12.

The polynucleotides according to the invention can be used for detecting a mannitol dehydrogenase. It is preferred to detect the presence of a gene encoding 15 this mannitol dehydrogenase from *Cladosporium herbarum* and/or *Alternaria alternata*. These methods take the form of nucleic acid amplification methods which are known per se. A suitable example for this purpose is NASBA (nucleic acid sequence based amplification) or, 20 more preferably, polymerase chain reaction (PCR).

Since the nucleic acid sequences encoding the *Cladosporium herbarum* and *Alternaria alternata* mannitol dehydrogenase have been disclosed, it is possible to 25 select those nucleotide sequences for the amplification which have a very high degree of homology, or even identity. It can be expected that, when using such highly-specific primers, other mannitol dehydrogenases from related organisms are also amplified since a high 30 degree of homology in the amino acid sequences suggests a high degree of conservation in such a gene region.

Thus, it is preferred to use such highly conserved regions for nucleic acid diagnostics in the case when 35 the antigen is to be isolated not only from *Cladosporium* and/or *Alternaria* species, but also from other mold species.

Regions which have a low degree of homology with one

another are therefore better suited for fine diagnostics, that is to say for the distinction both between *Alternaria* and *Cladosporium* species and for the fine differentiation within *Cladosporium* or *Alternaria* species. Figure 6 shows the coding regions from *Cladosporium herbarum* and *Alternaria alternata* together. Identical nucleotide sequences are shown against a black background and identify conserved regions.

10

Such a method can be used for detecting the presence of the mold *Cladosporium herbarum* and/or *Alternaria alternata*. Such applications are of interest not only in medical diagnostics, but also in other fields, for example in the fields of hygiene and food testing. In this context, it must be taken into consideration that *Cladosporium herbarum* is capable of growth even at relatively low temperatures of up to approximately +6°C and that it can therefore constitute an undesired contamination in fields of food technology. The detection even of small amounts of *Cladosporium herbarum* may play an essential role in the control of foods and their quality control.

25 A further aspect of the present invention is the disclosure of a method for preparing a polypeptide according to the invention. First, a gene from a mold, preferably from *Cladosporium herbarum* or *Alternaria alternata*, can be amplified with the aid of the 30 polynucleotides according to the invention and with the aid of the polymerase chain reaction. This polynucleotide can then be incorporated into a suitable vector with which a host cell is transformed. Suitable vectors multiply in the host cell, during which process 35 the polypeptides are expressed. The host cells may take the form of conventional host cells. Suitable for this purpose are bacterial host cells such as *Escherichia coli* or *Bacillus subtilis* or yeasts such as, for example, *Saccharomyces cerevisiae* or *Pichia pastoris*.

For the purposes of the present invention, IgE immunoblots of *Cladosporium herbarum* crude extract were assayed with sera from 62 patients. An immunoreactive 5 protein of molecular weight 29 kD, which was recognized by 61% of the patients' sera, was identified. The patients had been preselected in a skin test or blood test (RAST) and showed a positive response to *Cladosporium herbarum* extract. No other allergen in the 10 *Cladosporium herbarum* extract reacted with such a high percentage of patients' sera. It is therefore assumed that this protein is the major allergen of *Cladosporium herbarum*.

15 The immunoreactive proteins disclosed within the scope of the present invention are important allergens, not only for diagnostic purposes, but also for the therapy of allergens to molds, in particular *Cladosporium* and *Alternaria* species. If appropriate, these allergens, 20 together with other allergens, for example Alt a 1 [Unger A. et al. (1999), Clinical testing of recombinant allergens of the mold *Alternaria alternata*, Int. Arch. Allergy Immunol. 118, 220-221] and Enolase [Simon-Nobbe B. et al. (2000), IgE binding epitopes of 25 enolases, a class of highly conserved fungal allergens, I. Allergy Clin. Immunol. 106, 887-895] can be employed both in diagnostics and for therapeutic purposes.

The two-dimensional separation by isoelectric focusing 30 and SDS-PAGE showed this *Cladosporium herbarum* protein as a 29 kD spot and at isoelectric point at pH = 5.8.

The protein was purified to homogeneity in a conventional method (example 1). The yield amounted to 35 1 mg. The homogeneously purified protein was then assayed in the IgE immunoblot with a pool of six patients and was highly positive (example 2).

The protein which had been purified to homogeneity was

partially sequenced by Edmanic degradation, starting at the N terminus, and internal peptide sequences were determined after degradation with CNBr.

5 N-terminal and internal peptide sequences were determined after digestion with trypsin by subjecting approximately 50 μ g of protein, which had been obtained by excising a spot from the two-dimensional electrophoresis, to Edman degradation.

10

Table 1 shows a list of all peptide sequences which were identified. The single-letter code was used. The amino acids which are shown against the black background in table 1 were found in the sequence of the
15 *Cladosporium fulvum* mannitol dehydrogenase.

Peptide sequences of the C. herbarum NADP-dependent
mannitol dehydrogenase, N-terminal sequence

PGQQQATKHESSLDDQXSK: a) Starting material: crude extract separated by means of 2-dimensional SDS gel

b) Analytical method: Edman sequencing

PGQQQATKHESSLDDQLSLKGK: a) Starting material: native purified protein

b) Analytical method: Edman sequencing

Peptide 1

5

HESSSLDDQLSLK: a) Starting material: crude extract separated by means of 2-dimensional SDS gel

b) Analytical method: MS/MS

c) Note: overlaps with the N-terminal sequence

Peptide 2

WVVVTGASGP: a) Starting material: crude extract separated by means of 2-dimensional SDS gel

b) Tryptic digest

c) Analytical method: sequencing

WVVVVVTGASKR: a) Starting material: crude extract separated by means of 2-dimensional SDS gel

b) Tryptic digest

c) Analytical method: MS/MS

Peptide 3

QVDSYE: a) Starting material: crude extract separated by means of 2-dimensional SDS gel

b) Tryptic digest

c) Analytical method: sequencing

Peptide 4

LDTGLSDFVVK a) Starting material: crude extract separated by means of 2-dimensional SDS gel
b) Tryptic digest
c) Analytical method: MS/MS

Peptide 5

MGRDGLAKE a) Starting material: native purified protein
b) CnBr digest
c) Analytical method: sequencing

Table 1

The peptide sequences were compared with all the protein sequences listed in the databases (Swissprot, 5 GenBank and the like) by computer-aided homology search. All peptides showed homology with the family of the mannitol dehydrogenases. The mannitol dehydrogenase with which the peptides show the highest degree of sequence similarity is the *Cladosporium fulvum* mannitol 10 dehydrogenase. A purification of *Cladosporium fulvum* mannitol dehydrogenase is described in Noeldner et al., *Physiological and Molecular Plant Pathology* (1994) pp. 281-289. The position of these peptides in the sequence can be seen in the alignment (Table 2).

Protein alignment of the C. fulvum NADP MtDH and C. herbarum peptide sequences

C.fulvum	1	M P R I P E A P H E E D I L M A R G R V V V V G R G H K C M G I E A A R G C A E M G A D L A I T Y A S R A E G G L
C.herbarum		P C P A T K H S S L E C P C L E C K P E A V T G A R E - - - - -
C.fulvum	61	K N A E P E L S K O Y C I K C K A Y K C P E K K P S V E Q L V K D V I Q D F G K I D A F I A N A G A T A N S G I L D G S
C.herbarum		-----C V S S F-----
C.fulvum	121	V E D W N H V V Q V D L N G T F H C A K A V G H H F K E R G T G S P V I T S S M S G H I A N Y P Q E Q T S Y N V A K A G
C.herbarum		-----
C.fulvum	181	C I H M A R S L A N E W R D F A R V N S I S P G Y I D I G U C D P H A P D I Q K L W H S M I P L G R E Q U A K E I K G A
C.herbarum		-----D T G L S E P F V M-----M Q R D G L A K E I - - -
C.fulvum	241	Y V Y L V S D A S T Y T T G A D I V I D G G Y T C R
C.herbarum		-----

5

C.fulvum MtDH: accession number: AAK67169 (seq. ID No. 3)

Length of the coding sequence: 267 amino acids (AA)
801 base pairs (bp)

10 MW: 28.6 kD
pl: 6.33

Table 2

15 Table 2 shows the arrangement of the polypeptides with
seq. ID No. 4, 5 and 6 with reference to the homology
with C. fulvum.

