
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : H01L 27/15, 51/20		A1	(11) International Publication Number: WO 00/60669
(21) International Application Number: PCT/GB00/01295		(43) International Publication Date: 12 October 2000 (12.10.00)	
(22) International Filing Date: 6 April 2000 (06.04.00)		(81) Designated States: JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 9907931.1 7 April 1999 (07.04.99) GB		(31) Published	
(71) Applicant (for all designated States except US): MICROEMISIVE DISPLAYS LIMITED [GB/GB]; Napier University School of Science, 10 Colinton Road, Edinburgh EH10 5DT (GB).		<i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(72) Inventors; and			
(75) Inventors/Applicants (for US only): WRIGHT, Jeffrey, Peter [GB/GB]; 142 Easter Road 1F1, Edinburgh EH7 5RJ (GB). UNDERWOOD, Ian [GB/GB]; 22 Lussielaw Road, Edinburgh EH9 3BU (GB).			
(74) Agent: HANSON, William, Bennett; JY & GW Johnson, Kingsbourne House, 229-231 High Holborn, London WC1V 7DP (GB).			

(54) Title: AN OPTOELECTRONIC DISPLAY

(57) Abstract

An optoelectronic display comprises a substrate (32) of semiconducting material and an array of organic light emitting diode (OLED) pixels arranged on the substrate, which comprises an active circuit for controlling the light emitted from each pixel. Each pixel comprises at least one layer of organic light emitting material (46), and an (at least semi-) transparent electrode (48) in contact with the organic layer on a side thereof remote from the substrate, the electrode comprising an electrically conducting polymer (50).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

- 1 -

AN OPTOELECTRONIC DISPLAY

BACKGROUND TO THE INVENTION

The present invention relates to an optoelectronic display.

5 Organic light emitting diodes (OLEDs) comprise certain organic materials which are known to emit light under electrical stimulation. The materials can either be small molecules or polymer materials (in polymer light emitting diodes, PLEDs). These materials require different processes
10 for practical manufacture into display devices. Small molecule materials are deposited onto a substrate by vapour deposition whilst polymers are cast onto a substrate from a solution by spin-coating, printing, doctor blading or a reel to reel process. In a typical polymer LED, a polymer layer
15 is deposited, by spin coating, onto indium tin oxide (ITO) coated glass. This is followed by heat treatment to drive off residual solvent and a reflective metal electrode is then evaporated onto the top surface of the polymer layer. The ITO, which is transparent, forms the other electrode and
20 the polymer emits light through the ITO coated glass when a voltage is applied between the electrodes. Current and voltage control of the light emission is known.

Both types of materials and processes have been used to fabricate arrays on a number of different transparent and
25 non-transparent surfaces. Methods known in the art for creating full colour displays include ink-jet printing of polymer solutions and vapour deposition of small molecule materials. Other known methods include the use of monochrome displays fitted with individual absorptive
30 filters or colour changing media filters. Whilst both materials appear compatible with photo-resist technology, in practice the processing has reduced the efficiency and lifetime of the devices to unacceptable levels. High resolution colour and monochrome displays have been
35 demonstrated for small molecules by depositing them into

- 2 -

microcavities. In EP-0,774,787, a full colour OLED array is fabricated on a CMOS substrate by this method. The drivers for the diode array are formed in the substrate. The diodes are addressed by a passive matrix of conductive strips. For 5 high resolution displays active matrix address schemes are preferable as they are more efficient.

Several different types of flat panel displays have been fabricated with active matrix address schemes. For instance, various types of liquid crystal display have been 10 fabricated on crystalline silicon (LCOS) and other silicon materials such as polysilicon on glass. The silicon material provides the active matrix drive circuitry as well as the substrate. Similarly, a vacuum fluorescent display has been fabricated on crystalline silicon.

15 The manufacture of arrays of OLEDs on non-transparent substrates such as CMOS or bi-CMOS is hindered by the need to fabricate an (at least semi-) transparent electrode on top of the organic layers to allow light emission and viewing. Deposition of indium tin oxide directly onto the 20 organic layers can cause unacceptable deterioration in the device performance. Another consideration is the need to carefully select the choice of metal electrode material directly in contact with the substrate so that it is fully compatible with microelectronic manufacturing equipment.

