WO 01/75621 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 October 2001 (11.10.2001)

(10) International Publication Number

WO 01/75621 Al

(51) International Patent Classification’: GOG6F 13/28,
HO4L 29/06
(21) International Application Number: PCT/US01/09125
(22) International Filing Date: 21 March 2001 (21.03.2001)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
09/539,229 30 March 2000 (30.03.2000) US
(71) Applicant: BAYDEL LIMITED [GB/GB]; Baydel

House, Brook Way, Leatherhead, Surrey KT22 7NA (GB).

(71) Applicant and
(72) Inventor: ADAMS, Stephen, L. [US/US]; 1497 Hacienda
Avenue, Campbell, CA 95008 (US).

(74

(81

84

Agents: HSIA, David, C. et al.; Skjerven Morrill
Macpherson LLP, 25 Metro Drive, Suite 700, San Jose,
CA 95110 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ,BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: NETWORK DMA METHOD

Computer 100 B: Indicate Computer 200

Send "R_SHB" (e.g., Client) up entire (&9 Server)
packet
PacketN in Application Buffer 123 SFS Buffer 504
@ R_SMB + headers 506 PacketN 509
. A A
A:send small packet as SFS (Exchange X1 T;\
i A: SFS{Packeth) (J(
NIC 130 NIC 230

D:indicate up partial packet Send "R_SMB_RSP+large data”

PacketN in Application Buffer 223
[R_SMB_RSP+large data+headers]

SFS Buffer 505
R_SMB_RSPtheaders

507

Exchange X2
C Lookghead - [

[\R _SMB_RSP-+headers)
1]
|/

g?d send Lookahead as

FCP_CMND

NIC 130 NIC 230

E:Buffer address to receive data
£:Setup DMA to

pass cable data to

received buffer Application Buffer 123

address F G:Send

. 5“ “FCP_RSP"|

ES G ¢

“FCP_ XFER _RDY"
508
E: SFS(FCP _XFER_RDY)
NIC 130 F:FCP_DATA(large data) NG 230
G:SFS(FCP_RSP)
Interrupts: Legend:

SFS ~ Singie Frame Sequence
R_SMB - read SMB
R_SMB_RSP - read_response SMB

o noncritical interrupt (overlapped)
o critical interrupt

— Control

client server
critical 3 2 5
uncritical 1 1

2
¢ 2

C:Setup OMA for large datq

——= DMA

(57) Abstract: The invention blends Fibre Channel
("FC") hardware with networking software to produce
a network that allows network data to be transferred via
direct memory access ("DMA") between two application
buffers in computers separated by a network. During
boot up, the FC network interface card ("NIC") drivers
specify MTUs greater or equal to the segment size to
the operating system so that data are not segmented into
smaller datagrams during a network data write. During
the network write, a first FC NIC sets up the send end of
the DMA and sends the network headers of the data to a
second FC NIC. The second FC NIC passes the network
headers up through the protocol stack. The protocol stack
locates and passes the application buffer address to the
second FC NIC. The second FC NIC sets up the receive
end of the DMA and sends a signal to the first FC NIC to
start a buffer-to-buffer DMA transfer of the data. At the
end of the buffer-to-buffer DMA transfer, the first FC NIC
sends a signal to the second FC NIC indicating the status
of the transfer. The first and second FC NICs may treat the
entire data transfer as a Small Computer System Interface
("SCSI") disk transaction and use existing SCSI Assist
Hardware to reduce the involvement of the host software.

wO 01/75621 A1 I HIID 0000 O

Published:
— with international search report

before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 01/75621 PCT/US01/09125

NETWORK DMA METHOD

FIELD OF INVENTION

This invention is directed to application buffer-to-buffer transfers over a
network, and more particularly to DMA transfer over a network between application

buffers using Fibre Channel.

BACKGROUND

Fibre Channel is a data transport mechanism that includes hardware and a multi-
layer protocol. Fibre Channel is described in “Fibre Channel Physical and Signaling
Interface (FC-PH)” (ANSI X3.230-1994) by the American National Standard for
Information Systems, which is incorporated by reference in its entirety. Fibre Channel
is used today as a communication path between computers and disks. For example,
Fibre Channel is used in Storage Area Networks (“SANs”). When Fibre Channel is
used as a communication path between computers and disks, the Small Computer
System Interface (“SCSI”) protocol runs on top of the Fibre Channel protocol so that
legacy SCSI drivers can still be used to control the data flow. Since a common use of
Fibre Channel protocol is to interpret SCSI commands, Fibre Channel adapter cards

often have built-in SCSI Assist Hardware to accelerate this process.

Fibre Channel includes a buffer-to-buffer DMA transfer mechanism. If two
computers are connected together with Fibre Channel and the Fibre Channel adapter
card in the sending computer is given the address of a sending buffer and the Fibre
Channel adapter card in the receiving computer is given the address of a destination
buffer, the two adapter cards can transfer data across a Fibre Channel media (e.g., a
copper or optical cable) from the sending buffer to the receiving buffer in a single
DMA burst. This feature works whether the two nodes are connected point-to-point,
through a Fibre Channel hub connecting up to 126 nodes together, or through a series
of Fibre Channel switches connecting up to 16 million nodes together. When used to
connect computers to disks, the disk hardware serves as one of the computers and the
buffer-to-buffer DMA transfer simply moves data between an application buffer in the

computer and a buffer in the disk.

