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HIGH LEVEL SYNTAX FOR VIDEO CODING AND DECODING

Field of invention

The present invention relates to video coding and decoding, and in particular to the high level

syntax used in the bitstream.

Background
Recently, the Joint Video Experts Team (JVET), a collaborative team formed by MPEG and
ITU-T Study Group 16’s VCEG, commenced work on a new video coding standard referred to
as Versatile Video Coding (VVC). The goal of VVC is to provide significant improvements in
compression performance over the existing HEVC standard (i.e., typically twice as much as
before) and to be completed in 2020. The main target applications and services include — but
not limited to — 360-degree and high-dynamic-range (HDR) videos. In total, JVET evaluated
responses from 32 organizations using formal subjective tests conducted by independent test
labs. Some proposals demonstrated compression efficiency gains of typically 40% or more
when compared to using HEVC. Particular effectiveness was shown on ultra-high definition
(UHD) video test material. Thus, we may expect compression efficiency gains well-beyond the
targeted 50% for the final standard.

The JVET exploration model (JEM) uses all the HEVC tools and has introduced a
number of new tools. These changes have necessitated a change to the structure of the bitstream,

and in particular to the high-level syntax which can have a impact on the overall bitrate of the

bitstream.

Summary

The present invention relates to an improvement to the high level syntax structure, which leads
to a reduction in complexity without any degradation in coding performance.

In a first aspect according to the present invention, there is provided a method of
decoding video data from a bitstream, the bitstream comprising video data corresponding to
one or more slices, wherein each slice may include one or more tiles, wherein the bitstream
comprises a picture header comprising syntax elements to be used when decoding one or more
slices, and a slice header comprising syntax elements to be used when decoding a slice,
comprises parsing the syntax elements, and in a case where a slice includes multiple tiles,

omitting the parsing of a syntax element indicating an address of a slice if a syntax element is
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parsed that indicates that a picture header is signalled in the slice header; and decoding said
bitstream using said syntax elements.

Accordingly, the slice address is not parsed when the picture header is in the slice
header which reduces the bitrate, especially for low delay and low bitrate applications. Further,
the parsing complexity may be reduced when the picture is signalled in the slice header

In an embodiment, the omitting is to be performed (only) when a raster-scan slice mode
is to be used for decoding the slice. This reduces the parsing complexity but still allows for
some bitrate reduction.

The omitting may further comprise omitting the parsing of a syntax element indicating
a number of tiles in the slice. Thus, a further reduction in bitrate may be achieved.

In a second aspect, there is provided a method of decoding video data from a bitstream,
the bitstream comprising video data corresponding to one or more slices, wherein each slice
may include one or more tiles, wherein the bitstream comprises a picture header comprising
syntax elements to be used when decoding one or more slices, and a slice header comprising
syntax elements to be used when decoding a slice, and the decoding comprises: parsing one or
more syntax elements, and in a case where a slice includes multiple tiles, omitting the parsing
of a syntax element indicating a number of tiles in the slice if a syntax element is parsed that
indicates that the picture header is signalled in the slice header; and decoding said bitstream
using said syntax elements. Thus, the bitrate may be reduced, which is advantageous especially
for low delay and low bitrate applications where the number of tiles does not need to be
transmitted.

The omitting may be performed (only) when a raster-scan slice mode is to be used for
decoding the slice. This reduces the parsing complexity but still allows for some bitrate
reduction.

The method may further comprise parsing syntax elements indicating a number of tiles
in the picture and determining a number of tiles in the slice based on the number of tiles in the
picture indicated by the parsed syntax elements. This is advantageous as it allows the number
of tiles in the slice to be easily predicted in the case where a picture header is signalled in the
slice header without requiring further signalling.

The omitting may further comprise omitting the parsing of a syntax element indicating

an address of a slice. Thus, the bitrate may be further reduced.



10

15

20

25

30

In a third aspect of the present invention, there is provided a method of decoding video
data from a bitstream, the bitstream comprising video data corresponding to one or more slices,
wherein each slice may include one or more tiles, wherein the bitstream comprises a picture
header comprising syntax elements to be used when decoding one or more slices, and a slice
header comprising syntax elements to be used when decoding a slice, and the decoding
comprises: parsing one or more syntax elements, and in a case where a slice includes multiple
tiles, omitting the parsing of a syntax element indicating a slice address if a number of tiles in
the slice is equal to a number of tiles in the picture; and decoding said bitstream using said
syntax elements. This takes advantage of the insight that, if the number of tiles in the slice is
equal to the number of tiles in the picture it is sure that the current picture contains only one
slice. Accordingly, by omitting the slice address the bitrate can be improved and complexity in
parsing and/or encoding reduced.

The omitting may be performed (only) when a raster-scan slice mode is to be used for
decoding the slice. Thus, complexity may be reduced while still providing some bitrate
reduction.

The decoding may further comprise parsing, in a slice, a syntax element indicating the
number of tiles in the slice; and parsing, in a picture parameter set, syntax elements indicating
the number of tiles in the picture, wherein the omitting of the parsing of the syntax element
indicating the slice address is based on the parsed syntax elements.

The decoding may further comprise parsing the syntax element in the slice, indicating
the number of tiles in the slice, prior to one or more syntax elements for signalling a slice
address.

The decoding may further comprise parsing, in a slice, a syntax element indicating if a
picture header is signalled in a slice header and determining (inferring) that the number of tiles
in the slice is equal to the number of tiles in the picture if the parsed syntax element indicates
that the picture header is signalled in the slice header.

In a fourth aspect there is provided a method of decoding video data from a bitstream,
the bitstream comprising video data corresponding to one or more slices, wherein each slice
may include one or more tiles, wherein the bitstream comprises a picture header comprising
syntax elements to be used when decoding one or more slices, and a slice header comprising
syntax elements to be used when decoding a slice, and the decoding comprises: parsing one or
more syntax elements, and in a case where a syntax element indicates that a raster-scan
decoding mode is enabled for a slice, decoding at least one of a slice address and a number of

tiles in the slice from the one or more syntax elements, wherein the decoding of the at least one
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of the slice address and the number of tiles in the slice from the one or more syntax elements
in the case that the raster-scan decoding mode is enabled for the slice, does not depend on the
number of tiles in the picture; and decoding said bitstream using said syntax elements. Thus,
the parsing complexity of the slice header may be reduced.

In a fifth aspect according to the present invention, a method comprising the first and
second aspects is provided.

In a sixth aspect according to the present invention, a method comprising the first and
second and third aspects is provided.

According to a seventh aspect of the present invention, there is provided a method of
encoding video data into a bitstream, the bitstream comprising the video data corresponding to
one or more slices, wherein each slice may include one or more tiles, wherein the bitstream
comprises a picture header comprising syntax elements to be used when decoding one or more
slices, and a slice header comprising syntax elements to be used when encoding a slice, and the
encoding comprises: determining one or more syntax elements for encoding the video data,
and in a case where a slice includes multiple tiles, omitting the encoding of a syntax element
indicating an address of a slice if a syntax element indicates that a picture header is signalled
in the slice header; and encoding said video data using said syntax elements.

In one or more embodiments, the omitting is to be performed (only) when a raster-scan
slice mode is used for encoding the slice.

The omitting may further comprise omitting the encoding of a syntax element
indicating a number of tiles in the slice.

According to an eighth aspect of the present invention, there is provided a method of
encoding video data into a bitstream, the bitstream comprising video data corresponding to one
or more slices, wherein each slice may include one or more tiles, wherein the bitstream
comprises a picture header comprising syntax elements to be used when decoding one or more
slices, and a slice header comprising syntax elements to be used when decoding a slice, and the
encoding comprises: determining one or more syntax elements for encoding the video data,
and in a case where a slice includes multiple tiles, omitting the encoding of a syntax element
indicating a number of tiles in the slice if a syntax element is determined for encoding that
indicates that the picture header is signalled in the slice header; and encoding said video data
using said syntax elements.

In an embodiment, the omitting is to be performed (only) when a raster-scan slice mode

is to be used for encoding the slice.
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The encoding may further comprise encoding syntax elements indicating a number of
tiles in the picture, wherein a number of tiles in the slice is based on the number of tiles in the
picture indicated by the parsed syntax elements.

The omitting may further comprise omitting the encoding of a syntax element
indicating an address of a slice.

According to a ninth aspect of the present invention, there is provided a method of
encoding video data into a bitstream, the bitstream comprising video data corresponding to one
or more slices, wherein each slice may include one or more tiles, wherein the bitstream
comprises a picture header comprising syntax elements to be used when decoding one or more
slices, and a slice header comprising syntax elements to be used when decoding a slice, and the
encoding comprises: determining one or more syntax elements, and in a case where a slice
includes multiple tiles, omitting the encoding of a syntax element indicating a slice address if
a number of tiles in the slice is equal to a number of tiles in the picture; and encoding said video
data using said syntax elements.

In one or more embodiments, the omitting is to be performed (only) when a raster-scan slice
mode is to be used for encoding the slice.

The encoding may further comprise encoding, in a slice, a syntax element indicating
the number of tiles in the slice; and encoding, in a picture parameter set, syntax elements
indicating the number of tiles in the picture, wherein the omitting or not of the encoding of the
syntax element indicating the slice address is based on the value of the encoded syntax elements.

The encoding may further comprise encoding the syntax element in the slice, indicating
the number of tiles in the slice, prior to one or more syntax elements for signalling a slice
address.

The encoding may further comprise encoding, in a slice, a syntax element indicating if
a picture header is signalled in a slice header, and determining that the number of tiles in the
slice is equal to the number of tiles in the picture if the syntax element to be encoded indicates
that the picture header is signalled in the slice header.

According to a tenth aspect of the present invention, there is provided a method of
encoding video data into a bitstream, the bitstream comprising video data corresponding to one
or more slices, wherein each slice may include one or more tiles, wherein the bitstream
comprises a picture header comprising syntax elements to be used when decoding one or more
slices, and a slice header comprising syntax elements to be used when decoding a slice, and the
encoding comprises: determining one or more syntax elements for encoding the video data,

and in a case where a syntax element determined for the encoding indicates that a raster-scan
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decoding mode is enabled for a slice, encoding syntax elements indicating at least one of a slice
address and a number of tiles in the slice, wherein the encoding of the at least one of the slice
address and the number of tiles in the slice from the one or more syntax elements in the case
that the raster-scan decoding mode is enabled for the slice, does not depend on the number of
tiles in the picture; and decoding said bitstream using said syntax elements.

In a eleventh aspect according to the present invention, a method comprising the
seventh and eighth aspects is provided.

In a twelfth aspect according to the present invention, a method comprising the seventh
and eighth and ninth aspects is provided.

According to a thirteenth aspect of the present invention, there is provided a decoder
for decoding video data from a bitstream, the decoder being configured to perform the method
of any of the first to sixth aspects.

According to a fourteenth aspect of the present invention, there is provided an encoder
for encoding video data into a bitstream, the encoder being configured to perform the method
of any of the seventh to twelfth aspects.

According to a fifteenth aspect of the invention, there is provided a computer program
which upon execution causes the method of any of the first to twelfth aspects to be performed.
The program may be provided on its own or may be carried on, by or in a carrier medium. The
carrier medium may be non-transitory, for example a storage medium, in particular a computer-
readable storage medium. The carrier medium may also be transitory, for example a signal or
other transmission medium. The signal may be transmitted via any suitable network, including
the Internet. Further features of the invention are characterised by the independent and
dependent claims

Any feature in one aspect of the invention may be applied to other aspects of the
invention, in any appropriate combination. In particular, method aspects may be applied to
apparatus aspects, and vice versa.

Furthermore, features implemented in hardware may be implemented in software, and
vice versa. Any reference to software and hardware features herein should be construed
accordingly

Any apparatus feature as described herein may also be provided as a method feature,
and vice versa. As used herein, means plus function features may be expressed alternatively in
terms of their corresponding structure, such as a suitably programmed processor and associated

memory.
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It should also be appreciated that particular combinations of the various features
described and defined in any aspects of the invention can be implemented and/or supplied

and/or used independently.

