
US 200700281 04A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0028104 A1

Cohen et al. (43) Pub. Date: Feb. 1, 2007

(54) COMMUNICATION PROTOCOLAND (52) U.S. Cl. .. T13/170
METHOD FOR AUTHENTICATING A
SYSTEM

(57) ABSTRACT
(76) Inventors: Daniel C. Cohen, Newton, MA (US);

James S. Spitaels, Worcester, MA
(US); David Joseph Smith, East One aspect relates to a communication protocol for com
Greenwich, RI (US) municating between one or more entities, such as devices,

hosts or any other system capable of communicating over a
Correspondence Address: network. A protocol is provided that allows communication
LOWRIE, LANDO & ANASTASI
RVERFRONT OFFICE between entities without a priori knowledge of the commu
ONE MAIN STREET, ELEVENTH FLOOR nication protocol. In Such a protocol, for example, informa
CAMBRIDGE, MA 02142 (US) tion describing a data structure of the communication pro

tocol is transferred between communicating entities.
(21) Appl. No.: 11/194.504 Further, an authentication protocol is provided for providing

bidirectional authentication between communicating enti
ties. In one specific example, the entities include a master
device and a slave device coupled by a serial link. In another
specific example, the communication protocol may be used

(51) Int. Cl. for performing unbalanced transmission between commu
H04L 9/00 (2006.01) nicating entities.

(22) Filed: Aug. 1, 2005

Publication Classification

Patent Application Publication Feb. 1, 2007 Sheet 1 of 18 US 2007/0028104 A1

Patent Application Publication Feb. 1, 2007 Sheet 2 of 18 US 2007/0028104 A1

:
SS

y si

N s

SS s

Patent Application Publication Feb. 1, 2007 Sheet 3 of 18 US 2007/0028104 A1

Patent Application Publication Feb. 1, 2007 Sheet 4 of 18 US 2007/0028104 A1

fe

Patent Application Publication Feb. 1, 2007 Sheet 5 of 18 US 2007/0028104 A1

rtialization

&s se

TransitACK
NAK

Access 5
eate

7-yuees

Patent Application Publication Feb. 1, 2007 Sheet 6 of 18 US 2007/0028104 A1

M1 &e?

Receive First Char

w 4.-
420

?traMessa Y
timeout

Reset
listiadessage

neou

No

NO 6 43 YS
Caracter (2/2
Received

ear
COMS WAD

Yes

Patent Application Publication Feb. 1, 2007 Sheet 7 of 18 US 2007/0028104 A1

Oscard Characters in Buffer

Counter

Update Shared
Memory image Pointer based on

application as

Patent Application Publication Feb. 1, 2007 Sheet 8 of 18 US 2007/0028104 A1

82
harreceived

YE

COMS VALD

Patent Application Publication Feb. 1, 2007 Sheet 9 of 18 US 2007/0028104 A1

72/

Transmit NAK &
increment Retry

Counter

faeria. A
saceaess a

Patent Application Publication Feb. 1, 2007 Sheet 10 of 18 US 2007/0028104 A1

4ssa Protocol Checkstml Checksum 2a 3 ".
aloev Data Payload
a/uneta (Fixed G2 Row Length' Bytes) Fochism /bot /ool

77, Aa2-ef /ad

/le?s
is Stating B Checksum Checksum 4. As L. 17"|evelo) (catal ar|7,37.

Y-T-7 2- Y -/N-- - -
Row Nurnber Data Length Data Payload Fletcher Checksum

A/2 / . <=8 (0 up to "Row Length' Bytes) //
liou //e3 o A

7-yea M/

Patent Application Publication Feb. 1, 2007 Sheet 11 of 18 US 2007/0028104 A1

Response
Master ae/ Time Slave

/sou. Aos is absoletary
Y-T- N A. y Data Payload 0-2257Bytes can ve7

2. /aas M2-A by
A. a leae /2-

Response
Master ?ee/ Times Slave

Asal Ases

ontolomber; has
Row Fletcher A327 23? Byte Data Paylor. Bytes Checksum
A30A r As de

7- gue 2a: A.23

slave /o/ Ree Master ?ees
O foz

row Fether
% As Aloe (O - lyytes corn ?afe? Aaye A/

77tee //

US 2007/0028104 A1 2007 Sheet 12 Of 18 9 Feb. 1 Patent Application Publication

2009

Patent Application Publication Feb. 1, 2007 Sheet 13 of 18 US 2007/0028104 A1

Device
Descriptor

%2/
Fr. F /2 eled

6ee
se-2 - laz

Described Data- /
6ee as Dynamic

Described Data-Dynamic

Patent Application Publication Feb. 1, 2007 Sheet 14 of 18 US 2007/0028104 A1

Description ... Notes
Micro-Link Version ldentifies the version of the protocol being used

Ox01 The transmission packet size for communications to this
device

O Number of ROWS The number of rows Contained in the memory map
A unique identifier for each model.

MSB

LSB

Configuration memo
MicroLink Protocols Bit O - MicroLink Open Protocol
implemented Bit 1 - MicroLink Proxy Protocol

Bit 2- MicroLink Private Protocol
Bit 3 - MicroLink Self Descibing Record is appended after
header (Proxy Header is included before the self describing
record)
Bit 4 - MicroLink Bootload Protocol

77-742 ee /7

Patent Application Publication Feb. 1, 2007 Sheet 15 of 18 US 2007/0028104 A1

/304,

Commands

M/e7ceae.
ever

Data (Polied)

e-ea s3%zz/
7. aceae /8 ?see

Patent Application Publication Feb. 1, 2007 Sheet 16 of 18 US 2007/0028104 A1

Master

Transmit Public /?op
Data (up to last row)

/9as
Communications

Wadid, all data is valid

922 YES /?ee

Calculate Slave Walidation Response

transmit
Slave Validation Response

and
Random SlavePassword Challenge

SlaveValidation
Response Correct

YES

Set Generate
MasterValidation MasterWalidation
Response to 0 Response /?og 2

/722

/727

Transit
SlavePassword Challenge 3 Failed

and Responses?
/ ?fo MasterValidationfresponse

YES

ACKai Rows until
Authentication Status

reports data valid

invalid Master, Alert user and
fall communications

Patent Application Publication Feb. 1, 2007 Sheet 17 of 18 US 2007/0028104 A1

Power upt Reset
2001 - Transmit PnP - - \ PNP Request Response

Exit Terminal Model Stopf Pause PnPf
RhP Recuest

equest

Terminal
Mode

2003 XMODEMSession Complete. Download Request

FIGURE 20

Patent Application Publication Feb. 1, 2007 Sheet 18 of 18 US 2007/0028104 A1

1.4 loaves
44 a 72 4% is7ee
Cea Mas7eal

cleSis

2-/os

at 2 4eeeeeeer 2 /ee 2 / /o

474eze p

%s 72s
-2/ 27

4-ace
4-6)

2f Al

US 2007/00281 04 A1

COMMUNICATION PROTOCOLAND METHOD
FOR AUTHENTCATING ASYSTEM

FIELD OF THE INVENTION

0001. The invention relates generally to communications,
and more specifically to a communication protocol for
communicating between network entities.

BACKGROUND OF THE RELATED ART

0002 There are many different types of protocols for
communicating between network entities, such as computer
systems coupled to a communications network. Such net
works may be, for example, point-to-point networks, shared
networks Such as busses, or any other media or network
configuration type. To communicate, two entities (e.g., com
puter systems, devices, hardware, and/or software) need to
use and Support the same or similar communication proto
col. As communicating entities change and grow in features
and complexity, there is an ever-present need to Support
additional protocols between them to accommodate changes
of the communicating devices, user interfaces and of the
communication media between them.

0003 Advances in technology have brought a prolifera
tion of devices which can read and gather data from many
different Sources. Devices can remotely monitor parameters
including temperature, traffic, weather, bridge stress, power
problems, water leaks, alarm conditions, stock quotes, and
others. These devices generally exist as stand-alone sensors
or as Small elements within a larger system.
0004 Similar advances in technology have produced a
myriad of choices to present data gathered by Such devices
to users. Users can read gathered data on computer terminal
screens, handheld computers, wireless telephones, portable
Sound players, luminescent orbs, highway signs and others.
These devices all have attributes that lend themselves
uniquely to one or more, but not all communication methods
for sending and/or receiving data. Some communication
methods involve some type of communication medium,
including wireless, wired busses, wired point-to-point, opti
cal, optical cable, and others. Such communication methods
also involve some data transmission method or modulation
referred to in the art as a communication protocol. Protocols
used to send data across Such media are even more plentiful.
Examples include the well-known HTTP, SNMP, Ethernet,
RS232, RS485, USB, RFID, Wi-Fi, IrDA, FSK, FM, and
AM protocols, among others. There are many different
communication methods involving different media and pro
tocols, depending on the application.
0005 According to one aspect of the present invention, it

is appreciated that in many applications where many devices
gather and send data to a much smaller group of listeners or
users of data, there is a need to make the data gatherer
Smaller, less complex, to reduce overall system cost, while
on the user's end there is a need to retain or increase the
computing power in order to process and display the
received data in a way that increases overall system useful
CSS.

0006 Higher-level protocols typically used to transmit
data, such as HTTP or Wi-Fi are common used in today's
network and computing environments to transmit data. The
advantage to using these methods for groups of many

Feb. 1, 2007

devices is that low-cost widely available software can read
data in a common format and the data is made available to
anyone with a personal computer or other widely available
compatible hardware. However, one disadvantage of these
higher-level protocols is that they require significant micro
processor resources, which increase the cost of the many
devices deployed to gather data.
0007 Current state of the art systems have subsystems
gathering data, which either present their data to users in
higher level protocols or present data to an intermediary
system (proxy) using an extremely low level method (Such
as an analog signal). The disadvantages of the former
Subsystems are that they are expensive, having to support a
higher-level protocol and they may become outdated as the
high-level means and methods connecting them to their
users changes. The disadvantages of the latter Subsystems
are that the information is subject to external interference
and low performance rendering Such systems useful for no
more than simple sensors located close to the user of data or
its proxy.

SUMMARY

0008 According to one aspect of the present invention, a
method for communicating between a first entity and a
second entity is provided comprising acts of communicat
ing, by the first entity, to the second entity, a message
initiating communication between the first entity and the
second entity, communicating, by the second entity, infor
mation stored in a public memory area of the master, the
public memory area identifying a data structure of a com
munication protocol used to communicate with the second
entity, and communicating, by the first entity, a message to
the second entity using the information identifying the data
structure. According to one embodiment of the present
invention, information includes length information identi
fying a length of a data packet, and the method further
comprises an act of communicating the message using a
length indicated by the length information.
0009. According to another embodiment, the information
identifying the data structure includes version information
relating to the communication protocol used to communicate
with the second entity, and wherein the second entity iden
tifies a communication protocol type used to communicate
with the second entity based on the version information.
According to another embodiment, the second entity per
forms an act of sending, to the first entity, data messages
having different lengths. According to another embodiment,
at least one of the data messages includes a write request, the
write request including data necessary for performing the
write request by the second entity.
0010. According to one embodiment of the present inven
tion, the method further comprises an act of determining, for
each of the data messages, a checksum, and transmitting the
checksum with each of the data messages. According to
another embodiment, the act of determining a checksum
further comprises an act of determining a Fletcher check
Sl.

0011. According to another embodiment, the method
further comprises an act of communicating, by the first
entity, a request for access by a third entity to the second
entity. According to another embodiment, the method further
comprises an act of translating, by the first entity, the request

US 2007/00281 04 A1

to a format associated with the second entity. According to
another embodiment, the information identifying the data
structure further comprises dimension information, and the
act of communicating, by the first entity, a message to the
second entity using the information identifying the data
structure, further comprises an act of accessing a portion of
a memory of the second entity based upon the dimension
information. According to another embodiment, the infor
mation identifying the data structure further comprises ver
sion information, and the act of communicating, by the first
entity, a message to the second entity using the information
identifying the data structure, further comprises an act of
accessing a portion of a memory of the second entity based
upon the version information.
0012. According to one embodiment of the present inven
tion, the message initiating communication between the first
entity and the second entity is an acknowledgement mes
sage, and the first entity is adapted to send a plurality of
acknowledgement messages to the second entity. According
to another embodiment, the method further comprises an act
of determining, by the second entity, based on a receipt of a
predetermined number of acknowledgement messages that
the first entity is in a state of initiating communications
between the first entity and the second entity. According to
another embodiment, the acknowledgement messages are
negative acknowledgement messages. According to another
embodiment, the method further comprises maintaining, by
the second entity, a count of acknowledgement messages
received from the first entity. According to another embodi
ment, the method further comprises an act of sending to the
second entity, by the first entity, a plurality of consecutive
acknowledgement messages. According to another embodi
ment, the method further comprises an act of send each of
the consecutive acknowledgement messages after a timeout
period.

0013. According to one embodiment of the present inven
tion, the method further comprises an act of communicating,
by the second entity, the information identifying a data
structure of the communication protocol used to communi
cate with the second entity in response to receiving a
predetermined one of the plurality of acknowledgement
messages. According to another embodiment, the informa
tion includes length information identifying a length of a
data packet, and the method further comprises an act of
communicating the message using a length indicated by the
length information. According to another embodiment, the
second entity is at least one of an Uninterruptible Power
Supply (UPS) and a UPS component. According to another
embodiment, the first entity is a manager of the at least one
of the UPS and UPS component. According to another
embodiment, the second entity is a master entity and the first
entity is a slave entity. According to another embodiment,
the first entity is a general purpose computer system.
According to another embodiment, the method further com
prises an act of relaying the request without decoding any
data relating to the request.
0014. According to one embodiment of the present inven
tion, the message includes a header portion and a data
portion. According to another embodiment, the method
further comprises an act of receiving, by the first entity, the
message from a third entity, and relaying the message to the
second entity without decoding data located in the data
portion. According to another embodiment, the header por

Feb. 1, 2007

tion includes version information. According to another
embodiment, the method further comprises an act of access
ing, by the first entity, the public memory area. According to
another embodiment, the second entity comprises a key and
a private memory area, and wherein the method further
comprises an act of accessing, by the first entity using the
key, a private memory area of the second entity. According
to another embodiment, the method further comprises an act
of authenticating, by the second entity, the first entity to
permit the act of accessing.