10

15

20

25

30

WO 01/75621 PCT/US01/09125

The SCSI Assist Hardware in Fibre Channel adapter cards accelerates the
common SCSI disk transactions. SCSI Assist Hardware lets the host driver place the
SCSI command containing the SCSI disk request into the card hardware and relieves
the host computer from being interrupted until the data has been transferred and the
response phase of the SCSI operation completes. Thus, SCSI Assist Hardware allows a
Fibre Channel adapter card to execute the SCSI command phase, the SCSI data phase,

and the SCSI response phase without interrupting the host computer.

Networks today communicate by breaking application data into smaller units,
called datagrams. Each datagram is sent across the network as a separate unit.
Breaking long messages into smaller network units is done to share the network

resource so that a long message does not dominate the bandwidth.

Network applications uses a protocol stack to interface the application to the
physical network. FIG. 1 shows the layers of a conventional protocol stack based on
the Open System Interconnection (“OSI”) Seven Layer Reference Model. FIG. 1
compacts layers 5-7 into a single Application layer for ease of reference in relation to
the present disclosure. “Application” in this disclosure refers to any program residing
above the transport layer, including software that services network requests for file

data, such as the SRV server module in the Windows NT operating system.

The transport layer (e.g., Transmission Control Protocol, or “TCP”) provides to
an application in a local computer a “virtual circuit” that connects the application to an
application in a remote computer even where the remote computer is half way around
the world. The transport layer maintains this virtual circuit even though the physical

network may frequently lose data.

The transport layer breaks the application data into “segments” that it gives to
the network layer. Segments created by the transport layer may be up to 64 Kbytes.
Segments which are not acknowledged by the transport layer on the destination

computer are resent.

The application data given to the transport layer may have its own application
header A (FIG. 1) déscribing the data. File transfers under Windows NT® (“NT”) for
example, have a Server Message Block (“SMB”) header placed before the data. The
application may divide the data into units smaller than 64 Kbytes. The file server

2-

10

15

20

25

30

WO 01/75621 PCT/US01/09125

software SRV that handles remote requests for files in NT, for example, breaks data
into units of about 60 Kbytes. The transport layer adds its own header T (FIG. 1) and

passes the segment down to the network layer.

The transport process that creates a virtual circuit requires an acknowledge
signal (“ACK”) back from the final destination for the data sent. If a specified number
of ACKSs is not received, the transport layer on the sending side stops sending data. If
the missing ACKs are not received in a predetermined time, the data is resent. The
transport layer, thus, implements both a flow-control mechanism and an error-control

mechanism.

The network layer (e.g., Internet Protocol, or “IP”’) breaks the transport segment
into datagrams that will fit in the Maximum Transfer Unit (MTU) of the network,
which is 1500 bytes for an Ethernet physical layer. The network layer then attempts to
move each of these MTU-size datagrams through the network to the destination. The
network layer gives each of these 1500-byte datagrams a network header N (FIG. 1)
containing the address of the final destination node. The network layer also adds a
Media Access (“MAC”) address to each datagram before passing it down to the data
link layer. The MAC address is the physical address of the very next node in the
network path. As the datagram makes its way through the network toward its final
destination, the MAC address is replaced at each hop with the address of the next node

on the route.

The data link layer instructs the network interface card (“NIC”) to move the
datagram fragment over the physical network to the next node. The data link layer
includes the NIC drivers. As FIG. 1 shows, as the application data moves down the
protocol stack, it accumulates headers 10. At the data link layer, the first few hundred
bytes of the final datagram contain all of headers 10.

The description above for the transport, network, and data link layers applies
equally to a Wide Area Network (WAN) that could span the entire globe and pass
through numerous routers, as to a local area network (LAN) where the nodes may all be
in the same building. In a LAN, each node is often just one hop away. That is, the

MAC address also points to the final destination.

10

15

20

25

30

WO 01/75621 PCT/US01/09125

In a conventional network, a read operation can be seen as a write of the read
request by a client computer to a server, followed by a write back of the data by the
server to the client computer. For example, when a client computer wants to read data
from a remote server, the client computer writes a request to the server asking for
certain file data. The network is then quiescent with no state maintained about the read
operation. When the server locates the data, it writes the data back to the client

computer.

In the write back operation, the transport layer sets up a virtual circuit to the
application in the destination computer, or uses a virtual circuit that already exists to
this application, and passes a segment of data to the network layer. For example, if the
application is a remote NT file server, the software in the NT server is SRV. After
receiving the request for file data, the server locates and returns the data. The
application source buffer in this case is most likely the cache in the NT server. If the
data is already in cache, the cache serves the data directly. If the data is not in the

cache, NT reads the data into cache before satisfying the network request.

As discussed above, the network layer fragments the segment into MTU-size
datagrams which are passed to the data link layer. Since each datagram is a separate
entity that may take a different route through the network, the datagrams could arrive at
the destination in a different order than they were sent. Because of the possibility of
receiving datagrams out of order, the receiving layers below the transport layer in the
destination computer buffer and reorder the datagram fragments, if necessary, before
passing them to the upper layers. While the chance of datagrams arriving out of order

is small on a LAN, LAN datagrams are processed the same way as WAN datagrams.

