Title: VISCOUS -ELASTIC SOUND-ABSORBING POLYURETHANE FOAM AND PREPARATION METHOD THEREOF

Abstract: Disclosed in the present invention are a viscous -elastic sound-absorbing polyurethane foam and a method for preparing the same, the foam being prepared by reacting a polyisocyanate composition and an isocyanate reactive component. The isocyanate reactive component comprises, based on the weight of a mixed polyether, 30-80 wt% of (bii) a copolyol of epoxypropylene-epoxyethylenediol and an aromatic or a conjugate thereof, with a content of oxy-ethylenediol units being 5-35 wt%; 2-20 wt% of (biii) a copolyol of epoxidized epoxypropylene and an aromatic or a conjugate thereof, with a content of oxy-ethylenediol units being 70-100 wt%; 20-70 wt% of (biv) a copolyol of epoxypropylene and an aromatic or a conjugate thereof, with a content of oxy-ethylenediol units being 0-20 wt%. The sound-absorbing foam of the present invention has a ball resilience rate of 15-30%, and good sound-absorbing properties.
一种粘弹性聚氨酯吸音泡沫及其制备方法

技术领域
本发明涉及粘弹性聚氨酯吸音泡沫及其制备方法，具体地，本发明涉及泡沫回弹率低、自低频至高频的宽范围内具有优良的吸音性能的粘弹性聚氨酯泡沫及其制备方法。

背景技术
粘弹性聚氨酯泡沫，又称慢回弹泡沫，其在压缩循环过程中表现出慢回复性，并由此具有高滞后性，通常还具有低的球回弹值。这些性能主要是由发泡的聚合物的本身结构所造成的。一种方法是通过对组分的选择，使泡沫玻璃化温度控制在室温附近；另一种方法是通过控制泡孔结构来限制气流进出泡沫的速度。

粘弹性泡沫控制玻璃化温度的通常工艺路线是将低羟值聚醚和高羟值聚醚混合使用，如中国专利申请 CN1606580A、CN1572186A> CN1229803A 都是基于这一理论；还有一种提供粘弹性的方式是添加一元醇，例如中国专利申请 CN183 1025A 中使用 10～25 份的分子量为 200～500 的单醇；美国专利 US6391935B1 中采用了 15～70 份的羟值小于 56 mgKOH/g 的单醇；WO2010/009205A1 采用 1～20 份的单醇或单醇混合物。

目前，粘弹性聚氨酯泡沫的回弹率一般均低于 15%（如中国专利申请 CN101412798A 、CN101 160366A, CN1922230A 等），密度为 50～70kg/m³ 的粘弹性聚氨酯泡沫泡沫孔较粗，通气性能较好，但吸音性能较差。

中国专利申请 CN1910650A 公开了包括粘弹性泡沫的隔音系统，但未涉及粘弹性聚氨酯泡沫的制造方法及吸音性能。
中国专利申请 CN101903434A 使用来自植物的多元醇制备吸音材料，最大吸音系数在 0.70 以上，但未涉及粘弹性泡沫的内容。中国专利申请 CN101410430A 描述了一种聚氨酯泡沫的制造方法，自由泡密度为 5~40kg/m³，最大吸音作用是在 1000~2000Hz 之间的频率达到的。中国专利申请 CN101238163A 提供了具有良好振动特性和吸音特性的软质聚氨酯泡沫塑料制造方法，回弹率大于等于 55%，500Hz 吸音系数在 0.20 左右，1000Hz 吸音系数大于 0.45，2000Hz 吸音系数大于 0.90。中国专利申请 CN10128163A 提供了一种软质聚氨酯泡沫及其制造方法，尤其改善了泡沫低频范围内的吸音特性，500Hz 的吸引性大于等于 0.3，2000Hz 的吸音性大于等于 0.55。但上述专利文献均未提及粘弹性聚氨酯泡沫，尤其球回弹率 15~30% 粘弹性聚氨酯泡沫的吸音性能。