00.15 According to another embodiment, the method
further comprises an act of sending, by the first entity, a
signal to the second entity that causes the second entity to
enter an alternate communication mode. According to one
embodiment of the present invention, the method further
comprises an act of performing a write request to the second
entity causing the second entity to enter the alternate com
munication mode. According to another embodiment, the
method further comprises an act of writing a value to a
register of the second entity to cause the second entity to
enter the alternate communication mode. According to
another embodiment, the method further comprises an act of
requesting, by the second entity, a boot file from the first
entity. According to another embodiment the boot file
includes checksum information, and the second entity per
forms an act of checking the boot file with the checksum
information prior to loading the boot file. According to
another embodiment, the checksum information includes a
Fletcher checksum, and wherein the second entity performs
an act of checking at least a portion of the boot file with the
Fletcher checksum prior to loading the boot file. According
to another embodiment, the key is determined based on
information stored in the public memory area of the second
entity. According to another embodiment, the method further
comprises an act of authenticating, by the first entity, to the
second entity on behalf of the third entity. According to
another embodiment, the second entity includes a memory,
and wherein the method further comprises acts of transmit
ting, by the first entity, a portion of the memory to the third
entity.

0016. According to one embodiment of the present inven
tion, the act of transmitting the portion of the memory
further comprises an act of sending the portion of the
memory over a network to the third entity using a network
transport protocol. According to another embodiment, the
network transport protocol is the Simple Network Manage
ment Protocol (SNMP). According to another embodiment,
the method further comprises an act of registering, by the
first entity, the third entity as an authenticated entity. Accord
ing to another embodiment, the third entity includes network
identification information, and wherein the act of registering
comprises an act of storing the network identification infor
mation in a memory of the first entity. According to another
embodiment, the third entity is a client coupled to the first
entity through a communication network. According to
another embodiment, the act of relaying the message
includes an act of sending the message to the client over the
communication network using a network transport protocol.
According to another embodiment, the network transport
protocol is the Simple Network Management Protocol
(SNMP). According to another embodiment, the second
entity includes a private memory area, and wherein the
method further comprises acts of determining, based on a

US 2007/00281 04 A1

portion of the public memory area, a key, and accessing the
private memory area using the determined key.
0017 According to another aspect of the present inven
tion, a method for authenticating a system is provided. The
method comprises acts of providing access to a public
memory area including a first portion, and providing access
to a private memory area based on a key determined based
on the first portion of the public memory area. According to
one embodiment of the present invention, the method further
comprises an act of determining, based on the first portion
of the public memory area, a value of the key. According to
another embodiment, the act of determining further com
prises an act of calculating a checksum of the first portion of
the public memory area. According to another embodiment,
the act of calculating further comprises an act of initializing
the checksum with a value of the first portion of the public
memory area. According to another embodiment, the act of
providing access to the public memory area includes an act
of sending, by a master, contents of the public memory area
to a slave.

0018. According to another embodiment of the present
invention, the method further comprises an act of storing, by
the slave, the contents of the public memory area in a
memory of the slave. According to another embodiment, the
act of sending the contents of the public memory area is
performed in response to receiving a request from the slave.
According to another embodiment, the method further com
prises an act of determining a value of the key using at least
one portion of the contents of the public memory area.
According to another embodiment, the method further com
prises an act of initializing a starting value of the key to the
at least one portion. According to another embodiment, the
at least one portion is indicative of a model number of the
master. According to another embodiment, the at least one
portion is indicative of a date of manufacture of the master.
According to another embodiment, the method further com
prises an act of translating, by the slave, an access request
received from an entity to the request sent to the master.
According to another embodiment, the method further com
prises an act of determining, by the slave, whether the entity
is authorized to access the master.

0.019 Further features and advantages of the present
invention as well as the structure and operation of various
embodiments of the present invention are described in detail
below with reference to the accompanying drawings. In the
drawings, like reference numerals indicate like or function
ally similar elements. Additionally, the left-most one or two
digits of a reference numeral identifies the drawing in which
the reference numeral first appears.

BRIEF DESCRIPTION OF THE DRAWINGS

0020. The accompanying drawings are not intended to be
drawn to scale. In the drawings, each identical or nearly
identical component that is illustrated in various figures is
represented by a like numeral. For purposes of clarity, not
every component may be labeled in every drawing.
0021)
0022 FIG. 1 is a block diagram of an example network
system in which various aspects of the present invention
may be practiced;

In the drawings,

0023 FIG. 2 is a block diagram of a communication
system according to one embodiment of the present inven
tion;

Feb. 1, 2007

0024 FIG. 3 shows a process for establishing communi
cation between two entities according to one embodiment of
the present invention;
0025 FIG. 4 is a state diagram of a master communica
tion according to one embodiment of the present invention;
0026 FIG. 5 is a state diagram of a slave communication
according to one embodiment of the present invention;
0027 FIG. 6 is a flow chart of a communication process
according to one embodiment of the present invention;
0028 FIG. 7 is a flow chart of a communication process
according to one embodiment of the present invention;
0029 FIG. 8 is a flow chart of a communication process
according to one embodiment of the present invention;
0030 FIG. 9 is a flow chart of a communication process
according to one embodiment of the present invention;
0031 FIG. 10 is a block diagram of a master message
format according to one embodiment of the present inven
tion;
0032 FIG. 11 is a block diagram of a slave message
format according to one embodiment of the present inven
tion;
0033 FIG. 12 is a block diagram of a master message
format according to another embodiment of the present
invention;
0034 FIG. 13 is a block diagram of a master message
format according to another embodiment of the present
invention;
0035 FIG. 14 is a block diagram of a slave message
format according to another embodiment of the present
invention;
0036 FIG. 15 is a table showing an example memory
map according to one embodiment of the present invention;
0037 FIG. 16 is a table showing an example memory
map according to another embodiment of the present inven
tion;
0038 FIG. 17 is a table showing an example header
format according to one embodiment of the present inven
tion;
0039 FIG. 18 is a blocking diagram of a proxy system
according to one embodiment of the present invention;
0040 FIG. 19 is a flow chart of an authentication process
according to one embodiment of the present invention;
0041 FIG. 20 is a process for performing alternate com
munication protocols according to one embodiment of the
present invention; and
0042 FIG. 21 is a process for performing a boot loading
operation according to one embodiment of the present
invention.

DETAILED DESCRIPTION

0043. One aspect of the present invention relates to a
communication protocol for communicating between one or
more entities, such as devices, hosts or any other system
capable of communicating over a network. According to one
aspect of the present invention, it is appreciated that a

US 2007/00281 04 A1

protocol is desired for use in communicating information
from many entities such as devices to a small number of
users of data. According to specific aspects of the present
invention, it is appreciated that there is a need for a com
munication Subsystem that Subsystem types that can operate
in an application having the following attributes:

0044) In the particular application, there are many
entities that gather data and control simple functions
(e.g., devices that manage a power or cooling device).
Such entities send data to a much Smaller group of
entities that process, manage and display this data to
users or other systems.

0045. The simple data gatherers generate most of data,
and most consumers of data have relatively small
amounts of data to send back to the data generators. For
example, in a typical control system, there are multiple
inputs and a small number of outputs.

0046 Consumers of data generally prefer to use the
same rules to communicate to multiple different
Sources of data, Such as a web browser application
loading web pages from different websites, or a build
ing management interface that monitors a status of
different types of systems in its domain such as HVAC,
water and electrical distribution subsystems.

The subsystem architecture ideal for this application may
have the following features and advantages:

0047. Where data is generated, a lower-cost device can
be used to conduct the control functions, and send
relevant data, using a simpler protocol, to other devices
that can handle higher-level end-user communication
protocols.

0048 Changes to the higher-level protocols, or the
addition of new user-interfaces that employ new pro
tocols do not require changing the many low-cost
control processors operating instructions and/or hard
Wae.

0049 Information transmitted to and from the data
Sources reliably and securely support moderate control.
management and monitoring of those remote Sub
systems.

0050. To this end, according to one aspect of the present
invention, a protocol is provided that allows communication
between entities without a priori knowledge of data content
and format being transmitted using the protocol. In such a
protocol, for example, information describing a data struc
ture of the communication protocol is transferred between
communicating entities. This contrasts to conventional sys
tems that need to know the protocols, commands and data
structures of the devices with which they communicate
before they begin to communicate.
0051. In one example system according to one embodi
ment of the present invention, the data structure of a
communication protocol is stored in a memory of a receiv
ing entity, and the stored data structure is updated based on
information received from a sending entity. According to
one embodiment, the data structure is stored in both the
sending and receiving entities. In a specific example, ele
ments of the data structure may be modified by either entity.
0.052 In one embodiment, the data structure is described
within a header of the received information. According to

Feb. 1, 2007

one example, the received information includes header
information and device data. Such device data may include,
for example, entity configuration and status data.
0053. In a specific example, the header information
includes version information that indicates a version of the
data structure. The header information may also include
dimension information indicating a dimension (e.g., a size)
of a memory area of the transmitting entity. The receiving
entity may update a copy of a memory map of the trans
mitting entity that includes the version and dimension infor
mation.

0054. In one embodiment, the receiving entity is referred
to as a “slave” because the slave learns the protocol used by
a transmitting entity referred to as the “master.” In particular,
the slave may update its use of the protocol to match the use
of the protocol of the master. In one example, the slave
accesses a shared memory of the master to determine a data
structure used by the master. According to one embodiment,
the slave is capable of storing the data structure used by the
master in a memory associated with the slave. The slave may
then access the master using the received data structure
information. For instance, the master may access other data
stored in the master using previously-received data structure
information. The data structure may define, as discussed, the
version of the protocol and dimension information.
0055. The dimension information may include, for
example, a number of rows and a length of data within rows
contained in the memory. In one example, the length of each
row may correspond to a transmission packet size of data
packets being sent. In one embodiment, a transmission
packet size used to communicate information between two
entities (e.g., the slave and the master) may be determined
by the length information stored in the memory of the
master. In one embodiment of the present invention, a slave
may automatically determine the transmission packet size
used to communicate to the master. In one example, at the
start of communication between the master and slave, the
slave communicates a message to the master and waits a
timeout period for a response from the master. The master is
adapted to send the data structure information including the
transmission packet size to the slave upon receipt of the
message. In one example, the message is a message having
a fixed length. In another example, the message is a negative
acknowledge message, and the master is adapted to send the
data structure information upon receipt of a predetermined
number of negative acknowledgement messages.
0056 Because the slave can dynamically adapt itself to a
number of different master types and versions, the slave is
more adaptable to master devices and is more useful as a
result. Such a feature may be beneficial, for example, in a
management system that manages one or more devices (e.g.,
master devices). Further, the slave may be part of a proxy
system that is capable of communicating with one or more
systems, such as a management system. Also, because Such
a slave need not store multiple protocols to Support multiple
master types, the slave may be simplified and less costly as
a result. More particularly, the cost for creating slave devices
may be reduced, as the slave may be adapted to different
master devices rather than being specially-manufactured for
a single or limited number of master device types.
0057. In one specific embodiment, one entity (such as the
master) changes its stored version of the data structure more

US 2007/00281 04 A1

frequently than the other entity. For instance, in a monitoring
and/or control system, a device may be adapted to update its
copy of the data structure more frequently than systems that
monitor the device. For instance, the device may be an
uninterruptible Power Supply (UPS), a UPS component,
environmental control system (e.g., an air conditioning
system or component), or other type of monitoring and/or
control device.

0.058. The slave may be, for example, a manager of the
master (e.g., a device being monitored and/or controlled). In
one example, the slave is implemented on a general-purpose
computer system such as, for example, a personal computer
(PC). For instance, the slave may be part of a PC used to
manage the master. Such as a monitoring and/or control
device. As discussed, the slave may also be part of a system
(e.g., a proxy) that acts as a relay that communicates data
to/from other systems. To this end, entities communicating
with a master may be directly connected to the master (e.g.,
via a serial link) or may be coupled through one or more
intermediate systems and/or networks.
0059. The shared memory of the master may include
other information used by the slave to access the master. For
example, the dimension information may also include an
identifier that indicates a version of a data table format of
information stored in memory of the master. A slave may use
such an identifier to determine the format of data stored in
memory of the master, any slave may therefore learn the
format and usage of the master data as a result.
0060 According to one aspect of the present invention, a
protocol is provided that Supports an unequal (or unbal
anced) transfer of data between communicating entities.
That is, the amount of data sent by one entity exceeds the
amount sent by another entity. In one specific implementa
tion, the protocol may provide the ability to communicate a
majority of data from a master to a slave in a reliable
manner. In one implementation, the slave is able to send data
to the master, but at a reduced data rate as compared to the
transmission rate of the master. According to one aspect of
the present invention, it is realized that in particular appli
cations such as monitoring of devices, a majority of data is
sent by the devices being observed, and therefore, it may be
beneficial to optimize a communication protocol maximize
Such a transmission scenario.