20 Owing to these results, the enzyme activity of the
protein which had been purified to homogeneity was
assayed. The experiments reveal that the highly
purified major allergen of Cladosporium herbarum is
indeed a mannitol dehydrogenase which catalyzes the
following metabolic reaction: Fructose + NADPH + H⁺ ⇌
25 mannitol + NADP⁺. Furthermore, it has been found that
NADH is not active as cosubstrate and that fructose-6-
phosphate is also not active as substrate. Fructose-6-
phosphate has an inhibitory effect on the reaction. The
method of the activity determination is described in
30 example 3.

Then, the N-terminal peptide sequence and an internal peptide sequence of the *Cladosporium herbarum* mannitol dehydrogenase were used for designing PCR primers by means of back translation. The primer selection is 5 compiled in table 3.

DNA sequence of the oligos derived from the peptides

Oligo 1:

10 • derived from the N-terminal sequence of the *C. herbarum* mannitol dehydrogenase (MtDH) (see seq. ID No. 2)
• oligo sequence: 5' CA(A/G) CA(A/G) GC(I/C) AC(I/C) AA(A/G) CA(C/T) GA 3'

15

Oligo 2:

• derived from peptide 4 of the *C. herbarum* MtDH
• oligo sequence: 5' AC(A/G) AA(A/G) TC(A/G) CT(I/C) AG(I/C) CC(A/G) GT(A/G) TC 3'

20

The primers are mixtures of synthetic oligonucleotides. (A/G)... means that both adenine and guanine are found in the oligonucleotides at this position. The same applies to (C/T) and (I/C), where I represents the base 25 inosine.

Table 3

These primers which are shown in table 3 were used to 30 carry out a PCR reaction with the DNA from a *Cladosporium herbarum* cDNA library constructed by the inventors (Achatz G et al., 1995, Mol. Immunol., 32; 213-27). The result was a 636 bp band. This band was sequenced by automated DNA sequencing as described by 35 Sanger (1977, Proc. Natl. Acad. Sci. USA, 74; 5463-7) using the PCR primers as sequencing primers. Seq. ID No. 2 was identified in this process. The protein sequence (seq. ID No. 1) derived from this DNA sequence has 87% identity with the protein sequence of the

Cladosporium fulvum mannitol dehydrogenase. If the substitution by chemically related amino acids (for example I - V, isoleucine - valine and the like) is also taken into consideration, this value rises to 92%.

5 With the plausible assumption that the Cladosporium herbarum mannitol dehydrogenase, like the Cladosporium fulvum mannitol dehydrogenase, has a total length of 267 amino acid, as much as 65% of the amino acid sequence of the major allergen (mannitol dehydrogenase) from Cladosporium herbarum were determined by firstly peptide sequencing and secondly DNA sequencing. The total sequence of this protein which is known to date, and the alignment of this sequence with the homologous Cladosporium fulvum sequence, are shown in figure 2.

15

Example 1

Protein purification

20 1. Ammonium sulfate precipitation:

Prefractioning can be achieved by an ammonium sulfate concentration of 50%, with mannitol dehydrogenase (MtDH) remaining in the supernatant.

25

50 mM Tris-HCl, pH 7.5 were added to the extract. Proteases were inhibited with 1 tablet of Roche Complete per 100 ml of extract and 2 mM EDTA.

30

The precipitation was carried out by adding solid, ground ammonium sulfate and was carried out in two steps, first 0-30%, then 30-50%. The precipitation was equilibrated for at least 45 minutes before the extract was centrifuged at 12 000 g. The supernatant was 35 filtered and purified further via hydrophobic interaction chromatography (HIC).

2. HIC (Phenyl-Sepharose):

The supernatant from the ammonium sulfate precipitation was brought to pH 6.5 using 3 M sodium acetate. The column (8 ml Source, 15 PHE, PHARMACIA) was equilibrated with 1.2 M ammonium sulfate, 50 mM Tris-
5 HCl, pH 7.5, 2 mM EDTA and loaded with the sample at a flow rate of 1 ml/min. After the column had been washed with 20 ml of buffer, it was eluted with a gradient of 1.2 M ammonium sulfate to 0.6 M ammonium sulfate over 40 ml.

10

The mannitol dehydrogenase (MtDH) fractions were pooled and prepared for the anion exchanger. The volume is concentrated via Centricon centrifuge tubes (Millipore); buffer exchange flow 50 mM Tris-HCl, pH 15 7.5 with the aid of PD-10 Desalting Columns (AMERSHAM-PHARMACIA).

3. Anionic exchanger (Q-Sepharose):

20 The column (8 ml Source 15 Q, PHARMACIA) was equilibrated with 15 mM Tris-HCl, pH 7.5. It was eluted with a 0-300 mM NaCl gradient over 100 ml.

Example 2

25

Immune blot of the native purified MtDH after separation in the SDS gel

Native purified MtDH was separated by molecular weight 30 in a reducing SDS gel (Laemmli UK, Nature, 1970; 27:680-5). Subsequently, the protein was transferred onto a PVDF membrane in a Western blot (Towbin H et al., Proc. Natl. Acad. Sci USA, 1979; 76:4350-4). After free binding sites had been saturated (30 minutes in 35 blocking buffer: 50 mM sodium phosphate pH 7.5, 0.5% Tween 20, 0.5% BSA, 0.05% NaN₃), the membrane was incubated with patients' serum (1:10 diluted in blocking buffer). Then, the membrane was washed (with blocking buffer, 3 x 10 minutes) to remove

unspecifically bound antibodies. Specifically bound IgE-Ab were detected with the aid of an ^{125}I -labeled rabbit anti-human IgE antibody. After the membrane had been exposed to an X-ray film, the result was 5 available.

Results:

1) The native purified MtDH reacts specifically with 10 the IgE antibodies of *C. herbarum* allergy sufferers. A prominent IgE-reactive band is revealed at 29 kD.

2) The same result, viz. a prominent IgE-reactive band at 29 kD, is obtained when a *C. herbarum* total 15 extract is separated in the SDS gel and subsequently incubated with patients' serum in an immune blot.

Example 3

20 Immune blot of the native purified MtDH after 2-dimensional separation

Native purified MtDH was separated under denaturing conditions in an isoelectric focusing (O'Farrel PH, J. 25 Biol. Chem., 1975; 250:4007-21) according to the net charge (isoelectric point) of the protein. Thereafter, the protein separated thus was subjected to SDS gel electrophoresis (Laemmli UK, Nature, 1970; 27:680-5), whereby a separation by molecular weight took place in 30 addition. The protein was transferred to a PVDF membrane in a Western blot (Towbin H et al., Proc. Natl. Acad. Sci. USA, 1979; 76:4350-4). After free binding sites had been saturated (30 minutes in blocking buffer: 50 mM sodium phosphate pH 7.5, 0.5% 35 Tween 20, 0.5% BSA, 0.05% NaN_3), the membrane was incubated with patients' serum (1:10 diluted in blocking buffer). Then, the membrane was washed (with blocking buffer, 3 \times 10 minutes) to remove unspecifically bound antibodies. Specifically bound

IgE-Ab were detected with the aid of an ^{125}I -labeled rabbit anti-human IgE antibody. After the membrane had been exposed to an X-ray film, the results were available:

5

Results:

10 1) The native purified MtDH reacts specifically with the IgE antibodies of *C. herbarum* allergy sufferers. A prominent IgE-reactive spot was observed at a molecular weight of 29 kD and an isoelectric point of 5.8.

15 2) The same result, viz. a prominent IgE-reactive spot at a molecular weight of 29 kD and an isoelectric point of 5.8 is obtained when a *C. herbarum* total extract is separated in a two-dimensional gel and subsequently incubated with patients' serum in an immune blot. An IgE-reactive protein with a molecular weight of 29 kD and an isoelectric point of 5.6 is 20 additionally found in the total extract. This protein could be an MtDH isoform.

Example 4

25 To confirm the results according to the invention, the enzyme activity was determined with the traditionally purified protein. The absorption of NADPH was measured in a photometer at 340 nm.