上述专利文献未涉及关于球回弹率为 15~30% 的粘弹性聚氨酯泡沫吸音性能的内容，更未涉及具有优良吸音性能的粘弹性泡沫材料及其制造方法。

发明内容

本发明的目的之一在于提供一种具有优良吸音性能的低密度粘弹性聚氨酯泡沫，该泡沫在具有粘弹性的特征前提下，密度低，气味小，并具有优良的吸音性能。

本发明的另一个目的在于提供一种具有优良吸音性能的低密度粘弹性聚氨酯泡沫的制备方法。该方法通过混合聚醚及多元氰酸酯组合物的选择，可以不含或少含甲苯二异氰酸酯，原料毒性小，可以不含除水以外的其他物理发泡剂，可以不含金属类催化剂，对人体健康和环境没有危害。

为达到以上目的，本发明的技术方案如下：
本发明提供一种粘弹性聚氨酯吸音泡沫，所述泡沫由包括以下组分的反应回体系制备:

(a) 多异氰酸酯组合物，以多异氰酸酯组合物的总重量计，所述多异氰酸酯组合物含有0.5wt%甲苯二异氰酸酯，所述多异氰酸酯组合物的异氰酸酯基团的数均官能度为2～2.4，NCO含量为20～35wt%；

(b) 异氰酸酯反应活性组分，包括:

(bi) 水，其用量为混合聚醚重量的2～5wt%；

(bii) 环氧丙烷-环氧乙烷共聚多元醇或其结构物，其中，环氧乙基单元含量为5～35wt%，平均官能度为2～4，平均羟值为20～65mgKOH/g，其用量为混合聚醚重量的30～70wt%；

(biii) 环氧丙烷-环氧乙烷共聚多元醇或其结构物，其中，环氧乙基单元含量为70～100wt%，平均官能度2～4，平均羟值为20～200mgKOH/g，其用量为混合聚醚重量的2～20wt%；

(biv) 环氧丙烷-环氧乙烷共聚多元醇或其结构物，其中，环氧乙基单元含量为0～20wt%，平均官能度2～5，平均羟值为180～830mgKOH/g，其用量为混合聚醚重量的20～65wt%；

(bv) 扩链剂和/或交联剂，其用量为混合聚醚重量的0～10wt%；

其中，所述的混合聚醚为组分(bii)、组分(biii)和组分(biv)的混合物；

(c) 表面活性剂，其用量为混合聚醚重量的0～1wt%；

(d) 催化剂，其用量为混合聚醚重量的0～3.5wt%；

(e) 任选的添加剂，所述添加剂包括色浆、内脱模剂、阻燃剂、填料、抗静电剂、香料、抗氧剂、光稳定剂、矿物油和抗微生物剂中的一种或两种或多种；

其中，反应体系中的异氰酸酯指数为0.6～0.9，优选0.6～0.8，
更优选 0.6～0.75。

根据本发明所述的泡沫，优选地，所述多异氰酸酯组合物包括甲苯二异氰酸酯、纯二苯基甲烷二异氰酸酯、聚二苯基甲烷二异氰酸酯和异氰酸酯封端的多异氰酸酯预聚物中的一种或两种或多种；优选地，所述多异氰酸酯组合物的甲苯二异氰酸酯的含量为0wt%。

根据本发明所述的泡沫，优选地，所述多异氰酸酯组合物的异氰酸酯基团的数均官能度为2.1～2.3，NCO含量为25～33wt%。

根据本发明所述的泡沫，优选地，组分(bv)的用量为混合聚醚重量的0.5～6wt%；组分(c)的用量为混合聚醚重量的0.2～0.8wt%；
组分 (d) 的用量为混合聚醚重量的 0.5 ~ 3wt%; 优选地，组分 (bv) 的用量为混合聚醚重量的 1 ~ 5.5wt%; 组分 (c) 的用量为混合聚醚重量的 0.4 ~ 0.6wt%; 组分 (d) 的用量为混合聚醚重量的 1 ~ 2.5wt%。

根据本发明所述的泡沫，优选地，所述泡沫的密度为 50 ~ 70kg/m³，球回弹率为 15 ~ 30%，500Hz 吸音系数为 0.15 ~ 0.35，1000Hz 吸音系数为 0.40 ~ 0.70，2000Hz 吸音系数为 0.80 ~ 0.99；所述吸音系数由驻波管法测定 22mm 厚度的泡沫获得。