0061 According to another aspect of the present inven
tion, a protocol is provided that permits an entity to relay
transmitted information without needing to understand or
interpret the transmitted information. The information may
be relayed, for example, to another entity Such as a client
system (e.g., by the proxy system as described above). In
one example, the entity may be located on another network,
and the intermediate entity (e.g., the proxy) transfers the
information between different networks. In the example
described above, a slave may be capable of determining
communication parameters used for communicating to a
master system.

0062. In one aspect of the present invention, the slave
system may be capable of relaying requests to the master
from other entities. In one example, the slave need not
interpret any data transferred between the master and other
entity, but may translate requests received from another
entity to the communication format required by the master.
There may be defined a minimum set of information nec

Feb. 1, 2007

essary for the slave system to communicate with the master,
and to adapt its communication to permit other entities to
access the master through the slave. Because a slave accord
ing to one embodiment is capable of communicating with a
number of master systems having varying communication
capabilities, and the slave is capable of translating requests
to other entities, such a slave system may be useful in
managing multiple system types. Such a management capa
bility may be beneficial in a UPS having one or more
managed components.

0063. In one embodiment, the proxy is capable of Sup
porting access and relating information to/from a master
entity by more than one entity. For instance, a proxy having
a slave capability may also be coupled to more than one
other system (e.g., computer systems (e.g., clients) coupled
to a communication network) for the purpose of managing
the master entity from more than one system. To this end, the
proxy may be capable of receiving multiple requests from
different systems, and translate those requests to requests
that may be executed on the master.

0064. Also as discussed further below, the slave of the
proxy is capable of performing an authentication function So
that an authorized slave may communicate with a master. In
the situation where multiple entities attempt to access a
single master, the proxy may be adapted to Support authen
tications of each of the accessing systems. In Such a case,
according to one embodiment of the present invention, the
proxy system performs a check to determine whether the
accessing systems have permission to perform one or more
accesses (e.g., one or more read functions, write functions,
control functions, etc.) to the master entity. If authenticated,
the proxy communicates the access request to the master
entity. If not, the access request is denied.

0065 According to one embodiment of the present inven
tion, an improved communication protocol is provided for
effecting low-overhead or “lightweight” communication
between entities, such as hardware controllers. Such a
protocol may be used to communicate information between
network entities Such as, for example, an Uninterruptible
Power Supply (UPS) and/or a UPS component and a host
computer system. However, it should be appreciated that
Such a protocol may be implemented in other types of
systems, including, but not limited to, air conditioning
systems, home automation systems, field monitoring sys
tems, or other system applications having monitoring and
control functions.

0066. In one embodiment, the protocol allows access to
a device (e.g., a UPS) by a communicating system (e.g., a
computer). Such access may be required, for example, to
ensure there is no unauthorized access or control of the
device. For instance, an unauthorized personal computer
may access a UPS device to shut down or reconfigure the
UPS system. In one example, access is performed by way of
a bidirectional locking feature. In one embodiment, such a
feature allows, for example, a device (e.g., a UPS) to
communicate only with authorized software (e.g., an appli
cation executing on a host computer), and the Software to
communicate with an authorized device (e.g., an authorized
UPS). In another embodiment, a proxy system may be used
to access a device (e.g., a UPS or UPS component). In one
example, a management system associated with the UPS is
used to communicate information from other systems to the

US 2007/00281 04 A1

device. The management system may act as a proxy for the
purpose of performing management functions or obtaining
information from one or more managed devices (e.g., a UPS
or UPS component).
0067 Such access may be permitted based upon a bidi
rectional locking key stored at both the device and the
communicating system. In the UPS example above, when
the UPS is in a locked mode (e.g., a communicating system
that accesses the UPS does not have the proper key), the
UPS only allows data to be written to a publicly accessible
section of the memory. For instance, the UPS may only
allow a communicating system to access public areas of a
memory device of the UPS (e.g., an EEPROM, RAM, etc.).
Other data write operations to non-public areas of the
memory are not permitted. In this manner, operations using
configuration and operating parameters may not be per
formed without a correct key. In one example, the key may
be determined using publicly-accessible information stored
in one or more public areas of a master device.
0068. In another embodiment of the invention, a method

is provided for relaying the access information by an inter
mediate entity without the need to understand or unlock the
transmitted information. That is, an entity, referred to herein
as a proxy, is permitted to relay the transmitted information
without necessarily understanding the protocol. According
to one embodiment, information describing the format of
data in the transmitted information is contained within the
transmitted information itself.

0069. According to another embodiment of the invention,
a method for invoking an alternate communication protocol
is provided. For example, a method for booting and loading
(“bootloading) new firmware to a master is included in the
protocol. According to one embodiment, a slave is adapted
to send a signal to the master that causes the master to enter
into a boot load mode. In one specific example, the slave
writes a value to a register of the master that causes the
master to enter into a boot load mode. In one embodiment,
the boot load protocol is an ASCII protocol that is used to
send one or more files to the master for self-reprogramming.
In one example, the master, upon having a particular register
value set, will request one or more files from the slave. In
another example, the one or more boot files include check
Sum information, and the master is adapted to check the one
or more files before loading the files into memory.
Example System
0070 FIG. 1 is a block diagram of an example network
system in which various aspects of the present invention
may be practiced. In particular, system 100 includes one or
more systems connected by one or more networks. In the
example shown, system 102 is coupled to a proxy system
101 over network 103. According to one aspect of the
present invention, proxy system 101 has a capability for
communicating to system 102 using a communication pro
tocol. Communication with system 102 may be useful, for
example, for monitoring or managing system 102 by System
104. In an alternative configuration (not shown), system 102
may be coupled directly to another system (e.g., system
104), and various aspects of the communication protocol
described herein may be used to communicate between
them.

0071. Further, according to another aspect of the present
invention, a proxy system 101 is provided that translates

Feb. 1, 2007

requests from one or more systems (e.g., system 104) to
requests that may be recognized by system 102. These
requests may be, for example, messages generated by an
application program executing on system 104. One example
application program that may generate such requests is a
management program that is provided for managing one or
more systems (e.g., system 102). These requests may
include control data used to control and configure system
102, requests for performance and/or status information
from system 102, among others. To this end, proxy 101 may
be capable of translating received management requests to
messages that are capable of being processed by System 102.
Although proxy 101 may be capable of communicating
management data, it should be appreciated that proxy 101
may be capable of translating any type of request having any
type of data.

0072. It should be appreciated that proxy system 101 is
capable of being coupled to more than one system. In one
example, proxy system 101 is coupled to two or more
networks (e.g., network 103 and network 105). To this end,
proxy 101 may have more than one network interface. Proxy
101 may also be capable of communicating using one or
more communication protocols. According to one aspect of
the present invention, a proxy may be capable of learning
new protocols from a system to which the proxy system is
coupled. A specific example of a proxy and its capabilities
are discussed below with reference to FIG. 18.

0073) System 100 is merely an illustrative embodiment of
a communication system that may implement one or more
aspects of a communication protocol according to various
embodiments of the invention. Such an illustrative embodi
ment is not intended to limit the scope of the invention, as
any of numerous other implementations of the system (e.g.,
variations of 100 having more or less systems) are possible
and are intended to fall within the scope of the invention.

0074 Various embodiments according to the invention
may be implemented on one or more computer systems.
These computer systems may be, for example, general
purpose computers such as those based on Intel PENTIUM
type processor, Motorola PowerPC, Sun UltraSPARC,
Hewlett-Packard PA-RISC processors, or any other type of
processor. In one specific embodiment, various aspects of a
communication protocol are provided that may be used by
computer systems such as controllers. Such controllers may
be embedded in one or more systems, such as, for example,
an Uninterruptible Power Supply (UPS) or one of its com
ponents. However, it should be appreciated that one or more
of any type computer system may be used to communicate
according to various embodiments of the invention. It
should also be appreciated that different types of systems
(e.g., a PC, a controller, etc.) may communicate with each
other using various aspects of the present invention.
0075. A general-purpose computer system according to
one embodiment of the invention is configured to perform
any of the described communication functions including but
not limited to communicating between computer systems
and/or relaying data to other systems (e.g., to system 206).
It should be appreciated that the system may perform other
functions, and the invention is not limited to having any
particular function or set of functions. Various entities Such
as, for example, systems 102, 104 and proxy 101 may be

US 2007/00281 04 A1

general-purpose computer systems that implement various
communication functions according to various embodiments
of the present invention.
0.076 For example, various aspects of the invention may
be implemented as specialized software executing in a
general-purpose computer system Such as that shown in
FIG. 2. The computer system 102 may include a processor
201 connected to one or more memory devices 202, such as
a disk drive, memory, or other device for storing data.
Memory 202 is typically used for storing programs and data
during operation of the computer system 102. Components
of computer system 102 may be coupled by an interconnec
tion mechanism (e.g., network 204), which may include one
or more busses (e.g., between components that are inte
grated within a same machine) and/or a network (e.g.,
between components that reside on separate discrete
machines).
0077. The interconnection mechanism 204 enables com
munications (e.g., data, instructions) to be exchanged
between system components of system 102. System 102 also
includes one or more I/O devices 203 (e.g., ports, devices,
systems, etc.) for inputting and outputting data. In addition,
system 102 may contain one or more interfaces 205 that
connect computer system 102 to a communication network
207. System 102 may be capable of learning one or more
protocols used to communicate by one or more systems
(e.g., system 206).

0078. According to one embodiment of the invention,
interface 205 may be a serial-type interface that is used to
communicate to an attached device. The interface may be
capable of communicating using various aspects of the
present invention. Such an interface 205 may use one or
more serial-type transport layer protocols including, but not
limited to, TTL serial, RS-232, RS-422, RS-485, I2C, CAN,
or any other transport layer capable of moving packets
between systems.
0079 System 102 typically includes a storage mecha
nism as a part of memory 202 or other storage that includes
computer readable and writeable nonvolatile recording
medium in which signals are stored that define a program to
be executed by the processor or information stored on or in
the medium to be processed by the program. The medium
may, for example, be a disk, flash memory, EEPROM,
RAM, or the like. Typically, in operation, the processor
causes data to be read from the nonvolatile recording
medium into another memory that allows for faster access to
the information by the processor than does the medium. This
memory is typically a volatile, random access memory Such
as a dynamic random access memory (DRAM) or static
memory (SRAM). This memory may be located in a storage
system, or in memory system 202.

0080. The processor 201 generally manipulates the data
within the memory and then copies the data to the medium
after processing is completed. A variety of mechanisms are
known for managing data movement between the medium
and the memory elements, and the invention is not limited
thereto. It should be appreciated that the invention is not
limited to a particular memory system or storage system.
0081. The computer system may include specially-pro
grammed, special-purpose hardware, for example, an appli
cation-specific integrated circuit (ASIC). Aspects of the

Feb. 1, 2007

invention may be implemented in Software, hardware or
firmware, or any combination thereof. Further, such meth
ods, acts, systems, system elements and components thereof
may be implemented as part of the computer system
described above or as an independent component.
0082 Although computer system 102 is shown by way of
example as one type of computer system upon which various
aspects of the invention may be practiced, it should be
appreciated that aspects of the invention are not limited to
being implemented on the computer system as shown in
FIG. 2. Various aspects of the invention may be practiced on
one or more computers having a different architecture or
components that that shown in FIG. 2.
0083) System 102 may be a general-purpose computer
system that is programmable using a high-level computer
programming language. System 102 may be also imple
mented using specially programmed, special purpose hard
ware. In computer system 102, processor 201 is typically a
commercially available processor Such as the well-known
Pentium class processor available from the Intel Corpora
tion. Many other processors are available. Such a processor
usually executes an operating system which may be, for
example, the Windows NT, Windows 2000 (Windows ME)
or Windows XP operating systems available from the
Microsoft Corporation, MAC OS System X available from
Apple Computer, the Solaris Operating System available
from Sun Microsystems, or UNIX available from various
Sources. Many other operating systems may be used.
0084. The processor and operating system together define
a computer platform for which application programs in
high-level programming languages are written. It should be
understood that the invention is not limited to a particular
computer system platform, processor, operating system, or
network. Also, it should be apparent to those skilled in the
art that the present invention is not limited to a specific
programming language or computer system. Further, it
should be appreciated that other appropriate programming
languages and other appropriate computer systems could
also be used.

0085. It should be appreciated that the invention is not
limited to executing on any particular system or group of
systems. Also, it should be appreciated that the invention is
not limited to any particular distributed architecture, net
work, or communication protocol.
0086 Various embodiments of the present invention may
be programmed using an object-oriented programming lan
guage. Such as SmallTalk, Java, C++. Ada, or C# (C-Sharp).
Other object-oriented programming languages may also be
used. Alternatively, functional, Scripting, and/or logical pro
gramming languages may be used. Various aspects of the
invention may be implemented as programmed or non
programmed elements, or any combination thereof.
0087 FIG. 3 shows a process for establishing a commu
nication according to one embodiment of the present inven
tion. At block 301, process 300 begins. At block 302, a slave
system initiates communication with a master system. In one
embodiment, the slave system is a management system that
is adapted to manage one or more master systems. In one
aspect of the present invention, the slave system determines
the protocol by which the slave, and optionally, other entities
through the slave system, communicate with the master
system.

US 2007/00281 04 A1

0088. The slave system may initiate communication
between the master and slave systems, for instance, by
sending a sequence of messages that, when received by the
master system, cause the master system to send communi
cation parameters to the slave (e.g., at block 303). At block
304, the slave uses the communication parameters to com
municate with the master system. Such communication
parameters may, for instance, indicate the version of the
protocol used, the length of messages used to communicate,
a memory and/or data structure layout, or other communi
cation information.