Brief Description of the Drawings

Reference will now be made, by way of example, to the accompanying drawings, in
which:

Figure 1 is a diagram for use in explaining a coding structure used in HEVC and VVC,;

Figure 2 is a block diagram schematically illustrating a data communication system in
which one or more embodiments of the invention may be implemented,

Figure 3 is a block diagram illustrating components of a processing device in which
one or more embodiments of the invention may be implemented,;

Figure 4 is a flow chart illustrating steps of an encoding method according to
embodiments of the invention;

Figure 5 is a flow chart illustrating steps of a decoding method according to
embodiments of the invention;

Figure 6 illustrates the structure of the bitstream in the exemplary coding system VVC

Figure 7 illustrates another structure of the bitstream in the exemplary coding system

VVC,;
Figure 8 illustrates Luma Modelling Chroma Scaling (LMCS);
Figure 9 shows a sub tool of LMCS;
Figure 10 is the illustration of the raster-scan slice mode and the rectangular slice mode
of the current VVC draft standard;
Figure 11 is a diagram showing a system comprising an encoder or a decoder and a
communication network according to embodiments of the present invention;
Figure 12 is a schematic block diagram of a computing device for implementation of
one or more embodiments of the invention;

Figure 13 is a diagram illustrating a network camera system; and

Figure 14 is a diagram illustrating a smart phone.

Detailed description

Figure 1 relates to a coding structure used in the High Efficiency Video Coding (HEVC) video
standard. A video sequence 1 is made up of a succession of digital images i. Each such digital

image is represented by one or more matrices. The matrix coefficients represent pixels.
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An image 2 of the sequence may be divided into slices 3. A slice may in some instances
constitute an entire image. These slices are divided into non-overlapping Coding Tree Units
(CTUs). A Coding Tree Unit (CTU) is the basic processing unit of the High Efficiency Video
Coding (HEVC) video standard and conceptually corresponds in structure to macroblock units
that were used in several previous video standards. A CTU is also sometimes referred to as a
Largest Coding Unit (LCU). A CTU has luma and chroma component parts, each of which
component parts is called a Coding Tree Block (CTB). These different color components are
not shown in Figure 1.

A CTU is generally of size 64 pixels x 64 pixels. Each CTU may in turn be iteratively
divided into smaller variable-size Coding Units (CUs) 5 using a quadtree decomposition.

Coding units are the elementary coding elements and are constituted by two kinds of
sub-unit called a Prediction Unit (PU) and a Transform Unit (TU). The maximum size of a PU
or TU is equal to the CU size. A Prediction Unit corresponds to the partition of the CU for
prediction of pixels values. Various different partitions of a CU into PUs are possible as shown
by 606 including a partition into 4 square PUs and two different partitions into 2 rectangular
PUs. A Transform Unit is an elementary unit that is subjected to spatial transformation using
DCT. A CU can be partitioned into TUs based on a quadtree representation 607.

Each slice is embedded in one Network Abstraction Layer (NAL) unit. In addition, the
coding parameters of the video sequence are stored in dedicated NAL units called parameter
sets. In HEVC and H.264/AVC two kinds of parameter sets NAL units are employed: first, a
Sequence Parameter Set (SPS) NAL unit that gathers all parameters that are unchanged during
the whole video sequence. Typically, it handles the coding profile, the size of the video frames
and other parameters. Secondly, a Picture Parameter Set (PPS) NAL unit includes parameters
that may change from one image (or frame) to another of a sequence. HEVC also includes a
Video Parameter Set (VPS) NAL unit which contains parameters describing the overall
structure of the bitstream. The VPS is a new type of parameter set defined in HEVC, and
applies to all of the layers of a bitstream. A layer may contain multiple temporal sub-layers,
and all version 1 bitstreams are restricted to a single layer. HEVC has certain layered extensions
for scalability and multiview and these will enable multiple layers, with a backwards
compatible version 1 base layer.

In the current definition of the Versatile Video Coding (VVC), there is three high level
possibilities for the partitioning of a picture: subpictures, slices and tiles. Each having their
own characteristics and usefulness. The partitioning into subpictures is for the spatial extraction

and/or merging of regions of a video. The partitioning into slices is based on a similar concept
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as the previous standards and corresponds to packetization for video transmission even if it can
be used for other applications. The partitioning into Tiles is conceptually an encoder
parallelisation tool as it splits the picture into independent coding regions of the same size
(almost) of the picture. But this tool can be used also for other applications.

As these three high level available possible ways of partitioning of a picture can be used
together, there is several modes for their usage. As defined in the current draft specifications
of VVC, two modes of slices are defined. For the raster-scan slice mode, a slice contains a
sequence of complete tiles in a tile raster scan of the picture. This mode in the current VVC
specification is illustrated in Figure 10(a). As shown in this figure, the picture contains 18 by
12 luma CTUs is shown that is partitioned into 12 tiles and 3 raster-scan slices.

For the second one, the rectangular slice mode, a slice contains either a number of
complete tiles that collectively from a rectangular region of the picture. This mode in the
current VVC specification is illustrated in Figure 10(b). In this example, a picture with 18 by
12 luma CTUs is shown that is partitioned into 24 tiles and 9 rectangular slices.

Figure 2 illustrates a data communication system in which one or more embodiments
of the invention may be implemented. The data communication system comprises a
transmission device, in this case a server 201, which is operable to transmit data packets of a
data stream to a receiving device, in this case a client terminal 202, via a data communication
network 200. The data communication network 200 may be a Wide Area Network (WAN) or
a Local Area Network (LAN). Such a network may be for example a wireless network (Wifi /
802.11a or b or g), an Ethernet network, an Internet network or a mixed network composed of
several different networks. In a particular embodiment of the invention the data communication
system may be a digital television broadcast system in which the server 201 sends the same
data content to multiple clients.

The data stream 204 provided by the server 201 may be composed of multimedia data
representing video and audio data. Audio and video data streams may, in some embodiments
of the invention, be captured by the server 201 using a microphone and a camera respectively.
In some embodiments data streams may be stored on the server 201 or received by the server
201 from another data provider, or generated at the server 201. The server 201 is provided with
an encoder for encoding video and audio streams in particular to provide a compressed
bitstream for transmission that is a more compact representation of the data presented as input

to the encoder.
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In order to obtain a better ratio of the quality of transmitted data to quantity of
transmitted data, the compression of the video data may be for example in accordance with the
HEVC format or H.264/AVC format.

The client 202 receives the transmitted bitstream and decodes the reconstructed
bitstream to reproduce video images on a display device and the audio data by a loud speaker.

Although a streaming scenario is considered in the example of Figure 2, it will be
appreciated that in some embodiments of the invention the data communication between an
encoder and a decoder may be performed using for example a media storage device such as an
optical disc.

In one or more embodiments of the invention a video image is transmitted with data
representative of compensation offsets for application to reconstructed pixels of the image to
provide filtered pixels in a final image.

Figure 3 schematically illustrates a processing device 300 configured to implement at
least one embodiment of the present invention. The processing device 300 may be a device
such as a micro-computer, a workstation or a light portable device. The device 300 comprises
a communication bus 313 connected to:

-a central processing unit 311, such as a microprocessor, denoted CPU;

-a read only memory 306, denoted ROM, for storing computer programs for
implementing the invention;

-a random access memory 312, denoted RAM, for storing the executable code of the
method of embodiments of the invention as well as the registers adapted to record variables
and parameters necessary for implementing the method of encoding a sequence of digital
images and/or the method of decoding a bitstream according to embodiments of the invention;
and

-a communication interface 302 connected to a communication network 303 over which
digital data to be processed are transmitted or received

Optionally, the apparatus 300 may also include the following components:

-a data storage means 304 such as a hard disk, for storing computer programs for
implementing methods of one or more embodiments of the invention and data used or produced
during the implementation of one or more embodiments of the invention;

-a disk drive 305 for a disk 306, the disk drive being adapted to read data from the disk
306 or to write data onto said disk;

-a screen 309 for displaying data and/or serving as a graphical interface with the user,

by means of a keyboard 310 or any other pointing means.
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The apparatus 300 can be connected to various peripherals, such as for example a digital
camera 320 or a microphone 308, each being connected to an input/output card (not shown) so
as to supply multimedia data to the apparatus 300.

The communication bus provides communication and interoperability between the
various elements included in the apparatus 300 or connected to it. The representation of the bus
is not limiting and in particular the central processing unit is operable to communicate
instructions to any element of the apparatus 300 directly or by means of another element of the
apparatus 300.

The disk 306 can be replaced by any information medium such as for example a
compact disk (CD-ROM), rewritable or not, a ZIP disk or a memory card and, in general terms,
by an information storage means that can be read by a microcomputer or by a microprocessor,
integrated or not into the apparatus, possibly removable and adapted to store one or more
programs whose execution enables the method of encoding a sequence of digital images and/or
the method of decoding a bitstream according to the invention to be implemented.

The executable code may be stored either in read only memory 306, on the hard disk
304 or on a removable digital medium such as for example a disk 306 as described previously.
According to a variant, the executable code of the programs can be received by means of the
communication network 303, via the interface 302, in order to be stored in one of the storage
means of the apparatus 300 before being executed, such as the hard disk 304.

The central processing unit 311 is adapted to control and direct the execution of the
instructions or portions of software code of the program or programs according to the invention,
instructions that are stored in one of the aforementioned storage means. On powering up, the
program or programs that are stored in a non-volatile memory, for example on the hard disk
304 or in the read only memory 306, are transferred into the random access memory 312, which
then contains the executable code of the program or programs, as well as registers for storing
the variables and parameters necessary for implementing the invention.

In this embodiment, the apparatus is a programmable apparatus which uses software to
implement the invention. However, alternatively, the present invention may be implemented
in hardware (for example, in the form of an Application Specific Integrated Circuit or ASIC).

Figure 4 illustrates a block diagram of an encoder according to at least one embodiment
of the invention. The encoder is represented by connected modules, each module being adapted
to implement, for example in the form of programming instructions to be executed by the CPU

311 of device 300, at least one corresponding step of a method implementing at least one
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embodiment of encoding an image of a sequence of images according to one or more
embodiments of the invention.

An original sequence of digital images /0 to in 401 is received as an input by the encoder
400. Each digital image is represented by a set of samples, known as pixels.

A bitstream 410 is output by the encoder 400 after implementation of the encoding
process. The bitstream 410 comprises a plurality of encoding units or slices, each slice
comprising a slice header for transmitting encoding values of encoding parameters used to
encode the slice and a slice body, comprising encoded video data.

The input digital images /0 to in 401 are divided into blocks of pixels by module 402.
The blocks correspond to image portions and may be of variable sizes (e.g. 4x4, 8x8, 16x16,
32x32, 64x64, 128x128 pixels and several rectangular block sizes can be also considered). A
coding mode is selected for each input block. Two families of coding modes are provided:
coding modes based on spatial prediction coding (Intra prediction), and coding modes based
on temporal prediction (Inter coding, Merge, SKIP). The possible coding modes are tested.

Module 403 implements an Intra prediction process, in which the given block to be
encoded is predicted by a predictor computed from pixels of the neighbourhood of said block
to be encoded. An indication of the selected Intra predictor and the difference between the
given block and its predictor is encoded to provide a residual if the Intra coding is selected.

Temporal prediction is implemented by motion estimation module 404 and motion
compensation module 405. Firstly, a reference image from among a set of reference images
416 1s selected, and a portion of the reference image, also called reference area or image portion,
which is the closest area to the given block to be encoded, is selected by the motion estimation
module 404. Motion compensation module 405 then predicts the block to be encoded using
the selected area. The difference between the selected reference area and the given block, also
called a residual block, is computed by the motion compensation module 405. The selected
reference area is indicated by a motion vector.

Thus, in both cases (spatial and temporal prediction), a residual is computed by
subtracting the prediction from the original block.

In the INTRA prediction implemented by module 403, a prediction direction is encoded.
In the temporal prediction, at least one motion vector is encoded. In the Inter prediction
implemented by modules 404, 405, 416, 418, 417, at least one motion vector or data for
identifying such motion vector is encoded for the temporal prediction.

Information relative to the motion vector and the residual block is encoded if the Inter

prediction is selected. To further reduce the bitrate, assuming that motion is homogeneous, the



10

15

20

25

30

13

motion vector is encoded by difference with respect to a motion vector predictor. Motion vector
predictors of a set of motion information predictors is obtained from the motion vectors field
418 by a motion vector prediction and coding module 417.

The encoder 400 further comprises a selection module 406 for selection of the coding
mode by applying an encoding cost criterion, such as a rate-distortion criterion. In order to
further reduce redundancies a transform (such as DCT) is applied by transform module 407 to
the residual block, the transformed data obtained is then quantized by quantization module
408 and entropy encoded by entropy encoding module 409. Finally, the encoded residual
block of the current block being encoded is inserted into the bitstream 410.