本发明还提供一种粘弹性聚氨酯吸音泡沫的制备方法，所述泡沫由包括以下组分的反应系系制备：

(a) 多异氰酸酯组合物，以多异氰酸酯组合物的总重计，所述多异氰酸酯组合物含有 0 ~ 5wt% 甲苯二异氰酸酯，所述多异氰酸酯组合物的异氰酸酯基团的数均官能度为 2 ~ 2.4，NCO 含量为 20 ~ 35wt%；

(b) 异氰酸酯反应活性组分，包括：

(bi) 水，其用量为混合聚醚重量的 2 ~ 5wt%；

(bii) 环氧丙烷-环氧乙烷共聚多元醇或其结合物，其中，氧亚乙基单元含量为 5 ~ 35wt%，平均官能度为 2 ~ 4，平均羟值为 20 ~ 65mgKOH/g，其用量为混合聚醚重量的 30 ~ 70wt%；

(biii) 环氧丙烷-环氧乙烷共聚多元醇或其结合物，其中，氧亚乙基单元含量为 70 ~ 100wt%，平均官能度 2 ~ 4，平均羟值为 20 ~ 200mgKOH/g，其用量为混合聚醚重量的 2 ~ 20wt%；

(biv) 环氧丙烷-环氧乙烷共聚多元醇或其结合物，其中，氧亚乙基单元含量为 0 ~ 20wt%，平均官能度 2 ~ 5，平均羟值为 180 ~ 830mgKOH/g，其用量为混合聚醚重量的 20 ~ 65wt%；

(bv) 扩链剂和/或交联剂，其用量为混合聚醚重量的 0 ~ 10wt%；

其中，所述的混合聚醚为组分 (bii)、组分 (biii) 和组分 (biv)
的混合物；

(c) 表面活性剂，其用量为混合聚醚重量的 0～1wt%；

(d) 催化剂，其用量为混合聚醚重量的 0～3.5wt%；

(e) 任选的添加剂，所述添加剂包括色浆、内脱模剂、阻燃剂、
填料、抗静电剂、香料、抗氧剂、光稳定剂、矿物油和抗微生物剂中
的一种或两种或多种；

其中，反应体系中的异氰酸酯指数为 0.6～0.9，优选 0.6～0.8，
更优选 0.6～0.75。

根据本发明所述的制备方法，优选地，所述多异氰酸酯组合物包
括甲苯二异氰酸酯、纯二苯基甲烷二异氰酸酯、聚二苯基甲烷二异
氰酸酯和异氰酸酯封端的多异氰酸酯预聚物中的一种或两种或多种；优
选地，所述多异氰酸酯组合物的甲苯二异氰酸酯的含量为 0wt%。

根据本发明所述的制备方法，优选地，组分 (bii) 的氧亚乙基单
元含量为 8～30wt% ，平均官能度为 2.7～3，平均羟值为 30～60
mgKOH/g，其用量为混合聚醚重量的 40～65wt%；优选地，氧亚乙基
单元含量为 10～28wt%，平均官能度为 2.7～3，平均羟值为 32～
58mgKOH/g，其用量为混合聚醚重量的 45～60wt%。

根据本发明所述的制备方法，优选地，组分 (biii) 的氧亚乙基单
元含量为 72～90wt% ，平均官能度为 2.5～3.8，平均羟值为 30～
100mgKOH/g，其用量为混合聚醚重量的 3～15wt%；优选地，氧亚乙
基单元含量为 75～80wt% ，平均官能度为 2.8～3.5，平均羟值为 35～60
mgKOH/g，其用量为混合聚醚重量的 5～10wt%。

根据本发明所述的制备方法，优选地，组分 (biv) 的氧亚乙基单
元含量为 0～15wt% ，平均官能度为 2～4.8，平均羟值为 200～
810mgKOH/g ，其用量为混合聚醚重量的 30～60wt%；优选地，氧亚
乙基单元含量为 0～12wt% ，平均官能度为 2～4.5，平均羟值为 220～
790 mgKOH/g，其用量为混合聚醚重量的35～55wt%。

根据本发明所述的制备方法，优选地，组分 (bv) 的用量为混合聚醚重量的0.5～6wt%；组分 (c) 的用量为混合聚醚重量的0.2～0.8wt%；组分 (d) 的用量为混合聚醚重量的0.4～0.6wt%；组分 (e) 的用量为混合聚醚重量的1～2.5wt%。