30 Reaction mix (1 ml):

50 mM Tris-HCl, pH 7.5
0.25 mM NADPH or NADH
D-fructose or fructose-6-phosphate (0.1; 0.2; 0.4; 0.6;
35 0.8; 1.0; 1.2 M)
 H_2O to 1 ml
the reaction is started with 0.5 μl of MtDH

Results:

Reaction with fructose and NADPH

No reaction with fructose-6-phosphate and NADH

5 **Example 5**

Sequence of mannitol dehydrogenase (MtDH)

The complete sequence of the *Cladosporium herbarum*
10 mannitol dehydrogenase was determined as described
hereinbelow.

The peptide sequences obtained by Edman degradation of
the *Cladosporium* mannitol dehydrogenase which had been
15 purified to homogeneity were used to synthesize primer
mixtures for the PCR. The PCR resulted in a band of
636 nt which was firstly sequenced and secondly used as
hybridization probe for screening our cDNA library. A
complete *Cladosporium herbarum* mannitol dehydrogenase
20 (MtDH) clone was isolated and sequenced. The complete
sequence is shown in fig. 3; it has 84% identity with
the published sequence of the *C. fulvum* MtDH.

Table 4 shows the sequence alignment of the two
25 mannitol dehydrogenases of *Cladosporium herbarum* and
Cladosporium fulvum, only the amino acids which differ
being shown.

Table 4: Alignment of the amino acid sequences of the
30 *C. herbarum* and *C. fulvum* MtDHs:

<i>C. fulvum</i>	1	-M-P-R-I-P-E-A-P-H-G-L-I-L-I-R-I-V-A-V-I-V-I-G-P-M-I-T-A-P-A-A-P-E-D-P-D-I-T-V-A-P-E-P-C
<i>C. herbarum</i>	1	M-P-G-Q-A-T-K-E-S-Q-E-L-Q-E-L-V-V-V-V-V-C-A-C-H-E-S-E-L-E-A-D-C-T-E-M-E-D-V-A-T-Y-V-A-S-E-P-C
<i>C. fulvum</i>	60	L-K-I-E-S-I-Q-V-E-C-A-T-V-O-U-N-I-T-E-V-I-S-V-E-D-V-I-C-H-E-S-E-L-E-A-D-C-T-E-M-E-D-V-A-T-Y-V-A-S-E-P-C
<i>C. herbarum</i>	61	E-E-V-A-C-H-E-S-E-L-E-A-D-C-T-E-M-E-D-V-A-T-Y-V-A-S-E-P-C
<i>C. fulvum</i>	120	S-V-E-D-S-I-Q-V-E-C-A-T-V-O-U-N-I-T-E-V-I-S-V-E-D-V-I-C-H-E-S-E-L-E-A-D-C-T-E-M-E-D-V-A-T-Y-V-A-S-E-P-C
<i>C. herbarum</i>	121	E-V-E-D-S-I-Q-V-E-C-A-T-V-O-U-N-I-T-E-V-I-S-V-E-D-V-I-C-H-E-S-E-L-E-A-D-C-T-E-M-E-D-V-A-T-Y-V-A-S-E-P-C
<i>C. fulvum</i>	180	S-E-C-H-E-S-E-L-E-A-D-C-T-E-M-E-D-V-A-T-Y-V-A-S-E-P-C
<i>C. herbarum</i>	181	S-E-C-H-E-S-E-L-E-A-D-C-T-E-M-E-D-V-A-T-Y-V-A-S-E-P-C
<i>C. fulvum</i>	240	A-T-E-L-V-E-S-A-T-T-I-C-A-V-I-D-V-E-S-C-O
<i>C. herbarum</i>	241	A-T-E-L-V-E-S-A-T-T-I-C-A-V-I-D-V-E-S-C-O

Amino acid sequences which are shown against the black background mean identical amino acid sequences, chemically similar amino acids are shown against a grey background, and amino acids which differ are shown 5 against the normal background.

The C. fulvum sequence is represented as seq. ID No: 9, and the C. herbarum amino acid sequence as SEQ. ID No: 10.

10

Table 4 shows the regions of the polypeptide which may be suitable for the detection of or a vaccine for Cladosporium. They are the regions with no differences.

15

In the regions with pronounced differences it must be presumed that the immunological reactions differ; such regions can therefore comprise highly specific epitopes.

20

When determining the sequence shown in fig. 3, it was found that minor differences occurred in the nucleotide sequence in comparison with the originally isolated part-sequences. This can be attributed to differing sequences which were present in the gene library.

25

However, these differences do not affect the present invention in any way. The invention relates to the disclosed differing sequences, since it is assumed that they are variants of the gene.

30

Example 6

Expression in E. coli, and reactivity with patients' serum

35

The open reading frame of MtDH was cloned into the following expression vectors:

- a) pHis-Parallel 2 Vector (Xhol/BamHI) (Ref.: P. Sheffield, S. Garrard, and Z. Derewenda (1999). Overcoming expression and purification problems of

RhoGDI using a family of "parallel" expression vectors. *Protein Expr Purif* 15, 34.)

b) pMW172 Vector (NdeI/EcoRI) (Ref.: M. Susani, P. Jertschin, C. Dolecek, W. R. Sperr, P. Valent, C. Ebner, D. Kraft, R. Valenta, and O. Scheiner (1995). High level expression of birch pollen profiling (Bet v 2) in *Escherichia coli*: purification and characterization of the recombinant allergen. *Biochem Biophys Res Commun* 215, 250.)

The plasmids were subsequently transformed into *Escherichia coli* strain BL21 (DE3). For the subsequent induction, 5-ml-portions of LBamp were inoculated with 15 50 μ l of a stationary overnight culture of the two clones and the mixtures were shaken at 37°C until a OD₆₀₀ of 0.8 had been reached (approx. 4 hours). The protein expression was induced with 0.8 mM IPTG. After incubation for 4 hours at 37°C in a shaker-incubator, 20 the *E. coli* suspensions were spun down for 15 minutes at 4000 rpm. The bacterial pellets were subsequently resuspended in 1 ml of 1xPBS, and 6- μ l-portions of the dissolved bacterial pellets were separated by SDS-PAGE and subsequently stained with Coomassie BBR250. This 25 gave the following results: the *E. coli* cells which had been transformed with the expression plasmids and induced with IPTG, but not the *E. coli* cells without plasmid, reveal a pronounced protein band at the molecular weight expected in each case, viz. 30 kD and 30 approximately 33 kD, respectively (apparent molecular weight).

An IgE immune blot was carried out with the polypeptides which had been separated with the aid of a 35 gel. The serum of a *Cladosporium*-positive allergy sufferer was used. The bound IgE antibodies were detected with the ¹²⁵I labeled rabbit anti-human IgE antibody (RAST). The two foreign proteins which were overexpressed in *E. coli* react strongly with the IgE of

the patient, but not the proteins of *E. coli* itself.

Example 7

5 Determination of the frequency of the response to
 recombinant MtDH with the aid of 30 sera of
 Cladosporium-positive allergy sufferers

The experiment described in example 6 was repeated, but
10 30 different *Cladosporium*-positive allergy-sufferer
 sera which had not been preselected were used. The
 control revealed a very low immune reactivity of the *E.*
 coli extract with the second antibody (RAST). This can
15 probably be attributed to an artifact. As expected,
 other controls were negative.

Among 30 patients, 20 revealed an IgE-positive band at
30 30 kD which was more pronounced than the weak band in
 the control experiment. MtDH is thus recognized by
20 approximately two thirds of the *Cladosporium*-positive
 allergy sufferers. This finding is important because
 this experiment demonstrates that recombinant
 Cladosporium herbarum MtDH can be employed as
25 diagnostic and therapeutic for the majority of the
 patients.

Example 8

To clone the *Alternaria alternata* mannitol
30 dehydrogenase, a cDNA bank in Lambda-ZAP (Stratagene,
 La Jolla, CA, USA). This cDNA cloned library was
 prepared with the aid of isolated mRNA from *Alternaria*
 alternata.

35 As described above, the cDNA library was screened with
 a DNA probe, with initially 24 primary clones being
 isolated. 5 of these clones were sequenced completely.
 All 5 sequences were identical in the coding region.
 The translation of the nucleotide sequence into an

amino acid sequence and the comparison with the amino acid sequence of the *Cladosporium herbarum* mannitol dehydrogenase revealed that the reading frame was complete. The sequence had 74% identity with the 5 sequence from *Cladosporium herbarum*.