Another reason buffering is required at the receiver is that the datagrams in a
conventional network are unsolicited, i.e. the receiving network hardware does not
know yet the final destinations for the data in the datagrams. The receiving node puts
the unsolicited datagrams into a temporary buffer until the final application buffer is
found, at which time the data is copied from the temporary buffer to the application

buffer. Thus, the receiver buffering moves the data received twice.

Because of the unreliable physical network, the transport layer uses a

“checksum” in one of the fields of the transport header T (FIG. 1). The checksum is

4-

10

15

20

25

WO 01/75621 PCT/US01/09125

recalculated at the receiving end as the data arrives and compared with the checksum

sent. Computing checksum is a large network overhead.

On the receiving side, there are two conventional ways to handle arriving
datagrams. The first puts each datagram into a temporary buffer reserved for
unsolicited transmissions, reorders the datagrams as necessary, and passes them up to
the protocol stack where they are copied to the application buffer. Alternatively, the
first datagram received is passed up while succeeding datagrams are placed in
temporary buffers. This first datagram contains headers 10, so the upper layers can
locate the designated application. The application then passes down an application
buffer address and the data link layer begins copying the buffered data to this address,
reordering datagrams as necessary. In both cases above, the arriving data is first put

into a temporary buffer and later copied to the application buffer.

SUMMARY

In one embodiment, a method for transferring data over a network includes
specifying a Maximum Transfer Unit (“MTU”) greater or equal to the segment size,
sending the network headers of an application data over the network, receiving a start-
transfer signal indicating that the destination application buffer is ready to receive
a;pplication data over the network, and sending’the application data from the first
application buffer to the second application buffer over the network. In one
implementation, the network includes a Fibre Channel network. In another
implementation, the network includes any network media that allows buffer-to-buffer
direct memory access (“DMA?”) transfers of data. In yet another implementation, the
sending of the network headers, the receiving of the start-transfer signal, the sending of
the application data, and the receiving of the transfer status are accomplished using a

single hardware SCSI exchange.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the OSI Seven Layer Reference Model.

FIG. 2A illustrates a network in accordance with one embodiment of the present

invention.

10

15

20

25

30

WO 01/75621 PCT/US01/09125

FIG. 2B illustrates a method for buffer-to-buffer transfer over the network of

FIG. 2A in accordance with one embodiment of the present invention.
FIG. 3 illustrates a data read process of the method in FIG. 2B.

The use of the same reference symbols in different drawings indicates similar or

identical items.
DETAILED DESCRIPTION

FIG. 2A illustrates a network for transferring data between application buffers
123 and 223 of computers 100 and 200. Computer 100 includes processor 110,
memory 120, and network interface card (“NIC”) 130 all coupled to peripheral
component interconnect (“PCI”) bus 140. Computer 100 is, for example, a client
computer such as a “white box” computer using an ASUS P2B mother board with
400MHz Pentium II processor. Memory 120 includes an operating system (“OS”) 121,
application 122, application buffer 123, a protocol stack 124, and NIC driver 125. OS
121 is, for example, Windows NT® Workstation from Microsoft® Corporation of
Redmond, Washington. NIC 130 includes direct memory access controller (“DMA”)
131 and Small Computer System Interface (“SCSI”) Assist Hardware 132. NIC 130 is
coupled to Fibre Channel cable 133. NIC 130 is, for example, an HHBA-5100A
Tachyon TL Fibre Channel Adapter Card available from Agilent Technologies Inc. of
Palo Alto, California. Cable 133 is, for example, standard 62.5 micron multi-mode

fiber optic cable used commonly with Gigabit Ethernet and Fibre Channel.

Computer 200 includes processor 210, memory 220, and network interface card
(“NIC”) 230 all éoupled to peripheral component interconnect (“PCI”) bus 240.
Computer 200 is, for example, a server computer such as a Dell 6300 PowerEdge.
Memory 220 includes operating system (“OS”) 221, application 222, application buffer
223, protocol stack 224, and NIC driver 225. OS 221 is, for example, Windows NT®
Server from Microsoft® Corporation of Redmond, Washington. NIC 230 includes
direct memory access controller (“DMA™) 231 and Small Computer System Interface
(“SCSI”) Assist Hardware 232. NIC 230 is coupled to a Fibre Channel media 233.
NIC 230 is, for example, an HHBA-5100A Tachyon TL Fibre Channel Adapter Card
available from Agilent Technologies Inc. of Palo Alto, California. Media 233 is for

10

15

20

25

30

WO 01/75621 PCT/US01/09125

example, standard 62.5 micron multi-mode fiber optic cable used commonly with

Gigabit Ethernet and Fibre Channel.

Hub or switch 300 couples cables 133 and 233. Hub/switch 300 is, for
example, an LH5000 Digital Fibre Hub from Emulex of Costa Mesa, California.

FIG. 2B illustrates a method 40 for transferring data between application buffer
123 of computer 100 and application buffer 223 of computer 200. Method 40 starts in
action 400. Action 400 is followed by action 402. In action 402, NIC drivers 125 and
225 specify a maximum transfer unit (“MTU”) greater or equal to the segment size to

protocol stacks 124 and 224, respectively, during boot up.