The encoder 400 also performs decoding of the encoded image in order to produce a
reference image for the motion estimation of the subsequent images. This enables the encoder
and the decoder receiving the bitstream to have the same reference frames. The inverse
quantization module 411 performs inverse quantization of the quantized data, followed by an
inverse transform by reverse transform module 412. The reverse intra prediction module 413
uses the prediction information to determine which predictor to use for a given block and the
reverse motion compensation module 414 actually adds the residual obtained by module 412
to the reference area obtained from the set of reference images 416.

Post filtering is then applied by module 415 to filter the reconstructed frame of pixels.
In the embodiments of the invention an SAQ loop filter is used in which compensation offsets
are added to the pixel values of the reconstructed pixels of the reconstructed image

Figure 5 illustrates a block diagram of a decoder 60 which may be used to receive data
from an encoder according an embodiment of the invention. The decoder is represented by
connected modules, each module being adapted to implement, for example in the form of
programming instructions to be executed by the CPU 311 of device 300, a corresponding step
of a method implemented by the decoder 60.

The decoder 60 receives a bitstream 61 comprising encoding units, each one being
composed of a header containing information on encoding parameters and a body containing
the encoded video data. The structure of the bitstream in VVC is described in more detail below
with reference to Figure 6. As explained with respect to Figure 4, the encoded video data is
entropy encoded, and the motion vector predictors’ indexes are encoded, for a given block, on
a predetermined number of bits. The received encoded video data is entropy decoded by
module 62. The residual data are then dequantized by module 63 and then a reverse transform

is applied by module 64 to obtain pixel values.
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The mode data indicating the coding mode are also entropy decoded and based on the
mode, an INTRA type decoding or an INTER type decoding is performed on the encoded
blocks of image data.

In the case of INTRA mode, an INTRA predictor is determined by intra reverse
prediction module 65 based on the intra prediction mode specified in the bitstream.

If the mode is INTER, the motion prediction information is extracted from the bitstream
so as to find the reference area used by the encoder. The motion prediction information is
composed of the reference frame index and the motion vector residual. The motion vector
predictor is added to the motion vector residual in order to obtain the motion vector by motion
vector decoding module 70.

Motion vector decoding module 70 applies motion vector decoding for each current
block encoded by motion prediction. Once an index of the motion vector predictor, for the
current block has been obtained the actual value of the motion vector associated with the
current block can be decoded and used to apply reverse motion compensation by module 66.
The reference image portion indicated by the decoded motion vector is extracted from a
reference image 68 to apply the reverse motion compensation 66. The motion vector field data
71 is updated with the decoded motion vector in order to be used for the inverse prediction of
subsequent decoded motion vectors.

Finally, a decoded block is obtained. Post filtering is applied by post filtering module
67. A decoded video signal 69 is finally provided by the decoder 60.

Figure 6 illustrates the organisation of the bitstream in the exemplary coding system
VVC as describe in JVET-Q2001-vD.

A bitstream 61 according to the VVC coding system is composed of an ordered
sequence of syntax elements and coded data. The syntax elements and coded data are placed
into Network Abstraction Layer (NAL) units 601-608. There are different NAL unit types. The
network abstraction layer provides the ability to encapsulate the bitstream into different
protocols, like RTP/IP, standing for Real Time Protocol / Internet Protocol, ISO Base Media
File Format, etc. The network abstraction layer also provides a framework for packet loss
resilience.

NAL units are divided into Video Coding Layer (VCL) NAL units and non-VCL NAL
units. The VCL NAL units contain the actual encoded video data. The non-VCL NAL units
contain additional information. This additional information may be parameters needed for the

decoding of the encoded video data or supplemental data that may enhance usability of the
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decoded video data. NAL units 606 correspond to slices and constitute the VCL NAL units of
the bitstream.

Different NAL units 601-605 correspond to different parameter sets, these NAL units
are non-VCL NAL units. The Decoder Parameter Set (DPS) NAL unit 301contains parameters
that are constant for a given decoding process. The Video Parameter Set (VPS) NAL unit 602
contains parameters defined for the whole video, and thus the whole bitstream. The DPS NAL
unit may define parameters more static than the parameters in the VPS. In other words, the
parameters of DPS change less frequently than the parameter of the VPS.

The Sequence Parameter Set (SPS) NAL unit 603 contains parameters defined for a
video sequence. In particular, the SPS NAL unit may define the sub pictures layout and
associated parameters of the video sequences. The parameters associated to each subpicture
specifies the coding constraints applied to the subpicture. In particular, it comprises a flag
indicating that the temporal prediction between subpictures is restricted to the data coming
from the same subpicture. Another flag may enable or disable the loop filters across the
subpicture boundaries.

The Picture Parameter Set (PPS) NAL unit 604, PPS contains parameters defined for
a picture or a group of pictures. The Adaptation Parameter Set (APS) NAL unit 605, contains
parameters for loop filters typically the Adaptive Loop Filter (ALF) or the reshaper model (or
luma mapping with chroma scaling (LMCS) model) or the scaling matrices that are used at the
slice level.

The syntax of the PPS as proposed in the current version of VVC comprises syntax
elements that specifies the size of the picture in luma samples and also the partitioning of each
picture in tiles and slices.

The PPS contains syntax elements that make it possible to determine the slices location
in a frame. Since a subpicture forms a rectangular region in the frame, it is possible to determine
the set of slices, the parts of tiles or the tiles that belong to a subpicture from the Parameter Sets
NAL units. The PPS as with the APS have an ID mechanism to limit the amount of same PPS’s
transmitted.

The main difference between the PPS and Picture Header is it transmission, the PPS is
generally transmitted for a group of pictures compared to the PH which is systematically
transmitted for each Picture. Accordingly, the PPS compared to the PH contains parameters
which can be constant for several picture.

The bitstream may also contain Supplemental Enhancement Information (SEI) NAL

units (not represented in Figure 6). The periodicity of occurrence of these parameter sets in the
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bitstream is variable. A VPS that is defined for the whole bitstream may occur only once in the
bitstream. To the contrary, an APS that is defined for a slice may occur once for each slice in
each picture. Actually, different slices may rely on the same APS and thus there are generally
fewer APS than slices in each picture. In particular, the APS is defined in the picture header.
Yet, the ALF APS can be refined in the slice header.

The Access Unit Delimiter (AUD) NAL unit 607 separates two access units. An access
unit is a set of NAL units which may comprise one or more coded pictures with the same
decoding timestamp. This optional NAL unit contains only one syntax element in current VVC
specification: pic_type, this syntax element. indicates that the slice type values for all slices of
the coded pictures in the AU. If pic_type is set equal to 0, the AU contain only Intra slice. If
equal to 1, it contains P and I slices. If equal to 2 it contains B, P or Intra slice
This NAL unit contains only one syntax element the pic-type.

Table 1 Syntax AUD

access_unit_delimiter rbsp() { Descriptor

pic_type u(3)

tbsp_trailing bits( )

In JVET-Q2001-vD the pic type is defined as follow:
"pic type indicates that the slice fype values for all slices of the coded pictures in the
AU containing the AU delimiter NAL unit are members of the set listed in Table 2 for
the given value of pic type. The value of pic fype shall be equal to 0, 1 or 2 in
bitstreams conforming to this version of this Specification. Other values of pic type are
reserved for future use by ITU-T | ISO/IEC. Decoders conforming to this version of
this Specification shall ignore reserved values of pic type."

The rbsp_trailing_bits( ) is a function which adds bits in order to be aligned to the end of a byte.

So after, this function, the amount of bitstream parsed is an integer number of bytes.

Table 2 Interpretation of pic_type

pic_type | slice_type values that may be present in the AU

0 I
1 P, I
2 B,P, 1




10

15

20

25

17

The PH NAL unit 608 is the Picture Header NAL unit which groups parameters
common to a set of slices of one coded picture. The picture may refer to one or more APS to
indicate the AFL parameters, reshaper model and the scaling matrices used by the slices of the
Picture.

Each of the VCL NAL units 606 contains a slice. A slice may correspond to the whole
picture or sub picture, a single tile or a plurality of tiles or a fraction of a tile. For example the
slice of the Figure 3 contains several tiles 620. A slice is composed of a slice header 610 and
a raw byte sequence payload, RBSP 611 that contains the coded pixels data encoded as coded
blocks 640.

The syntax of the PPS as proposed in the current version of VVC comprises syntax
elements that specifies the size of the picture in luma samples and also the partitioning of each
picture in tiles and slices.

The PPS contains syntax elements that make it possible to determine the slices location
in a frame. Since a subpicture forms a rectangular region in the frame, it is possible to determine
the set of slices, the parts of tiles or the tiles that belong to a subpicture from the Parameter Sets
NAL units.

NAL Unit Slice
The NAL unit slice layer contains the slice header and the slice data as illustrated in Table 3.

Table 3 Slice layer syntax

slice layer rbsp() { Descriptor

slice_header( )

slice data()

rbsp_slice trailing_bits( )

APS
The Adaptation Parameter Set (APS) NAL unit 605, is defined in Table 4 showing the syntax
elements.

As depicted in table Table 4, there are 3 possible types of APS given by the
aps_params_type syntax element:

e ALF AP: for the ALF parameters

o LMCS APS for the LMCS parameters

e SCALING_APS for Scaling list relative parameters
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Table 4 Adaptation parameter set syntax

adaptation parameter set rbsp( ) { Descriptor
adaptation_parameter_set id u(s)
aps_params_type u(3)

if( aps_params_type == ALF APS)

alf data( )

else if( aps_params _type == LMCS APS)

Imcs_data( )

else if( aps_params type == SCALING APS)

scaling list data( )

aps_extension_flag u(1)

if( aps_extension_flag )

while( more rbsp data())

aps_extension_data_flag u(1)

rbsp trailing bits( )

}

These three types of APS parameters are discussed in turn below
ALF APS

The ALF parameters are described in Adaptive loop filter data syntax elements (Table
5). First, four flags are dedicated to specify whether or not the ALF filters are transmitted for
Luma and/or for Chroma and if the CC-ALF (Cross Component Adaptive Loop Filtering) is
enabled for Cb component and Cr component. If the Luma filter flag is enabled, another flag
is decoded to know if the clip values are signalled (alf luma clip flag). Then the number of
filters signalled is decoded using the alf luma num_filters signalled minusl syntax element.
If needed, the syntax element representing the ALF coefficients delta
"alf luma coeff delta idx" is decoded for each enabled filter. Then absolute value and the sign
for each coefficient of each filter are decoded.

If the alf luma clip flag is enabled, the clip index for each coefficient of each enabled
filter is decoded.

In the same way, the ALF chroma coefficients are decoded if needed.

If CC-ALF is enabled for Cr or Cb the number of filter are decoded
(alf cc cb filters signalled minuslor alf cc cr filters signalled minusl) and the related



19

coefficients are decoded (alf cc cb mapped coeff abs and alf cc cb coeff sign or
respectively alf cc_cr mapped coeff abs and alf cc _cr coeff sign)

Table 5 Adaptive loop filter data syntax

alf data() { Descriptor
alf_luma_filter_signal_flag u(l)
alf_chroma_filter_signal_flag u(l)
alf_cc_cb_filter_signal_flag w(l)
alf_cc_cr_filter_signal_flag u(l)
if( alf luma filter signal flag) {
alf_luma_clip_flag u(l)
alf_luma_num_filters_signalled_minus1 ue(v)

if( alf luma num_filters signalled minusl >0 )
for( filtldx = O; filtldx < NumAlfFilters; filtldx++ )
alf luma_coeff_delta_idx]| filtldx | uv)
for( sfldx = 0; sfldx <= alf luma num filters signalled minusl; sfldx++)
for(j=03j < 12;j++) {

alf luma_coeff_abs| sfldx ][] ] ue(v)
if( alf luma_coeff abs[ sfldx |[j])
alf luma_coeff sign[ sfldx ][] ] u(l)

3

if( alf luma_clip_flag )

for( sfldx = 0; sfldx <= alf luma num filters signalled minusl; sfldx++)

for(j=0;j <12;j++)

alf_luma_clip_idx[ sfldx ][ j | u2)
5
if( alf chroma filter signal flag) {
alf_chroma_clip_flag u(l)
alf_chroma_num_alt_filters_minus1 ue(v)

for( altldx = 0; altldx <= alf chroma num alt filters minusl; altldx++) {

for(j=0,j<6; j++){

alf chroma_coeff_abs[ altldx |[j ] ue(v)
if( alf chroma_coeff abs| altldx ][j]>0)
alf chroma_coeff_sign[ altldx ][ j ] u(l)

}

if( alf_chroma_clip flag)

for(j=0,j<6;j++)

alf_chroma_clip_idx[ altldx ][ j ] u2)
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if( alf cc _cb _filter signal flag) {

alf_cc_cb_filters_signalled_minus1 ue(v)

for( k=0; k <alf cc cb filters signalled minusl + 1; k++) {

for(j=0,j <7, j++){

alf cc_cb_mapped_coeff_abs[ k][] ] u(3)
if( alf cc_cb_mapped coeff abs[k][j])
alf cc_cb_coeff sign[ k][] ] u(l)
3
3
3
if( alf cc_cr filter signal flag) {
alf cc_cr_filters_signalled_minus1 ue(v)

for( k=0; k <alf cc cr filters signalled minusl + 1; k++) {

for(j=0,j<7;j++){

alf cc_cr_mapped_coeff_abs[ k[ ] u(3)
if( alf cc_cr mapped coeff abs[k][j])
alf_cc_cr_coeff_sign[ k][] u(l)
5
5
5

LMCS syntax elements for both Luma mapping and Chroma scaling
The Table 6 below gives all the LMCS syntax elements which are coded in the adaptation
parameter set (APS) syntax structure when the aps params type parameter is set to 1
(LMCS_APS). Up to four LMCS APS’s can be used in a coded video sequence, however, only
a single LMCS APS can be used for a given picture.