Example 9

The open reading frame of the clone encoding the 10 *Alternaria alternata* mannitol dehydrogenase was then recloned in the expression vector pHIS-parallel 2 [P. Sheffield et al. (1999), Overcoming expression and purification problems of RhoGDI using a family of "parallel" expression vectors, *Protein Exp. Purif.* 15, 15 34] using the restriction cleavage sites Bam H I (N-terminally) and Xho I (C-terminally). Upon expression in *E. coli* BL21 and subsequent analysis of the gene products with the aid of SDS-PAGE gel electrophoresis and Coomassie Blue staining, a pronounced protein band 20 appeared at a molecular weight of approximately 30 kD. This corresponds approximately to the molecular weight which would be expected theoretically.

Example 10

25 The following procedure was chosen for purifying the recombinantly produced protein, which is provided with a poly-His fragment at the C terminus:
the *E. coli* cells with the expression vector, which 30 express the foreign protein, the *Alternaria alternata* mannitol dehydrogenase, were first lysed in the customary manner. It was found that the recombinantly produced protein was present in insoluble form. The inclusion bodies formed by overexpression of the 35 foreign protein were first solubilized in a buffer with 6-molar urea and subsequently purified by affinity chromatography over a nickel chelate column. The recombinantly produced mannitol dehydrogenase was applied in 6 M urea buffer. Imidazole buffer was

2003219084 19 Sep 2007

- 24 -

employed for the elution. The protein-comprising fractions were subsequently purified further by preparative SDS-PAGE gel electrophoresis and analyzed, during which process it emerged that the allergen was already purified to virtually 5 complete homogeneity. Staining with Coomassie-BB-R only revealed on band with a molecular weight of approximately 30 kD.

Example 11

10

The protein prepared in accordance with example 10 was separated by gel electrophoresis and tested in an IgE immune blot with the sera of 28 patients. All of the 28 sera originated from patients who had shown a positive response 15 to the Alternaria alternate crude extract and who had been pretested both in a skin test and in an RAST. A pronounced band was visible in the immune blot in the case of 9 of the patients' sera tested. This corresponds to approximately 32% of the Alternaria alternate-sensitized patients.

20

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or 25 step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

2003219084 19 Sep 2007

P:\WP\DOCS\GRS\SPEC\12283171.doc-18.09.2007

- 24a -

The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior 5 publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

2003219084 18 Dec 2007

- 25 -

The claims defining the invention are as follows:

1. An isolated polypeptide comprising the amino acid sequence of SEQ ID NO:4, 5 or 6 or comprising at least 100 consecutive amino acids from the amino acid sequence of SEQ ID NO:1 or 8, wherein the polypeptide is an allergen.
2. Allergen as claimed in claim 1, comprising at least one epitope.
3. Allergen as claimed in claim 2, wherein the epitope is specific for a mould belonging to the genus *Cladosporium*.
4. Allergen as claimed in claim 3, wherein the mould is *Cladosporium herbarum*.
5. Allergen as claimed in any one of claims 1 to 4, wherein the amino acid sequence of SEQ ID NO: 1 or 8 encodes a mannitol dehydrogenase.
6. An isolated polypeptide comprising at least 100 consecutive amino acids from the amino acid sequence of SEQ ID NO:11 wherein the polypeptide is an allergen.
7. Allergen as claimed in claim 6, comprising at least one epitope.
8. Allergen as claimed in claim 6, wherein the epitope is specific for a mould belonging to the genus *Alternaria*.

2003219084 18 Dec 2007

- 26 -

9. Allergen as claimed in claim 8, wherein the mould is *Alternaria alternata*.
10. Allergen as claimed in any one of claims 6 to 9, wherein the amino acid sequence of SEQ ID NO:11 encodes a mannitol dehydrogenase.
11. A vaccine for desensitizing patients to a mould allergy, comprising at least one allergen as claimed in any one of claims 1 to 10.
12. The use of an allergen as claimed in any one of claims 1 to 10 for the preparation of a vaccine.
13. The use of an allergen as claimed in any one of claims 1 to 10 for the diagnostic detection of a disease.
14. The use as claimed in claim 12 or 13, wherein the disease is an allergy against moulds.
15. Use of a polynucleotide for detecting a mannitol dehydrogenase, wherein the polynucleotide comprises at least eight consecutive nucleotides from the nucleotide sequence of SEQ ID NO:2, 7 or 12, wherein the nucleotide sequences of SEQ ID NOS:2, 7 and 12 encode mannitol dehydrogenases.
16. The use as claimed in claim 15, wherein at least one polynucleotide is used in a Polymerase Chain Reaction (PCR).

2003219084 18 Dec 2007

- 27 -

17. A vector for transforming a host cell, wherein the vector comprises a polynucleotide comprising at least eight consecutive nucleotides from the nucleotide sequence of SEQ ID NO:2, 7 or 12, wherein the nucleotide sequences of SEQ ID NOS:2, 7 and 12 encode mannitol dehydrogenase.
18. A host cell transformed with a vector as claimed in claim 17.
19. The host cell as claimed in claim 18, wherein the cell is *Escherichia coli*.
20. The host cell as claimed in claim 18, wherein the cell is *Pichia pastoris*.
21. A method for the preparation of an allergen as claimed in any one of claims 1 to 10, wherein a host cell as claimed in any one of claims 18 to 20 is cultured, the polypeptide expressed and purified.
22. An allergen as claimed in any one of claims 1 to 10, or a polynucleotide encoding the same, substantially as herein described with reference to the Examples.
23. Use of an allergen as claimed in any one of claims 1 to 10, or a polynucleotide encoding the same, substantially as herein described with reference to the Examples.

CTG AAG GGC AAG GTC GTC GTC GTT ACC GGC GCT TCC GGC CCC
 L K G K V V V V T G A S G P
 AAG GGC ATG GGT ATT GAG GCC GCT CGC GGT TGC GCC GAG ATG
 K G M G I E A A R G C A E M
 GGC GCC GCT GTT GCC ATC ACC TAC GCC TCC CGC GCC CAG GGT
 G A A V A I T Y A S R A Q G
 GCT GAG GAG AAC GTC AAG GAG CTT GAG AAG ACC TAC GGC ATC
 A E E N V K E L E K T Y G I
 AAG GCC AAG GCC TAC AAG TGC CAG GTC GAC AGC TAC GAG TCC
 K A K A Y K C Q V D S Y E S
 TGC GAG AAG CTC GTC AAG GAC GTC GTT GCC GAC TTC GGC CAG
 C E K L V K D V V A D F G Q
 ATC GAT GCC TTC ATC GCC AAC GCC GGT GCC ACC GCC GAC TCT
 I D A F I A N A G A T A D S
 GGC ATC CTC GAC GGC TCC GTC GAG GCC TGG AAC CAC GTC GTC
 G I L D G S V E A W N H V V
 CAG GTC GAC CTG AAC GGT ACC TTC CAC TGC GCC AAG GCC GTT
 Q V D L N G T F H C A K A V
 GGC CAC CAC TTC AAG GAG CGT GGA ACC GGT TCC TTC GTC ATC
 G H H F K E R G T G S F V I
 ACC TCC TCC ATG TCC GGC CAC ATC GCC AAC TAT CCC CAG GAA
 T S S M S G H I A N Y F Q E
 CAG ACC TCC TAC AAC GTC GCC AAG GCT GGA TGC ATC CAC ATG
 Q T S Y N V A K A G C I H M
 GCT CGC TCC TTG GCA
 A R S L A

5 Figure 1

Figure 2

5 Alignment of the C. fulvum and C. herbarum NADP-MtDHs
on the basis of the available DNA and protein data

C.fulvum	1 MEGRIPEP Q MLLDLSLKG Q VVVVTGASGPKG G IEAARGCAEMG N Q Q ALITYASPA G
C.herbarum	PG Q QATKH Q SLLDLSLKG Q VVVVTGASGPKG G IEAARGCAEMG N Q Q ALITYASPA G
C.fulvum	61 KMAPEI S PGYGIK C KAYKCOVSYES E MLVKDVS D DFC G IDAFIANAGATA A SGILDGS
C.herbarum	ENVR E PKTYGIR C KAYKCOVSYES E MLVKDVS D DFC G IDAFIANAGATA A SGILDGS
C.fulvum	121 VEP Q NNHVVQVDLNGTEHCAKAVGHHFRERGTGSFVITSSMSGHIA N YPOEQTSYNVAKAG
C.herbarum	VEP Q NNHVVQVDLNGTEHCAKAVGHHFRERGTGSFVITSSMSGHIA N YPOEQTSYNVAKAG
C.fulvum	181 C I HMARSLA W ERD R FAK W SI S PGY A DTGLSDP V W DIQRL W MSM I PLGRDGLAKEL W GA
C.herbarum	CIHMARSLA W ----- A DTGLSDP V W ----- W GRDGLAKEL W ---
C.fulvum	241 YV Y LV S DASTY T TTGADIV I DGGY T CR
C.herbarum	-----

10

Alignment of the derived amino acid sequences of the Cladosporium herbarum and Cladosporium fulvum mannitol dehydrogenases.