25 SUMMARY OF THE INVENTION

According to the present invention there is provided an optoelectronic display comprising a substrate of semiconducting material and an array of organic light emitting diode (OLED) pixels arranged on the substrate, 30 wherein the substrate comprises an active circuit for illuminating each pixel, and each pixel comprises at least one layer of organic light emitting material, and an (at least semi-) transparent electrode in contact with the organic layer on a side thereof remote from the substrate, 35 the electrode comprising an electrically conducting polymer.

- 3 -

Preferably, the substrate is of crystalline silicon and the surface of the substrate may be polished or smoothed to produce a flat surface prior to the deposition of electrode, or organic, materials of each OLED. Alternatively 5 a non-planarised silicon substrate can be coated with a layer of conducting polymer to provide a smooth, flat surface prior to deposition of further materials.

In one embodiment, each OLED pixel comprises a metal electrode in contact with the substrate. Depending on the 10 relative work functions of the metal and transparent electrodes, either may serve as the anode with the other constituting the cathode.

The metal electrode may consist of a plurality of metal layers, for example a higher work function metal such 15 as aluminium deposited on the substrate and a lower work function metal such as calcium deposited on the higher work function metal. In another example, a further layer of conducting polymer lies on top of a stable metal such as aluminium. Preferably, the electrode also acts as a mirror 20 behind each pixel and is either deposited on, or sunk into, the planarised surface of the substrate. However, there may alternatively be a light absorbing black layer adjacent to the substrate.

In still another embodiment, selective regions of a 25 bottom conducting polymer layer are made non-conducting by exposure to a suitable aqueous solution allowing formation of arrays of conducting pixel pads which serve as the bottom contacts of the pixel electrodes.

The organic light emitting material is preferably a 30 polymer but may alternatively be a monomer or a transition metal chelate. Apart from the light emitting material, organic layers in the pixel elements may include an electron transport material layer, a hole transport material layer, a protective cap material layer and a conducting polymer

- 4 -

material layer.

As well as a conducting polymer, the (at least semi-) transparent electrode may comprise further layers, e.g. of indium tin oxide (ITO) or other transparent or semi-transparent metal oxides or low or high work function metals, or conducting epoxy resin, deposited onto the organic layer furthest from the substrate. Alternatively, a glass or plastic sheet, coated with ITO, conducting polymer, or at least one of the layers that constitute the (at least semi-) transparent electrode, may be bonded to said furthest layer or another layer of this electrode, to complete the electrode and serve as a barrier to the ingress of oxygen and water. The viewing surface of the display may be completed by encapsulation with a further layer of polymer or glass.

The preferred conducting polymer is poly(ethlyendioxythiophene), sold by Bayer AG under the trade mark PEDOT. Other molecularly altered poly(thiophenes) are also conducting and could be used, as could the emaraldine salt form of polyaniline. To improve the adherence of PEDOT to certain smooth substrates a polymer blend with a non-conducting polymer, preferably poly(vinyl alcohol) (PVA), can be made. For example, a 9 wt% solution of PVA with PEDOT in a 10(PVA):6 volume ratio can be used. A wide range of molecular weights of PVA can be used without much difference in the resultant film or its conductivity.

High work function metals that could be used include tungsten, nickel, cobalt, platinum, palladium and their alloys, and possibly niobium, selenium, gold, chromium, tantalum, hafnium, technetium and their alloys.

The brightness of light emitted from each pixel is preferably controllable in an analogue manner by adjusting the voltage or current applied by the matrix circuitry or by

- 5 -

inputting a digital signal which is converted to an analogue signal in each pixel circuit. The substrate preferably also provides data drivers, data converters and scan drivers for processing information to address the array of pixels so as 5 to create images.

