（54）发明名称
空调用的格栅单元及其制造方法

（57）摘要
本发明涉及一种空调用的格栅单元及其制造方法，该格栅单元具有从流经气流口的空气过滤杂质并与格栅单元成一体的过滤器主体。在根据本发明的空调用的格栅单元中，格栅单元限定气流口并包括有加工的过滤器形成并经嵌入及制片成型的过滤器主体，过滤器主体包括有通过折叠及弯曲过滤器形成的多个上部和下部的折叠部。而且，折叠部包括设置在其侧部以便沿着折叠部连续地支承折叠部的多个折叠部支撑件。根据本发明的制造空调用的格栅单元的方法包括：
在操作（a）中，通过折叠及弯曲过滤器形成折叠式过滤器主体；
在操作（b）中，将折叠式过滤器主体嵌入到用于形成格栅单元的注模中；
以及在操作（c）中，通过注射成型格栅单元，一体地形成过滤器主体、过滤器框架以及支撑过滤器主体的折叠部支撑件。因此，可减少部件数量和工序，并可放大产量，从而大幅降低制造成本。
1. 一种空调用的格栅单元，所述格栅单元限定多个气流口并包括过滤器主体，所述过滤器主体由加工的过滤板形成并经嵌入及注射成型。

2. 根据权利要求1所述的格栅单元，其中所述过滤器主体包括多个折叠部，所述折叠部具有通过折叠并弯曲所述过滤板形成的多个峰部和谷部。

3. 根据权利要求1所述的格栅单元，还包括过滤器框架，所述过滤器框架通过塑性树脂与所述格栅单元和过滤器主体一体形成。

4. 根据权利要求2所述的格栅单元，其中所述折叠部包括多个折叠部支撑件，所述折叠部支撑件设置在所述折叠部的侧部，沿着所述折叠部连续地支撑所述折叠部。

5. 根据权利要求4所述的格栅单元，还包括过滤器框架，所述过滤器框架通过塑性树脂与所述格栅单元一体形成，其中所述过滤器框架密封所述多个折叠部支撑件中的形成于所述过滤器主体外侧的折叠部支撑件。

6. 根据权利要求5所述的格栅单元，其中所述多个折叠部支撑件中的与所述过滤器框架接触的折叠部支撑件的宽度大于未与所述过滤器框架接触的折叠部支撑件的宽度。

7. 根据权利要求1所述的格栅单元，还包括形成于所述过滤器主体两个侧部的其中一侧部上的多个格栅，所述格栅限定所述气流口。

8. 根据权利要求7所述的格栅单元，其中，所述过滤器主体包括多个折叠部，所述折叠部具有通过折叠并弯曲所述过滤板形成的多个峰部和谷部，并且所述格栅分别形成在所述峰部上。

9. 根据权利要求7所述的格栅单元，其中，所述过滤器主体包括多个折叠部，所述折叠部具有通过折叠并弯曲所述过滤板形成的多个峰部和谷部，并且所述格栅与所述峰部相分离地形成。

10. 根据权利要求7所述的格栅单元，其中，所述过滤器主体包括多个折叠部，所述折叠部具有通过折叠并弯曲所述过滤板形成的多个峰部和谷部，所述格栅形成在所述折叠部的一部分上，而所述峰部设置在所述格栅的上方。

11. 根据权利要求7所述的格栅单元，其中，所述过滤器主体包括；

位于其侧部的折叠部，所述折叠部具有通过折叠并弯曲所述过滤板形成的多个峰部和谷部；以及

支撑所述折叠部的多个折叠部支撑件；
所述过滤器主体在与所述折叠部支撑件或所述格栅一起被嵌入注射时，紧密贴靠所述折叠部支撑件或所述格栅形成。

12. 根据权利要求7所述的格栅单元，其中，所述过滤器主体包括；

位于其侧部的折叠部，所述折叠部具有通过折叠并弯曲所述过滤板形成的多个峰部和谷部；以及

支撑所述折叠部的多个折叠部支撑件；
所述折叠部支撑件与所述格栅一体形成。

13. 根据权利要求11所述的格栅单元，还包括设置在所述折叠部支撑件与所述格栅之间的连接处的一条或多条通路，所述通路引导塑性树脂从注射成型机流到所述折叠部支撑件和所述格栅。