15 - ... means that the amino acid sequence of C. herbarum still requires sequencing at this position.

Fig. 3: Complete nucleotide and protein sequence of the
Cladosporium herbarum MtDH

5

CCGTCTACACACGGCAACTTCCGGCTCGACTCCATATCCAATCRCATCAG	51
ATG CCT GCC CAG CAA GCA ACC AAG CAT GAG TCC CTT TTG GAC CAG CTC	99
M P G Q Q A T K H E S L L D Q L	16
TCC CTG AAG GGC AAG GTC GTC GTC ACC GGC GCT TCC GGC CCC AAG	147
S L K G K V V V V T G A S G P K	32
GGC ATG GGT ATT GAG GCC GCT CGC GGT TGC GCC GAG ATG GGC GCC GCT	195
G M G I E A A R G C A E M G A A	48
GTT GCC ATC ACC TAC GCC TCC CCC GCC CAG GGT GCT CAG GAG AAC GTC	243
V A I T Y A S R A Q G A E E N V	64
AAG GAG CTT GAG AAG ACC TAC TGC ATC AAG GCC TAC AAG TGC	291
K E L E K T Y G I K A K A Y K C	80
CAG GTC GAC AGC TAC GAG TCC TCC GAG AAG CTC GTC AAC GAC GTC GIT	339
Q V D S Y E S C E K L V K D V V	96
GCC GAC TTC GGC CAG ATC GAT GCC TTC ATC GCC AAC GGC GGT GCC ACC	387
A D F G Q I D A F I A N A G A T	112
GCC GAC TCT GGC ATC CTC GAC GGC TCC GTC GAG GCC TGG AAC CAC GTC	435
A D S G I L D G S V E A W N H V	128
GTC CAG GTC GAC CTG AAC GGT ACC TTC CAC TGC GCC AAG GGC GTT GGC	493
V Q V D L N G T F H C A K A V G	144
CAC CAC TTC AAG GAG CGT GGA ACC GGT TCC CTC GTC ATC ACC GGC TCC	531
H H F K E R G T G S L V I T A S	160
ATG TCC GGC CAC ATC GCC AAC TTC CCC CAG GAG CAG ACC TCC TAC AAC	579
M S G H I A N F P Q E Q T S Y N	176
GTC GGC AAG GCT GGC TGC ATC CAC ATG GCT CGC TCC CTC GCC AAC GAG	627
V A K A G C I H M A R S L A N E	192
TGG CGC GAC TTC GGC CGT GTC AAC TCC ATC TCC CCC GGT TAC ATT GAC	675
W R D F A R V N S I S P G Y I D	208
ACT GGT CTC TCC GAC TTC GTT CCC AAG GAG ACC CAG CAG CTC TGG CAC	723
T G L S D F V P K E T Q Q L W H	224
TCC ATG ATC CCC ATG GGC CGT GAC GGT CTC GCC AAG GAG CTC AAC GGC	771
S M I P M G R D G L A K E L K G	240
GCC TAC GTC TAC TTC GCC TCC GAC GCC TCC ACC TAC ACC ACC GGT GCC	819
A Y V Y F A S D A S T Y T T G A	256
GAT CTC CTC ATT GAC GGT GGT TAC ACC ACC AGA TAA	855
D L L I D G G Y T T R	268
GGGACTCGCCCCACAGCAAGTCGTTGAGGCGGAAGGACAAAAAAAAAAAAAA	919

Met Pro Ile Thr Val Pro Gln Ala Thr Glu Leu Lys Asp Leu Phe Ser
 1 5 10 15
 Leu Lys Gly Lys Val Val Ile Val Thr Gly Ala Ser Gly Pro Thr Gly
 20 25 30
 Ile Gly Thr Glu Ala Ala Arg Gly Cys Ala Glu Tyr Gly Ala Asp Leu
 35 40 45
 Ala Ile Thr Tyr Asn Ser Arg Ala Glu Gly Ala Glu Lys Asn Ala Lys
 50 55 60
 Glu Met Ser Glu Lys Tyr Gly Val Lys Val Lys Ala Tyr Lys Cys Gln
 65 70 75 80
 Val Asn Glu Tyr Ala Gln Cys Glu Lys Leu Val Gln Asp Val Ile Lys
 85 90 95
 Asp Phe Gly Lys Val Asp Val Phe Ile Ala Asn Ala Gly Lys Thr Ala
 100 105 110
 Asp Asn Gly Ile Leu Asp Ala Thr Val Glu Gln Trp Asn Glu Val Ile
 115 120 125
 Gln Thr Asp Leu Thr Gly Thr Phe Asn Cys Ala Arg Ala Val Gly Leu
 130 135 140
 His Phe Arg Glu Arg Lys Thr Gly Ser Leu Val Ile Thr Ser Ser Met
 145 150 155 160
 Ser Gly His Ile Ala Asn Phe Pro Gln Glu Gln Ala Ser Tyr Asn Val
 165 170 175
 Ala Lys Ala Gly Cys Ile His Leu Ala Lys Ser Leu Ala Asn Glu Trp
 180 185 190
 Arg Asp Phe Ala Arg Val Asn Ser Ile Ser Pro Gly Tyr Ile Asp Thr
 195 200 205
 Gly Leu Ser Asp Phe Val Pro Gln Asp Ile Gln Lys Leu Trp His Ser
 210 215 220
 Met Ile Pro Met Gly Arg Asp Ala Lys Ala Thr Glu Leu Lys Gly Ala
 225 230 235 240
 Tyr Val Tyr Phe Ala Ser Asp Ala Ser Ser Tyr Cys Thr Gly Ser Asp
 245 250 255
 Leu Leu Ile Asp Gly Gly Tyr Cys Val Arg
 260 265

Fig. 4: Alternaria alternata MtDH (Seq. ID No. 11)

Alternaria alternata MtDH

CTTCATATCACATCACACCTCAA	23
CTGAAATCCCATTTATATACCCCAAACCTCTTACTCTCATAAACCCACATANTCCGACAA	86
ATG CCC ATC ACC GTT CCC CAA GGT ACC GAG GTC AAG GAC CTC TTC AGC	134
M P I T V P Q A T E L K D L F S	16
CTT AAG GGC AAG GTC GTC ATC GTC ACC GGT GCC TCC GGC CCC ACC GGT	182
L K G X V V I V T G A S G P T G	32
ATT GCC ACA GAG CCT GCC CGA GGA TGC GCT GAG TAC GGT GCC GAC CTC	230
I G T E A A R G C A E Y G A D L	48
GCC ATC ACC TAC AAC TCT CGC GGC GAG GGT GCC GAG AAC GCA AAG	278
A I T Y N S R A E G A E K N A K	64
GAG ATG AGC GAG AAG TAC GGC GTC AAG GTC AAG GCC TAC AAG TGC CAG	326
E M S E K Y G V K V X A Y K C Q	80
GTC AAC GAG TAC CCT CAG TGC GAG AAG CTC GTC CAG GNC GTC ATC AAG	374
V N E Y A Q C E K L V Q D V I K	96
GAC TTC GGC AAG GTC GAT GTC TTC ATC GGC AAC GGC GGA AAG ACT GGC	422
D F G K V D V F I A N A G K T A	112
GAC AAC GGT ATC CTC GAC GCT ACC GGT GAG CAG TGG AAC GAG GTC ATC	470
D N G I L D A T V E Q W N E V I	128
CAG ACC GAC TTG ACC GGT ACC TTC AAC TGC GGC CGT GGC GTT GGT CTC	518
Q T D L T G T F N C A R A V G L	144
CAC TTC CGC GAG CGC AAG ACT GGG TCT CTC GTC ATC ACC TCC TCC ATG	566
H F R E R K T G S L V I T S S M	160
TCC GGC CAC ATT GCC AAC TTC CCC CAG GAG CAG GGC TCC TAC AAC GTT	614
S G H I A N F P Q E Q A S Y N V	176
GCT AAC GCT GGC TGC ATT CAC CTC GGC AAG TCG CTC GGC AAC GAG TGG	662
A K A G C I H L A K S L A N E W	192
AGG GAC TTT GGC CGT GTC AAC TCC ATC TCC CCT GGA TAC ATT GAC ACT	710
R D F A R V N S I S P G Y I D T	208
GGT CTC TCC GAC TTC GTT CCC CAG GAC ATC CAG AAG CTG TGG CAC TCC	758
G L S D F V P Q D I Q R L W H S	224
ATG ATC CCC ATG GGC CGT GAC GCC AAG GGT ACT CAG CTC AAG GGT GGC	806
M I P M G R D A K A T E L K G A	240
TAC GTC TAC TTC GCA TCG GAT GCC TCA TCC TAC TGC ACT GGT TCC GAT	854
Y V Y F A S D A S S Y C T G S D	256
CTC CTC ATC GAC CGT GGT TAC TCC GTC AGG TAA	887
L L I D G G Y C V R *	287
ACGTGTCATTCGGAGGAAGATGGAGTGGAGGAATAATAATGGACGACGTTGGCGGA	950
AGTCTTGTGTCGATGTAATAGCATCGAGACATCAATAAGCTTCGCGAGGTTCACATCACAA	1013
AAAAAAAAAAAAA	1026