Several bottlenecks in the conventional network transfer described earlier are
removed when NIC drivers 125 and 225 specify MTU greater than the segment size.
For example, Ethernet requires the network layer in the protocol stack to fragment each
64 Kbyte segment into 40 or more small datagrams because Ethernet has an MTU of
1500 bytes. NIC drivers 125 and 225 overcome this fragmentation by specifying an
MTU during system boot up that is large enough for an entire segment. While Ethernet
cannot accommodate an MTU this large, Fibre Channel can. All of the segment data
from the transport layer of protocol stack 124 and 224 are therefore submitted directly
to respective NIC drivers 125 and 225. NIC drivers 125 and 225 can thereafter transfer
the complete segment in one DMA burst using buffer-to-buffer mechanisms (described
later) in respective NICs 130 and 230. Furthermore, the data received does not need to
be saved in a temporary buffer for possible reordering as the Fibre Channel hardware

guarantees in-order delivery of-the DMA burst.

In one implementation, NICs 130 and 230 use a Fibre Channel frame of 2112
bytes. However, this frame size limitation is not visible outside of NICs 130 and 230.
Thus, the MTU specified by NIC drivers 125 and 255 during boot up is not limited by
the Fibre Channel frame size. Action 402 is followed by action 404.

In action 404, NIC driver 125 receives a read request from application 122
through protocol stack 124. The read reqﬁest is a request for data stored in computer
200. Action 404 is followed by action 406. In action 406, NIC driver 125 causes NIC
130 to transmit the read request to NIC 230. In one implementation, the read request is

a server message block (“SMB”) read request and NIC 130 transmits the SMB read

7-

10

15

20

25

30

WO 01/75621 PCT/US01/09125

request as a Fibre Channel single frame sequence (SFS) to NIC 230. In one variation,
NIC 130 transmits the read request to NIC 230 over cable 133 and cable 233 through
hub/switch 300. Action 406 is followed by action 408. '

In action 408, NIC driver 225 receives the read request from NIC driver 230
and passes the read request to application 222 through protocol stack 224. Action 408
is followed by action 410. In action 410, application 222 locates the requested data.
The requested data may be located on a hard disk or in application buffer 223 (also

known as “cache”) in memory 220. Action 410 is followed by action 412.

In action 412, NIC driver 225 receives the buffer address (e.g., address of
application buffer 223) of the requested data from application 222 through protocol
stack 224 and sets up NIC 230 (more specifically, DMA controller 231) as the
transmitting end of a DMA transfer between application buffer 223 in computer 200
and some buffer, as yet unknown, in computer 100. Action 412 is followed by action
414. In action 414, NIC driver 225 causes NIC 230 to transmit headers 10 (FIG. 1) of
the requested data to NIC 130. In one implementation, NIC 230 transmits headers 10
to NIC 130 as a SCSI command (“FCP_CMND?”) in a Fibre Channel SFS. This allows
NIC 230 to use SCSI Assist Hardware 232 for the pending DMA data transfer without

invoking host software.

Contrary to a conventional network discussed earlier, NIC driver 225 does not
continue sending requested data after sending the headers. Instead, NIC driver 225 sets
up the sending end of a DMA transfer from the application buffer address received,
sends one frame of a couple of hundred bytes containing all of headers 10 (FIG. 1), and
then waits for NIC driver 125 to obtain the destination application buffer address from
headers 10 and set up the receiving end of the DMA transfer. Thus, other than the
headers, NIC driver 225 does not transmit unsolicited data (daté without destination
buffer address) to computer 100 and cause computer 100 to store the requested data in
buffers reserved for unsolicited data and later copy the data to the appropriate

application buffer. Action 414 is followed by action 416.

In action 416, NIC driver 125 receives headers 10 from NIC 130 and passes
headers 10 to the upper layers of protocol stack 124. NIC driver 125 indicates to
protocol stack 124 that there is more data to follow. This action causes protocol stack

124 to return the address of the application buffer 123 to NIC driver 125. Protocol
-8-

10

15

20

25

30

WO 01/75621 PCT/US01/09125

stack 124 believes that the requested data has already been received in memory 120’s
unsolicited buffers (as in a conventional network described above) and proceeds to
locate the application associated with headers 10 (e.g., application 122) and return the

associated buffer address.

In one implementation, when NIC driver 125 receives headers 10 in an
unsolicited Fibre Channel frame from NIC 130, NIC driver 125 looks at two fields in a
special structure appended to the data. These fields are “LookaheadSize” and
“TotalPacketSize.” LookaheadSize is the amount of data in this frame.
TotalPacketSize is the total amount of data in the packet including any data still sitting
in application buffer 223 of computer 200. If these two fields are equal, NIC driver 125
knows that computer 200 has sent the entire message. In this case, if the OS is NT,
NIC driver 125 passes the packet up to protocol stack 124 by calling
“NdisMEthIndicateReceive” (described below) with “LookaheadBufferSize =
PacketSize.” This tells protocol stack 124 that the entire packet is being indicated up at
this time.