These parameters are used to build the forward and inverse mapping functions for Luma

and the scaling function for Chroma.

Table 6 Luma mapping with chroma scaling data syntax

Imcs_data () § Descriptor
Imces_min_bin_idx ue(v)
Imcs_delta_max_bin_idx ue(v)
Imcs_delta_cw_prec_minusl ue(v)

for(i=1Imcs min bin idx; 1 <= LmecsMaxBinldx; i++ ) {

Imcs_delta_abs_cw[ i | uv)

if(Imcs_delta abs cw[i])>0)

Imcs_delta_sign_cw_flag[i ] u(l)
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¥

Imcs_delta_abs_crs u(3)

if( Imcs_delta_abs crs)>0)

Imcs_delta_sign_crs_flag u(l)

Scaling list APS
The scaling list offers the possibility to update the quantization matrix used for quantification.
In VVC this scaling matrix is signalled in the APS as described in Scaling list data syntax

elements (

Table 7 Scaling list data syntax ). The first syntax element specifies if the scaling matrix is
used for the LENST (Low Frequency Non-Separable Transform) tool based on the flag
scaling matrix_for lIfnst disabled flag. The second one is specified if the scaling list are used
for Chroma components (scaling list chroma present flag). Then the syntax elements needed
to build the scaling matrix are decoded (scaling list copy mode flag,
scaling list pred mode flag, scaling list pred id delta, scaling list dc coef,
scaling list delta coef).
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scaling_list data() ¢{ Descriptor
scaling matrix_for_Ifnst_disabled_flag u(l)
scaling_list chroma_present_flag u(l)

for(id = 0; id < 28; id ++)

matrixSize = (id <2)?72:((id<8)?4:8)

if( scaling_list chroma present flag || (id %3 == 2) || (id == 27)){

scaling_list_copy_mode_flag| id ] u(l)

if( !scaling_list copy_mode flag[id])

scaling_list_pred_mode_flag] id | u(l)

if( ( scaling_list copy_mode flag[id ] || scaling list pred mode flag]id]) &&
id!=0&&id =2 && id != 8)

scaling_list pred_id_delta[ id ] ue(v)
if( !scaling_list copy_mode flag[id]) {
nextCoef = 0
if(id>13) ¢{
scaling list dc_coef[ id — 14 ] se(v)

nextCoef += scaling list dc_coef] id — 14 ]

b
for(i=0; i < matrixSize * matrixSize; i++ ) {
x = DiagScanOrder[ 3 ][3][1][ 0]
y = DiagScanOrder[ 3 [[3][1][ 1]
if(1(id > 25 && x>=4 && y >=4)){
scaling_list_delta_coef[ id ][ 1] se(v)
nextCoef += scaling list delta coef] id |[ 1 ]
b
ScalingList| id ][ 1 ] = nextCoef

Picture header

The picture header is transmitted at the beginning of each picture before the other Slice Data.
This is very large compared to the previous headers in the previous drafts of the standard. A
complete description of all these parameters can be found in JVET-Q2001-vD. Table 9 shows

these parameters in the current picture header decoding syntax.

The related syntax elements which can be decoded are related to:
e the usage of this picture, reference frame or not

e The type of picture
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e output frame
e The number of the Picture
e subpicture usage if needed
e reference picture lists if needed
e colour plane if needed
e partitioning update if overriding flag is enabled
e delta QP parameters if needed
e Motion information parameters if needed
e ALF parameters if needed
e SAO parameters if needed
e quantification parameters if needed
e LMCS parameters if needed
e Scaling list parameters if needed
e picture header extension if needed
e Etc...
Picture “type”
The first flag is the gdr or irap pic flag which indicates if the current picture is a
resynchronisation picture (IRAP or GDR). If this flag is true, the gdr pic flag is decoded to
know if the current picture is an IRAP or a GDR picture.
Then the ph inter slice allowed flag is decoded to identify that the Inter slice is
allowed.
When they are allowed, the flag ph intra slice allowed flag is decoded to know if the
Intra slice are allowed for the current picture.
Then the non_reference picture flag, the ph pic parameter set id indicating the PPS
ID and the picture order count ph pic order cnt Isb are decoded. The picture order count
gives the number of the current picture.
If the picture is a GDR or an IRAP picture, the flag no output of prior pics flag is
decoded.
And if the picture is a GDR the recovery poc cnt is decoded. Then ph poc msb present flag
and poc_msb val are decoded if needed.
ALF
After these parameters describing important information on the current picture, the set

of ALF APS id syntax elements are decoded if ALF is enabled at SPS level and if ALF is
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enabled at picture header level. ALF is enabled at SPS level thanks to the sps_alf enabled flag
flag. And ALF signalling is enabled at picture header level thanks to the alf info in ph flag
equal to 1 otherwise (alf info in ph flag equal to 0) ALF is signalled at slice level.

The alf info in ph flag is defined as the following:

"alf info in ph flag equal to 1 specifies that ALF information is present in the PH

syntax structure and not present in slice headers referring to the PPS that do not

contain a PH syntax structure. alf info in ph flag equal to 0 specifies that ALF
information is not present in the PH syntax structure and may be present in slice
headers referring to the PPS that do not contain a PH syntax structure."

First the ph alf enabled present flag is decoded to determine whether or not if the
ph _alf enabled flag should be decoded. If the ph alf enabled flagis enabled, ALF is enabled
for all slices of the current picture.

If ALF is enabled, the amount of ALF APS id for luma is decoded using the
pic num _alf aps ids luma syntax element. For each APS id, the APS id value for luma is
decoded “ph alf aps id luma”.

For chroma the syntax element, ph alf chroma idc is decoded to determine whether
or not ALF is enabled for Chroma, for Cr only, or for Cb only. If it is enabled, the value of the
APS ID for Chroma is decoded using the ph alf aps id chroma syntax element.

In the way the APS ID for CC-ALF method are decoded if needed for Cb and/or CR
components

LMCS

The set of LMCS APS ID syntax elements is then decoded if LMCS was enabled at SPS level.
First the ph Imcs enabled flag is decoded to determine whether or not LMCS is enabled for
the current picture. If LMCS is enabled, the ID value is decoded ph Imcs aps id. For Chorma
only the ph chroma residual scale flag is decoded to enable or disable the method for
Chroma.

Scaling List

The set of scaling list APS ID is then decoded if the scaling list is enabled at SPS level. The
ph _scaling list present flag is decoded to determine whether or not the scaling matrix is
enabled for the current picture. And the value of the APS ID, ph scaling list aps id, is then
decoded.

Subpicture
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The Subpicture parameters are enabled when they are enabled at SPS and if the subpicture id

signalling is disabled. It also contains some information on virtual boundaries. For the sub

picture parameters eight syntax elements are defined:

ph virtual boundaries present flag
ph num ver virtual boundaries
ph virtual boundaries pos x[i |
ph num hor virtual boundaries

ph virtual boundaries pos y[i ]

Output flag

These subpicture parameters are followed by the pic output flag if present.

Reference picture lists

If the reference picture lists are signalled in the picture header (thanks to rpl_info in ph flag

equal to 1), then the parameters for the reference picture lists are decoded ref pic lists() it

contains the following syntax elements:

rpl_sps_flag[]
rpl idx[]
poc Isb Itf][]

delta poc msb present flag[ |[ ]|
delta poc msb cycle Itf ][ ]

Partitioning

The set of partitioning parameters is decoded if needed and contains the following syntax

elements:

partition constraints override flag

ph log2 diff min qt min cb intra slice luma
ph max mitt hierarchy depth intra slice luma
ph log2 diff max bt min qt intra slice luma
ph log2 diff max tt min qt intra slice luma

ph log2 diff min qt min cb intra slice chroma
ph max mitt hierarchy depth intra slice chroma
ph log2 diff max bt min qt intra slice chroma
ph log2 diff max tt min qt intra slice chroma

ph log2 diff min qt min cb inter slice



10

27

o ph max mit hierarchy depth inter slice
o ph log2 diff max bt min qt inter slice

o ph log2 diff max tt min gt inter slice

Weighted prediction
The weighted prediction parameters pred weight table() are decoded if the weighted
prediction method is enabled at PPS level and if the weighted prediction parameters are
signalled in the picture header (wp info in ph flag equal to 1).

The pred weight table() contains the weighted prediction parameters for List LO and
for list L1 when bi-prediction weighted prediction is enabled. When the weighted prediction
parameters are transmitted in the picture header the number of weights for each list are

explicitly transmitted as depicted in the pred weight table() syntax table Table 8.
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Table 8 Weighted prediction parameters syntax

pred_weight table( ) { Descriptor
luma_log2_weight_denom ue(v)
if( ChromaArrayType = 0)
delta_chroma_log2 weight_denom se(v)
if wp_info_in ph flag)
num_l0_weights ue(v)
for(i=0; i < NumWeightsLO; i++ )
luma_weight_10_flag[ i ] uw(l)
if( ChromaArrayType != 0)
for(i=0; i < NumWeightsLO; i++ )
chroma_weight_10_flag[ i | u(l)
for(i=0; i < NumWeightsLO; i++) {
if( luma weight 10 flag[i1]) {
delta_luma_weight 10[ 1 ] se(v)
luma_offset 10[ 1 ] se(v)
3
if( chroma_weight 10 flag[i])
for(j=0:j<2;j++) ¢
delta_chroma_weight 10[i ][] ] se(v)
delta_chroma_offset_10[1][] | se(v)
3
3
if( pps_weighted bipred flag && wp_info _in ph flag)
num_11_weights ue(v)
for(i=0; i < NumWeightsL1; i++)
luma_weight _11_flag[ i ] u(l)
if( ChromaArrayType != 0)
for(1=10; 1 < NumWeightsL.1; i++)
chroma_weight 11 _flag[ i | u(l)
for(i=0; i < NumWeightsL1; i++) {
if( luma_weight 11 flag[i]) {
delta_ luma_weight 111 ] se(v)
luma_offset 11]1 | se(v)
3
if( chroma weight 11 flag[i])
for(j=0:7<2;j++) {
delta_chroma_weight 11[i ][] ] se(v)
delta_chroma_ offset 11[i ][] | se(v)
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Delta QP
When the picture is Intra the ph cu gp delta subdiv intra slice and the
ph cu chroma qp offset subdiv intra slice are decoded if needed. And if Inter slice is
allowed the ph cu qp delta subdiv inter slice and the
ph cu chroma qp offset subdiv inter slice are decoded if needed. Finally, the picture header
extension syntax elements are decoded if needed.

All parameters alf info in ph flag, rpl info in ph flag, qp delta info in ph flag
sao_info in ph flag, dbf info in ph flag, wp info in ph flag are signalleed in the PPS.