0089 FIG. 4 shows a process 400 performed by a master
system according to one embodiment of the present inven
tion. Specifically, FIG. 4 shows a state diagram of a com
munication process performed by a master system. In one
example, the master includes an engine that runs a commu
nication protocol having four states. This state diagram may
be, for example, performed by a processor of a UPS or a
UPS component as discussed above. In a specific example,
the state diagram shown in FIG. 4 is implemented in a UPS
device, and is programmed in a programming language in
firmware to execute a communication protocol according to
one embodiment of the invention.

0090 The communication protocol includes four basic
states (states 401–404) and one flag that indicates that
communications are active (e.g., a COM VALID flag).
Upon initialization 405 of the master, the master initializes
the communications active flag. The four basic states include
a first state 401 which includes waiting to receive a first
character (e.g., a first byte) of a message from the slave. If
the first character is a single-byte message, then the master
processes the single byte message by transmitting the appro
priate row to the salve. In a second state 403, the master
receives the remainder of a message from the slave (e.g.,
receives other bytes associated with the message). At State
404, the master transmits any row information to the slave
in response to the information received from the slave.
0091. According to one example implementation, the
protocol may include additional protocol features, such as,
for example, a boot loading feature. In particular, the boot
loading feature may provide the master one or more files to
reprogram itself. While the master is in a paused or idle state,
the master waits for a NAK character to resume. Alternate
protocols such as, for example, a bootloader, XMODEM file
transfer, terminal mode, or other protocol feature may be
invoked while in the idle state by sending a predetermined
character to start a specified protocol. If, while in the pause
state, the master receives a start character for an alternate
protocol, the master system transitions to running the alter
nate protocol (e.g., a boot load protocol) at State 402. For
instance, if the first character received by the master is a
PAUSE character, then the master enters a pause state. If,
while in the pause state, the master receives a signal from the
slave to enter into a boot load mode, the master system
transitions to a boot load mode state 402. At this point, the
master may request one or more files from the slave to
complete the booting operation.

0092) If, while in the pause state, the master receives any
other character, the master begins an alternate protocol. If
the slave signals exit from the PAUSE mode with a negative
acknowledgement (NAK), the master proceeds to transmit
the appropriate row with the appropriate data. When in

Feb. 1, 2007

pause mode, the master remains in this state until a signal is
received from the slave (e.g., a negative acknowledgement
(NAK), or the master is reset). According to one embodi
ment, the master will remain in the pause mode until reset
or receiving a further signal from the slave. That is, the
master does not timeout within the pause mode.
0093. As discussed, according to one embodiment, a
communication protocol may be implemented that includes
one or more timeout mechanisms. According to one embodi
ment, a dual timeout may be used between a master and a
slave. In one embodiment, the timeout mechanism provides
a method for detecting communication problems on a com
municating network (e.g., a data bus) and defines a standard
recovery process. In one example, a maximum time is set
between bytes (e.g., a byte timeout) in a message. For
example, this timeout may be approximately 25 millisec
onds, but this timeout period may be adjusted to other
values. In one example, once a message packet has started
sending Subsequent bytes in a message, the message must be
transmitted at a rate greater than this timeout to ensure that
the data is received. If bytes are not received in a message
at this rate, the packet is discarded and a negative acknowl
edgement (NAK) is sent to the slave. Further, a recipient of
a packet may have another timeout that measures the time by
which a message response may be received. If a response to
a message does not occur within a defined timeout period
(e.g., 250 milliseconds) the device considers the transmis
sion a failure and acts accordingly.
0094 FIG. 5 shows an example process 500 for perform
ing communication by a slave system according to one
embodiment of the present invention. In particular, FIG. 5
shows a state diagram that may be executed by a slave
system in association with communicating with a master as
discussed above with reference to FIG. 4. In particular, the
state diagram may include four states (states 501-504) at
which the slave system may be during any point in com
munication with the master. Such a state diagram may be
performed, for example, in software, hardware, or both
within a slave system.
0.095 Upon initialization 505, a slave enters a receive
state where the slave is capable of receiving a row of data
from a master device. The slave system may also be in an
acknowledgement mode 503 wherein the slave system trans
mits acknowledgement (ACK) messages or negative
acknowledgement (NAK) messages as appropriate depend
ing on whether information was properly received from the
master system. As discussed in the example above, if a
particular message is not received within a predetermined
timeout period, the slave may send a negative acknowledge
ment to the master system, prompting the master system to
resend the message.
0096] At state 504, the slave system may transmit any
data as necessary to the master system. Such transmitted
data may include, for example, write commands that per
form the writing of information to memory locations of the
master system, read requests for reading information from
appropriate memory locations, or any other reading or
writing operations.

0097 FIG. 6 shows an example flow chart of a process
600 that occurs during the received first character state 401
as described above with reference to FIG. 4. At block 601,
the master receives a first character from a slave system. At

US 2007/00281 04 A1

block 602, an intramessage timeout timer is started to track
the time over which the message may be sent. If the message
is not sent within an intramessage timeout value, a negative
acknowledgement is sent at block 604, and a NAK counter
is incremented. If, at block 605 it is determined that the
value of the NAK counter exceeds the maximum number of
retries permitted to send a message, a communication valid
(communication active) flag is cleared at block 610. If the
NAK counter is not exceeded, the message was received and
the intramessage timeout is reset at block 606, and the
master is ready to receive the first character of another
message.

0.098 As discussed, there may be two levels of timeouts
that may be used, one for messages and one for receiving
consecutive bytes within a message. At block 603, if a
character is received, an intrabyte timeout is reset at block
607. If, at block 608, a negative acknowledgement (NAK) is
received, a negative acknowledgement counter is incre
mented at block 609. If, at block 611, the NAK counter
exceeds a maximum number of retries for sending a con
secutive byte, then an active communication flag is reset at
block 610. If not, the byte has been successfully transmitted
and the timers are reset for receipt of another byte and/or
message.

0099) If, at block 608, a NAK is not received, the NAK
counter is reset at block 610. At block 610, it is determined
whether an acknowledgement is received from the slave
system. If yes, the master prepares to send an additional row,
and a row pointer is incremented at block 615. At block 612,
the master transmits a row to the slave. If an acknowledge
ment is not received at block 614, it is determined whether
the master has received a stop character at block 616. If so,
the master resets the row pointer to zero at block 617 and
enters the pause mode at block 622.
0100 If a stop mode character is not received at block
616, it is determined whether a pause mode character has
been received by the master at block 618. If so, the master
enters the pause mode at block 622. If not, the master
determines whether a read open data character has been
received at block 619. If so, the master transmits an open
row to the slave at block 623. If not, the master determines
whether a write open data character has been received from
the slave at block 610. Is so, the master receives a slave open
command message at block 621. If not, the master receives
a slave message at block 624.
0101 FIG. 7 shows a process 700 that may be performed
by a master while in the received message state 403. At
block 701, a master system receives a slave message. At
block 702, it is determined whether an interbyte timeout has
been exceeded. If so, a NAK counter is incremented at block
711. If, at block 712, it is determined that the NAK counter
exceeds a maximum number of retries for sending the
message, then the row pointer is set to Zero at block 719.
Further, an active communication flag is cleared at block
720, and the master enters the pause mode at block 721. If,
at block 712 it is determined that the number of NAKs does
not exceed the maximum number of retires, the message has
been received correctly and the master transitions to a
received first character state at block 722.

0102) If a character is received at block 703, then the
intrabyte timeout is reset at block 704 and the character is
stored in a memory of the master. At block 705, it is

Feb. 1, 2007

determined whether the message is complete. If so, it is
determined whether the message received is valid based on
a checksum received in the transmitted message at block
706. If not, it is determined whether to discard characters in
the receive buffer. More particularly, at block 708, it is
determined whether a byte timeout has been exceeded. If
not, it is determined whether a character is received at block
709. If so, the byte timeout is reset at block 710. If a
character has not been received, it is determined whether the
byte timeout has been exceeded. If so, the NAK counter is
incremented at block 711 as discussed above.

0103) If the checksum is determined valid at block 706,
it is determined whether data crosses a row boundary at
block 713. If so, the received message is invalid and the
NAK counter is incremented at block 711 as discussed
above. If data does not cross a row boundary, a row pointer
is adjusted to the slave message row at block 714. At block
715 it is determined whether the data message received is
within the range of memory of the master at block 715. If so,
shared memory image of the master is updated with the
appropriate data at block 716. If not, the master transmits
row information 717 to the slave. Further, the row pointer is
modified based on an application rule for sending informa
tion to the slave at block 718. The master then transitions to
the receive first character state at block 722.

0104. It is noted that the transmit row flow operates to
output the characters of a row guaranteeing that characters
are transmitted faster than the interbyte timeout between
Successive characters.

0105 FIG. 8 shows an example process 800 that may be
implemented in a slave system during the receive row state
501 as discussed above with reference to FIG. 5. At block
801, the slave system enters the receive row state. At block
802 it is determined whether a character is received at the
slave. If not, it is determined at block 803 whether a message
timeout has been exceeded. If not, the slave monitors for
characters received from the master. If the character is
received, a byte timeout is reset at block 804. At block 805
it is determined whether a character has been received. If
not, it is determined whether the byte timeout has been
exceeded at block 806. If not, the slave continues to monitor
for additional characters received from the master.

0106 If the byte timeout has been exceeded at block 806,
the slave transmits a NAK to the master at block 816. If a
character is received at block 805, the byte timeout is reset
at block 810, and it is determined at block 811 whether the
row information indicates that the firmware or other soft
ware of the master should be upgraded. If so, the slave enters
a run boot loader state at block 812. During this state, the
slave may provide one or more files to the master to
reprogram itself. If, at block 811, it is determined that the
master does not request to enter the boot load State, it is
determined at block 807 whether the transmitted row is
complete. If not, additional characters may be received at
block 805. If the row is complete, it is determined whether
the transmitted row is valid given a checksum included in
the received message at block 808. If so, it is determined
whether a slave communication flag is set at block 809. If so,
it is determined whether the received row is row zero at
block 813. If so, a communication active flag is set at the
slave of block 814. If, for example, the row received is not
row zero, the slave may transmit a negative acknowledge
ment (NAK) to the master at block 816.

US 2007/00281 04 A1

0107 When the communication active flag is set at block
814, it is determined whether there is data to transmit to the
master at block 815. If not, the slave merely transmits an
acknowledgement to the master that row Zero was received
successfully at block 825. If the slave does have data to
transmit to the master, the slave does so at block 826.

0108) If, at block 808, it is determined that the checksum
is not valid, the slave enters a discard mode where characters
are discarded in the buffer at block 821. More specifically,
it is determined at block 822 whether a byte timeout has
been exceeded. If not, it is determined whether a successive
character has been received at block 823. If so, a byte
timeout is reset at block 824. If not, the slave continues to
wait for characters until the byte timeout is exceeded at
block 822.

0109) If a message timeout is exceeded at block 803, an
active communication flag at the slave is set to off at block
817. Further, a data valid register is reset at block 818, and
a message timeout and byte timeout are reset at blocks 819
and 820, respectively. Also, a negative acknowledgement is
transmitted to the master at block 816.

0110 FIG. 9 shows a process 900 followed by the slave
while in a transmit data state 503. At block 901, the slave
enters the transmit data state. At block 902, a message
timeout is reset at the slave. At block 903, the slave enters
the transmit data state and begins to transmit information to
the master. At block 904, it is determined whether a response
is received from the master. If not, it is determined whether
a message timeout is exceeded at block 908. If the message
timeout has not been exceeded, the slave waits for a
response from the master.
0111. If the slave receives a response from the master, it

is determined whether the received information is valid. For
example, a checksum may be included in the transmitted
information and the slave may determine whether the infor
mation is valid based on the checksum.

0112) If the checksum is valid, it is determined whether
the master transmitted a row having data at block 906. If so,
it is determined at block 907 whether the row data is the
same as the transmitted data. If so, the operation is indicated
as a success at block 913.

0113. If the row data does not equal the transmitted data,
a retry counter is incremented at block 910. If, at block 912,
it is determined that the retry counter exceeds a maximum
value (e.g., 3) the operation is indicated as being unsuccess
ful at block 911. If not, the slave waits for the receipt of
another message from the master at block 902. If there is a
message timeout at block 908 or the checksum is not valid
at block 905, the slave transmits a NAK to the master and
increments its retry counter at block 909. Again, if the retry
counter exceeds a maximum value at 912 at block 912, the
operation is indicated as being unsuccessful at block 911.
Messaging

0114. According to one aspect of the present invention,
there are three possible messages that may be used to
communicate between a slave and a master system. More
particularly, there may be a master transmission which is a
transmission from a master to a slave, a slave transmission
which is a transmission from a slave to a master, and a slave
single byte command that is executed at the master.

Feb. 1, 2007

0115 FIG. 10 shows one example master format accord
ing to one embodiment of the invention. In one example, a
master system transmits messages having the same length
and format. Message 1000 may include, for example, a row
number 1001 that indicates the position of the data being
transmitted by the master system. In row 0, the row 1001
may indicate the version of the communication protocol.
Message 1000 may also include a data payload which
includes one or more data bytes 0 through n. In one
embodiment, the length of each message 1000 sent by the
master may be a fixed length. In one example, this fixed
length may vary between master implementations. This
fixed length may be determined, for example, based on the
protocol version 1001 which may be located, for example, in
a row 0 data element or by a row length byte located in row
0.