In one embodiment, each pixel is controlled by a switch comprising a voltage controlled element and a variable resistance element, both of which are conveniently formed by metal-oxide-semiconductor field effect transistors 10 (MOSFETs). In an alternative embodiment, also preferably comprising MOSFET switches, the apparent intensity of light output from a pixel is controlled by varying the mark/space ratio of the duty cycle for which the LED is switched on, preferably by means of an analogue voltage value. This 15 relies on the fact that for duty cycles less than about 40 ms, the eye perceives only the average brightness of the pixel during its entire duty cycle.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the present invention may be more 20 readily understood, reference will now be made, by way of example only, to the accompanying drawings, in which:-

Figure 1 is a schematic circuit diagram of an active matrix array of pixel circuits according to an embodiment of the invention;

25 Figure 2 shows a generic pixel circuit;

Figure 3 shows a specific pixel circuit implementing the generic pixel circuit of Figure 2;

Figure 4 is a schematic cross section of a single pixel of a planarised substrate according to an embodiment 30 of the invention (not showing the polymer LED);

Figure 5 is a schematic cross section of an

- 6 -

alternative substrate, showing the deposited polymer LED, and

Figure 6 is a schematic, fragmentary side view of an array of polymer LEDs.

5 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Figure 1 shows a rectangular array of pixel circuits 2 and circuitry for addressing them. The intensity of light to be emitted by a polymer or other organic LED is controlled by varying the current flowing through it. This 10 is done by applying analogue signals, provided by column lines 4 and set up by a column (data arrange) circuit 6, to the pixel circuits 2 on a row-by-row basis. The required row 8 is briefly selected by a row select circuit 10 and then deselected. During the selection time slot, the data 15 from the column lines 4 flows into the pixel of the selected row. When deselected, each pixel circuit 2 is isolated from its column line 4 and stores the data that was input. Another set of data is assembled on the column lines 4 and another row 8 is selected. Rows may be selected 20 sequentially or in any desired order.

Figure 2 shows a generic form of the pixel circuit 2 indicating its operating principle. The signal on row 8 operates a voltage-controlled switch 12 to close the switch during the brief selection period and connect column bus 25 line 4 with a node in the circuit whose signal controls an electronically programmable variable resistance 14. Thus, data flows from the column bus 4 into the pixel circuit 2, current from a global power source 16 flowing through a LED 18 at a value set by the resistance 14. The intensity of 30 light output by the LED is controlled in turn by that current. Different light intensities can be set very effectively in the different pixels in this manner.

When the switch 12 opens, the data is maintained with the pixel circuit until different data is presented when the

- 7 -

switch closes at the next selection of the row 8.

Figure 3 shows how the circuit of Figure 2 is implemented in a specific embodiment of the invention using MOS (metal-oxide-semiconductor) transistors. The voltage controlled switch is formed by a first transistor M1, the gate of which is connected to the row 8. The variable resistance is formed by the channel of a second transistor M2, which capacitatively stores charge at its gate to vary the channel resistance depending on the analogue value of the voltage generated by the stored charge. This controls the current in the LED 18 and its light output.

This is a simple but effective active pixel circuit. If it is found to suffer from pixel-to-pixel performance variations (for example due to variations in transistor threshold voltage) additional active elements can be used. Thus, for example, current mode line drivers 20 (instead of voltage mode line drivers) can be used to drive the column lines 4 shown in Figure 1. Adding the additional elements to the column lines as shown is preferable to adding them to the pixel circuits, since if the array is square and contains n^2 pixel circuits, only n additional sets of elements (e.g. 128) will be required rather than n^2 (e.g. 16,384).

Once the active matrix circuitry has been fabricated in the semiconductor substrate, for example using CMOS technology, the surface of the substrate is planarised. This planarisation either takes place as part of the manufacturing process of the integrated circuit or as a subsequent customising step.

As shown in Figure 4, the planarisation is effected by depositing a dielectric 30, for example a polymeric material, on the surface of the substrate 32. A conducting polymer that can be patterned to create areas of insulation can be used instead for this purpose. A metal

- 8 -

mirror/electrode 34, which may be of aluminium, for connecting the LED to the appropriate point in the circuit, is then deposited, the connection to the circuit being established by a metallic conducting via 36. Metallised 5 portions of the CMOS circuit are designated 38.

Figure 5 shows an alternative arrangement in which the electrode/mirror 34 is sunk into the dielectric surface, i.e. full planarisation is achieved.

Figure 5 also shows one way in which the display 10 construction can be completed. Appropriate layers 40 of the LED (e.g. polymer or other organic light emitting substance, conducting polymer and the like) are deposited and the display is sealed by coating with a glass plate 42 coated on its inner surface with a transparent conducting layer 43 15 which may in particular be of ITO, conducting polymer or both..