Table 9 Picture header structure

picture_header_structure( ) { Descriptor
gdr_or_irap_pic_flag u(l)
if( gdr or irap pic flag)
gdr_pic_flag u(l)
ph_inter_slice_allowed_flag u(l)
if( ph_inter_slice_allowed flag )
ph_intra_slice_allowed_flag u(l)
non_reference_picture_flag u(l)
ph_pic_parameter_set_id ue(v)
ph_pic_order_cnt_Isb uv)
if( gdr or irap pic flag)
no_output_of prior_pics_flag u(l)
if( gdr pic flag)
recovery_poc_cnt ue(v)
for(i=0; i < NumExtraPhBits; i++ )
ph_extra_bit[ 1] u(l)
if( sps_poc_msb flag) {
ph_poc_msb_present_flag w(l)
if( ph_poc_msb_present flag )
poc_msb_val u(v)
3
if( sps_alf enabled flag && alf info _in ph flag) {
ph_alf_enabled_flag u(l)
if( ph_alf enabled flag) {
ph_num_alf aps ids_luma u(3)
for(i=0;1<ph num_alf aps ids luma; i++)
ph_alf aps id luma[i] u(3)
if( ChromaArrayType != 0)
ph_alf chroma_idc u(2)
if( ph_alf chroma idc>0)
ph_alf aps_id_chroma u(3)

if( sps_ccalf cnabled flag) {
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ph_cc_alf cb_enabled_flag u(l)
if( ph_cc_alf cb _enabled flag)
ph_cc_alf cb_aps id u(3)
ph_cc_alf cr_enabled_flag u(l)
if( ph_cc_alf cr enabled flag)
ph_cc_alf cr_aps id u(3)
3
3
3
if( sps_Imcs_enabled flag ) {
ph_Ilmcs_enabled_flag u(l)
if( ph_lmcs_enabled flag) {
ph_lmcs_aps_id u2)
if( ChromaArrayType = 0)
ph_chroma_residual_scale flag u(l)
3
3
if( sps_scaling_list enabled flag) {
ph_scaling_list_present_flag u(l)
if( ph_scaling_list present flag )
ph_scaling_list_aps_id u(3)
3
if( sps_virtual boundaries enabled flag && !sps virtual boundaries present flag)
ph_virtual_boundaries_present flag u(l)
if( ph_virtual boundaries present flag ) {
ph_num_ver_virtual_boundaries u2)
for(i=0;1i<ph num_ver virtual boundaries; i++)
ph_virtual_boundaries pos_x[1i | u(13)
ph_num_hor_virtual boundaries u(2)
for(i=0;1i<ph num_hor virtual boundaries; i++ )
ph_virtual_boundaries pos_y[i] u(13)
3
3
if( output_flag present flag )
pic_output_flag u(l)
if( rpl_info in ph flag)
ref pic_ lists()
if( partition_constraints_override_enabled flag )
partition_constraints_override_flag u(l)
if( ph_intra_slice _allowed flag) {
if( partition_constraints_override flag) {
ph_log2_diff min_qt_min_cb_intra_slice_luma ue(v)
ph_max_mtt_hierarchy_depth_intra_slice luma ue(v)
if( ph_max mtt hiecrarchy depth intra slice luma != 0) ¢{
ph_log2_diff max_bt_min_qt_intra_slice luma ue(v)
ph_log2_diff max_tt_min_qt_intra_slice_luma ue(v)
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¥
if( qtbtt_dual tree intra flag) {
ph_log2 diff min_qt min_cb_intra_slice_chroma ue(v)
ph_max_mtt_hierarchy_depth_intra_ slice_chroma ue(v)
if( ph_max_mtt hierarchy depth_intra slice chroma != 0) {
ph_log2 diff max_bt min_qt_intra_slice_chroma ue(v)
ph_log2 diff max tt min_qt _intra_ slice_chroma ue(v)
¥
¥
¥
if( cu_qp_delta_enabled flag )
ph_cu_qp_delta_subdiv_intra_slice ue(v)
if( pps_cu _chroma qp offset list enabled flag )
ph_cu_chroma_qp_offset_subdiv_intra_slice ue(v)
3
if( ph_inter_slice allowed flag) {
if( partition_constraints_override flag) {
ph_log2 diff min_qt_min_cb_inter_slice ue(v)
ph_max_mtt_hierarchy_depth_inter_slice ue(v)
if( ph_max_mtt hierarchy depth inter slice != 0) {
ph_log2 diff max_bt min_qt_inter_slice ue(v)
ph_log2 diff max tt_ min_qt_inter_slice ue(v)
3
¥
if( cu_qp_delta_enabled flag )
ph_cu_qp_delta_subdiv_inter_slice ue(v)
if( pps_cu _chroma qp offset list enabled flag )
ph_cu_chroma_qp_offset_subdiv_inter_slice ue(v)
if( sps_temporal mvp enabled flag) {
ph_temporal_mvp_enabled_flag w(l)
if( ph_temporal mvp enabled flag && rpl info_in ph flag) {
ph_collocated_from_l0_flag u(l)
if( ( ph_collocated from 10 flag &&
num_ref entries| O ][ RplsIdx[O0]]>1) ||
( !'ph_collocated from 10 flag &&
num_ref entries[ 1 ][ Rplsldx[1]]>1))
ph_collocated_ref idx ue(v)
3
¥
mvd_I1_zero_flag u(l)
if( sps_fpel mmvd_ecnabled flag )
ph_fpel mmvd_enabled_flag u(l)
if( sps_bdof pic present flag )
ph_disable_bdof flag u(l)
if( sps_dmvr_pic_present flag )
ph_disable_dmvr_flag u(l)

if( sps_prof pic_present flag)




32

ph_disable_prof flag u(l)

if( ( pps_weighted pred flag || pps_weighted bipred flag) && wp_info_in ph flag)

pred_weight table( )

3
if( gp_delta_info_in_ph_flag)
ph_qp_delta se(v)
if( sps_joint_cbcr_enabled flag )
ph_joint_cbcr_sign_flag u(l)
if( sps_sao_cnabled flag && sao_info_in ph flag) {
ph_sao_luma_enabled_flag u(l)
if( ChromaArrayType != 0)
ph_sao_chroma_enabled_flag w(l)
3
if( sps_dep quant enabled flag )
ph_dep_quant_enabled_flag u(l)
if( sps_sign data_hiding enabled flag && !ph _dep quant enabled flag )
pic_sign_data_hiding_enabled_flag u(l)
if( deblocking_filter override enabled flag && dbf info _in ph flag) {
ph_deblocking filter_override flag u(l)
if( ph_deblocking_filter override flag) {
ph_deblocking_filter_disabled_flag u(l)
if( !ph_deblocking filter disabled flag) §
ph_beta_offset_div2 se(v)
ph_tc_offset_div2 se(v)
ph_cb_beta_offset_div2 se(v)
ph_cb_tc_offset_div2 se(v)
ph_cr_beta_offset_div2 se(v)
ph_cr_tc_offset_div2 se(v)
b
3
3
if( picture_header_extension_present flag ) §
ph_extension_length ue(v)
for(i=0; i <ph_extension length; i++)
ph_extension_data_byte[ i | u(8)
3
3

Slice header

The Slice header is transmitted at the beginning of each slice. The slice header contains about
65 syntax elements. This is very large compared to the previous slice header in earlier video
coding standards. A complete description of all the slice header parameters can be found in
JVET-Q2001-vD. Table 10 shows these parameters in a current slice header decoding syntax.
Table 10 Partial Slice header
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slice_header( ) { Descriptor
picture_header_in_slice_header_flag u(l)
if( picture_header_in_slice header flag)
picture_header structure( )
if( subpic_info_present flag )
slice_subpic_id uv)
if( (rect_slice flag && NumSlicesInSubpic| CurrSubpicldx | > 1) ||
(!rect_slice flag && NumTilesInPic > 1))
slice_address u(v)
for( i =0; i < NumExtraShBits; i++)
sh_extra_bit[ i ] u(l)
if( !rect slice flag && NumTilesInPic> 1)
num_tiles_in_slice_minus1 ue(v)
if( ph_inter_slice_allowed flag )
slice_type ue(v)
if( sps_alf enabled flag && !alf info_in ph flag) {
slice_alf _enabled_flag u(l)
if( slice_alf enabled flag) {
slice num_alf _aps_ids luma u(3)
for(1=0;1<slice num_alf aps ids luma; i++)
slice_alf aps_id_lumal i | u(3)
if( ChromaArrayType != 0)
slice_alf chroma_idc u2)
if( slice alf chroma idc)
slice_alf aps id_chroma u(3)
if( sps_ccalf cnabled flag) {
slice_cc_alf cb_enabled_flag u(l)
if( slice_cc_alf cb _enabled flag)
slice_cc_alf cb_aps_id u(3)
slice_cc_alf cr_enabled_flag u(l)
if( slice_cc_alf cr enabled flag)
slice_cc_alf cr_aps_id u(3)
3
3
3
if( separate_colour plane flag == 1)
colour_plane_id u2)
if( 'tpl_info_in ph flag && ( (nal unit type != IDR_ W RADL && nal unit_type !=
IDR N LP) || sps_ idr rpl present flag))
ref pic_ lists()
if( (rpl info in ph flag || ((nal unit type != IDR W RADL && nal unit type !=
IDR N LP) || sps idr rpl present flag)) &&
((slice tvpe != 1 && num_ref entries] O [ Rplsldx[0]]>1) ||
(slice type == B && num_ref entries| 1 [[Rplsldx[1]]>1)) {
num_ref_idx_active_override_flag u(l)

if( num_ref idx active override flag)

for(i=0;i<(slice type == B?72:1);i++)
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if( num_ref entries|[ i |[ Rplsldx[i]]>1)

num_ref idx_active_minus1[ i ] ue(v)
3
if( slice type !=1) ¢
if( cabac_init_present flag )
cabac_init_flag u(l)
if( ph_temporal mvp enabled flag && !rpl_info _in ph flag) {
if( slice type == B)
slice_collocated_from_10_flag u(l)
if( ( slice_collocated from 10 flag && NumRefldxActive[0]>1) ||
(!slice_collocated from 10 flag && NumRefldxActive[ 1]1>1))
slice_collocated_ref _idx ue(v)
3
if( 'wp_info_in_ph flag && ( (pps_weighted pred flag && slice type == P) ||
( pps_weighted bipred flag && slice type == B)))
pred_weight table( )
3
if( !qp_delta info_in ph flag)
slice_qp_delta se(v)
if( pps_slice_chroma qp_offsets_present flag ) {
slice_cb_qp_offset se(v)
slice_cr_qp_offset se(v)
if( sps_joint_cbcr_enabled flag )
slice_joint_cber_qp_offset se(v)
3
if( pps_cu_chroma qp offset _list enabled flag )
cu_chroma_qp_offset_enabled_flag u(l)
if( sps_sao_cnabled flag && !sao_info_in ph flag) {
slice_sao _luma_flag u(l)
if( ChromaArrayType != 0)
slice_sao_chroma_flag u(l)
3
if( deblocking_filter override cnabled flag && !dbf info in ph flag)
slice_deblocking_filter override flag u(l)
if( slice_deblocking filter override flag) {
slice_deblocking_filter disabled flag u(l)
if( !slice_deblocking filter disabled flag) {
slice_beta_offset_div2 se(v)
slice_tc_offset_div2 se(v)
slice_cb_beta_offset_div2 se(v)
slice_cb_tc_offset_div2 se(v)
slice_cr_beta_offset_div2 se(v)
slice_cr_tc_offset_div2 se(v)
3
3
slice_ts_residual_coding_disabled_flag u(l)




10

15

20

35

if( ph_Imcs_enabled flag )

slice_Ilmcs_enabled_flag u(l)
if( ph_scaling list present flag )
slice_scaling_list_present_flag u(l)
if( NumEntryPoints > 0 ) {
offset_len_minus1 ue(v)
for( 1= 0; i < NumEntryPoints; it++ )
entry_point_offset_minusl1[1i | uv)
b
if( slice_header_extension present flag ) {
slice_header_extension_length ue(v)
for(1=0;1<slice header extension length; i++)
slice_header_extension_data_byte[ 1] u(8)
¥
byte alignment( )

First the picture header in slice header flag is decoded to know if the
picture header structure( ) is present in the slice header.

The slice subpic_id if needed, is then decoded to determine the sub picture id of the current
slice. Then the slice address is decoded to determine the address of the current slice. The slice
address is decoded if the current slice mode is the rectangular slice mode (rect slice flag equal
to 1) and if the number of slices in the current subpicture is superior to 1. The slice address can
be also decoded if the current slice mode is the raster scan mode (rect slice flag equal to 0)
and if the number of tiles in the current picture is superior to 1 computed based on variables
defined in the PPS.

The num tiles in slice minusi is then decoded if the number of tiles in the current
picture is greater than one and if the current slice mode is not the rectangular slice mode. In the
current VVC draft specifications, num_tiles in slice minusl is defined as follow:

“num_tiles in slice_minusl plus 1, when present, specifies the number of tiles in the

slice. The value of num tiles in slice minusl shall be in the range of O to

NumTilesInPic — 1, inclusive.”

Then the slice type is decoded.