0116 Message 1000 may also include checksum infor
mation used to verify the contents of a particular message.
In one embodiment, message 1000 includes a Fletcher
checksum 1003. A Fletcher checksum is a well-known
checksum used for detecting errors as more fully described
below. However, it should be appreciated that any other type
of checksum may be used to verify the transmitted infor
mation.

0.117) A slave system may transmit in one of two different
formats according to one embodiment of the invention. The
first data format is a single byte message and the second is
a multibyte communication message. FIG. 11 shows an
example message format 1100 according to one embodiment
of the invention. Message 1100 includes a row number 1101
that specifies the type of message being transmitted. Accord
ing to one embodiment, there are three possible values of
row number 1101. For example, a value of 0xFD indicates
a negative acknowledgement (NAK) message.
0118 According to one embodiment, NAK messages are
used to initiate communications between a master and a
slave. Other single byte commands that may be invoked by
the slave include, but are not limited to, commands to stop
communication, pause communication, acknowledge (e.g.,
ACK) a transmission or not acknowledge (e.g., NAK) a
transmission. In one specific example, a message having a
row number 1101 value greater than 0xFO is a single byte
command or a special command. According to one embodi
ment, special commands may be used to expand the func
tionality of the protocol. According to one embodiment,
Such a message may include the first byte of a multi-byte
message.

0119) As discussed, the last type of message that a slave
may transmit to a master is a multi-byte message used to
request to change data stored at the master. Such a message
may take the same form as message 1100 shown in FIG. 11.
Message 1100 includes starting byte number 1105 which
indicates a row offset where data byte Zero (item 1106) is to
be written. Data length 1102 indicates the number of data
bytes in data payload 1103. According to one embodiment,
the data payload must be less than or equal to the length of
the row transmitted by the master (e.g., 8 bytes). For
example, to write through a third element of a memory
location that is 2 bytes long, the starting position is indicated
in message 1100 as 3, and the length is indicated as 2.
Similar to message 1000, message 1100 may include check
Sum information. In one specific example, a Fletcher check
sum 1104 may be used as discussed further below.

US 2007/00281 04 A1

0120) A message 1100 having a data length value of Zero
(O) in field 1102 may be interpreted by a particular master
implementation as a request for the master to send a speci
fied row.

Example Transactions
0121 FIG. 12 shows one embodiment of a message
transaction according to one embodiment of the present
invention. In particular, a master system transmits a message
1201 to a slave, and after some response time 1202, a slave
responds with an appropriate message 1203. In one embodi
ment, the response is an acknowledgement message 1207
indicated by a 0xFE value for the row value (first byte).
Master message 1201 includes a row 1 byte 1204 and a data
payload 1205. In one embodiment, the data payload ranges
from 0 bytes to 239 bytes. Optionally, master message 1201
includes a Fletcher checksum 1206 as described above.

0122 FIG. 13 shows another embodiment wherein a
master sends a message 1301 similar to 1201 (e.g., one
having a first byte 1304 followed by a data payload 1305,
and optionally, a Fletcher checksum 1306). However, the
slave, after Some response time, does not receive message
1301. This may occur, for example, if the master does not
transmit the information quickly enough (e.g., there are
more than the predetermined number of byte timeouts),
there are transmission errors (e.g., a corrupted byte, dropped
byte or other change in transmitted data), or other transmis
sion or reception problems that cause the data not to be
transferred properly. In such a case, the slave system issues
a message 1303 indicating that message 1301 was not
received. After which indication, the master may resend
message 1301. Message 1303 may be, for example, a NAK
message 1307 as described above, which may be indicated
by a row value (first byte) of 0xFD.
0123. In general, a master may receive one of four basic
responses from a slave system. A slave may respond with a
single-byte NAK, and in response, the master will retransmit
the same data packet. A slave may send a single-byte ACK,
and in response, the master will proceed to transmit the next
block of data in the message. A slave may also send a
multi-byte message with the first byte not indicated as an
ACK or a NAK. In the absence of a checksum error, the
master may be configured to update its local memory with
data received from the slave. According to one embodiment,
the master updates its memory only after validating that the
received data is in the appropriate range. If validated, the
master may respond with a message including the row
containing the address in a response packet. If a checksum
error occurs, the master system may respond with NAK
message (i.e., requesting a retransmission of the last row),
after which, the slave may resend the message.
0.124. Another transaction type includes a write operation
from the slave system to the master. An example of Such a
message transaction is shown in FIG. 14. A slave system
sends a message 1401 to a master system, and after some
response time 1402, the master replies with a message 1403.
In the case of a write operation, the master may reply to the
slave indicating the row address written by the write opera
tion, indicating to the slave that the write operation was
successful. To this end, the message 1403 from the master
may include row information 1409, one or more data bytes
1410, and any checksum information 1411.
0.125. In summary, the slave sends messages (e.g., ACK
messages) to retrieve row information stored in a memory of

Feb. 1, 2007

the master. The master determines which row of data to
transmit next, and the master eventually transmits the entire
set of data. As described below, such information may be
stored in the master according to a memory map described
below.

Memory Map
0.126. According to one aspect of the present invention,
the master may include a memory map in which configu
ration and performance data are stored. For instance, data
may be stored in one or more rows of a memory map as
shown in FIG. 15. As is shown, the memory may be a linear
array of memory organized in rows. In one embodiment, the
master defines a shared memory format. As shown in FIG.
15, the memory may be referenced in a linear array as
indicated by the offset shown in the cells. For example, row
0 contains data at offset 0x0000-0x0007. A slave or other
entity that reads the memory map may issue commands to
the slave that “walks” through the memory map to provide
all of the information stored in the memory map. Alterna
tively, the slave may selectively request particular informa
tion from the memory map if the location of the data is
known.

0127. According to one embodiment, the memory map
may include data that defines the format of the memory map.
and its contained data. In one example, the memory map
includes header information that defined the data contained
in the memory map. Such header information may be stored
in reserved locations (or offsets) in the shared memory map.
permitting a slave to discover communication parameters for
communicating with the master. Further, the header may
contain information describing the contents of the shared
memory. In the example memory map shown in FIG. 15, the
header may be defined as offsets 0x00–0x08.
0128. The memory of a master device may contain sev
eral regions. For example, FIG.16 shows an example master
memory having different regions that may be accessed by a
slave device. According to one aspect of the invention, the
memory (e.g., memory 1600) includes a header 1601 that
includes information for establishing communication and
accessing other portions of the master memory. In one
example, header 1601 has a standard format that slaves and
other entities can identify communication parameters con
tained therein and therefore may communicate with the
master device. An example header format is shown by way
of example in FIG. 17 and discussed further below. The
header 1601 may be a publicly-accessible area that may be
accessed by devices to determine communication param
eters. In one specific implementation, header 1601 is 8 bytes
long.
0129. In one embodiment, the header is a required data
region, from which other communication parameters are
determined. Specifically, header 1601 may indicate, for
instance, a version of a communication protocol to be used
to access the master. Header 1601 may also specify the
organization of data in the memory map, the regions that are
contained within the map, and aspects of their organization.
In one specific example, the header includes a unique
identifier that identifies a data structure of the memory from
a group of known configurations. Further, the header may
include information identifying the number and size of data
packets used in communication.
0130. Following header 1601, memory 1600 may include
a descriptor header 1602 that indicates, for example, an

US 2007/00281 04 A1

indicator (e.g., a pointer) that identifies where data may be
found within memory 1600. For example, the descriptor
header 1602 may include a pointer that indicates a beginning
of described data. Descriptor header 1602 may include other
information, such as an indication of parsing rules to be used
to parse a device descriptor 1603 that follows the descriptor
header 1602.

0131 Device descriptor 1603 may provide a number of
functions, including identifying which rules for parsing the
descriptor may be used by slaves that access the master.
Device descriptor 1603 is, in one embodiment, a series of
bytes that describe the format of the described data. Accord
ing to one embodiment, device descriptor 1603 is encoded
and decoded using a set of rules. One purpose of the device
descriptor, according to one embodiment, includes inform
ing slaves as to which usages of the data (e.g., a data
element) are implemented, where a particular usage exists in
the memory map, any parameters for particular usage, and
where a particular usage exists in the device hierarchy.

0132) Memory 1600 may be divided into sections of
described data that are either static (e.g., static data 1604)
and dynamic data (e.g., dynamic data 1605). According to
one embodiment, if no distinction is made, the described
data may be considered dynamic. According to one embodi
ment, a split is made between data types to aid the slave in
determining how to most efficiently store data received from
the master. Such described data may include meaningful
data for the master entity including, for example, operating
parameters, debug information, performance information,
etc. The described data may be located in any portion of
memory 1600, and is not limited to following immediately
after the device descriptor 1603. For example, memory 1600
may include one or more portions of undescribed data (e.g.,
data 1606) that is included for padding purposes or other
SC.

0.133 Static data is data that changes infrequently, for
example, information describing the master configuration.
The described data may also include data which changes
frequently, such as performance information.

0134 FIG. 17 shows an example header format accord
ing to one embodiment of the present invention. The header
may include protocol version information that identifies a
version of the protocol being used. The header may also
include row length information that identified the length of
a row contained in the memory map. The row length may
also define a packet size for communicating to the master
from a slave or proxy entity. The header may include an
identifier that indicates the number of rows of memory in the
memory map.

0135 The header may include information identifying
the master entity. This information may be, for example, a
unique identifier for a particular model of a master device.
Such information may be useful to a slave for identifying
what capabilities a particular master may have. In one
instance, the slave may be a personal computer (PC) that
manages a master device. Such as a UPS, and thus the model
number of the UPS being managed may be useful for
determining the commands that may be performed, infor
mation that may be monitored, etc.
0136. The header may also include an identifier that
indicates a particular data table configuration format. This

Feb. 1, 2007

identifier may permit, for example, a slave to identify a
particular configuration of the memory map. This identifier
may also allow a slave device to determine whether the slave
Supports a particular memory map configuration. That is, the
slave may store different memory map configurations, and
the slave may use a particular configuration in response to
the identifier. Further, the header may identify what proto
cols and/or features are supported by the master, allowing a
slave to adequately determine the master's capabilities. The
header may also include a human-readable description of the
device for use, by an administrator or other user, or any other
information describing the device and/or method for access
ing the device.
0.137 According to one embodiment, the device descrip
tor is a sequence of bytes, which describes the format of the
described data. The device descriptor is encoded and
decoded by following a set of rules as discussed further
below.

0.138 According to one embodiment, the purpose of the
device descriptor is to let slave devices know:

0.139 Which data usages are implemented by a master.
0140. Where a particular usage exists in the memory
map of the master.

0141 Any parameters for a particular usage.

0142. Where a particular usage exists in the master
device hierarchy.

The following terms are important for understanding the
following example implementation of descriptors:

0.143 XML. A well-known markup language that may
be used to describe the master memory format.

0144. Namespace—A dictionary that defines collections
and usages related to a given function.

0145 Collection—A container for usages, other collec
tions and collection arrays.

0146 Collection Array—A container for usages and
other collections that repeat. Collection arrays may be
used to collapse identical collections that would otherwise
be repeated (e.g., three phases of input voltage).

0147 Usage—A data element. Usages are the basic
building block for defining the master memory.

0.148 Operator—A special byte used in the device
descriptor. Operators are used to provide a set of rules for
parsing the device descriptor.

0149 Fully Qualified Name Provides the complete
hierarchical path to a collection or a usage including
namespace(s).

0150. A namespace is unique and can have IDs from 0 to
223. In one example, there are two namespaces that are
defined uniquely for a product/series ID identifying the
product and series of a master device. These namespaces are
referred to herein as Factory0 and Factory 1 and have IDs 0
and 1, respectively. These Factory namespaces can be
defined uniquely for each product, and therefore, the limit of
information contained in each product namespace may not
be exceeded.

US 2007/00281 04 A1
13

0151. According to one embodiment, collections defined
within a namespace are unique and are assigned IDs from 0
to 223. According to one example, collection IDs 0 through
3 may be “reserved in all namespaces. Collection arrays
may be assigned the same IDs range as collections.
0152. According to one embodiment, usages within a
namespace are unique and are assigned IDs from 0 to 223.
The definition of a usage may define the size (or the
maximum size) and the scaling factor (if applicable). Usages
only have meaning when they are referenced by their fully
qualified name.
0153. A pictorial representation of the master memory
can be represented in a hierarchical tree as shown below in
Table I. This tree helps to illustrate the relationship between
namespaces, collections and usages.

TABLE I

Fully Qualified Usage Name

Descriptor for Data

Namespace <namespace1>
Collection <collection1

Usage <usage 1 >
Usage <usage2>

End <collection1
Collection <collection2>

Usage <usage 1 >
Collection <collection3>
Usage <usage3>

End <collection3>
End <collection2>
Collection Array <collection4> <no of elements
Namespace <namespace2>
Usage <usage4>

End <namespace2>
Usage <usage5s

End <collection4;
End <namespace12

0154 Because, according to one embodiment, slaves
build the entire path to a usage, it would be beneficial to have
consistency in hierarchical trees of usages across products.
To facilitate this, each product may adopt one of a set of
predefined hierarchies. To document and provide a method
for simulating a master device, certain files describing the
memory of the master may be created. For example, Such
files may be in XML format.
0155 According to one embodiment, the device descrip
tor immediately follows the descriptor header. The length of

Operator Name Value

END OxFF

COLLECTION OxFE

COLLECTION OxFD
ARRAY

Fully Qualified Name

namespace1:collection2

Feb. 1, 2007

the device descriptor may vary depending on the applica
tion. Information in the descriptor may fall into one of three
types of information:

0156 Operator—A special character that gives special
meaning to bytes following the special character. A table
of operators is listed below in Table II.