Figure 6 shows an alternative display construction including a particular example of the deposited layers. On the substrate 32 there are deposited, in turn, the 20 planarised aluminium electrode/mirror 34, optionally an electron or hole transport layer 44, a light emitting polymer 46, and a transparent electrode 48. The transparent electrode may for example consist of a thin layer of high work function metal 49, of a thickness to be adequately 25 transparent, a layer of conducting polymer 50 and a layer of ITO 51. An encapsulation layer/barrier 52 which seals all of the LEDs of the array, including their sides, completes this example of the display construction, three pixels of which are shown in Figure 6.

30 In manufacturing the display shown in Figure 6, the flat metal mirrors 34 are applied to the surface of the substrate 32 (preferably a CMOS or bi-CMOS backplane) so as to cover most of the area of each pixel with minimal gaps between the mirrors. Chemical Mechanical Polishing may be

- 9 -

used to enhance the global and local planarisation.

The layers of polymer and related materials can be deposited by an automated technique using equipment currently used for applying photo-resists used for the 5 patterning of integrated circuit layers. This gives precise control and a highly uniform thickness for each layer. Alternatively, the polymer layers could be ink-jet printed. Rare earth chelates can be vacuum deposited.

The encapsulation layer 52 is applied after making the 10 connections to the transparent electrode in each pixel. Encapsulation, and also possibly the assembly of the pixel, are carried out in clean, dry conditions under a partial vacuum, or a suitable inert or controlled atmosphere.

The display of the invention may be monochromatic. 15 However, monomeric and polymeric substances are now available which will emit either red, green, blue or white light and can therefore be used to form OLEDs emitting those colours. Thus, a full colour display can be formed by arranging three individual backplanes, each emitting a 20 different primary monochrome colour, on different sides of an optical system, from another side of which a combined colour image can be viewed. Alternatively, polymers or other organic substances emitting different colours can be fabricated so that adjacent diode pixels in groups of three 25 neighbouring pixels produce red, green and blue light. In a further alternative, field sequential colour filters can be fitted to a white light emitting display.

Optical systems can also be used for increasing the apparent size of the displayed image, since the physical 30 size of display is limited by the size of the silicon substrate. For example, the image can be projected on to a screen.

The display of the invention is robust, the organic

- 10 -

LEDs being well protected, but has simplified manufacture and encapsulation. The power generated as heat should be manageable but could be decreased by reducing the current or voltage used to drive each LED. If current routing problems 5 arise, multiple power supply bond pads can be used on the silicon chip.

- 11 -

CLAIMS

1. An optoelectronic display comprising a substrate of semiconducting material and an array of organic light emitting diode (OLED) pixels arranged on the substrate, 5 wherein the substrate comprises an active circuit for controlling the light emitted from each pixel, and each pixel comprises at least one layer of organic light emitting material, and an (at least semi-) transparent electrode in contact with the organic layer on a side thereof remote from 10 the substrate, the electrode comprising an electrically conducting polymer.
2. A display according to claim 1, wherein the substrate is of crystalline silicon.
3. A display according to claim 1 or 2, wherein the 15 substrate has a flat planarised surface.
4. A display according to claim 1 or 2, wherein the substrate has a non-planarised surface.
5. A display according to claim 1, 2 or 3, comprising a metal electrode in contact with the substrate which also 20 serves as a mirror behind the pixel.
6. A display according to claim 1, 2 or 3, comprising a light absorbing black layer adjacent to the substrate.
7. A display according to any preceding claim, wherein 25 the (at least semi-) transparent electrode includes a layer of indium tin oxide (ITO).
8. A display according to any preceding claim, wherein the (at least semi-) transparent electrode includes a layer of low work function metal.
- 30 9. A display according to any one of claims 1 to 7,

- 12 -

wherein the (at least semi-) transparent electrode includes a layer of high work function metal.

10. A display according to any preceding claim, wherein said conducting polymer is provided as a coating on a glass 5 or plastics sheet which is bonded to the organic layer furthest from the substrate.