5

Fig. 5: DNA sequence (seq. ID No. 12) of the Alternaria alternata mannitol dehydrogenase

C.herbarum	1	ATGGCTGGGCCACCAAGCAGAACGCTATGCTCCATTGGACCGAGCTTCCTGAGGCC
A.alternata	1	ATGCCCTATCACCTGCGAACGAGCCATGAGCTTCAGGCTTCAGGCTTAAAGGCC
C.herbarum	61	AAGGTCGCTGTCATGCCGCGCTTCCGGCCGACCGCTGGACGAGCTGGGGCGCTCC
A.alternata	58	AAAGGTCGCTGTCATGCCGCGCTTCCGGCCGACCGCTGGACGAGCTGGGGCGCTCC
C.herbarum	121	GGATGCGCGAGATGGCGCGCGACGCTGCCATCACCTAGGCTTCGGGGCAGGGCTGC
A.alternata	118	GGATGCGCGAGATGGCGCGCGACGCTGCCATCACCTAGGCTTCGGGGCAGGGCTGC
C.herbarum	181	GAGGAGAACGCTAGGACGCTGGCGAGCTACGCTACAGGCTTCAGGCTTCAGGCTTC
A.alternata	178	GAGGAGAACGCTAGGACGCTGGCGAGCTACGCTACAGGCTTCAGGCTTCAGGCTTC
C.herbarum	241	CAGGTCGAGAGCTACGCTGGCGAGCTGGCGAGCTGGACGCTTCAGGACTTCGGCG
A.alternata	238	CAGGTCAACAGCTACGCTGGCGAGCTGGCGAGCTGGACGCTTCAGGACTTCGGCG
C.herbarum	301	CAGATCGATGCCCTTCATGCCGACCCCGGCTTCAGGCCGATCTGGCATCTGGACGGC
A.alternata	298	AAGGTCGATGCCCTTCATGCCGACCCCGGCTTCAGGCCGATCTGGACGGC
C.herbarum	361	TCCGTCGAGGCCCTGGACCGCTCTCGTTCAGGCTGAGCTGGTACCTTCAGTGGGCC
A.alternata	358	ACCGTTCAGGACTGGACCGCTGTCATCCAGGCTGAGCTGGTACCTTCAGTGGGCC
C.herbarum	421	AAGGGCGTTGGCAACCTACTTCAGGACGCTGGACGCTTCCTGGTACCTTCAGTGGGCC
A.alternata	418	CTGGCGCTGGCAACCTACTTCAGGACGCTGGACGCTTCCTGGTACCTTCAGTGGGCC
C.herbarum	481	ATGTCCTGGCCACATGGCCAACCTTCCCCCAGGGAGCAGACCTCTCACACCGCTGGAGGT
A.alternata	478	ATGTCCTGGCCACATGGCCAACCTTCCCCCAGGGAGCAGACCTCTCACACCGCTGGAGGT
C.herbarum	541	GGCTGCACTACAGCTGGCTTCCTGGCCAAAGGAGTGGCGGACTTGGCCCGTGTCAAC
A.alternata	538	GGCTGCACTACAGCTGGCCAAAGGAGTGGCGGACTTGGCCCGTGTCAAC
C.herbarum	601	TCCATCTCCCCCGCTTACATTGACACTGGCTCTGGCTCCAGGACTTCCTGGCTTCAGGACCTGGAGGT
A.alternata	598	TCCATCTCCCCCGCTTACATTGACACTGGCTCTGGCTCCAGGACTTCCTGGCTTCAGGACCTGGAGGT
C.herbarum	661	CAGCTTGGCAACTCCATGATECCCCMTGGGCCGTGACCGCTGGCTGGACGAGGCTCAAGGGC
A.alternata	658	AAGCTTGGCAACTCCATGATCCCCCTGGGCCGTGACCGCTGGACGAGGCTCAAGGGC
C.herbarum	721	GGCTACGGCTACTTGGCTGGACGCGCTTACACACGGCTGGCGATCTCCATTCATT
A.alternata	718	GGCTACGGCTACTTGGCTGGACGCGCTTACACACGGCTGGCGATCTCCATTCATT

5 Fig. 6: Alignment of the *C. herbarum* and *A. alternata*
DNA sequences

C.herbarum	781	GACCGTGGTTAACCCAC	CAGATAA
A.alternata	778	GACCGTGGTTAACCCG	CAGGTTA
C.herbarum	1	MPGQQATKHEESILDQ	SLKAGAVVVTGASGKGRG
A.alternata	1	MP-ITVPQATEPLKPLS	SLKCRVVLVIGASGKASIG
C.herbarum	61	PEVUNHEEKYGYKRAINQCSWS	SCRLNGAVVAPFGQIDAPIAAGG
A.alternata	60	PEKAKERSEGYGVKVKAYKQWNEPACCEKUWQDVKD	PFKQWVFTIAJACRTADNGILDA
C.herbarum	121	GVEAAMGIVVQVVDINSTP	ECAKAVGQHFRKQGQGIVIAGNSGHIANPPOEGGSYHVAKA
A.alternata	120	TVEQHNGVIAQDIAUTP	ECARAVGQHFRKQGQGIVIISNSGHIANPPOEGGSYHVAKA
C.herbarum	181	GCINHMASLNEWRDFARVNSISPGYIDTGLSDFV	PGNADOLWHSNIPFMGRDGLKELKG
A.alternata	180	GCINHLAKSLNEWRDFARVNSISPGYIDTGLSDFV	PGNADOLWHSNIPFMGRDGLKELKG
C.herbarum	241	AYVYFASDASTVTPGADLJJDGGTT	
A.alternata	240	AYVYFASDASSVCTGS	DLLIDGGTCVR

SEQUENZPROTOKOLL

<110> Biomay Produktions- und Handels-Gesellschaft m.b.H

<120> Polypeptid kodierend für eine Mannit-Dehydrogenase,
dessen Herstellung und Verwendung in Diagnostik und
Therapie

<130> Cla h 1

<140>

<141>

<150> 102 14 082.0

<151> 2002-03-28

<150> 102 33 676.8

<151> 2002-07-24

<160> 12

<170> PatentIn Ver. 2.1

<210> 1

<211> 173

<212> PRT

<213> Cladosporium herbarum

<400> 1

Leu Lys Gly Lys Val Val Val Val Thr Gly Ala Ser Gly Pro Lys Gly
1 5 10 15Met Gly Ile Glu Ala Ala Arg Gly Cys Ala Glu Met Gly Ala Ala Val
20 25 30Ala Ile Thr Tyr Ala Ser Arg Ala Gln Gly Ala Glu Glu Asn Val Lys
35 40 45Glu Leu Glu Lys Thr Tyr Gly Ile Lys Ala Lys Ala Tyr Lys Cys Gln
50 55 60Val Asp Ser Tyr Glu Ser Cys Glu Lys Leu Val Lys Asp Val Val Ala
65 70 75 80Asp Phe Gly Gln Ile Asp Ala Phe Ile Ala Asn Ala Gly Ala Thr Ala
85 90 95Asp Ser Gly Ile Leu Asp Gly Ser Val Glu Ala Trp Asn His Val Val
1