O157 Operator Parameters Abvte or series ofbvtes that p y y

have meaning based on the operator that preceded the
parameters.

0158 Usage—A single byte that represents the ID for a
specific usage. Any byte that is not an operator or an
operator parameter is a usage.

namespace1:collection1.usage1
namespace1:collection1.usage2

namespace1:collection2.collection3.usage3

namespace1:collection4 index.namespace2:usage4

namespace1:collection4 index.usage5

0159. When parsing the descriptor, every byte may be
assumed to be a usage unless that byte is an operator or
operator parameter. According to one embodiment, opera
tors are values in the range 0xE0-0xFF inclusive. The range
of valid usage IDs may range from 0x00–0xDF to allow for
future expansion, and the Collection ID and Namespace ID
values may be limited to a similar range for clarity and the
possibility of future expansions. Table II below details
example operators that may be defined.

TABLE II

Example Device Descriptor Operators

Parameters Description

No This operator represents the end of a namespace,
parameters collection and collection arrays.
<Collection This operator represents the start of a collection.
#> May be terminated with an End operator.
<Collection This operator represents the start of a collection
#s <# Array array. May be terminated with an End operator. The
Elements collection number and the array size each are 1 byte.

Collection arrays are O indexed, meaning the first
element is considered element 0.

US 2007/00281 04 A1
14

TABLE II-continued

Example Device Descriptor Operators

Operator Name Value Parameters Description

SIZE OxFC <Size in This operator indicates the size of the last usage in
Bytes.> the device descriptor. The size in bytes parameter is

a single byte.
BITMASK OxFB <Bits This is a binary mask that is the same size in bytes

Implementedt as the usage. A bit set in the mask indicates that a
bit is implemented in the particular application or is
writeable if the usage is writeable

MAXIMIN OxFA <Max><Mina This operator indicates the max and min values of a
writeable usage. The size in bytes of Max and Min
are the same as the usage.

DEFAULT OxF9 <Defaults This operator indicates the default value of a
writeable usage if applicable. The size in bytes of
the default will be the same as the usage.

NAMESPACE OxF8 <Namespace> This operator represents the start of a namespace.
May be terminated with an End operator.

NOP OxF7 No NOP is a dummy fill byte for the device descriptor.
parameters Slaves may skip to the next byte when this operator

is encountered. A master may use this for padding
so that the descriptor length would be constant from
one SKU to another.

END OxF6 No This operator indicates the end of the device
DESCRIPTOR parameters descriptor.
SKIP OxFS No This operator is an indication for the slave to skip

parameters the next usage and its parameters.
RESERVED OxE2-0xF4 Reserved for future use.
FORFUTURE
USE
INTERNAL OxE1 No This byte is not be transmitted to the slave. For the
RESERVE parameters master, this is an indication of an escape sequence

(e.g., for internal use only).
ESCAPE OxEO <operators This operator indicates that the following byte is the

actual operator. This is reserved as future proofing

Feb. 1, 2007

in case additional operators are required.

0160 Each usage is defined as one of the following data
types. Each data type has a series of parameters associated
with its definition, each of which reside with the usages in
the appropriate XML file(s). Each usage may include one of
the following access attributes:

0.161 Read Only: A usage with this attribute can only
be read by the slave.

0162 Read/Write: A usage with this attribute can be
read as well as written by the slave.

0.163 Read/Factory Write: A usage with this attribute
can be read by the slave but if authenticated by the
factory password then the slave can write to this usage
as well.

According to one embodiment, each usage may include
only a single one of the above access attributes. Unique
usages may be created if different access attributes are
needed.

0164. Thus, a usage as defined in a publicly-accessible
location may permit a slave system to access certain infor
mation stored in memory of a master. In a similar manner,
the slave device may access such information as part of a
proxy system that may provide access from other devices or
systems.

Proxy System

0165 According to one embodiment, a slave may act as
a relay for the purpose of relaying information to one or

more other entities. To this end, the slave may be a part of
a proxy system that is configured to communicate with other
entities. Such as a computer system. Such a computer system
may be coupled to the proxy through one or more commu
nication networks.

0166 According to one aspect of the present invention,
the proxy is adapted to communicate on behalf of multiple
devices to a single master. In one embodiment, the protocol
used between the master and slave is transported using a
network protocol. Conventionally, master devices such as
UPSs usually communicate to a management entity using a
directly-connected link (e.g., a serial communication cable)
or are provided what is referred herein as a network man
agement card (NMC), interface card, or other devices that
communicate to the device using the native language of the
device, and this device translates data to one or more other
systems or devices using network protocols such as HTTP
(e.g., over one or more networks).

0.167 Currently, products such as UPSs and other devices
communicate to other devices over an Ethernet-based net
work through either of two methods. First, an interface card
(e.g., an NMC, communicates to the UPS or other device in
the native language of the UPS or other device, translates
this data to client-friendly terminology and vocabulary, and
communicates over the Ethernet-based network to one or
more other devices (e.g., a client) using one of many
protocols such as HTTP. Telnet, SNMP and others. A client
interpreting the translated data can be a human using a

US 2007/00281 04 A1

network browser or an application programmed to imple
ment processes in response to the UPS or other devices state
of condition.

0168 The disadvantage of this approach is that the inter
face needs to understand the UPS or device to which the
interface is communicating so that the interface can translate
its language to the client-friendly interface in a meaningful
way. Using this approach, the interface card needs to store
in its memory not only the many different languages of the
different UPSs and devices the interface card expects to
translate, but the languages of the different clients that the
card can be configured to transmit that translated data.
Because of the need for multiple-language Support require
ments of both the device and the client, physical memory
requirements of the interface card are increased. Also,
because this translation occurs in real-time, the processor
performing the translation needs to be fast enough to reduce
lag time to an acceptable amount. Both of these require
ments add to the cost and complexity of the interface card
hardware.

0169. Another way by which a connection is formed
includes a software application installed in a computer that
connects to the UPS or other device through a serial con
nection, translates the UPS or other device data to client
friendly terms and makes that data available to other devices
through an Ethernet-based network connection. One disad
vantage of this approach is that the approach requires a PC
or other computer connected to the UPS or other device via
a serial connection. The computer is obviously an expensive,
Voluminous, and power hungry piece to this solution if it
were not intended to be used for other purposes such as
file-serving, print management, and other network activities.
This approach also requires that a serial port is to be
available to communicate to the UPS or other device, which
is not always possible or practical. Further, conventional
discovery of devices requires polling of all network (e.g., IP)
addresses to “find nodes that contain network devices. Such
discoveries are time intensive due to the number of possible
IP addresses, and resource intensive due to the network
bandwidth required to perform such operations.
0170 According to one embodiment, a system is pro
vided that does not need to translate data from the UPS or
other device before providing it in client-friendly formats
over the network. Because data is not translated, but is
provided in its native form, the complexity of the code and
the hardware is reduced. A side benefit of passing data
through the interface in its native form is that the system
works with a broad array of products without the system
needing to store multiple protocols or otherwise having to
know anything about individual capabilities and features of
different master devices. Another advantage over conven
tional interface cards is that the system, according to one
embodiment, is designed to work with only main network
protocol. In contrast to a conventional network card which
has to store the protocols of several network communication
methods in memory, the system according to one embodi
ment of the present invention uses only one. Support for a
single protocol reduces cost and complexity and simplifies
set-up time during product installations. According to
another embodiment, a lightweight protocol is provided that
allows a software client to perform a simple network broad
cast and receive a response from all devices on the network
that comply with this protocol.

Feb. 1, 2007

0171 According to one aspect of the present invention, a
universal translation system is provided. In particular, a
single device is provided that for all master devices com
pliant with the serial and network protocol regardless of the
data that is specific to the master devices. Further, a capa
bility is provided for discovering devices on the network that
are compliant with the protocol. This may be accomplished,
for example, via a lightweight communication method. In
one particular example, existing communication protocols
are utilized as a transport layer for a proprietary serial
protocol. The data received at the software client is the same
format as the data that would have been received through a
direct serial communication with the master.

0.172. As discussed, a network version of a serial link
protocol may be provided. According to one embodiment,
the protocol allows access to the same memory map that is
accessed over the serial port of the master. In one embodi
ment, the protocol is a lightweight network protocol that
functions as a serial cable replacement. The added advantage
of the network protocol is that multiple devices may connect
to the same network master, with only one connection to the
master.

0173 FIG. 18 shows one example system used for com
municating with a master device according to one embodi
ment of the present invention. Communication system 1800
includes a master system 1802 having information to be
relayed to other entities. More particularly, master 1802 may
include one or more memory areas to be accessed by one or
more external devices. Master 1802 may include a memory
map 1806 that includes the data to be accessed. According
to one embodiment, memory map 1806 may include data
that describes the format of other data contained within the
memory map. A slave, proxy or other system may use Such
information in the memory map to determine communica
tion parameters for communicating with the master 1802.
0.174 According to one embodiment, a proxy 1801 is
provided that is capable of reading the memory map 1806 of
the master 1802 and providing the information to one or
more clients (e.g., network client 1803). To this end, a proxy
1801 includes a slave 1804 that is capable of communicating
with master 1802. As discussed, slave 1804 may commu
nicate commands and other data to master 1802 over a serial
communication link. Such information may be, for example,
messages as discussed above with reference to FIGS. 10-11.
Such information may include commands, data received
from a master, and any flow control information.
0.175 Data retrieved from the master may be stored in a
copy of the memory map of the master stored in the memory
of proxy 1801. More particularly, memory map 1807 may be
a local copy of memory map 1806 of master 1802. Slave
1804 may periodically read the memory map of master 1802
and update its local copy. Thereafter, other systems may be
capable of accessing information stored in the local copy of
the memory map 1807. Such access may be provided, for
example, by a server 1805 which is capable of communi
cating over one or more communication networks to other
systems, including network client 1803. According to one
embodiment, server 1805 may permit clients to communi
cate with the master 1802 using one or more conventional
network communication protocols.
0176). In one example, server 1805 permits communica
tion with the master using the well-known User Datagram

US 2007/00281 04 A1

Protocol (UDP) protocol. The UDP protocol uses the well
known Internet Protocol (IP) to deliver datagrams. In yet
another example, the well-known Simple Network Moni
toring Protocol (SNMP) may be used to access data stored
in the master 1802. More particularly, server 1805 may
communicate with external clients via standard SNMP
methods such as get and get next requests, traps, etc. and
may communicate to the master 1802 such information
through, for example, slave 1804 and memory map 1807.
0177 Although SNMP may be used as a transport layer
protocol for communicating data between a client and a
server, it should be appreciated that any other protocols may
be used, and the invention is not limited to any particular
protocol. Rather, any protocol that is capable of transferring
command information between a client and server may be
used. Further, such a protocol may be capable of transferring
data pulled from the server or data which is generated by the
server in an unsolicited manner (e.g., a broadcast).
0178 As discussed above, network client 1803 may
include one or more systems that are capable of communi
cating commands and data to a master (e.g., master 1802).
Client 1803 may be, for example, a management system
capable of monitoring one or more devices (e.g., a UPS). In
one example, network client 1803 may be the well-known
ISX manager product available from the American Power
Conversion Corporation. Some clients may be capable or
reading and/or writing to memory locations within memory
map 1806 of master 1802. As discussed above, one or more
portions of memory of master 1802 may be accessed,
including static data and dynamic data. In one example,
static data does not change and may be transmitted to proxy
1801 upon communication with the master 1802. Dynamic
data may be communicated periodically or as requested by
proxy 1801.
0179 Major features of a serial protocol may be dupli
cated in a networked version of the serial communication
protocol system. That is, a network protocol may be used as
a transport to conduct the serial communication protocol
over a network. According to one embodiment, the "net
worked version of the serial protocol may be substantially
similar to the serial communication protocol used between a
slave and a master. This feature may be beneficial, as client
Software that is capable of communicating with a master
devices as a slave (e.g., using a serial link) may be nearly
identical to that of Software that communicates through a
proxy and associated network transport protocol. The fol
lowing describes differences between a serial version and
the networked version of a serial protocol according to one
embodiment of the present invention.
0180. As discussed above, the SNMP protocol may be
used as a transport-layer protocol for transmitting informa
tion between the proxy and a network client. In one par
ticular example, a proxy device communicates the master
slave memory map to a network client using two tables of
SNMP OIDs. In one particular implementation, the static
table includes one row for each block of static data in the
master. A row can contain a maximum of approximately
1500 bytes of data, and the proxy device determines the
number of rows in the table required to transmit the serial
master static data. A dynamic table may be constructed in the
same manner. A network client reconstructs the memory
map by concatenating the static rows with the dynamic rows
to make one contiguous block of memory.

Feb. 1, 2007

0181. The slave in the proxy device unlocks the serial
protocol so that a correct version of the memory map resides
in the proxy server. To recreate the “authentication proto
col, the proxy device may implement two tables of clients,
a monitor client list (e.g., a “read only' list), and a shutdown
client list (e.g., clients having both read and write access).

0182. A "shutdown client' is, in the case of a UPS master
device, a software client executing on a PC or server to
which the UPS is being controlled. For instance, it may be
desired to shut down a UPS from a server to which the UPS
provides output power. To this end, the network may issue
one or more commands that affect the operation of the UPS.
Thus, it may be necessary to provide write access in addition
to read access to portions of the master memory. According
to one embodiment, addition of a client to either table
requires registration using the authentication protocol. Any
client on the network may communicate with the proxy
server, but certain pieces of information are “restricted, and
are not reported to the client unless the client is registered in
one of the two registration tables.