14. 根据权利要求11所述的格栅单元，其中所述折叠部支撑件和/或所述格栅具有倾
斜的截面形状。
15. 根据权利要求 3 所述的格栅单元，其中所述格栅单元与所述空调可选择性地分离。
16. 一种制造空调用的格栅单元的方法，所述方法包括：
　在操作 (a) 中，通过折叠并弯曲过滤板，形成折叠式过滤器主体；
　在操作 (b) 中，将所述折叠式过滤器主体嵌入到用于形成所述格栅单元的注模中；以
　及
　在操作 (c) 中，通过注射成型所述格栅单元，使所述过滤器主体、过滤器框架以及支撑
所述过滤器主体的折叠部支撑件一体地形成。
17. 根据权利要求 16 所述的方法，其中操作 (c) 包括沿着所述过滤器主体的折叠部连
续地形成多个所述折叠部支撑件。
18. 根据权利要求 16 所述的方法，其中，操作 (c) 包括在所述过滤器主体两个侧部的其
中一个侧部形成多个格栅，所述格栅限定气流口。
19. 根据权利要求 18 所述的方法，其中操作 (c) 还包括使所述折叠部支撑件与所述过
滤器主体相分离地形成。
20. 根据权利要求 18 所述的方法，其中操作 (c) 还包括使所述过滤器主体紧密贴靠所
述折叠部支撑件或所述格栅形成。
21. 根据权利要求 18 所述的方法，其中操作 (c) 还包括沿预定的方向逐渐地减小所述
折叠部支撑件和所述格栅的截面宽度。
22. 根据权利要求 18 至 21 中任一项所述的方法，其中操作 (c) 还包括在所述折叠部支
撑件与所述格栅之间的交点处设置一条或多条通路，所述通路引导从注射成型机注射的塑
性树脂的流动。
空调用的格栅单元及其制造方法

技术领域
[0001] 本发明涉及一种空调用的格栅单元及其制造方法，该格栅单元具有过滤器主体，该过滤器主体从流经气流口的空气中过滤杂质并与格栅单元成一体。

背景技术
[0002] 通常，格栅单元 10（在图 1 中示出）用于引导室内空气从下端向上进入室内单元（未示出），格栅单元 10 包括在该格栅单元 10 内沿上下方向开孔的多个气流口 12。
[0003] 而且，在格栅单元 10 上方设置过滤器主体 14，该过滤器主体 14 过滤向上流经气流口 12 的室内空气中所包含的杂质。过滤器主体 14 限定多个小孔，这些小孔选择性地仅允许空气和杂质中的空气从其中通过。
[0004] 该过滤器主体 14 由过滤器支撑件 16 支撑。具体地，过滤器主体 14 由过滤器支撑件 16 支撑，使得过滤器主体 14 在接触以高流速向上流经气流口 12 的空气时不会变形。
[0005] 过滤器支撑件 16 构造成可滑动地联接并被固定到格栅单元 10 的上表面。为此，在格栅单元 10 的左右两侧分别设置过滤器引导部 18，分别与过滤器支撑件 16 的左侧上表面和右侧上表面干涉，并将过滤器支撑件 16 固定到格栅单元 10。
[0006] 过滤器引导部 18 通过 6 个固定构件 19 而被固定到格栅单元 10 的上表面。
[0007] 然而，根据相关技术的上述构造的格栅单元 10 会带来以下限制。
[0008] 具体地，格栅单元 10 包括支撑过滤器主体 14 的过滤器支撑件 16、过滤器引导部 18 以及用于将过滤器支撑件 16 固定到格栅单元 10 的上表面的固定构件 19。
[0009] 因此，过滤器主体 14 需要许多工序，例如，对固定构件 19 进行固定的固定工序以及联接过滤器主体 14 与过滤器支撑件 16 的联接工序，由此限制了产量并增加了制造成本。
[0010] 另外，当需要清洁积聚在过滤器主体 14 上的大量杂质时，过滤器支撑件 16 必须与格栅单元 10 分离。由于过滤器支撑件 16 的尺寸相当大，所以从室内单元去除过滤器支撑件及将过滤器支撑件联接到室内单元时，会使用者的便利性受损。