11. A display according to claims 7 and 10, wherein said ITO layer is also provided as a coating on said sheet.

12. A display according to any preceding claim, wherein 10 the (at least semi-) transparent electrode includes a layer of conducting epoxy based resin.

13. A display according to any preceding claim, wherein each pixel includes a bottom electrode comprising a layer of conducting polymer.

15 14. A display according to any preceding claim, wherein each pixel includes a bottom electrode comprising a layer of metal oxide, such as ITO.

15. A display according to any preceding claim, wherein each pixel includes an organic electron transport layer in 20 contact with the layer of light emitting material.

16. A display according to any preceding claim, wherein each pixel includes an organic hole transport layer in contact with the layer of light emitting material.

17. A display according to any preceding claim, wherein 25 the conducting polymer is deposited from a polymer blend solution including at least one non-conducting polymer.

18. A display according to any preceding claim, comprising a transparent, oxygen- and water-impermeable, encapsulating outer layer.

- 13 -

19. A display according to any preceding claim, wherein the light emitting material is monomeric.

20. A display according to any preceding claim, wherein the light emitting material is polymeric.

5 21. A display according to any preceding claim, wherein each OLED comprises a transition metal chelate.

22. A display according to any preceding claim, wherein the apparent brightness of light emitted from each pixel is controllable in an analogue manner.

10 23. A display according to claim 22, wherein an analogue signal varies the mark/space ratio of the duty cycle for which the OLED of each pixel is switched on.

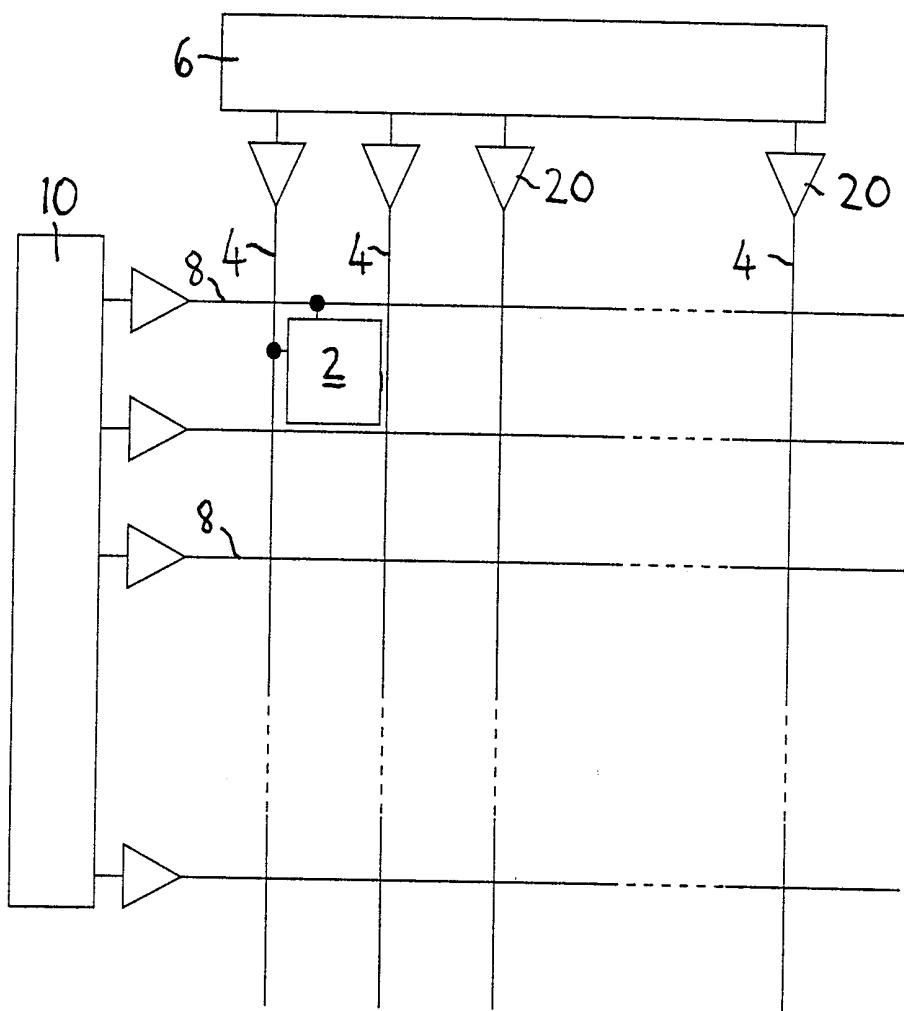
24. A display according to claim 23, wherein each pixel circuit comprises a variable resistance element for varying 15 the current through the OLED and hence its light intensity output.