0183 Each table may contain a fixed number of entries:
each entry referred to herein as a slot contains the IP address,
MAC address and a timeout value in seconds. The timeout
is reset, for example, with each SNMP communication
packet from the client to the proxy. Communications with
the proxy is allowed as long as the timeout has not expired
and the client is defined in one of the registration tables. The
timeout may be set to, for example, 600 seconds for shut
down clients and 3600 seconds for monitor clients. When
the timeout expires, the device is removed from active
registration, but its IP and MAC addresses may be stored in
a memory of the proxy. If the device re-establishes commu
nication, the proxy server may provide the same slot or entry
previously provided.

0.184 A slot is occupied if the slot has defined IP and
MAC address. One way to completely remove a client from
the list is to actively register for the particular slot, or to be
registered on a different slot and clear a slot. Addition of a
client to a registration table is accomplished, for example, by
writing the serial authentication with a slot number to the
appropriate OID (e.g., registration list OIDs). The format of
the data to be written may be a hex string <Serial Slave
Password Challenges.<Serial Master Password
Responses <16-bit Slot Numbers. A slot number having a
value of 0 requests the proxy to pick an available slot, or to
reassign a slot previously registered to the same client. If the
table is full, an error may be returned. In the case of a full
table, the client must decide to refuse connection, or bump
another client by registering for a particular slot.

0185. The first table, the shutdown client table, is
intended for management entities and shutdown clients to
register. Devices in this table receive periodic updates of the
dynamic memory and are allowed to read and write to the
serial memory. Once listed in the broadcast table the proxy
device sends SNMP traps to the network client on a specified
interval, and upon receipt of a valid write command. Reg
istered clients may, according to one embodiment, receive
exactly the same memory map images. The network client is
responsible for renewing the registration periodically to
prevent the registration from timing out. Renewal of the
registration may be performed, for example, by any valid
SNMP communication to the proxy device. In another

US 2007/00281 04 A1

embodiment, a polled read of the registration table may be
performed to renew the registration with the least impact to
the proxy server.

0186 The second table, the polled table, may be provided
for entities that periodically poll the proxy (e.g., a manage
ment server or other monitoring Software that communicate
on a polled basis to the proxy). These devices may be
permitted to register in a separate table with a similar
registration method described above.

0187. As discussed above, data in the master is organized
into two basic regions, a static region followed by a dynamic
region. The static region contains data that changes infre
quently and can be communicated without any authentica
tion. The proxy server may store data in this region in
memory (e.g., in ROM). If placed in ROM, care should be
taken not to place data that changes frequently, as the ROM
in most devices have 10K write limitations. The dynamic
region may include all data within the memory map that is
not static. Dynamic data may optionally be masked to a
network client by replacement with a constant piece of data
when the network client is not a registered client. According
to one embodiment, data needed by the network client to
generate the registration may not be masked.

0188 If a device is not registered, the device may be
provided 'garbage' dynamic data. Data from the proxy
device will be valid with the exception of the dynamic data.
According to one embodiment, the only data in the dynamic
data that will be valid is the data necessary to properly
generate the registration packet.

0189 As discussed, the proxy device may provide a
“universal translator' to multiple device types. According to
one embodiment, the proxy functions as a transparent pro
tocol translator. This function is achieved by placing restric
tions on the master devices that are Supported by the proxy.
According to one embodiment, requirements may be
imposed on master devices that allow them to work with the
proxy server. For example, all devices that are designed to
work with the proxy device may be required to implement
the device descriptor. If registration is to be used, the
authentication protocol must also be used. A device that fails
to implement all the required usages may be declared to be
incompatible by the proxy device.

0190. Because, according to one embodiment, the trans
port protocol for the serial communication protocol is
SNMP, the data being transmitted is communicated using
SNMP OIDs (Object Identifiers). In one example, each
packet of information is completely defined within the
definition of the OID. There may be several groups of OIDs
that are supported for a networked version of the serial
communication protocol.

0191 More particularly, a group of OIDs may be pro
vided that communicate the memory map to the network
client, and allows for commands by the network client to the
master device. The data resides in an SNMP table so that a
single proxy may serve multiple master devices. To recon
struct the original memory map, the network client may
concatenate the static and dynamic data. However, accord
ing to one embodiment, to provide access to the master
memory map, the proxy and its network clients must be
authenticated.

Feb. 1, 2007

Authentication Protocol

0.192 According to one embodiment of the present inven
tion, it may be beneficial to prevent unauthorized vendors
from making products that communicate with a particular
master device (e.g., a UPS), and prevent other device
manufacturers from making a master device that communi
cates with a particular slave device. For instance, in the case
of a UPS master device that communicates with a particular
slave system, it may be beneficial to prohibit “knock-off
master and slaves from entering the marketplace. To this
end, a protocol is provided to prohibit either an unauthorized
master or slave (or its network clients) from communicating
with an “approved master or slave entity.

0193 Prior communication methods assume that the
master entity is an approved one. That is, security measures
are taken to prohibit unauthorized slaves from controlling a
particular master. However, Such security measures do not
ensure that the masters or slaves are themselves compliant,
and therefore, such master and client devices may be easily
reproduced.

0194 According to one embodiment, additional methods
are provided for verifying that the master is an authorized
master. For instance, an additional verification method may
be provided to allow a slave, proxy, or client to determine
whether a particular master is “authorized.” Further, a
method may be provided to determine whether a master is in
a locked or unlocked State.

0.195 Also, because the information contained in the
device (e.g., status, control, and configuration information)
can be viewed, modified and controlled via a serial com
munication link that is accessible to external devices, it is
possible that someone or some company, may write software
that uses the communication protocol to communicate with
a master device. It is also possible that someone, or some
company, could reverse-engineer the communication proto
col and build a master device (e.g., a UPS) that duplicates
the protocol and works with software tools. According to
one embodiment of the present invention, a “lock' mecha
nism is provided that blocks meaningful data from being
transmitted from the device unless an unlock sequence of
data is sent to the device. The unlock sequence is based on
an algorithm performed on data transmitted via the serial
link.

0196. According to one embodiment of the present inven
tion, a method is provided that ensures that authorized slave
devices communicate with a master and ensures that only
authorized master devices communicate with a slave.
Authentication is guaranteed, according to one embodiment,
by implementing an unlocking algorithm at the master along
with bidirectional authentication implemented by the slave
and master. The authentication algorithm may be tracked
with a version number so that changes can be made to the
algorithm should the existing algorithm be compromised or
otherwise be considered inadequate.
0.197 According to one embodiment, a master always
send data in response to a slave request. However, the data
is masked if the master is in a locked state. When data is
masked, the data is ignored by the communicating software
(e.g., a slave, or client accessing the master through a slave).
According to one embodiment, an authentication protocol
may include the following features:

US 2007/00281 04 A1

0198 Bi-directional locking key The master (e.g., a
UPS) only communicates with authorized slaves, and slaves
can detect an authorized master. When the master is locked,
the master only allows data to be written to a public memory
section (e.g., of EEPROM or to public rows of RAM). Other
data writes are not permitted. The slave is adapted to ignore
communications from devices that are not verified as
authentic master devices.

0199 Method for detecting data status. The slave may
be able to detect whether data is locked or unlocked to
determine whether the data being returned from the master
is valid.

0200. A locking feature according to one embodiment
utilizes the fact that there are two types of data that are
transmitted, public and private. Data that is public is always
available, and data that is private is only available after an
unlocking sequence is sent to the master. In one example, the
master, according to one embodiment, generates a “secret
key' automatically on power up, and whenever the master
exits factory mode. This secret key may be, for example,
16-bits long and calculated, for example, based on an 8-bit
Fletcher checksum algorithm performed on specific ele
ments of the master memory map.
0201 According to one embodiment of the present inven
tion, a Fletcher checksum may be used to verify the integrity
of the transmitted data. For instance, an 8-bit Fletcher
checksum may be used. One example of the Fletcher check
sum algorithm is defined in the IETF document RFC 1146
for use with the TCP protocol.
0202 The 8-bit Fletcher checksum is calculated over a
sequence of data octets (call them D1 through DNI) by
maintaining 2 unsigned 1's-complement 8-bit accumulators
A and B whose contents are initially Zero, and performing
the following loop where i ranges from 1 to N:

0205 At the end of the loop. A contains the 8-bit 1's
complement Sum of all octets in the datagram, and that B
contains (N)D1+(N-1)D2+...+DN). At the end of the
loop, the A is placed in the first byte of the checksum field
and B is placed in the second byte. Note that, unlike the OSI
version of the Fletcher checksum, the above version of the
Fletcher checksum does not adjust the check bytes so that
the receiver checksum is 0. It should be appreciated that
there are a number of much faster algorithms for calculating
the two octets of the 8-bit Fletcher checksum, and any
method for calculating a Fletcher checksum may be used.
0206 Naturally, any computation which computes the
same number as would be calculated by the loop above may
be used to calculate the checksum. One advantage of the
Fletcher algorithms over the standard TCP checksum algo
rithm is the ability to detect the transposition of octets/words
of any size within a datagram. Although the Fletcher check
Sum may be used, it should be appreciated that other
methods for checking data may be used.
0207. A “shared secret may be combined with elements
of the public memory map, and may be used to initialize an
algorithm used to generate the 'secret key.” In one example,
the algorithm may process a set of particular bytes from the
master's memory map. These processed bytes may be ref

Feb. 1, 2007

erenced to particular elements in the memory map or may
include the data located at a particular position of the
memory map. The 'shared secret” according to one embodi
ment of the invention includes the elements that are used to
generate the “secret key.”

0208 According to one specific embodiment of the
invention using a Fletcher checksum algorithm, the shared
secret may be used to initialize both bytes of the Fletcher
checksum prior to calculating the Fletcher checksum of the
first X bytes of the master memory, followed by Y bytes of
data starting with the serial number of the master, where X
and Y are shared secrets. According to one embodiment, all
data included in the calculation of the “secret key” is public
and can be retrieved without knowledge of the “secret key”.
To generate the secret key, knowledge of the initializer for
the Fletcher checksum and the number of bytes of data X
and Y are required. The initializer and the number of bytes
of data may, for example, be determined at compile time
during the design of a specific product. According to another
embodiment, the calculated “secret key” is not transmitted
with the exception of one cycle after the correct key has been
transmitted to the master device.

0209 To prevent unauthorized duplication of the master,
the slave may send the master a random number to which the
master applies a secret algorithm to generate a response. The
response is sent to the slave and allows the slave to deter
mine whether the master is authentic.

0210. In another example implementation, the master
may generate a random number which is added to the bytes
of the “secret key” to generate a simple checksum. This
simple checksum with the random number may be trans
mitted periodically from the master so that the slave can
verify that the device with which it is communicating is an
authorized master.

0211) To allow the slave to determine the status of the
master (locked or unlocked) information (e.g., one or more
bits) in a specific response indicates the master data status
and may be transmitted periodically to the software. The
slave may inspect this information to determine if the
responses to queries are valid.

0212. On microprocessor reboot, and on loss of commu
nications, the master may change its data status to a locked
state. When in locked State, locations having data that is
private may be transmitted with random, fixed, or garbage
data in lieu of transmitting the private data. The transmitted
data may be ignored by the communicating slave. The
master becomes unlocked, in one specific example, when a
specific 16-bit sequence is written to the master registers.
When the appropriate key is sent, the master acknowledges
the data and then proceeds to transmit all private data as
valid.

0213 Whether the master data is locked or unlocked, the
master may transmit a random number followed by a simple
checksum of the random number, the MSB of the 16-bit
secret, and the LSB of the 16-bit secret. A slave device can
interrogate these two bytes to determine if the master is an
“authorized master. The slave may lock the data in the
master at any time by sending an incorrect secret key to the
master. This receipt causes the master to “lock” the data.

US 2007/00281 04 A1

0214) Authentication also permits access to private data
(e.g., parameters) within the memory map of the master, so
additional usages need not be defined for special access to
the master.

0215) PUBLIC DATA Master memory elements that
are publicly available.

0216) PRIVATE DATA Master memory elements that
are “masked when the memory is in a locked state.

0217 LOCKED Master memory status prior to
authentication. Private data is unavailable when in a
locked State.

0218) UNLOCKED Master memory status after
authentication. Private data is available when in an
unlocked State.

0219. As discussed, FIG. 16 shows an example represen
tation of a master memory 1600 identifying the data located
in different regions. In the example described above with
reference with respect to FIG. 16, described data that is static
is public data and therefore is available to clients that are not
authenticated. Described data that is dynamic is private data
that is not available to clients that are not authenticated.

0220 According to another aspect of the present inven
tion, a challenge/response method may be used to perform
a bidirectional authentication between a master and a slave.
In particular, another example process for performing a
bidirectional authentication between a slave and a master
device may be performed as follows:

0221 Upon initialization after hardware reset (or after
stop command received from a slave, data is locked and
the master transmits only public data. This public data
includes a Master Password Challenge (MPC). In one
example, the MPC is a random number. To increase
security, the master should attempt to make this number
as random as practical for its application. Also, to
further increase security, the use of constant numbers
and incrementing the previous random numbers should
be avoided.

0222. When the slave receives row 0, the slave
assumes that the master is locked. The slave waits to
receive the last row from the master, ensuring that the
password and authentication status usages have been
received. The received authentication status usage is
then checked to verify locked status of the master.

0223) When locked, the master transmits the last row
repeatedly (assuming ACKs) until the slave writes a
Slave Validation Response, or SVR. In another imple
mentation of the master, the master may choose to
repeatedly transmit all public data.