NdisMEthIndicateReceive(
| MiniportAdapterHandle,
MiniportReceiveContext,
HeaderBuffer,
HeaderBufferSize,
LookaheadBuffer,
LookaheadBufferSize,
PacketSize
);
Thus, small packets (e.g., read requests) are sent between computer 100 and
computer 200 without buffer-to-buffer transfers. “Small” is defined by NIC driver 125

as a length too small to justify the overhead of setting up a buffer-to-buffer transfer,

e.g., 1024 bytes.

If LookaheadSize is less than TotalPacketSize in the special structure appended
to the data, NIC driver 125 calls NdisMEthIndicateReceive with “LookaheadBufferSize

9.

10

15

20

25

WO 01/75621 PCT/US01/09125

< PacketSize.” Protocol stack 124 then finds the designated application (e.g.,
application 122) and obtains a buffer address for the remainder of the data. If the OS is
NT, protocol stack 124 passes this address back down to NIC‘driver 125 by calling
MiniportTransferData: (

MiniportTransferData(
Packet,
BytesTransferred,
MiniportAdapterContext,
MiniportReceiveContext,

ByteOffset,

BytesToTransfer

);

The “Packet” parameter in the MiniportTransferData call contains pointers to
the destination buffer (e.g., address of application buffer 123) for the data. Action 416
is followed by action 418.

In action 418, NIC driver 125 receives the address of application buffer 123
from application 122 through protocol stack 124 and sets up NIC 130 (more
specifically DMA controller 131) as the receiving end of a DMA transfer between
computers 100 and 200. Action 418 is followed by action 420. In action 420, NIC
driver 125 causes NIC 130 to transmit a start-transfer signal to NIC 230 to start the
DMA transfer. In one implementation, NIC 130 transmits the start-transfer signal as a
SCSI “FCP_XFER_RDY” in a Fibre Channel SFS to NIC 230. This allows NIC 230 to
use SCSI Assist Hardware 232 for the pending DMA data transfer without invoking
host software. ‘

Action 420 is followed by action 422. In action 422, DMA controllers 231 and
131 transfer the requested data from application buffer 223 to application buffer 123 in
a single DMA burst. DMA controllers 231 and 131 move the requested data from

application buffer 223 to application buffer 123 with no intermediate copies and very

-10-

10

15

20

25

30

WO 01/75621 PCT/US01/09125

little processor overhead. In one implementation, the DMA transfer accrues little
processor overhead from processors 110 and 210 because NIC drivers 125 and 225
configure the transport layers in respective protocol stacks 124 and 224 to forego
conventional checksums. Instead, NICs 130 and 230 rely on the internal Fibre Channel
hardware already performing a data integrity check. For example, each 2112 byte Fibre
Channel frame includes a 32-bit cyclical redundancy check (“CRC”) that detects all one
and two bit errors in the frame and most other errors, including all errors over an odd

number of bits. Action 420 is followed by action 424.

In action 424, NIC driver 125 causes NIC 130 to transmit a status signal to NIC
230 to acknowledge that the requested data has been received. In one implementation,
NIC 130 transmits the status signal as SCSI “FCP_RSP” in a Fibre Channel SFS to
NIC 230. The status signal causes NIC 230 to drop out of its SCSI Assist Hardware
mode and inform NIC driver 225 that the transfer is complete. Action 424 is followed
by action 426, which ends method 40.

As described above, method 40 does not change the programming interface seen
by applications accessing the network. Thus, application programs in the network
computers using this invention see only the conventional programming interface. Since
method 40 does not change this interface, method 40 operates identically to legacy
networks and transparently to existing applications (except that method 40 provides

significantly faster data transfer than conventional networks).

FIG. 3 shows a data read between computers 100 (e.g., client) and 200 (e.g.,
server) from the viewpoint of NICs 130 and 230. In phase 1, NIC 130 sends the SMB
read request to NIC 230. In phase 2, NIC 230 sets up the send end of the DMA and
sends the first couple of hundred bytes of the SMB read response. NIC 130 gets the
destination address from its application and writes it into DMA controller 131. In
phase 3, DMA controllers 131 and 231 send the data by DMA from application buffer
223 to application buffer 123. The phases in FIG. 3 include one or more lettered
actions A, B, C, D, E, F, and G, which are now explained in further detail.

In phase 1, action A, NIC 130 sends the SMB Read request (e.g., “R_SMB”) to
NIC 230 in a Fibre Channel SFS. The request goes across the network and is put into
an SFS Buffer 504 reserved at computer 200 for unsolicited arriving frames. NIC 130
sends an interrupt 506 to NIC driver 125 to indicate that the SFS (e.g., “R_SMB”) has

-11-

10

15

20

25

30

WO 01/75621 PCT/US01/09125

been sent successfully. NIC 230 sends an interrupt 509 to indicate to NIC driver 225
the arrival of the unsolicited SFS.

In phase 1, action B, NIC 230 passes the SMB read request up to protocol stack
224 to application 222. Application 222 is, for example, an NT server module SRV.
At the completion of action B, there is no state information remaining in the network
regarding the read operation. The read response that comes back from computer 200

with the data is a completely independent network event.