发明内容
[0011] 技术问题
[0012] 本发明的目的是提供一种制造空调用的格栅单元的方法，该格栅单元具有从流经气流口的空气过滤杂质并与格栅单元成一体的过滤器主体，从而减少部件数量、增大产量以及降低制造成本。
[0013] 本发明的另一目的是提供一种空调用的格栅单元，该格栅单元通过允许过滤器主体能连同格栅单元一起与空调分离，使得过滤器主体的清洁和维护更加容易。
[0014] 技术方案
[0015] 在一个实施例中，空调用的格栅单元包括过滤器主体，该过滤器主体由加工的过滤板形成并经嵌入及注射成型，格栅单元限定气流口，并且过滤器主体包括具有通过折叠及弯曲过滤板形成的多个峰部和谷部的折叠部。
[0016] 在另一实施例中，制造空调用的格栅单元的方法包括：在操作 (a) 中，通过折叠及弯曲过滤板，形成折叠式过滤器主体；在操作 (b) 中，将折叠式过滤器主体嵌入到用于形成格栅单元的注模中；在操作 (c) 中，通过注射成型格栅单元，一体地形成过滤器主体，过滤器框架以及支撑过滤器主体的折叠部支撑件，并且操作 (c) 包括沿着过滤器主体的折叠部连续地形成多个折叠部支撑件。

[0017] 有益效果
[0018] 根据本发明的空调用的格栅单元的优点在于；用于从空气过滤杂质的过滤器主体通过嵌入到注模中而与格栅单元一体地形成。
[0019] 因此，不需要用于联接过滤器主体与格栅单元的单独的部件，因而减少了部件数量，由此增大了产量并大幅降低了制造成本。
[0020] 另外，根据本发明，由于过滤器主体与格栅单元成一体，因此，当格栅单元与空调分离时，过滤器主体也一起分离，由此可减小因过滤器主体下落引起损伤的危险等。
[0021] 进一步，由于积聚在过滤器主体上的杂质可与格栅单元一起被清除，所以可使得清洁与维护更易。

附图说明
[0022] 图 1 为示出根据相关技术的空调用的格栅单元的结构的俯视立体图。
[0023] 图 2 为示出根据本发明的空调用的格栅单元在打开时的仰视立体图。
[0024] 图 3 为根据本发明的空调用的格栅单元的俯视立体图。
[0025] 图 4 为根据本发明的空调用的格栅单元的仰视立体图。
[0026] 图 5 为根据本发明的过滤器主体的详细的立体剖视图，其中所述过滤器主体为空调用的格栅单元的部件。
[0027] 图 6 为沿图 4 中的线 I-I’ 剖开的立体剖视图。
[0028] 图 7 为沿图 4 中的线 II-II’ 剖开的立体剖视图。
[0029] 图 8 为沿图 4 中的线 III-III’ 剖开的立体剖视图。
[0030] 图 9 为沿图 4 中的线 IV-IV’ 剖开的立体剖视图。
[0031] 图 10 为沿图 4 中的线 V-V’ 剖开的立体剖视图。
[0032] 图 11 为示出了根据本发明的一个实施例的格栅的形成情况的剖视图，其中所述格栅为空调用的格栅单元的一部件。
[0033] 图 12 为示出了根据本发明的另一实施例的格栅的形成情况的剖视图，其中所述格栅为空调用的格栅单元的一部件。