具体实施方式

在本发明中，混合聚醚即组分 (bii)、(biii) 和 (biv) 的混合物。本发明的混合聚醚中，组分 (bii)、(biii) 和 (biv) 的重量百分数之和为100wt%。在本发明中，氧亚乙基单元的含量是指在组分 (bii)、(biii) 或 (biv) 中，环氧乙烷重量/(环氧乙烷重量+环氧丙烷重量)的比例。

在本发明中，"氧亚乙基单元" 指由环氧乙烷 (EO) 形成的单元，"氧亚乙基单元" 与 "环氧乙烷单元" 可互换使用，类似地，"氧亚丙基单元" 指由环氧丙烷 (PO) 形成的单元，"氧亚丙基单元" 与 "环氧丙烷单元" 可互换使用。"结合物" 是指同一类型的两种或多种产品的相结合使用。

本发明中的 "平均官能度" 说明如下：环氧丙烷-1不氧乙烷共聚多元醇或其结合物属同系物的混合物，实际应用中的官能度是一个平均值，平均官能度的计算方法如下：

$$ \bar{f}_n = \frac{M_n}{M_e} $$

其中 \bar{f}_n 为平均官能度，M_n 为多元醇或其结合物的数均分子量，M_e 为多元醇或其结合物的 "羟基当量"，即平均含有 1 摩尔端羟基的
多元醇或其结合物的质量。平均羟值的计算方法如下：

\[V_0 H = \sum f_i V_{Oi} \]

其中，\(V_O \) 为平均羟值，\(f_i \) 为混合物中各组分的质量百分比，\(V_{Oi} \) 为各组分对应的羟值。

本发明中 "多异氰酸酯组合物的数均官能度" 是指，多异氰酸酯组合物中数均分子量与 "异氰酸酯基团当量" 的比值。"异氰酸酯基团当量" 即平均含有 1 摩尔端异氰酸酯基的多异氰酸酯组合物的质量。

在本发明中，"多种" 是指三种以上。

本发明的吸音泡沫的密度为 50 ~ 70kg/m³，球回弹率为 15 ~ 30%，由驻波法测定 22mm 厚度的泡沫，其 500Hz 吸音系数为 0.15 ~ 0.35，1000Hz 吸音系数为 0.40 ~ 0.70，2000Hz 吸音系数为 0.80 ~ 0.99，最大吸音系数 0.99。

本发明通过使用包含以下组分的反应体系，制备了能满足上述需求的吸音泡沫：

(a) 以多异氰酸酯组合物的总重计，含有 0 ~ 5wt% 甲苯二异氰酸酯的多异氰酸酯组合物，其异氰酸酯基团的数均官能度为 2 ~ 2.4，NCO 含量为 20 ~ 35wt%；优选地，异氰酸酯基团的数均官能度为 2.1 ~ 2.3，NCO 含量为 25 ~ 33wt%；

(b) 异氰酸酯反应活性组分，包括：

(bi) 水，用量为混合聚醚（bii+bili+biv）重量的 2 ~ 5wt%，优选 2.5 ~ 4.5wt%，更优选 3 ~ 4wt%；

(bii) 环氧丙烷-环氧乙烷共聚多元醇或其结合物，其中氧亚乙基单元含量为 5 ~ 35wt%，平均官能度为 2 ~ 4，平均羟值为 20 ~ 65mgKOH/g，其用量为混合聚醚重量的 30 ~ 70wt%；优选地，氧亚乙基单元含量为 8 ~ 30wt%，平均官能度为 2.7 ~ 3，平均羟值为 30 ~ 60mgKOH/g，其用量为混合聚醚重量的 40 ~ 65wt%；更优选地，氧亚乙基单元含量为 10 ~ 28wt%，平均官能度为 2.7 ~ 3，平均羟值为 32 ~
58mgKOH/g，其用量为混合聚醚重量的45~60wt%；