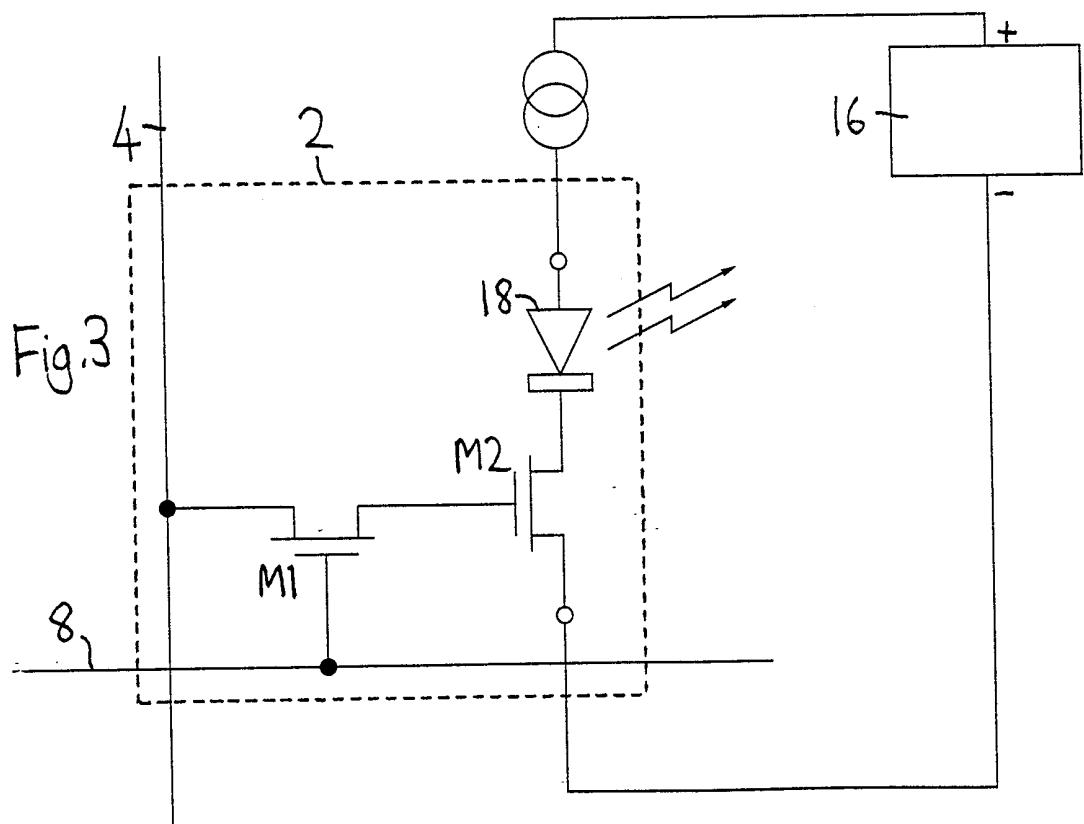
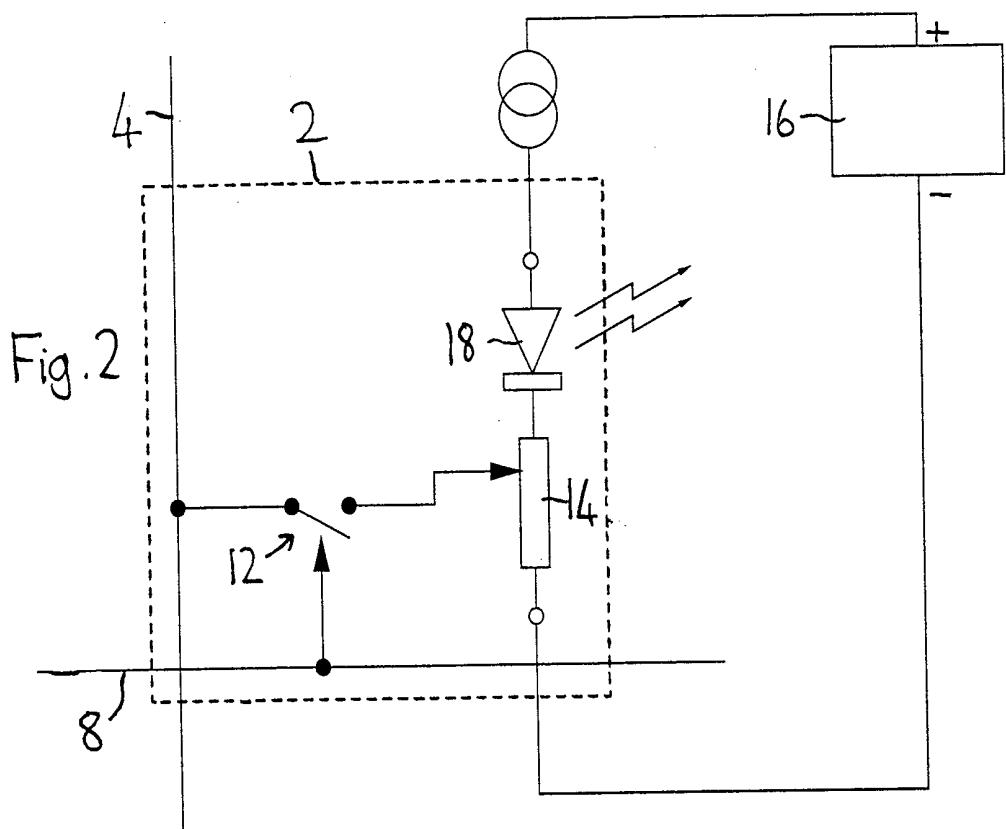
25. A display according to claim 24, wherein said variable resistance element comprises the channel of a metal-oxide-semiconductor field effect transistor (MOSFET).