具体实施方式
[0034] 在下文中，将参照图 2 描述根据本发明的实施例的安装在天花板的空调的构造。
[0035] 图 2 为示出根据本发明的空调用的格栅单元在打开时的仰视立体图。
[0036] 参照图 2，安装在天花板的空调 1 向上固定并安装到天花板 3 中，而该空调设置为首先将室内空气吸入到其中，与制冷剂进行热交换，随后将空气排放回室内空间中。
[0037] 因此，空调的下表面的外部包括格栅单元 100 和外部面板 10，格栅单元 100 用于将吸入的室内空气引导到空调中，外部面板 10 引导经过热交换的空气排放回室内空间中。
详细地说，格栅单元 100 设置在外部面板的中央部，形成空调的下部中央的外部 (exterior)，并且格栅单元 100 引导室内空气沿方向的运动穿过其中。

而且，外部面板被设置到格栅单元的外侧，并限定沿四个方向延伸的出口 12，引导热交换过的空气向下排放到室内空间中。

格栅单元可绕其后端旋转，如图 1 所示，并被联接成选择性地与空调分离。即，在格栅单元的顶部设置铰接件 14，所述铰接件可分离地联接到形成于外部面板内的相应构件。

因此，格栅单元绕铰接件旋转以使空调的内部打开，格栅单元可通过分离铰接件与相应的构件，而与空调分离。

而且，在格栅单元的下端设置锁定部 (latch) 16。锁定部被构造成在格栅沿顺时针方向旋转封闭空调的内部时，保持格栅单元处于关闭状态。

在外部面板的前部设置打开按钮 18，以便选择性地联接到锁定部，并选择性地脱离，以打开格栅单元。

下面将对格栅单元的构造进行详细描述。

外部面板在其上端设有壳体 20。壳体限定空调的上部外部，并限定了容纳有多个部件的空间。

在壳体的内部中央部中设置护罩 30，护罩用于引导向上流经格栅单元的室内空气进入空调中，并且护罩呈低高度的大形形状。

在护罩的外侧设置排水盘 40。排水盘构成用于收集从使室内空气与制冷剂之间交换热量的热交换器中落下的冷凝物，并具有向下凹的上表面。

排水盘中所收集的冷凝物通过排水管 50 排放到空调的外侧。排水管 50 穿过壳体前部并露到壳体的外侧。

在排水盘的下方设置等离子体过滤器。该等离子体过滤器通过经由等离子体燃烧介质来从通过格栅单元进入空调的室内空气中去除杂质。

即，等离子体过滤器去除未被设置在格栅单元上的过滤器主体去除的、在第二阶段进入空调内的杂质。

格栅单元具有嵌入其中的过滤器主体，所述过滤器主体去除室内空气中的杂质。

在过滤器主体被嵌入到注模中的情况下，通过注射成型，一体地形成格栅单元。

下文将参照图 3 至图 5 详细地描述格栅单元的构造。

参照这些附图，格栅单元呈大致的矩形板状，并具有嵌入并固定于其内的过滤器主体。

过滤器主体由过滤板 (filtering sheet) 形成，如图 5 所示，过滤板被折叠成具有褶皱部，这些褶皱部带有多个峰部和谷部。过滤板由可洗材料制成。
即，多个格栅 130 以竖直延伸的方式形成于格栅单元的上表面的中央部（图 3）。这些格栅形成在它们间沿侧向具有均一的间隙，并在格栅单元被注射成型时与格栅单元一体地形成。

因此，多个格栅之间的间隙限定气流口 132，并且这些气流口引导室内空气向下从其中穿过。

在过滤器主体的前部上分别形成多个格栅，以支撑过滤器主体。即，从格栅单元的两侧，在朝向形成空调下表面（图 3）的正面尖锐突出的前部上形成多个格栅。

因此，格栅防止尖锐的杂质从外侧进入，并还防止因粗心的使用者插入手指而造成的事故。

在格栅单元被注射成型时与格栅单元一体形成的多个形状物包括折叠部支撑件 140。这些折叠部支撑件沿着过滤器主体的折叠部连续地形成，以支撑这些折叠部。

具体地，这些折叠部支撑件沿着过滤器主体（如图 3 所示）在这些折叠部的方向（水平方向）上延伸形成，并总共包括相互等距的 4 个折叠部支撑件，其中后端有一个折叠部支撑件，前端有一个折叠部支撑件，中间有两个折叠部支撑件。