0224. The slave writes the SVR in response to the
MPC (which is stored by the slave in its memory map).
As part of the same write, the slave writes a Slave
Password Challenge or SPC which also may be a
random number.

0225. Upon a write to the SVR/SPC, the master checks
the SVR for validity. If valid, the master responds to the
write with a Master Validation Response or MVR. The
Master then begins transmission of all the private data
including the authentication status usage, which shows
that the master is unlocked. After Successful unlocking,

Feb. 1, 2007

the master ensures that all rows have been transmitted
at least once before the master reports data valid in the
authentication usage. If the SVR is invalid, the master
ensures that the master is locked. Any write to the
SVR/SPC, whether valid or invalid, causes the master
to update the MPC to prevent easily defeating the
authentication.

0226. Upon transmission of the row in response to the
write to the SVR/SPC, the slave then checks the MVR
for validity. If valid, the slave continues normal opera
tion receiving the rows transmitted by the master up to
and including the last row which confirms that all the
data in the master memory is now unlocked and valid.
If the MVR is invalid, the slave stops communications
and takes an appropriate action. The appropriate action
may be application-specific (e.g., alert user through
GUI, Stop communication for a period of X minutes,
etc.).

0227 FIG. 19 shows an example authentication process
according to one embodiment of the present invention. At
block 1901, process 1900 begins. At block 1902, the master
transmits public data within the memory map. In one
embodiment, the master transmits public data up until the
last row of public data in the memory map. Upon receipt of
the transmitted last row of data from the master at block
1903, the slave determines whether the received data is valid
at block 1904. If so, slave determines a Slave Validation
Response (SVR) at block 1906.
0228. In one embodiment, the SVR is determined based
on the Master Password Challenge stored within the
memory map of the slave. However, it should be appreciated
that the SVR may be determined by any other portion(s) of
the memory map. At block 1907, the slave transmits the
SVR and a Slave Password Challenge (SPC) which may also
be a random number.

0229. At block 1908, the master determines whether the
slave validation response is correct. If so, the master gen
erates a Master Validation Response (MVR) at block 1909.
If not, the master sets the Master Validation Response to a
value of Zero. The master transmits the Slave Password
Challenge and the determined Master Validation Response
to the slave at block 1910. Also, the master may generate a
new Master Password Challenge (MPC) when the Slave
Validation Response is written or the master is initialized or
reset.

0230. At block 1911, the slave determines whether the
Master Validation Response is correct. If so, the slave
acknowledges all rows until the Authentication Status
reports that all of the received data is valid at block 1913. If,
at block 1911, it is determined that the Master Validation
Response is not correct, it is determined at block 1912
whether a number of failed responses (e.g., a predetermined
number such as 3) have been received. If so, the master is
determined invalid, and communications with the master
have failed. The slave may then alert the user (e.g., a client
or proxy) and terminate communications at block 1914.
0231) If, at block 1912, it is determined that a predeter
mined number of failures has not occurred, the slave may
recalculate a new Slave Validation Response for transmis
sion to the master. If the SVR is valid, the master will begin
transmission of the private data. If not, the master remains
locked.

US 2007/00281 04 A1

0232. According to one embodiment, the master popu
lates the master password usage as follows:

0233. The MPC is populated with the random number
used to calculate the password.

0234. The MVR is only populated as a response to the
SPC being written with a valid value.

0235. When the MVR is not populated, the MVR is set
to OXOO.

0236 According to another embodiment, the master
populates the slave password usage as follows:

0237) The master echoes the write from the slave.
0238. Otherwise, the master populates this usage with
OXOOS.

When locked, all private data is either not transmitted or
reported as fixed values, (e.g., all 0x00s or all 0xFFs)
to obscure the real data. In one embodiment, the private
data is not in encoded form. The master, in one
example, rejects writes to any private data when in a
locked State.

0239). To improve the security of authentication, the SPC
should be different than the MPC. If not, the master should
treat the SVR as invalid. Also, because the SVR and SPC
comprise one usage, the master does not unlock on a write
that does not properly include both sub-elements of the
usage (same behavior as any invalid write).
Example Unlock Algorithm
The following is an example algorithm for calculating the
SVR or MVR.

Note that, in the example below:
ULinkMem) is populated with the image of master
memory.

PROG MODEL NUM is the offset for the beginning of the
model number in memory.
PROG SERIAL NUM is the offset for the pointer to the
beginning of the serial number of the master.
0240 PROG MASTER PASSWORD LOC is the offset
in master memory for the beginning of the master password.

UINT8 checksum2:
// Initialize the checksum calculations with the appropriate (SECRET
VALUES)

checksum O= uLinkMem4: // This is the MSB (byte 3 of
uLink-memory)
checksum1 = uLinkMem 5; f, This is the LSB (byte 4 of
uLink-memory)
// Do first X bytes of static data checksum, starting at byte Y
for(i=y:i-X;i++){
checksum0 = (checksumO + uLinkMemi)%255;
checksum1 = (checksum1 + checksum OD%255;

Offset=getROMword (&uLinkMem SHARED SECRETI);
if Include the Shared Secret data
for(i=0;i&(uLinkStaticSHARED SECRET LENGTHI);i++){
checksum0 = (checksumO + uLinkMem II Offset)%255;
checksum1 = (checksum1 + checksum OD%255;

if Include the random 2 bytes of random data in the password usage
fi generated by the Master

20
Feb. 1, 2007

-continued

Offset =
getROMword (&uLinkMem PROG MASTER PASSWORD LOC);
// Include the two bytes of the Master password challenge in the

password calculation
for(i=0;iz2:i----) { // There are two more bytes to include
checksum0 = (checksumO + uLinkMemi--Offset)%255;
checksum1 = (checksum1 + checksum.0)%255;

In the example above, the 4" and 5" element of the memory
map may be used to initialize the checksum. Any location of
the memory map may be used to initialize the checksum.
According to one embodiment, the serial number of the
master may be used as the shared secret. In another example,
the manufacture date of the master may be used.
0241 According to one embodiment, the algorithm for
determining the MVR may be the same as the algorithm for
determining the SVR except that the SPC is used as the last
two bytes instead of the MPC.
0242 Factory password is used to allow modification of
usages that are available only for factory use. Factory
“mode' may be entered by modifying the secret password to
the master. Exemplary modifications to the password to
generate the factory password may include, for example, an
offset added to the password, a bit shift operation, or an
exclusive OR operation. For example, if the password is
0x3475 and an offset of 5 is used to generate the factory
password, then the factory password is 0x347A.
Additional Protocol Support
0243 According to one embodiment of the present inven
tion, the master may assume one of two communication
states—a communications active state and a communica
tions inactive state. The master may be capable of Support
ing multiple communication modes while in the communi
cations inactive state. However, according to one
embodiment, only one communication mode may be active
at a time. In an alternative embodiment, the physical layer of
the master Supports multiple simultaneous communications,
and therefore, more than one communication modes may be
Supported.

0244 FIG. 20 shows an example state diagram of a
master that implements multiple communication modes.
Additional communication modes Supported by the master
include, but are not limited to, a bootload mode, a terminal
mode, and a file transfer mode.
0245. In a communication state machine of the master,
the state machine waits for a start character (NAK) prior to
establishing communications. All other characters other than
this start character are ignored. These ignored characters can
be assigned, for example, as control characters that, when
received by the state machine, cause the master to invoke
one or more alternate protocols. FIG. 20 shows an exem
plary system that which implements a standard communi
cation protocol along with an XMODEM file transfer pro
tocol, a terminal mode protocol, and a serial protocol (e.g.,
the well-known Microsoft plug-n-play serial protocol).
0246. On a power up of the master, the master resides in
state 2002 waiting for a protocol start character (e.g., a NAK
character). Upon receiving the start character, the “normal'

US 2007/00281 04 A1

communication protocol will be invoked and the normal
operating state 2003 will be entered. Upon exit from the
normal communication mode (e.g., by a stop command, a
pause, timeout or other mechanism), the master returns to an
idle state waiting for one or more protocol start characters.
0247. In one implementation, if a protocol has setup
parameters (e.g., baud rate, bootload start of file, bootload
end of file, filename for file transfer or other operational
parameters), this information can be communicated to the
master either as part of the alternate protocol, or optionally
the information can be included as part of the memory map.
allowing the slave to setup the protocol parameters using the
normal operating protocol, and then invoking, by the slave,
the alternate protocol to execute the operation already setup.
Bootload Protocol

0248. As discussed above with reference to FIG. 4, a
master device may have the ability to support a bootload
operation. The method of invoking the bootload operation
may vary from application to application, but one possible
method includes invoking the bootload operation upon an
update of memory location of the master. FIG. 21 shows one
process 2101 for performing a bootloading operation
according to one embodiment of the present invention. At
block 2101, process 2100 begins. At block 2102, a slave
writes data to one or more registers of a master to begin the
bootload operations. In one specific example, the master
includes a series of registers that may be written to (e.g., by
a slave), and when the value of the registers is a specific
value, the master enters a bootload mode (e.g., at block
2103).
0249. When in bootload mode, the master may wait until
the slave sends a NAK requesting a row. As a response to the
request, a BOOTLOAD CHAR may be sent (e.g., character
0xF5) by the master to the slave. This character may signal
the slave that the master is now in bootload mode. As a
result, a bootload protocol may now be active.
0250) According to one embodiment, the bootload pro
tocol is an ASCII protocol that is used to send files to the
master for self-reprogramming. These files may be, for
example, ASCII hex, INTEL hex, binary, or any other
format. The following is an example of responses from the
master using INTEL hex files:
0 Request slave to send the entire hex file starting with
address 0 of the file.

1—Request slave to send the hex file starting at address
OX1000 of the file.

2-Request slave to send the hex file starting at address
0x2000 of the file.

n-Request slave to start sending the hex file at address
0x1000*n (0-nk=9).
A—Row has been acknowledged.
B Programming is completed. Bootload protocol has been
ended.

S—Checksum failure.

P Programming failure. Bootload protocol has been ended.
0251. In one example, the master requests that the slave
send one or more files (or portions thereof) at block 2104.

Feb. 1, 2007

The slave responds to a message with an appropriate INTEL
hex record associated with the requested file(s) at block
2105. If, at block 2110, it is determined that there is no
response from the master within a predefined period (e.g., 1
second), the slave may assume the transfer is invalid and
return to normal communication mode (e.g., at block 2111).
Alternatively, the master may send additional requests for
the file(s).
0252) At block 2106, it is determined whether the down
load of the requested file(s) or portions thereofare complete.
If so, the master may perform a check of the files prior to
loading them into memory. To perform Such a check, infor
mation may be included within each file to permit the file(s)
to be checked by the master (e.g., at block 2107).
0253) To this end, files to be bootloaded using the boot
load protocol may be pre-processed. For example, a pre
processor of a system that creates the bootload files may
place the records in order in the INTEL hex file, and place
checksums in the file at two locations. The first location may
be the 8-bit fletcher checksum of the first half of the file, and
the second may be the 8-bit fletcher checksum of the entire
file. The pre-processor must have knowledge of how the file
is divided. The master may be capable of verifying the
integrity of the file(s) (e.g., by using the checksums) prior to
loading the file(s) into memory.
0254. At block 2108, it is determined whether any of the
downloaded file(s) contain one or more errors. For example,
such a determination may be made using the error checking
method described above. If there are no errors, the file(s)
may be loaded into the memory of the master at block 2109.
If there are errors, an error may be reported to the slave (or
other system), and the master may resume normal operation
without having loaded the file(s). At block 2112, process
2100 ends.

0255. It should be appreciated that the invention is not
limited to each of embodiments listed above and described
herein, but rather, various embodiments of the invention
may be practiced alone or in combination with other
embodiments.

0256 Having thus described several aspects of at least
one embodiment of this invention, it is to be appreciated that
various alterations, modifications and improvements will
readily occur to those skilled in the art. Such alterations,
modifications, and improvements are intended to be part of
this disclosure, and are intended to be within the spirit and
Scope of the invention. Accordingly, the foregoing descrip
tion is by way of example only.

What is claimed is:
1. A method for authenticating a system, the method

comprising acts of

providing access to a public memory area including a first
portion; and

providing access to a private memory area based on a key
determined based on the first portion of the public
memory area.

2. The method according to claim 1, further comprising an
act of determining, based on the first portion of the public
memory area, a value of the key.

US 2007/00281 04 A1

3. The method according to claim 2, wherein the act of
determining further comprises an act of calculating a check
sum of the first portion of the public memory area.

4. The method according to claim 3, wherein the act of
calculating further comprises an act of initializing the check
sum with a value of the first portion of the public memory
aca.

5. The method according to claim 1, wherein the act of
providing access to the public memory area includes an act
of sending, by a master, contents of the public memory area
to a slave.

6. The method according to claim 5, further comprising an
act of storing, by the slave, the contents of the public
memory area in a memory of the slave.

7. The method according to claim 5, wherein the act of
sending the contents of the public memory area is performed
in response to receiving a request from the slave.

22
Feb. 1, 2007

8. The method according to claim 5, further comprising an
act of determining a value of the key using at least one
portion of the contents of the public memory area.

9. The method according to claim 8, further comprising an
act of initializing a starting value of the key to the at least
one portion.

10. The method according to claim 9, wherein the at least
one portion is indicative of a model number of the master.

11. The method according to claim 9, wherein the at least
one portion is indicative of a date of manufacture of the
master.

12. The method according to claim 7, further comprising
an act of translating, by the slave, an access request received
from an entity to the request sent to the master.

13. The method according to claim 12, further comprising
an act of determining, by the slave, whether the entity is
authorized to access the master.

k k k k k