If ALF is enabled at SPS level (sps_alf enabled flag) and if ALF is signalled in the
slice header (alf info in ph flag equal to 0), then ALF information is decoded. This includes
a flag indicating that ALF is enabled for the current slice (slice alf enabled flag). If it is
enabled, the number of APS ALF ID for luma (slice num alf aps ids luma) is decoded, then
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the APS ID are decoded (slice alf aps id lumaf i ]). Then the slice alf chroma idc is
decoded to know if ALF is enabled for the Chroma components and which chroma component
it is enabled. Then the APS ID for Chroma is decoded slice alf aps id chroma if needed. In
the same way, the slice cc alf cb enabled flag is decoded, if needed, to know if the CC ALF
method is enabled. IF CC ALF is enabled, the related APS ID for CR and/or CB are decoded
if CC ALF is enabled for CR and/or CB.

If the colour planes are transmitted independently (separate colour plane flag equals

to 1) the colour plane id is decoded.

When the reference picture lists are not transmitted in the picture header (rp/ info in ph flag
equal to 0) and when the Nal unit is not an IDR or if the reference pictures lists are transmitted
for IDR pictures (sps idr rpl present flag equals to 1) then the Reference picture lists
parameters are decoded; these are similar to those in the picture header.

If the reference picture lists are transmitted in the picture header (rp/ info in ph flag
equal to 1) or the Nal unit is not an IDR or if the reference picture lists are transmitted for IDR
pictures (sps_idr rpl present flag equals to 1) and if the number of reference for at least one
list is superior to 1, the override flag num ref idx active override flag is decoded.

If this flag is enabled the reference index for each list are decoded.

When the slice type is not intra and if needed the cabac init flag 1s decoded.If the
reference picture lists are transmitted in the slice header and come other conditions, the
slice_collocated from 10 flag and the slice collocated ref idx are decoded. These data are
related to the CABAC coding and the motion vector collocated.

In the same way, when the slice type is not Intra, the parameters of the weighted prediction
pred weight table( ) are decoded.

The slice gp delta is decoded bif the delta QP information is transmitted in the slice
header (gp delta _info in ph flag equal to 0). If needed the syntax elements,
slice cb qp offset, slice cr qp offset, slice joint cbcr qp offset,
cu_chroma _qp offset enabled flag are decoded.

If the SAO information are transmitted in the slice header (sao info in ph flag equal
to 0) and if it is enabled at SPS level (sps sao _enabled flag), the enabled flags for SAO are
decoded for both luma and chroma: slice sao luma_flag, slice sao chroma flag.

Then the deblocking filter parameters are decoded if they are signalled in the slice header

(dbf info_in ph flag equal to 0).
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The flag slice ts residual coding disabled flag is systematically decoded to know if
the Transform Skip residual coding method is enabled for the current slice.

If LMCS was enabled in the picture header (ph Imcs enabled flag equal 1), the flag
slice Imcs _enabled flag is decoded.

In the same way, if the scaling list was enabled in the picture header
(phpic_scaling list presentenabled flag equal 1), the flag slice scaling list present flag is
decoded.

Then other parameters are decoded if needed.

Picture header in the slice header
In a particular signalling way, the picture header (708) can be signalled inside the slice header
(710) as depicted in the Figure 7. In that case there is no NAL unit containing only the picture
header (608). The NAL units 701-707 correspond to the respective NAL units 601-607 in
Figure 6. Similarly, coding tiles 720 and coding blocks 740 correspond to the blocks 620 and
640 of Figure 6. Accordingly, explanation of these units and blocks will not be repeated here.
This can be enabled in the slice header thanks to the flag picture_header in slice header flag.
Moreover, when the picture header is signalled inside the slice header, the picture shall contain
only one slice. So, there is always only one picture header per picture. Moreover, the flag
picture _header in_slice header flag shall have the same value for all pictures of a CLVS
(Coded Layer Video Sequence). It means that all pictures between two IRAP including the first
IRAP has only one slice per picture.

The flag picture_header in_slice header flagis defined as the following:
"picture header in slice header flag equal to 1 specifies that the PH syntax structure is
present in the slice header. picture header in slice header flag equal to 0 specifies that the
PH syntax structure is not present in the slice header.

It is a requirement of bitstream conformance that the value of
picture_header in slice header flag shall be the same in all coded slices in a CLVS.
When picture_header in_slice header flag is equal to I for a coded slice, it is a requirement
of bitstream conformance that no VCL NAL unit with nal _unit type equal to PH NUT shall be
present in the CLVS.

When picture _header in slice header flag is equal to 0, all coded slices in the current
picture shall have picture_header in_slice_header flag is equal fo 0, and the current PU shall
have a PH NAL unit.
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The picture header structure( ) contains syntax elements of the picture rbsp() except

the stuffing bits rbsp trailing bits().”

Streaming applications

Some streaming applications only extract certain parts of the bitstream. These
extractions can be spatial (as the sub-picture) or temporal (a subpart of the video sequence).
Then these extracted parts can be merged with other bitstreams. Some other reduce the frame
rate by extracting only some frames. Generally, the main aim of these streaming applications
is to use the maximum of the allowed bandwidth to produce the maximum quality to the end
user.

In VVC, the APS ID numbering has been limited for frame rate reduction, in order that
a new APS id number for a frame can't be used for a frame at an upper level in the temporal
hierarchy. However, for streaming applications which extract parts of the bitstream the APS
ID needs to be tracked to determine which APS should be keep for a sub part of the bitstream
as the frame (as IRAP) don't reset the numbering of the APS ID.

LMCS (Luma mapping with chroma scaling)

The Luma Mapping with Chroma scaling (LMCS) technique is a sample value
conversion method applied on a block before applying the loop filters in a video decoder like
VVC.

The LMCS can be divided into two sub-tools. The first one is applied on Luma block
while the second sub-tool is applied on Chroma blocks as described below:

1) The first sub-tool is an in-loop mapping of the Luma component based on adaptive
piecewise linear models. The in-loop mapping of the Luma component adjusts the
dynamic range of the input signal by redistributing the codewords across the dynamic
range to improve compression efficiency. Luma mapping makes use of a forward
mapping function into the “mapped domain” and a corresponding inverse mapping
function to come back in the “input domain”.

2) The second sub-tool is related to the chroma components where a luma-dependent

chroma residual scaling is applied. Chroma residual scaling is designed to compensate

for the interaction between the luma signal and its corresponding chroma signals.

Chroma residual scaling depends on the average value of top and/or left reconstructed

neighbouring luma samples of the current block.
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Like most other tools in video coder like VVC, LMCS can be enabled/disabled at the
sequence level using an SPS flag. Whether chroma residual scaling is enabled or not is also
signalled at the slice level. If luma mapping is enabled, an additional flag is signalled to indicate
if luma-dependent chroma residual scaling is enabled or not. When luma mapping is not used,
luma-dependent chroma residual scaling is fully disabled. In addition, luma-dependent chroma
residual scaling is always disabled for the chroma blocks whose size is less than or equal to 4.

Figure 8 shows the principle of the LMCS as explained above for the Luma mapping
sub-tool. The hatched blocks in Figure 8 are the new LMCS functional blocks, including
forward and inverse mapping of the luma signal. It is important to note that, when using LMCS,
some decoding operations are applied in the “mapped domain”. These operations are
represented by blocks in dashed lines in this Figure 8. They typically correspond to the inverse
quantization, the inverse transform, the luma intra prediction and the reconstruction step which
consists in adding the luma prediction with the luma residual. Conversely, the solid line blocks
in Figure 8 indicate where the decoding process is applied in the original (i.e., non-mapped)
domain and this includes the loop filtering such as deblocking, ALF, and SAO, the motion
compensated prediction, and the storage of decoded pictures as reference pictures (DPB).

Figure 9 shows a similar diagram as Figure 8 but this time this is for the Chroma
scaling sub-tool of the LMCS tool. The hatched block in Figure 9 is the new LMCS functional
block which includes the luma-dependent chroma scaling process. However, in Chroma, there
are some important differences compared to the Luma case. Here only the inverse quantization
and the inverse transform represented by block in dash lines are performed in the “mapped
domain” for the Chroma samples. All the other steps of Intra Chroma prediction, motion
compensation, loop filtering are performed in the original domain. As depicted in Figure 9,

there is only a scaling process and there is no forward and inverse processing as for the Luma

mapping.

Luma mapping by using piece wise linear model.

The luma mapping sub-tool is using a piecewise linear model. It means that the
piecewise linear model separates the input signal dynamic range into 16 equal sub-ranges, and
for each sub-range, its linear mapping parameters are expressed using the number of codewords

assigned to that range.

Semantics for Luma mapping
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The syntax element /mcs min_bin idx specifies the minimum bin index used in the
luma mapping with chroma scaling (LMCS) construction process. The value of
Imes _min_bin_idx shall be in the range of O to 15, inclusive.

The syntax element /mcs delta max_bin idx specifies the delta value between 15 and
the maximum bin index LmcsMaxBinldx used in the luma mapping with chroma scaling
construction process. The value of /mcs delta max bin idx shall be in the range of 0 to 15,
inclusive. The value of LmcsMaxBinldx is set equal to 15 — /mes delta max bin idx. The
value of LmcesMaxBinldx shall be greater than or equal to /mcs min_bin_idx.

The syntax element /mcs delta cw prec _minusl plus 1 specifies the number of bits
used for the representation of the syntax /mcs delta abs cw[i |.

The syntax element Imcs delta abs cw[ i | specifies the absolute delta codeword value
for the in bin.

The syntax element /mcs delta sign cw flag[i ] specifies the sign of the variable
ImesDeltaCW/[ i | When Imcs delta sign cw_flag[ i | is not present, it is inferred to be equal
to 0.

LMCS intermediate variables computation for Luma mapping
In order to apply the forward and inverse Luma mapping processes, some intermediate

variables and data arrays are needed.

First of all, the variable OrgCW is derived as follows:
OrgCW = (1 << BitDepth)/ 16

Then, the variable ImcsDeltaCW/[ 1], with 1=1mcs min bin idx .. LmcsMaxBinldx, is
computed as follows:

ImcsDeltaCW[i1]=(1—2 *Imcs_delta sign cw flag[ 1] ) * Imcs_delta abs cw[ 1]

The new variable ImcsCW[ i ] is derived as follows:
— Fori=0. Imecs _min bin_idx — 1, ImcsCWJ 1] is set equal 0.
— Fori=Imcs min_bin idx..LmcsMaxBinldx, the following applies:
ImcsCW[ 1] = OrgCW + ImcsDeltaCW[ 1 ]
The value of ImcsCW[ 1] shall be in the range of (OrgCW>>3) to (OrgCW<<3 — 1),
inclusive.

— Fori=LmcsMaxBinldx + 1..15, ImcsCW][ 1 ] is set equal O.
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The variable InputPivot[ 1 ], with i = 0..16, is derived as follows:

InputPivot[ 1] =1* OrgCW

The variable LmcsPivot[ 1 ] with 1 = 0..16, the variables ScaleCoef] 1 ] and InvScaleCoeft] 1 ]
with 1 =0..15, are computed as follows:
LmcsPivot[ 0 ]=0;
for(1=0;1 <= 15;i++) {
LmcsPivot[ 1+ 1 ] =LmcsPivot[ 1 ] + ImcsCW[ 1 ]
ScaleCoeff[ 1 ] = (ImesCW[ 1] * (1 << 11 )+ (1 <<
(Log2(OrgCW )—1))) >> (Log2( OrgCW ))
if( ImesCW[1] == 0)
InvScaleCoeff[1]=0
else

InvScaleCoeff] 1 ] = OrgCW * (1 << 11)/ImcsCWJ 1]

Forward Luma mapping
As illustrated by Figure 8 when the LMCS is applied for Luma, the Luma remapped
sample called predMapSamples/[i][j] is obtained from the prediction sample
predSamples[i ][] ].
The predMapSamples(i][j] is computed as follows:
First of all, an index idxY is computed from the prediction sample
predSamples( i [ j ], at location (i, j)
idxY = predSamples[ i ][ j ] >> Log2( OrgCW )
Then predMapSamples[i][j] is derived as follows by using the intermediate variables
1dxY, LmcsPivot[ idxY ] and InputPivot[ idxY ] of section 0:
predMapSamples[ i ][ j ] = LmecsPivot[ idxY ]
+ ( ScaleCoeft] 1dxY | * ( predSamples[ 1 ][ j ] — InputPivot[ idxY ] )+ (1 <<
10))>>11

Luma reconstruction samples
The reconstruction process is obtained from the predicted luma sample

predMapSample[i][j] and the residual luma samples resiSamples[i][j].
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The reconstructed luma picture sample recSamples [i ][ j ] is simply obtained by
adding predMapSample[i][j] to resiSamplesf[i][j] as follows:
recSamples[ 1 ][ j ] = Clip1( predMapSamples[ 1 ][ j ]+ resiSamples[1][]]])

In this above relation, the Clip 1 function is a clipping function to make sure that the

reconstructed sample is bewteen 0 and 1<< BitDepth -1.