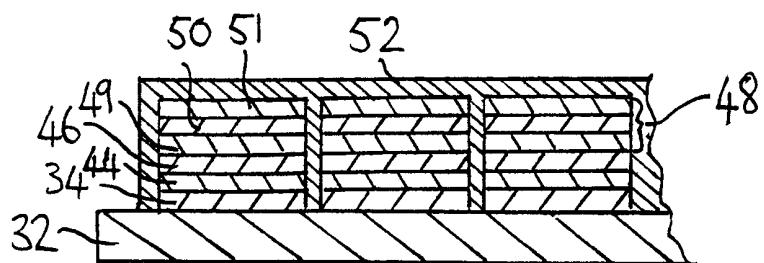
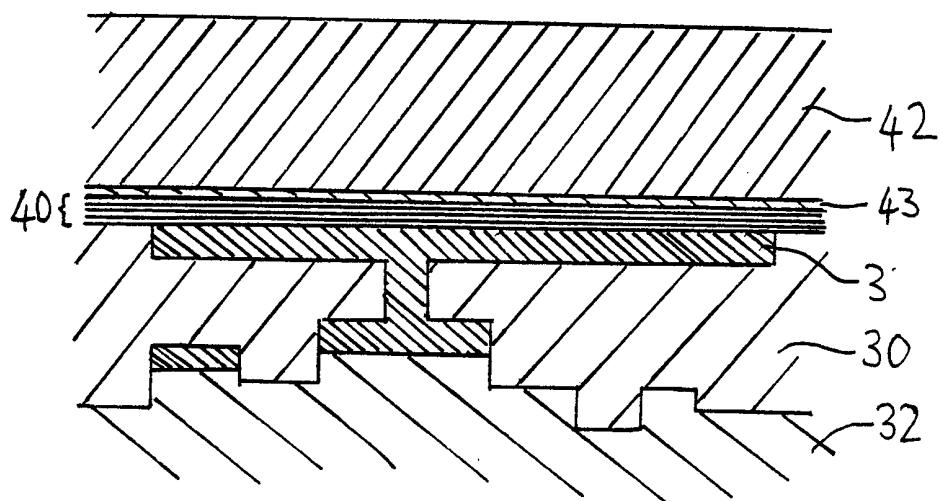
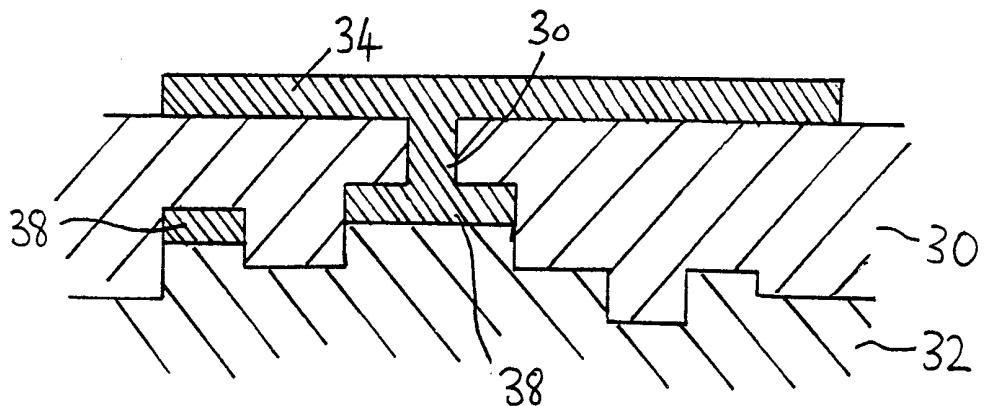
20 26. A display according to claim 24 or 25, wherein each pixel circuit includes a voltage-controlled switch for connecting a data signal to said variable resistance element so as to adjust its resistance.