In phase 2, action C, NIC 230 receives an SMB read response (e.g.,
“R_SMB_RSP + large data”) from protocol stack 224. The SMB read response
includes the SMB information and pointers to the requested data. NIC 230 sets up to
send by DMA the requested data onto media 233 to computer 100. NIC 230 sends
headers 10, which includes the SMB read response header (A in FIG. 1) as a SCSI
command (“FCP_CMND”) in a Fibre Channel SFS to NIC 130. This “Lookahead
information” goes across the network and is put into an SFS Buffer 505 reserved at
computer 100 for unsolicited arriving frames. Treating the Lookahead information as a
SCSI command allows NIC 230 to invoke SCSI Assist Hardware 232, which avoids
host interrupts for the pending DMA transfer. NIC 130 sends an interrupt 507 to NIC
driver 125 to indicate the arrival of an unsolicited SFS (e.g., “FCP_CMND”).

In phase 2, action D, NIC 130 passes headers 10 up to protocol stack 124 with
an indication that more data is available (e.g., this is a partial packet where
LookaheadBufferSize < PacketSize).

In phase 3, action E, protocol stack 124 has processed headers 10 (e.g., the
partial packet) that was passed up and returns the address of the application buffer (e.g.,
application buffer 123) to receive the requested data. NIC 130 sets up a DMA from
media 133 to this buffer (e.g., application buffer 123). NIC 130 sends a SCSI signal
(“FCP_XFER_RDY™) in a Fibre Channel SFS to the waiting NIC 230 to start the DMA

transfer.

In phase 3, action F, NIC 130 and NIC 230 DMA the requested data from
application buffer 223 (FIG. 1; e.g., NT cache) to application buffer 123 in a single
burst as a SCSI data transfer (“FCP_DATA”). NIC 130 then sends an interrupt 511 to
NIC driver 125 to indicate the end of the DMA transfer.

-12-

10

15

20

25

WO 01/75621 PCT/US01/09125

In phase 3, action G, NIC 130 sends a SCSI signal (e.g., “FCP_RSP”) to NIC
230 to return status for the buffer-to-buffer DMA transfer. NIC 130 sends an interrupt
508 to NIC driver 125 to indicate that the SCSI signal (e.g., “FCP_RSP”) has been
successfully sent. NIC 230 sends an interrupt 510 to NIC driver 225 to indicate that it
received a SCSI signal (e.g., “FCP_RSP”) from NIC 130, indicating the DMA

completed.

Although the present disclosure describes the use of Fibre Channel technology
as the network media, one skilled in the art recognizes that the disclosed methods could
benefit any network media, including Ethernet. Specifically, any network media can
benefit from (1) specifying an MTU during boot up greater than or equal to the segment
size to avoid fragmentation of the data by the protocol stack, (2) pre-fetching the
destination address on the computer receiving the data by sending over just the network
headers while the data to send remains on the sending computer, and (3) sending data
from the sending computer directly to this destination address (instead of to an
intermediate buffer in the receiving computer) thereby avoiding repeatedly copying the
data. If the network media supports a buffer-to-buffer DMA transfer, sending the data
in the above step 3 reduces to a single DMA burst.

Numerous modifications and adaptations of the embodiments described herein
will be apparent to the skilled artisan in view of the disclosure. For example, method
40 is not platform specific and can work on other platforms such as Linux, other forms
of the Unix operating system, Apple operating systems, or any other operating system
that allows, or can be modified to allow, the passing up of the headers and the passing
down of the buffer address of the application. As previously discussed, although Fibre
Channel may be used as the network media, other network media may be used and
benefit from method 40. Such changes and modifications are encompassed by the

attached claims.

13-

10

15

20

WO 01/75621 PCT/US01/09125

CLAIMS
I CLAIM:
1. A method for transferring data over a network, comprising the acts of:

specifying an MTU greater than or equal to the segment size of a first

computer;

sending, by the first computer to a second computer over the network,

headers of a data located in a first application buffer in the first computer;

receiving, by the first computer from the second computer over the
network, a start-transfer signal indicating that the second computer is ready to

receive the data in a second application buffer in the second computer; and

sending, by the first computer to the second computer over the network,

the data from the first application buffer to the second application buffer.

2. The method of Claim 1, wherein the network comprises a Fibre Channel
network.
3. The method of Claim 1, wherein the network comprises network hardware that

allows buffer-to-buffer DMA transfer of data.

4. The method of Claim 1, wherein said sending of the data comprises a buffer-to-
buffer DMA transfer between the first application buffer and the second application

buffer without intermediate copies.

5. The method of Claim 1, wherein the sending of the headers comprises
transmitting the headers as a SCSI command of FCP_CMND.

6. The method of Claim 1, wherein the receiving of the start-transfer signal
comprises accepting the start-transfer signal as a SCSI signal of FCP_XFER _RDY.

7. The method of Claim 6, further comprising utilizing a SCSI assist hardware of a
network interface card in the first computer to process the start-transfer signal without

involving a host processor of the first computer.

-14-

10

15

20

25

WO 01/75621 PCT/US01/09125

8. The method of Claim 1, wherein said sending of the data comprises transmitting

the data as a SCSI data.

9. The method of Claim 1, further comprising receiving, by the first computer
from the second computer over the network, a status signal indicating the data has been

received.

10. The method of Claim 9, wherein said receiving the status signal comprises

receiving the status signal as a SCSI signal of FCP_RSP.

11. A method for data transfer over a network, comprising the acts of:
receiving headers for a data from a first computer over the network;
sending the headers up a protocol stack of a second computer;
indicating to the protocol stack that more data is to follow;
receiving an application buffer address for storing the data; and

sending a start-transfer signal for transmission of the data to the first

computer over the network.