Inverse Luma mapping
When applying the inverse luma mapping according to Figure 8, the following

operations are applied on each sample recSample[i][j] of the current block being processed:

First, an index idxY is computed from the reconstruction sample
recSamples[ i ][ j ], at location (i,j)
idxY = recSamples[ i ][ j ] >> Log2( OrgCW )
The inverse mapped luma sample invLumaSample[i][j] is derived as follows based on
the:
invLumaSample[i][j] =

InputPivot[ idxYInv | + ( InvScaleCoeff] idxYInv | *

( recSample[i][j] — LmcsPivot[ idxYInv ] )+ (1 <<10))>>11
A clipping operation is then done to get the final sample:

finalSample[i][j] = Clip1( invLumaSample[i][j] )

Chroma scaling
LMCS semantics for Chroma scaling

The syntax element /mcs delta abs crs in Table 6 specifies the absolute codeword
value of the variable lmcsDeltaCrs. The value of Imcs delta abs crs shall be in the range of 0
and 7, inclusive. When not present, Imcs delta abs crs is inferred to be equal to O.

The syntax element Ilmcs delta sign crs flag specifies the sign of the wvariable

ImesDeltaCrs. When not present, /mcs_delta sign crs_flag is inferred to be equal to O.

LMCS intermediate variable computation for Chroma scaling
To apply the Chroma scaling process, some intermediate variables are needed.
The variable /ImcsDeltaCrs is derived as follows:

ImcsDeltaCrs = (1 —2 * Imcs_delta sign crs flag) * Imcs_delta abs crs
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The variable ChromaScaleCoeff] i |, with 1 =0...15, is derived as follows:
if( ImesCW[i1] == 0)
ChromaScaleCoeff[1]=(1 << 11)
else

ChromaScaleCoeff] 1 ] = OrgCW * (1 << 11)/(1mcsCW][ 1]+ ImesDeltaCrs )

Chroma scaling process

In a first step, the variable invAvgLuma is derived in order to compute the average luma
value of reconstructed Luma samples around the current corresponding Chroma block. The
average Luma is computed from left and top luma block surrounding the corresponding
Chroma block
If no sample is available the variable invAvgLuma is set as follows:

invAvgluma = 1 << ( BitDepth — 1)

Based on the intermediate arrays LmcsPivot/ [ of section 0, the variable idxYInv is then
derived as follows:
For (idxYInv =lmcs _min_bin_idx; idxYInv <= LmcsMaxBinldx; idxYInv++) {
if(invAvgLuma < LmcsPivot [ idxYInv+ 1 ]) break

}
IdxYInv = Min( idxYInv, 15)

The variable varScale is derived as follows:

varScale = ChromaScaleCoeff] idxYInv ]

When a transform is applied on the current Chroma block, the reconstructed Chroma picture
sample array recSamples is derived as follows
recSamples[i ][j ] = Clip1( predSamples[1 ][] ]+
Sign( resiSamples[1 ][] ]) * (( Abs( resiSamples[1][j]) * varScale +
(1<<10))>>11))
If no transform has been applied for the current block, the following applies:

recSamples[ 1 ][ j ] = Clipl(predSamples[i ][] ])

Encoder consideration
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The basic principle of an LMCS encoder is to first assign more codewords to ranges where
those dynamic range segments have lower codewords than the average variance. In an
alternative formulation of this, the main target of LMCS is to assign fewer codewords to those
dynamic range segments that have higher codewords than the average variance. In this way,
smooth areas of the picture will be coded with more codewords than average, and vice versa.
All the parameters (see Table 6) of the LMCS tools which are stored in the APS are
determined at the encoder side. The LMCS encoder algorithm is based on the evaluation of
local luma variance and is optimizing the determination of the LMCS parameters according to
the basic principle described above. The optimization is then conducted to get the best PSNR

metrics for the final reconstructed samples of a given block.

Embodiments

Avoid Slice address syntax element when not needed

In one embodiment, when the picture header is signalled in the slice header, the slice address
syntax element (slice_address), is inferred to be equal to the value O even if the number of tiles
is greater than 1. Table 11 illustrates this embodiment.

The advantage of this embodiment is that the slice address is not parsed when the picture header
is in the slice header which reduces the bitrate, especially for low delay and low bitrate
applications, and it reduces the parsing complexity for some implementations when the picture
is signalled in the slice header.

In an embodiment this is applied only for raster-scan slice mode (rect slice flag equal to 0).
This reduces the parsing complexity for some implementations.

Table 11 Partial Slice header showing modifications

slice_header( ) { Descriptor

picture_header_in_slice_header_flag u(l)

if( picture_header _in_slice header flag)

picture_header structure( )

if( ( rect_slice_flag && NumSlicesInSubpic| CurrSubpicldx | > 1) ||
( (!rect_slice flag && NumTilesInPic> 1)
&& lpicture_header _in_slice header flag))

slice_address uwv)
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Avoid transmission of the number of tiles in the slice when not needed

In one embodiment the number of tiles in the slice is not transmitted when the picture header
is transmitted in the slice header. Table 12 illustrates this embodiment, where
num_tiles in slice minus! syntax element is not transmitted when the flag
picture_header in slice header flag is set equal to 1. The advantage of this embodiment is a
bitrate reduction, especially for low delay and low bitrate applications, as the number of tiles

doesn’t need to be transmitted.

In an embodiment this is applied only for raster-scan slice mode (rect slice flag equal to 0).

This reduces the parsing complexity for some implementations.

Table 12 Partial Slice header showing modifications

slice_header( ) { Descriptor

picture_header_in_slice_header_flag u(l)

if( picture_header_in_slice header flag)

picture_header structure( )

if( ( 'rect slice flag && NumTilesInPic > 1 ) && !picture header in_slice_header flag)

num_tiles_in_slice_minus1 ue(v)

Predicted by PPS value NumTilesInPic (Semantics)

In one additional embodiment, the number of tiles in the current slice 1s inferred to be equal to
the number of tiles in the picture when the picture header is transmitted in the slice header.
This can be set by adding the following sentence in the semantics of the syntax element
num_tiles in slice_minusl: “When not present the variable num _tiles in slice minusl is set

equal to NumTilesInPic-1".

Where the variable NumTilesInPic gives the maximum number of tiles for the picture. This

variable is computed based on syntax elements transmitted in the PPS.

Set the number of tiles before the slice address and avoid non needed transmission of

slice_address
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In one embodiment, the syntax element dedicated to the number of tiles in the slice is
transmitted before the slice address and its value is used to know if it is needed to decode the
slice address. More precisely, the number of tiles in the slice is compared to the number of tiles
in the picture to know if it is needed to decode the slice address. Indeed, if the number of tiles
in the slice is equal to the number of tiles in the picture it is sure that the current picture contains

only one slice.

In an embodiment this is applied only for raster-scan slice mode (rect slice flag equal to 0).

This reduces the parsing complexity for some implementations.

Table 13 illustrates this embodiment. Where the syntax element slice address is not decoded
if the value of the syntax element num ftiles in slice minus/ is equal to the variable
NumTilesInPic minus 1. When um ftiles in slice minus! 1is equal to the variable

NumTilesInPic minus 1, the slice address is inferred to be equal to 0.

Table 13 Partial Slice header showing modifications

slice_header( ) { Descriptor

picture_header_in_slice_header_flag u(l)

if( picture_header_in_slice header flag)

picture header structure( )

if( !rect slice flag && NumTilesInPic> 1)

num_tiles_in_slice_minus1 ue(v)

if( (rect_slice flag &é& NumSlicesInSubpic| CurrSubpicldx | > 1) ||
(('rect_slice flag && NumTilesInPic > 1) && num _tiles_in_slice_minusl !=
NumTilesInPic-1)

slice_address uwv)

The advantage of this embodiment is a bitrate reduction and parsing complexity reduction when

the condition is set equal to true as the slice address is not transmitted.

In one embodiment, the syntax element indicating the number of tiles in the current slice is not
decoded and the number of tiles in the slice is inferred to be equal to 1 when the picture header
is transmitted the slice header. And the slice address is inferred to be equal to 0, and the related
syntax element is not decoded when the number of tiles in the slice is equal to the number of

tiles in the picture. Table 14 illustrates this embodiment.

This increases the bitrate reduction obtained by the combination of these 2 embodiments.
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Table 14 Partial Slice header showing modifications

slice_header( ) {

Descriptor

picture_header_in_slice_header_flag

u(l)

if( picture_header _in_slice header flag)

picture_header structure( )

if( ( 'rect slice flag && NumTilesInPic > 1) && !picture header in slice header flag)

num_tiles_in_slice_minus1

ue(v)

if( ( rect_slice_flag && NumSlicesInSubpic| CurrSubpicldx]>1) ||
(('rect_slice flag && NumTilesInPic > 1) && num tiles_in_slice_minusl !=
NumTilesInPic-1)

slice_address

uwv)

Remove un-needed conditions numTileInPic > 1

In one embodiment, a condition that the number of tiles in the current picture does need to be

greater than 1 is not necessary to be tested when the raster-scan slice mode is enabled, in order

for the syntax elements slice address and/or the number of tiles in the current slice to be

decoded. Specifically, when the number of tiles in the current picture is equal to 1 the

rect slice flag value is inferred to be equal to 1. Consequently, the raster-scan slice mode can’t

be enabled in that case. Table 15 Illustrates this embodiment.

This embodiment reduces the parsing complexity of the slice header.

Table 15 Partial Slice header showing modifications

slice_header( ) { Descriptor

if( ( rect_slice flag && NumSlicesInSubpic| CurrSubpicldx ] >1) ||

(!rect_slice flag && NumTieskaRie=~1) )

slice_address u(v)
for(i=0; i < NumExtraShBits; i++ )

sh_extra_bit[ i ] u(l)
if( 'rect_slice flag &&NumTiestnPie=1)

num_tiles_in_slice_minus1 ue(v)

In one embodiment, the syntax element indicating the number of tiles in the current slice is not

decoded and the number of tiles in the slice is inferred to be equal to 1 when the picture header
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is transmitted in the slice header and when the raster-scan slices mode is enabled. And the slice
address is inferred to be equal to 0, and the related syntax element s/ice address is not decoded
when the number of tiles in the slice is equal to the number of tiles in the picture and when the

raster-scan slices mode is enabled. Table 16 illustrates this embodiment.
The advantages are a bitrate reduction and a parsing complexity reduction.

Table 16 Partial Slice header showing modifications

slice_header( ) { Descriptor

picture_header_in_slice_header_flag u(l)

if( picture_header_in_slice header flag)

picture header structure( )

if( 'rect_slice flag && !picture_header in slice_header flag )

num_tiles_in_slice_minus1 ue(v)

if( ( rect_slice flag && NumSlicesInSubpic| CurrSubpicldx ] >1) ||
(!rect_slice flag && num_tiles_in_slice minusl != NumTilesInPic-1)

slice_address u(v)

Implementations

Figure 11 shows a system 191 195 comprising at least one of an encoder 150 or a decoder 100
and a communication network 199 according to embodiments of the present invention.
According to an embodiment, the system 195 is for processing and providing a content (for
example, a video and audio content for displaying/outputting or streaming video/audio content)
to a user, who has access to the decoder 100, for example through a user interface of a user
terminal comprising the decoder 100 or a user terminal that is communicable with the decoder
100. Such a user terminal may be a computer, a mobile phone, a tablet or any other type of a
device capable of providing/displaying the (provided/streamed) content to the user. The system
195 obtains/receives a bitstream 101 (in the form of a continuous stream or a signal — e.g. while
earlier video/audio are being displayed/output) via the communication network 199.
According to an embodiment, the system 191 is for processing a content and storing the
processed content, for example a video and audio content processed for
displaying/outputting/streaming at a later time. The system 191 obtains/receives a content
comprising an original sequence of images 151, which is received and processed (including
filtering with a deblocking filter according to the present invention) by the encoder 150, and

the encoder 150 generates a bitstream 101 that is to be communicated to the decoder 100 via a
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communication network 191. The bitstream 101 is then communicated to the decoder 100 in a
number of ways, for example it may be generated in advance by the encoder 150 and stored as
data in a storage apparatus in the communication network 199 (e.g. on a server or a cloud
storage) until a user requests the content (i.e. the bitstream data) from the storage apparatus, at
which point the data is communicated/streamed to the decoder 100 from the storage apparatus.
The system 191 may also comprise a content providing apparatus for providing/streaming, to
the user (e.g. by communicating data for a user interface to be displayed on a user terminal),
content information for the content stored in the storage apparatus (e.g. the title of the content
and other meta/storage location data for identifying, selecting and requesting the content), and
for receiving and processing a user request for a content so that the requested content can be
delivered/streamed from the storage apparatus to the user terminal. Alternatively, the encoder
150 generates the bitstream 101 and communicates/streams it directly to the decoder 100 as
and when the user requests the content. The decoder 100 then receives the bitstream 101 (or a
signal) and performs filtering with a deblocking filter according to the invention to
obtain/generate a video signal 109 and/or audio signal, which is then used by a user terminal
to provide the requested content to the user.