27. A display according to claim 26, wherein said switch 25 comprises a transistor.

28. A display according to any preceding claim, comprising repeated groups of red-, blue- and green-emitting pixels for forming a colour image.


- 14 -



29. A colour display unit comprising three optoelectronic displays, each according to any one of claims 1 to 27, and each displaying an image in a different primary monochromatic colour, and an optical system for combining the 5 three images into a colour image.




30. A display according to any one of claims 1 to 27, arranged to emit white light, and fitted with field sequential colour filters for creating a colour image.

31. An optoelectronic display, substantially as described 10 herein with respect to Figures 1 to 3 and/or one of Figures 4, 5 and 6 of the accompanying drawings.

Fig. 1

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 00/01295

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 H01L27/15 H01L51/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

PAJ, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 21755 A (GRAHAM TERESITA ORDONEZ ; LIEN SHUI CHIH ALAN (US); IBM (US); ANGEL) 22 May 1998 (1998-05-22) page 31, line 13 -page 36, line 12 ----	1,2, 13-16, 18-21,31
Y	EP 0 774 787 A (MOTOROLA INC) 21 May 1997 (1997-05-21) cited in the application the whole document ----	1,2,4,5, 7,9, 14-16, 18-28, 30,31 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the International search report
31 July 2000	07/08/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl Fax: (+31-70) 340-3016	Authorized officer DE LAERE, A

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 00/01295

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<p>YAP D: "SEE-THROUGH, MULTI-PIXEL ORGANIC EMISSIVE DISPLAY" ELECTRONICS LETTERS, GB, IEE STEVENAGE, vol. 34, no. 9, 30 April 1998 (1998-04-30), pages 915-916, XP000799162 ISSN: 0013-5194 the whole document</p> <p>---</p>	1,2, 14-16, 21,28,31
P,Y	<p>US 5 998 805 A (SO FRANKY ET AL) 7 December 1999 (1999-12-07)</p> <p>the whole document</p> <p>---</p>	1,2,4,5, 7,9,15, 16, 18-28, 30,31
A	<p>EP 0 883 190 A (EASTMAN KODAK CO) 9 December 1998 (1998-12-09) column 10, line 51 -column 11, line 10</p> <p>----</p>	1,2,28

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 00/01295

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9821755	A 22-05-1998	EP 0953213	A 03-11-1999	JP 2000505249 T 25-04-2000
EP 0774787	A 21-05-1997	US 5736754	A 07-04-1998	
US 5998805	A 07-12-1999	NONE		
EP 0883190	A 09-12-1998	US 5937272	A 10-08-1999	JP 11054275 A 26-02-1999