100	105	110
-----	-----	-----

Gln Val Asp Leu Asn Gly Thr Phe His Cys Ala Lys Ala Val Gly His		
115	120	125

His Phe Lys Glu Arg Gly Thr Gly Ser Phe Val Ile Thr Ser Ser Met		
130	135	140

Ser Gly His Ile Ala Asn Tyr Pro Gln Glu Gln Thr Ser Tyr Asn Val		
145	150	155
		160

Ala Lys Ala Gly Cys Ile His Met Ala Arg Ser Leu Ala		
165	170	

<210> 2

<211> 519

<212> DNA

<213> Cladosporium herbarum

<400> 2

ctgaaggcga aggtcgctgt cgttacggcgt gttccggcc ccaagggcat gggattttag 60		
gcccgtcgcg gttcgccgca gatggggccgt gctgttgcgt tcacccatcgcc 120		
cagggtgtctt aggagaacgtt caaggagctt gagaagacat acggcatcaaa ggccaaggcc 180		
tacaagtgcgtt aggttcacatcgtt ctacggatcc tggagaagtc tggcaaggat cgtcggttgc 240		
gacttcggccat agatcgatgc ttccatcgcc aacccgggtt ccacccggccat ctctggccat 300		
ctcgaaaggctt ccgtcgaggcc ctggaaaccat gtcgtccagg tggactgttccatcc 360		
cacttcggccat agggccgttgg ccaccacttc aaggagcggtt gaaccgggttc cttcgttcatc 420		
acccatccatca tggccggccat catggccaaat tttcccccagg aacagacccatc ctacaacgttcc 480		
gccaaggctt gatgcatttca catggcttcgtt tccttggca	519	

<210> 3

<211> 266

<212> PRT

<213> Cladosporium fulvum

<400> 3

Met Pro Gln Arg Ile Pro Glu Ala Glu His Leu Leu Asp Leu Leu Ser			
1	5	10	15

Leu Lys Gly Arg Val Val Val Val Thr Gly Ala Ser Gly Pro Lys Gly			
20	25	30	

Met Gly Ile Glu Ala Ala Arg Gly Cys Ala Glu Met Gly Ala Asp Leu			
35	40	45	

Ala Ile Thr Tyr Ala Ser Arg Ala Glu Gly Leu Lys Asn Ala Glu			
2			

50	55	60
Glu Leu Ser Lys Gln Tyr Gly Ile Lys Cys Lys Ala Tyr Lys Cys Gln		
65	70	75
Val Asp Lys Tyr Glu Ser Val Glu Gln Leu Val Lys Asp Val Ile Gln		
85	90	95
Asp Phe Gly Lys Ile Asp Ala Phe Ile Ala Asn Ala Gly Ala Thr Ala		
100	105	110
Asn Ser Gly Ile Leu Asp Gly Ser Val Glu Asp Trp Asn His Val Val		
115	120	125
Gln Val Asp Leu Asn Gly Thr Phe His Cys Ala Lys Ala Val Gly His		
130	135	140
His Phe Lys Glu Arg Gly Thr Gly Ser Phe Val Ile Thr Ser Ser Met		
145	150	155
Ser Gly His Ile Ala Asn Tyr Pro Gln Glu Gln Thr Ser Tyr Asn Val		
165	170	175
Ala Lys Ala Gly Cys Ile His Met Ala Arg Ser Leu Ala Asn Glu Trp		
180	185	190
Arg Asp Phe Ala Arg Val Asn Ser Ile Ser Pro Gly Tyr Ile Asp Thr		
195	200	205
Gly Leu Ser Asp Phe Val Ala Lys Asp Ile Gln Lys Leu Trp His Ser		
210	215	220
Met Ile Pro Leu Gly Arg Asp Gly Leu Ala Lys Glu Leu Lys Gly Ala		
225	230	235
Tyr Val Tyr Leu Val Ser Asp Ala Ser Thr Tyr Thr Thr Gly Ala Asp		
245	250	255
Ile Val Ile Asp Gly Gly Tyr Thr Cys Arg		
260	265	
<210> 4		
<211> 16		
<212> PRT		
<213> Cladosporium herbarum		
<400> 4		

Pro Gly Gln Gin Ala Thr Lys His Glu Ser Leu Leu Asp Gln Leu Ser
1 5 10 15

<210> 5
<211> 11
<212> PRT
<213> *Cladosporium herbarum*

<400> 5
Leu Asp Thr Gly Leu Ser Asp Phe Val Val Lys
1 5 10

<210> 6
<211> 10
<212> PRT
<213> Cladosporium herbarium

<400> 6
Met Gly Arg Asp Gly Leu Ala Lys Glu Leu
1 5 10

<210> 7
<211> 918
<212> DNA
<213> *Cladognathus barbarum*

```

<400> 7
ccgctacac acgcaacttc ccgcctcgac tccatatcca atcacatcaa gatgcctggc 60
caacaagcaa ccaagcatga gtccttttg gaccgctct cccctgaaggg caaggcgtc 120
gtctgcacccg gcgcttcccg ccccaagggc atgggtatgg aggccgtcg cggttgcgc 180
gagatgggcg cccgtgttgc calcacccatc gcttcccgcc cccagggtgc tgaggajaa 240
gtcaaggagc ttgagaagac ctacggcata aaggccaagg cctacaagtg ccaggtcgac 300
agctacgagt cctgcgagaa gtcgtcaag gacgtgttgc cccacttcgg ccagatcgat 360
gccttcatcg ccaacggcg tgcacccgccc gacttgcgc tccctgcacgg ctccgtcgag 420
gccttggaaacc acgtcgttca cgtcgacccgt aacgggtacct tccactgcgc caaggccgt 480
ggccaccaact tcaaggagcg tggaaacccgt tccctcgatca tccacccgtt catgtccggc 540
cacatcgcca acttccccca ggagcagacc tccataacaacg tccgcacggc tggctgcata 600
cacatggc tccctcgatca acacggatgg cccgtgttgc cccgtgttgc tccatcgcc 660
ccccgggttaca ttgacactgg tctctccgac ttcgttccca aggagacccca gacgttctgg 720
cactccatga tccccatggg cccgtgttgc cccgtgttgc aacgttcaaggg cccgtgttgc 780
tacttcgcctt cccgacgcctt caccatcaccc accgggtgcgg atccctcat tgacgggtgt 840
tacacccaca gataacggcact tccgcacccag caagtgttgc aggccggaaagg aaaaaaaaaaa 900
aaaaaaaaaaaa aaaaaaaaaaa 918

```

<210> 8
 <211> 267
 <212> PRT
 <213> Cladosporium herbarum

<400> 8
 Met Pro Gly Gln Gln Ala Thr Lys His Glu Ser Leu Leu Asp Gln Leu
 1 5 10 15

Ser Leu Lys Gly Lys Val Val Val Thr Gly Ala Ser Gly Pro Lys
 20 25 30

Gly Met Gly Ile Glu Ala Ala Arg Gly Cys Ala Glu Met Gly Ala Ala
 35 40 45

Val Ala Ile Thr Tyr Ala Ser Arg Ala Gln Gly Ala Glu Asn Val
 50 55 60

Lys Glu Leu Glu Lys Thr Tyr Gly Ile Lys Ala Lys Ala Tyr Lys Cys
 65 70 75 80

Gln Val Asp Ser Tyr Glu Ser Cys Glu Lys Leu Val Lys Asp Val Val
 85 90 95

Ala Asp Phe Gly Gln Ile Asp Ala Phe Ile Ala Asn Ala Gly Ala Thr
 100 105 110

Ala Asp Ser Gly Ile Leu Asp Gly Ser Val Glu Ala Trp Asn His Val
 115 120 125

Val Gln Val Asp Leu Asn Gly Thr Phe His Cys Ala Lys Ala Val Gly
 130 135 140

His His Phe Lys Glu Arg Gly Thr Gly Ser Leu Val Ile Thr Ala Ser
 145 150 155 160

Met Ser Gly His Ile Ala Asn Phe Pro Gln Glu Gln Thr Ser Tyr Asn
 165 170 175

Val Ala Lys Ala Gly Cys Ile His Met Ala Arg Ser Leu Ala Asn Glu
 180 185 190

Trp Arg Asp Phe Ala Arg Val Asn Ser Ile Ser Pro Gly Tyr Ile Asp
 195 200 205

Thr Gly Leu Ser Asp Phe Val Pro Lys Glu Thr Gln Gln Leu Trp His
 210 215 220

5

Ser Met Ile Pro Met Gly Arg Asp Gly Leu Ala Lys Glu Leu Lys Gly
 225 230 235 240
 Ala Tyr Val Tyr Phe Ala Ser Asp Ala Ser Thr Tyr Thr Thr Gly Ala
 245 250 255
 Asp Leu Leu Ile Asp Gly Gly Tyr Thr Thr Arg
 260 265