Any step of the method/process according to the invention or functions described herein
may be implemented in hardware, software, firmware, or any combination thereof. If
implemented in software, the steps/functions may be stored on or transmitted over, as one or
more instructions or code or program, or a computer-readable medium, and executed by one or
more hardware-based processing unit such as a programmable computing machine, which may
be a PC (“Personal Computer”), a DSP (“Digital Signal Processor”), a circuit, a circuitry, a
processor and a memory, a general purpose microprocessor or a central processing unit, a
microcontroller, an ASIC (“Application-Specific Integrated Circuit”), a field programmable
logic arrays (FPGAs), or other equivalent integrated or discrete logic circuitry. Accordingly,
the term “processor” as used herein may refer to any of the foregoing structure or any other
structure suitable for implementation of the techniques describe herein.

Embodiments of the present invention can also be realized by wide variety of devices
or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of JCs (e.g. a
chip set). Various components, modules, or units are described herein to illustrate functional
aspects of devices/apparatuses configured to perform those embodiments, but do not
necessarily require realization by different hardware units. Rather, various modules/units may
be combined in a codec hardware unit or provided by a collection of interoperative hardware

units, including one or more processors in conjunction with suitable software/firmware.
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Embodiments of the present invention can be realized by a computer of a system or
apparatus that reads out and executes computer executable instructions (e.g., one or more
programs) recorded on a storage medium to perform the modules/units/functions of one or
more of the above-described embodiments and/or that includes one or more processing unit or
circuits for performing the functions of one or more of the above-described embodiments, and
by a method performed by the computer of the system or apparatus by, for example, reading
out and executing the computer executable instructions from the storage medium to perform
the functions of one or more of the above-described embodiments and/or controlling the one
or more processing unit or circuits to perform the functions of one or more of the above-
described embodiments. The computer may include a network of separate computers or
separate processing units to read out and execute the computer executable instructions. The
computer executable instructions may be provided to the computer, for example, from a
computer-readable medium such as a communication medium via a network or a tangible
storage medium. The communication medium may be a signal/bitstream/carrier wave. The
tangible storage medium is a “non-transitory computer-readable storage medium” which may
include, for example, one or more of a hard disk, a random-access memory (RAM), a read only
memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact
disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a
memory card, and the like. At least some of the steps/functions may also be implemented in
hardware by a machine or a dedicated component, such as an FPGA (“Field-Programmable
Gate Array”) or an ASIC (“Application-Specific Integrated Circuit”).

Figure 12 is a schematic block diagram of a computing device 2000 for implementation
of one or more embodiments of the invention. The computing device 2000 may be a device
such as a micro-computer, a workstation or a light portable device. The computing device 2000
comprises a communication bus connected to: - a central processing unit (CPU) 2001, such as
a microprocessor; - a random access memory (RAM) 2002 for storing the executable code of
the method of embodiments of the invention as well as the registers adapted to record variables
and parameters necessary for implementing the method for encoding or decoding at least part
of an image according to embodiments of the invention, the memory capacity thereof can be
expanded by an optional RAM connected to an expansion port for example; - a read only
memory (ROM) 2003 for storing computer programs for implementing embodiments of the
invention; - a network interface (NET) 2004 is typically connected to a communication
network over which digital data to be processed are transmitted or received. The network

interface (NET) 2004 can be a single network interface, or composed of a set of different
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network interfaces (for instance wired and wireless interfaces, or different kinds of wired or
wireless interfaces). Data packets are written to the network interface for transmission or are
read from the network interface for reception under the control of the software application
running in the CPU 2001; - a user interface (UI) 2005 may be used for receiving inputs from
a user or to display information to a user; - a hard disk (HD) 2006 may be provided as a mass
storage device; - an Input/Output module (I0) 2007 may be used for receiving/sending data
from/to external devices such as a video source or display. The executable code may be stored
either in the ROM 2003, on the HD 2006 or on a removable digital medium such as, for
example a disk. According to a variant, the executable code of the programs can be received
by means of a communication network, via the NET 2004, in order to be stored in one of the
storage means of the communication device 2000, such as the HD 2006, before being executed.
The CPU 2001 is adapted to control and direct the execution of the instructions or portions of
software code of the program or programs according to embodiments of the invention, which
instructions are stored in one of the aforementioned storage means. After powering on, the
CPU 2001 is capable of executing instructions from main RAM memory 2002 relating to a
software application after those instructions have been loaded from the program ROM 2003 or
the HD 2006, for example. Such a software application, when executed by the CPU 2001,
causes the steps of the method according to the invention to be performed.

It is also understood that according to another embodiment of the present invention, a
decoder according to an aforementioned embodiment is provided in a user terminal such as a
computer, a mobile phone (a cellular phone), atable or any other type of a device (e.g. a display
apparatus) capable of providing/displaying a content to a user. According to yet another
embodiment, an encoder according to an aforementioned embodiment is provided in an image
capturing apparatus which also comprises a camera, a video camera or a network camera (e.g.
a closed-circuit television or video surveillance camera) which captures and provides the
content for the encoder to encode. Two such examples are provided below with reference to
Figures 13 and 14.

NETWORK CAMERA

FIG. 13 is a diagram illustrating a network camera system 2100 including a network
camera 2102 and a client apparatus 2104.

The network camera 2102 includes an imaging unit 2106, an encoding unit 2108, a
communication unit 2110, and a control unit 2112.

The network camera 2102 and the client apparatus 2104 are mutually connected to be

able to communicate with each other via the network 200.
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The imaging unit 2106 includes a lens and an image sensor (e.g., a charge coupled
device (CCD) or a complementary metal oxide semiconductor (CMOS)), and captures an
image of an object and generates image data based on the image. This image can be a still
image or a video image.

The encoding unit 2108 encodes the image data by using said encoding methods
described above

The communication unit 2110 of the network camera 2102 transmits the encoded image
data encoded by the encoding unit 2108 to the client apparatus 2104.

Further, the communication unit 2110 receives commands from client apparatus 2104,
The commands include commands to set parameters for the encoding of the encoding unit 2108.

The control unit 2112 controls other units in the network camera 2102 in accordance
with the commands received by the communication unit 2110..

The client apparatus 2104 includes a communication unit 2114, a decoding unit 2116,
and a control unit 2118.

The communication unit 2114 of the client apparatus 2104 transmits the commands to
the network camera 2102.

Further, the communication unit 2114 of the client apparatus 2104 receives the encoded
image data from the network camera 2102.

The decoding unit 2116 decodes the encoded image data by using said decoding
methods described above.

The control unit 2118 of the client apparatus 2104 controls other units in the client
apparatus 2104 in accordance with the user operation or commands received by the
communication unit 2114,

The control unit 2118 of the client apparatus 2104 controls a display apparatus 2120 so
as to display an image decoded by the decoding unit 2116.

The control unit 2118 of the client apparatus 2104 also controls a display apparatus
2120 so as to display GUI (Graphical User Interface) to designate values of the parameters for
the network camera 2102 includes the parameters for the encoding of the encoding unit 2108.

The control unit 2118 of the client apparatus 2104 also controls other units in the client
apparatus 2104 in accordance with user operation input to the GUI displayed by the display
apparatus 2120.

The control unit 2119 of the client apparatus 2104 controls the communication unit

2114 of the client apparatus 2104 so as to transmit the commands to the network camera 2102
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which designate values of the parameters for the network camera 2102, in accordance with the

user operation input to the GUI displayed by the display apparatus 2120.

SMART PHONE

FIG. 14 is a diagram illustrating a smart phone 2200.

The smart phone 2200 includes a communication unit 2202, a decoding unit 2204, a
control unit 2206, display unit 2208, an image recording device 2210 and sensors 2212.

the communication unit 2202 receives the encoded image data via network 200.

The decoding unit 2204 decodes the encoded image data received by the
communication unit 2202,

The decoding unit 2204 decodes the encoded image data by using said decoding
methods described above.

The control unit 2206 controls other units in the smart phone 2200 in accordance with
a user operation or commands received by the communication unit 2202.

For example, the control unit 2206 controls a display unit 2208 so as to display an image
decoded by the decoding unit 2204.

While the present invention has been described with reference to embodiments, it is to
be understood that the invention is not limited to the disclosed embodiments. It will be
appreciated by those skilled in the art that various changes and modification might be made
without departing from the scope of the invention, as defined in the appended claims. All of
the features disclosed in this specification (including any accompanying claims, abstract and
drawings), and/or all of the steps of any method or process so disclosed, may be combined in
any combination, except combinations where at least some of such features and/or steps are
mutually exclusive. Each feature disclosed in this specification (including any accompanying
claims, abstract and drawings) may be replaced by alternative features serving the same,
equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated
otherwise, each feature disclosed is one example only of a generic series of equivalent or
similar features.

It is also understood that any result of comparison, determination, assessment, selection,
execution, performing, or consideration described above, for example a selection made during
an encoding or filtering process, may be indicated in or determinable/inferable from data in a
bitstream, for example a flag or data indicative of the result, so that the indicated or

determined/inferred result can be used in the processing instead of actually performing the
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comparison, determination, assessment, selection, execution, performing, or consideration, for
example during a decoding process.

In the claims, the word “comprising” does not exclude other elements or steps, and the
indefinite article “a” or “an” does not exclude a plurality. The mere fact that different features
are recited in mutually different dependent claims does not indicate that a combination of these
features cannot be advantageously used.

Reference numerals appearing in the claims are by way of illustration only and shall

have no limiting effect on the scope of the claims.
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CLAIMS
1. A method of decoding video data from a bitstream, the bitstream comprising video
data corresponding to one or more slices, wherein each slice may include one or more
tiles,
wherein the bitstream comprises a picture header comprising syntax elements
to be used when decoding one or more slices, and a slice header comprising syntax
elements to be used when decoding a slice, and wherein the method comprises:
parsing syntax elements;
decoding weighted prediction parameters from the picture header depending
on a value of a flag in a picture parameter set, wherein the flag indicates, when the
value is 1, that the weighted prediction parameters could be present in the picture
header;
in a case where a slice includes multiple tiles,
omitting parsing of a first syntax element indicating an address of the slice if a
second syntax element which is parsed indicates that a picture header is present in the
slice header; and

decoding the video data from said bitstream, using the parsed syntax elements.

2. A method according to claim 1, wherein the omitting is to be performed when a

raster-scan slice mode is to be used for decoding the slice.

3. A method according to claim 1 or claim 2, wherein the, omitting further comprises

omitting the parsing of a syntax element indicating a number of tiles in the slice.

4. A method of encoding video data into a bitstream, the bitstream comprising the video
data corresponding to one or more slices, wherein each slice may include one or more
tiles,

wherein the bitstream comprises a picture header comprising syntax elements
to be used when decoding one or more slices, and a slice header comprising syntax
elements to be used when encoding a slice, and the method comprises:

determining one or more syntax elements for encoding the video data;

encoding weighted prediction parameters in the picture header depending on a

value of a flag in a picture parameter set, wherein the flag indicates, when the value of
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the flag is 1, that the weighted prediction parameters could be present in the picture
header;

in a case where a slice includes multiple tiles,

omitting encoding of a first syntax element indicating an address of the slice if
a second syntax element indicates that a picture header is present in the slice header;
and

encoding said video data using one or more syntax elements.

5. A method according to claim 4, wherein the omitting is to be performed is when a

raster-scan slice mode is used for encoding the slice.

6. A method according to claims 4 or 5, wherein the omitting further comprises omitting

the encoding of a syntax element indicating a number of tiles in the slice

7. A decoder for decoding video data from a bitstream, the decoder being configured to

perform the method of any of claims 1 to 3.

8. An encoder for encoding video data into a bitstream, the encoder being configured to

perform the method of any of claims 4 to 6.

9. A computer program which upon execution causes the method of any of claims 1 to 6

to be performed.
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