因此，过滤器主体可利用折叠部支撑件而得以支撑，以免沿向上 / 向下方向起伏。

在格栅单元的注射成型过程中形成的其余的多个形状物包括过滤器框架 150。

如图 4 所示，过滤器框架的形状大致呈矩形，并形成从格栅单元的上表面的内侧向上突出。过滤器主体设置在该过滤器框架内。

过滤器框架的外部形状和尺寸与过滤器主体相对应，并且过滤器主体的端部嵌入并联接到过滤器框架的内表面。

因此，过滤器主体的周边由过滤器框架支撑，过滤器主体的内部由格栅支撑。

以下将参照图 6 和图 7 描述折叠部支撑件的连接结构。

图 6 为沿图 4 中的线 I-I’ 剖开的立体剖视图；图 7 为沿图 4 中的线 II-II’ 剖开的立体剖视图。

参照附图，当过滤器主体被嵌入到注模中并注射成型时，折叠部支撑件与过滤器主体牢固地形成一体；并且，如图 6 和图 7 所示，折叠部支撑件形成成为沿着过滤器主体的这些折叠部围绕前部和后部。

更详细地，当在过滤器主体被嵌入到注模中时，塑性树脂从底部逐渐地向上流经过滤器主体并变硬，以形成折叠部支撑件。

因此，过滤器主体被设置到折叠部支撑件的内侧，由折叠部支撑件包围。

而且，这些折叠部支撑件与过滤器一体地形成。即，图 6 所示的折叠部支撑件的前端和后端与过滤器（图 4 中示出）的左侧和右侧接触，从而与过滤器一体地形成。

此外，图 7 所示的折叠部支撑件（这些折叠部支撑件支撑图 4 的过滤器主体的前端和后端）在后端连接到过滤器框架，并且该过滤器框架一体地形成，因此折叠部支撑件的后端利用过滤器框架而被密封。

多个折叠部支撑件中的形成于过滤器主体周边的折叠部支撑件比其余的折叠部支撑件更宽，而且也比其余的折叠部支撑件更厚。

因此，过滤器主体由多个折叠部支撑件支撑，以减小过滤器主体的起伏。
(undulation), 并且过滤器主体也在其周边由折叠部支撑件 140（图 7）牢固地支撑。

[0078] 折叠部支撑件与格栅一体地形成，即是折叠部支撑件（如图 8 所示）形成为在过滤器主体的下方围绕峰部和谷部，并且折叠部支撑件的下部与格栅一体地形成。

[0079] 更详细地说，格栅从格栅支撑件的下端一体地形成，沿竖直方向延伸。

[0080] 以下将参照图 9 至图 12 详细地描述折叠部支撑件和格栅的构造。

[0081] 图 9 和图 10 为沿图 4 中的线 IV-IV' 和 V-V' 剖开的立体剖视图；图 11 为示出了根据本发明的一个实施例的格栅的形成情况的剖视图，其中所述格栅为空调用的格栅单元的一部件；图 12 为示出了根据本发明的另一实施例的格栅的形成情况的剖视图，其中所述格栅为空调用的格栅单元的一部件。