12. The method of Claim 11, wherein the network comprises a Fibre Channel

network.

13. The method of Claim 11, wherein the network comprises network hardware that
allows buffer-to-buffer DMA transfer of data.

14. The method of Claim 11, further comprising the act of receiving the datain a
buffer-to-buffer DMA transfer between a first application buffer in the first computer
and a second application buffer in the second computer without intermediate copies, the

second application buffer corresponding to the application buffer address.

15. The method of Claim 11, wherein said receiving the headers comprises

accepting the headers as a SCSI command of FCP_CMND.

16. The method of Claim 11, wherein said sending the start-transfer signal
comprises transmitting start-transfer signal as a SCSI signal of FCP_XFER RDY.

-15-

10

15

20

25

WO 01/75621 PCT/US01/09125

17. The method of Claim 11, further comprising receiving the data by the second

computer from the first computer over the network.

18. The method of Claim 17, wherein said receiving the data comprises accepting

the data as a SCSI data.

19. The method of Claim 17, further comprising sending a status signal to the first

computer indicating receiving the data by the second computer over the network.

20. The method of Claim 19, wherein said sending the status signal comprises

transmitting the status signal as a SCSI signal of FCP_RSP.

21. A computer read computer-readable medium carrying a program for data

transfer comprising:

a first instruction to specify an MTU greater than or equal to the

segment size of a first computer;

a second instruction to send, by the first computer to a second computer
over the network, headers of a data located in a first application buffer in the

first computer;

a third instruction to set up a hardware of the first computer to receive
from the second computer over the network a start-transfer signal indicating that
the second computer is ready to receive the data in a second application buffer

in the second computer; and

a fourth instruction to send, by the first computer to the second computer
over the network, the data from the first application buffer to the second
application buffer.

22. The medium of Claim 21, wherein the network comprises a Fibre Channel

network.

23. The medium of Claim 21, wherein the network comprises network hardware

that allows buffer-to-buffer DMA transfer of data.

24. The medium of Claim 21, wherein the hardware is a SCSI assist hardware.

-16-

10

15

20

25

WO 01/75621 PCT/US01/09125

25. The medium of Claim 21, wherein the second instruction comprises a fifth

instruction to transmit the headers as a SCSI command of FCP_CMND.

26. The medium of Claim 21, further comprising a fifth instruction to utilize a SCSI
assist hardware of a network interface card in the first computer to process the start-

transfer signal without involving a host processor of the first computer.

27. The medium of Claim 21, wherein the fourth instruction comprises a fifth
instruction to transmit the data as a SCSI data. |

28. The medium of Claim 21, further comprising a fifth instruction to receive, by
the first computer from the second computer over the network, a status signal indicating

the data has been received.

29. The medium of Claim 28, wherein the fifth instruction comprises a sixth

instruction to receive the status signal as a SCSI signal of FCP_RSP.

30. A computer-readable medium carrying a program for transferring data

comprising:

a first instruction to receive headers for a data from a first computer over
the network;

a second instruction to send the headers up a protocol stack of a second

computer;

a third instruction to indicate to the protocol stack that more data is to

follow;

a fourth instruction to receive an application buffer address for storing

the data; and

a fifth instruction to send a start-transfer signal for transmission of the

data to the first computer over the network.

31. The medium of Claim 30, wherein the network comprises a Fibre Channel

network.

-17-

10

15

20

WO 01/75621 PCT/US01/09125

32. The medium of Claim 30, wherein the network comprises network hardware

that allows buffer-to-buffer DMA transfer of data.

33. The medium of Claim 30, further comprising a sixth instruction to receive the
data in a buffer-to-buffer DMA transfer between a first application buffer in the first
computer and a second application buffer in the second computer without intermediate

copies, the second application buffer corresponding to the application buffer address.

34. The medium of Claim 30, wherein the first instruction comprises a sixth

instruction to accept the headers as a SCSI command of FCP_CMND.

35. The medium of Claim 30, wherein the fifth instruction comprises a sixth
instruction to transmit the start-transfer signal as a SCSI command of
FCP_XFER RDY.

36. The medium of Claim 30, further comprising a sixth instruction to receive the

data by the second computer from the first computer over the network.

37. The medium of Claim 36, wherein the sixth instruction comprises a seventh

instruction to accept the data as a SCSI data.

38. The medium of Claim 36, further comprising a seventh instruction to send a
status signal to the first computer indicating receiving the data by the second computer

over the network.

39. The medium of Claim 38, wherein the seventh instruction comprises an eighth

instruction to transmit the status signal as a SCSI signal of FCP_RSP.