 <210> 9
 <211> 266
 <212> PRT
 <213> Cladosporium fulvum

 <400> 9
 Met Pro Gln Arg Ile Pro Glu Ala Glu His Leu Leu Asp Leu Leu Ser
 1 5 10 15

 Leu Lys Gly Arg Val Val Val Val Thr Gly Ala Ser Gly Pro Lys Gly
 20 25 30

 Met Gly Ile Glu Ala Ala Arg Gly Cys Ala Glu Met Gly Ala Asp Leu
 35 40 45

 Ala Ile Thr Tyr Ala Ser Arg Ala Glu Gly Gly Leu Lys Asn Ala Glu
 50 55 60

 Glu Leu Ser Lys Gln Tyr Gly Ile Lys Cys Lys Ala Tyr Lys Cys Gln
 65 70 75 80

 Val Asp Lys Tyr Glu Ser Val Glu Gln Leu Val Lys Asp Val Ile Gln
 85 90 95

 Asp Phe Gly Lys Ile Asp Ala Phe Ile Ala Asn Ala Gly Ala Thr Ala
 100 105 110

 Asn Ser Gly Ile Leu Asp Gly Ser Val Glu Asp Trp Asn His Val Val
 115 120 125

 Gin Val Asp Leu Asn Gly Thr Phe His Cys Ala Lys Ala Val Gly His
 130 135 140

 His Phe Lys Glu Arg Gly Thr Gly Ser Phe Val Ile Thr Ser Ser Met
 145 150 155 160

 Ser Gly His Ile Ala Asn Tyr Pro Gln Glu Gin Thr Ser Tyr Asn Val
 165 170 175
 6

Ala Lys Ala Gly Cys Ile His Met Ala Arg Ser Leu Ala Asn Glu Trp
 180 185 190

Arg Asp Phe Ala Arg Val Asn Ser Ile Ser Pro Gly Tyr Ile Asp Thr
 195 200 205

Gly Leu Ser Asp Phe Val Ala Lys Asp Ile Gln Lys Leu Trp His Ser
 210 215 220

Met Ile Pro Leu Gly Arg Asp Gly Leu Ala Lys Glu Leu Lys Gly Ala
 225 230 235 240

Tyr Val Tyr Leu Val Ser Asp Ala Ser Thr Tyr Thr Gly Ala Asp
 245 250 255

Ile Val Ile Asp Gly Gly Tyr Thr Cys Arg
 260 265

<210> 10
 <211> 267
 <212> PRT
 <213> Cladosporium herbarum

<400> 10
 Met Pro Gly Gln Gln Ala Thr Lys His Glu Ser Leu Leu Asp Gln Leu
 1 5 10 15

Ser Leu Lys Gly Lys Val Val Val Val Thr Gly Ala Ser Gly Pro Lys
 20 25 30

Gly Met Gly Ile Glu Ala Ala Arg Gly Cys Ala Glu Met Gly Ala Ala
 35 40 45

Val Ala Ile Thr Tyr Ala Ser Arg Ala Gln Gly Ala Glu Glu Asn Val
 50 55 60

Lys Glu Leu Glu Lys Thr Tyr Gly Ile Lys Ala Lys Ala Tyr Lys Cys
 65 70 75 80

Gln Val Asp Ser Tyr Glu Ser Cys Glu Lys Leu Val Lys Asp Val Val
 85 90 95

Ala Asp Phe Gly Gln Ile Asp Ala Phe Ile Ala Asn Ala Gly Ala Thr
 100 105 110

Ala Asp Ser Gly Ile Leu Asp Gly Ser Val Glu Ala Trp Asn His Val
 7

115	120	125
Val Gln Val Asp Leu Asn Gly Thr Phe His Cys Ala Lys Ala Val Gly		
130	135	140
His His Phe Lys Glu Arg Gly Thr Gly Ser Leu Val Ile Thr Ala Ser		
145	150	155
Met Ser Gly His Ile Ala Asn Phe Pro Gln Glu Gln Thr Ser Tyr Asn		
165	170	175
Val Ala Lys Ala Gly Cys Ile His Met Ala Arg Ser Leu Ala Asn Glu		
180	185	190
Trp Arg Asp Phe Ala Arg Val Asn Ser Ile Ser Pro Gly Tyr Ile Asp		
195	200	205
Thr Gly Leu Ser Asp Phe Val Pro Lys Glu Thr Gln Gln Leu Trp His		
210	215	220
Ser Met Ile Pro Met Gly Arg Asp Gly Leu Ala Lys Glu Leu Lys Gly		
225	230	235
Ala Tyr Val Tyr Phe Ala Ser Asp Ala Ser Thr Tyr Thr Thr Gly Ala		
245	250	255
Asp Leu Leu Ile Asp Gly Gly Tyr Thr Thr Arg		
260	265	
<210> 11		
<211> 266		
<212> PRT		
<213> Alternaria alternata		
<400> 11		
Met Pro Ile Thr Val Pro Gln Ala Thr Glu Leu Lys Asp Leu Phe Ser		
1	5	10
15		
Leu Lys Gly Lys Val Val Ile Val Thr Gly Ala Ser Gly Pro Thr Gly		
20	25	30
Ile Gly Thr Glu Ala Ala Arg Gly Cys Ala Glu Tyr Gly Ala Asp Leu		
35	40	45
Ala Ile Thr Tyr Asn Ser Arg Ala Glu Gly Ala Glu Lys Asn Ala Lys		
50	55	60

Glu Met Ser Glu Lys Tyr Gly Val Lys Val Lys Ala Tyr Lys Cys Gln
 65 70 75 80
 Val Asn Glu Tyr Ala Gin Cys Glu Lys Leu Val Gin Asp Val Ile Lys
 85 90 95
 Asp Phe Gly Lys Val Asp Val Phe Ile Ala Asn Ala Gly Lys Thr Ala
 100 105 110
 Asp Asn Gly Ile Leu Asp Ala Thr Val Glu Gln Trp Asn Glu Val Ile
 115 120 125
 Gln Thr Asp Leu Thr Gly Thr Phe Asn Cys Ala Arg Ala Val Gly Leu
 130 135 140
 His Phe Arg Glu Arg Lys Thr Gly Ser Leu Val Ile Thr Ser Ser Met
 145 150 155 160
 Ser Gly His Ile Ala Asn Phe Pro Gln Glu Gln Ala Ser Tyr Asn Val
 165 170 175
 Ala Lys Ala Gly Cys Ile His Leu Ala Lys Ser Leu Ala Asn Glu Trp
 180 185 190
 Arg Asp Phe Ala Arg Val Asn Ser Ile Ser Pro Gly Tyr Ile Asp Thr
 195 200 205
 Gly Leu Ser Asp Phe Val Pro Gln Asp Ile Gln Lys Leu Trp His Ser
 210 215 220
 Met Ile Pro Met Gly Arg Asp Ala Lys Ala Thr Glu Leu Lys Gly Ala
 225 230 235 240
 Tyr Val Tyr Phe Ala Ser Asp Ala Ser Ser Tyr Cys Thr Gly Ser Asp
 245 250 255
 Leu Leu Ile Asp Gly Gly Tyr Cys Val Arg
 260 265

<210> 12

<211> 1026

<212> DNA

<213> Alternaria alternata

<400> 12

cttcatatca catcacactt caactcaatt cccattttat ataccccaaa cttctttact 60
cttcataaac ccacataatc gccacaatgc ccatcaccgt tccccaagct accgagctca 120