[0082] 如图所示，折叠部支撑件倾斜并呈宽度向下递减的梯形形状（如图 9 所示）。

[0083] 这是为了便于在格栅单元的注射成型（其中过滤器主体被嵌入到格栅单元中）期间从注模内排出格栅单元。

[0084] 这些格栅也是倾斜的，并形成为具有宽度向下递减的梯形截面。格栅的梯形截面同样为了便于排出在注模内形成的格栅单元。

[0085] 另外，如上所述，折叠部支撑件的下端与折叠部支撑件一体地形成，过滤器主体下方的多个峰部被设置成高于格栅的下端。

[0086] 因此，由折叠部支撑件沿着折叠部的方向支撑过滤器主体，由格栅支撑设置在过滤器主体下方的多个峰部。

[0087] 而且，可在与折叠部支撑件相交的参数范围内，在折叠部上的多个不同的位置形成多个格栅。

[0088] 即，格栅可形成于过滤器主体的下端（如图 10 所示），并可在过滤器主体的侧部从前向后伸长。

[0089] 格栅也可各不相同地设置在低于过滤器主体的下峰部的位置内，从而形成格栅单元的外部。

[0090] 即，格栅可通过与过滤器主体紧密地联接而形成，如图 11 所示；或者，格栅可与过滤器主体彼此分离，如图 12 所示。

[0091] 在此，气流口被限定在多个格栅之间，被向上引导穿过气流口的室内空气流过滤器主体，以过滤掉杂质。

[0092] 另外，过滤器主体由折叠部支撑件和/或格栅支撑，因而防止过滤器主体在与向上流过气流口的空气接触时起伏。

[0093] 以下将参照图 3 至图 12 描述如上构造的空调用的格栅单元的制造方法。

[0094] 首先，在操作 (a) 中形成过滤器主体。在操作 (a) 中，过滤器板被折叠为 Z 字形，以形成包括峰部和谷部的折叠部。折叠后的过滤器主体具有如图 5 所示的截面形状。

[0095] 在操作 (b) 中，在操作 (a) 中形成的过滤器主体被嵌入到注模中，注射成型格栅单元。

[0096] 在操作 (b) 中，过滤器主体被安放在注模中，熔化的塑性树脂被注射到在折叠部支撑件与格栅相交的多个点（位置）中的一些点上方的注模中，用于引导塑性树脂的填充形成格栅单元的多个浇口（未示出）被设置在若干位置处。

[0097] 当完成操作 (b) 时，并当在密封注模之后从注射成型机注射塑性树脂时，塑性树
脂通过多个浇口（gate）填充模具的内部。
[0098] 在此，当塑性树脂一体地形成过滤器框架，折叠部支撑件以及格栅时，过滤器主体同时与折叠部支撑件或格栅紧密地形成在一起，如图 6 至图 10 所示。
[0099] 更详细地，沿过滤器主体的折叠部连续地形成多个折叠部支撑件，并在这些折叠部支撑件的外侧形成过滤器框架。
[0100] 另外，在折叠部支撑件的端部，格栅垂直于折叠部支撑件相互分隔地形成，以限定气流口。
[0101] 在操作 (c) 中，如图 9 和图 10 所示，折叠部支撑件和格栅形成具有向下逐渐变窄的截面宽度。
[0102] 因此，当在过滤器主体被嵌入到注模中的情况下完成过滤器框架、格栅以及折叠部支撑件的一体成形时，利用折叠部支撑件和格栅的倾斜截面能便于从注模排出格栅单元。
[0103] 而且，在折叠部支撑件与格栅之间的多个交点处形成多个通路（gateway）134，以引导从注射成型机注射的塑性树脂的流动。
[0104] 在折叠部支撑件与格栅之间的交点处形成定位浇口的通路的原因是：增加塑性树脂在注模内的流动并降低缺陷率。
[0105] 在操作 (c) 中，格栅可根据需要形成为如图 11 和图 12 所示的构造。
[0106] 即，图 11 显示了格栅与过滤器主体相互接触紧密形成的实施例，而图 12 显示了格栅与过滤器主体彼此分离形成的另一实施例。
[0107] 格栅的形成可根据各种的实施例来进行，并且多个格栅相互间隔开以限定气流口。
[0108] 当通过以上操作完成格栅单元的制造时，格栅单元被联接成可选择性地与外部面板分离以便从室内空气过滤杂质。
[0109] 应当理解，本发明的精神和范围并不局限于本发明的上述示例性实施例，本领域的技术人员基于本发明可设想出各种其它的变型和实施例。