-18-

PCT/US01/09125

WO 01/75621

1/4

(ssaJppp QyH) Jeppay yur] pjoq | @
Japoay omiaN | N
Joppay podsund] | |
(buinses @iy [N smopuip Joi gns “b-a) teppay uonpolddy |y
JokoT
paIshyd
> awnJj a .
1907 J1oAD
AuUrT o3p@ =\ AUFT BID(
wp.boipp]
JEon! JahD]
HOMON SOMIN
Juawbas
JaAn0 19AD7
JodsupJ| Jodsuny|
ABOU uorpaiddy
10AD7 Jakn
uoypayddy uol}poj|ddy

| 0SI

Z 03I

(dI “b%8) ¢ 0SI
(doL “B9) % 0SI

=G 0SI

SUBSTITUTE SHEET (RULE 26)

PCT/US01/09125

WO 01/75621

2/4

Ve Ol

00¢ 00l
Jayndwio) Jandwio)
0¢ I I£¢ 49[1043U0Q ¢EC SIDMpIDHY | N mﬁ_vm B . Ok o 1€l I3(|013u0) ¢¢| °JDMpPIDH
VIa WISy 808 | [T ;\M.sIm 1 VINa JSIssY 150S
I cee eel ;
-~ / - -t Y -
0¥ snq 1d 4 1 07l snq 10d ¢ 1
Y Y
0¢z Riowap 07| Alowap
GC¢ PMIQ JIN GZl JoAud JIN
¥CC MOPIS ZARERN
090104 1]¥4 v [030301d lcl v
SO SO
_ ¥4 _ 0Ll
c7T ! VAR 10SS820.4 YA [44: 10SS820.
Jayng uopal|ddy dayng | uoipoi|ddy

SUBSTITUTE SHEET (RULE 26)

WO 01/75621

Start 400

\

FC drivers 125 and 225
specify MTUs > i
segment size to

respective protocol
stacks 124 and 224
during boot up.

Y

NIC driver 125 receives |
read request from

3/4

~ 402

~ 404

application 122.

y

NIC driver 125 causes -
NIC 130 to transmit
read request to NIC 230

~ 406

Y

NIC driver 225 passes 4~ 408

read request up protocol
stack 224 to application
222.

\

Application 222 locates

the requested data. If |

application 222 is a file
server, data will be
located on disk and
transferred to cache, or
located immediately in
cache. The cache in this
case is buffer 223.

~ 410

Y

NIC driver 225 receives | 419

buffer 225 address from
application 222 and sets
up send end of DMA.

Y

NIC driver 225 causes +~—414

NIC 230 to transmit
headers to NIC 130

(one frame).

PCT/US01/091

Y

25

NIC driver 125 passes L 416

headers to protocol
stack 124, which finds
application 122.

Y

NIC driver 125 receives L 418

buffer 123 address from
application 122 and sets
up receive end of DMA.

Y

NIC driver 125 causes 1. 420

NIC 130 to transmit
FCP_XFER_RDY to
NIC 230 to start DMA.

y
DMA from NIC 230 to
NIC 130 transfers data
from buffer 223 to

i~ 422

buffer 123 in one burst.

Y

NIC driver 125 causes |
NIC 130 to transmit

~ 424

FCP_RSP to NIC 230.

FIG. 2B

Y

End 426

SUBSTITUTE SHEET (RULE 26)

WO 01/75621 PCT/US01/09125

4/4
Computer 100 B:Indicate Computer 200
Send “R_SMB” (e.g., Client) up entre (€:g., Server)
packet
PacketN in Application Buffer 123 SFS Buffer 504
R_SMB _+ headers | 506 | PacketN | 509
: A A
A:send small packet as SFS { Exchange X1 T;
{ A: SFS(PacketN) 6 o
NIC 130 NIC 230
D:Indicate up partial packet Send “R_SMB_RSP+large data”
SFS Buffer 505 | PacketN in Application Buffer 223
[R_SMB_RSP+headers| y5°7 R_SMB_RSP+large data+headers
¢ cf C:Setup DMA for large data
Exchange X2 and send Lookahead as
@ “FCP_CMND”
jC: Lookahead l
~ (R_SMB_RSP+headers)
NIC 130 / VCP—CMND NIC 230

E:Buffer address to receive data

E: Setup DMA to
pass cable dota to
received buffer Application Buffer 123

address FGiSend

“FCP XFER RDY’ T\G I TG
508
| | E:SFS(FCP_YFER_RDY) |

NG 130 _ | [F:FCP_DATA(large data) NG 230
|| GSFs(FcP RsP)
Interrupts: Legend.
client server SFS — Single Frame Sequence
" R_SMB - read SMB
S;‘i‘rclﬂlc d 13 g ? R_SMB_RSP — read_response SMB
4 9 ® noncritical interrupt (overlapped)

o critical interrupt

— Control
— DMA

FIG. 3

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT In

tional Application No

PCT/US 01/09125

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F13/28 H04L29/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F HOAL

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

figure 3

1 April 1999 (1999-04-01)
page 6, 1ine 15 —-page 18,

A EP 0 657 824 A (ADVANCED MICRO DEVICES
INC) 14 June 1995 (1995-06-14)

page 4, Tine 50 -page 5, Tine 58
A WO 99 16177 A (EMULEX CORP)

line 7

1,11,21,
30

1,11,21,
30

I___] Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

*L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

0O document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

*Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
ments, such combination being obvious to a person skilled

in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

27 August 2001

03/09/2001

Date of mailing of the international search report

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Scalia, A

Form FCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT | 1al Application No

Information on patent family members

PCT/US 01/09125

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0657824 A 14-06-1995 JP 7221780 A 18-08-1995
us 5533203 A 02-07-1996
WO 9916177 A 01-04-1999 EP 1023668 A 02-08-2000

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