（biii）环氧丙烷-环氧乙烷共聚多元醇或其结合物，其中氧亚乙基单元含量为70~100wt%，平均官能度为2~4，平均羟值为20~200mgKOH/g，其用量为混合聚醚重量的2~20wt%；优选地，氧亚乙基单元含量为72~90wt%，平均官能度为2.5~3.8，平均羟值为30~100mgKOH/g，其用量为混合聚醚重量的3~15wt%；更优选地，氧亚乙基单元含量为75~80wt%，平均官能度为2.8~3.5，平均羟值为35~60mgKOH/g，其用量为混合聚醚重量的5~10wt%；

（biv）环氧丙烷-醚氧乙烷共聚多元醇或其结合物，其中氧亚乙基单元含量为0~20wt%，平均官能度为2~5，平均羟值为180~830mgKOH/g，其用量为混合聚醚重量的20~65wt%；优选地，氧亚乙基单元含量为0~15wt%，平均官能度为2~4.8，平均羟值为200~810mgKOH/g，其用量为混合聚醚重量的30~60wt%；更优选地，氧亚乙基单元含量为0~12wt%，平均官能度为2~4.5，平均羟值为220~790mgKOH/g，其用量为混合聚醚重量的35~55wt%；

（bv）扩链剂和/或交联剂，其用量为混合聚醚重量的0~10wt%，优选0.5~6wt%，更优选1~5.5wt%；

（c）表面活性剂，其用量为混合聚醚重量的0~1wt%，优选0.2~0.8wt%，更优选0.4~0.6wt%；

（d）催化剂，其用量为混合聚醚重量的0~3.5wt%，优选0.5~3wt%，更优选1~2.5wt%；

（e）任选的添加剂，包括色浆、内模剂、阻燃剂、填料、抗静电剂、香料、抗氧剂、光稳定剂、矿物油和抗微生物剂中的一种或多种；

其中，反应体系中的异氰酸酯指数为0.6~0.9，优选0.6~0.8，更优选0.6~0.75。
本发明所述的异氰酸酯指数，是多异氰酸酯组合物中的 NCO 基团与异氰酸酯反应活性组分中活泼氢原子的摩尔比例。其中一个水分子含有 2 个活泼氢原子，一个羟基含有 1 个活泼氢原子，一个伯胺基含有 2 个活泼氢原子，一个仲胺基含有 1 个活泼氢原子。异氰酸酯指数较高时泡沫的慢回弹性减弱，泡沫闭孔率提高，收缩倾向增大，同时异氰酸酯指数太低会导致泡沫的力学性能下降。

本发明所述的组分 (a) 为多异氰酸酯组合物 (又称异氰酸酯组分)，其含有 0～5wt% 甲苯二异氰酸酯。优选地，组分 (a) 包括甲苯二异氰酸酯、纯二苯基甲烷二异氰酸酯、聚二苯基甲烷二异氰酸酯和异氰酸酯封端的多异氰酸酯预聚物中的一种或两种或多种。

优选地，本发明所述的组分 (a) 的甲苯二异氰酸酯的含量为 0wt%，以多异氰酸酯组合物的总重量计。

本发明所述的纯二苯基甲烷二异氰酸酯包括二苯基甲烷 -2,4- 二异氰酸酯和二苯基甲烷 -4,4'- 二异氰酸酯的一种或两种。

本发明所述的聚二苯基甲烷二异氰酸酯是指三环及三环以上的多环聚异氰酸酯；优选为烟台万华的 WANNATE PM-200。

本发明所述的异氰酸酯封端的多异氰酸酯预聚物是异氰酸酯和多羟基化合物的反应产物，其中异氰酸酯包括纯二苯基甲烷二异氰酸酯和聚二苯基甲烷二异氰酸酯的一种或两种或多种。多羟基化合物 (也称作多元醇) 的数均分子量为 2000～10000，平均官能度为 2～4，用量为制备多异氰酸酯预聚物所用异氰酸酯重量的 1～20wt%。多羟基化合物可由选自多元醇 (包括但不限于乙二醇、二甘醇、丙二醇、二丙二醇、甘油、三羟基甲基多烷、季戊四醇和山梨醇等) 中至少一种的起始剂与环氧乙烷/或环氧丙烷聚合而形成；也可以由选自多胺 (包括但不限于乙二胺、甲苯二胺、二亚基二苯基甲烷、多亚基多苯基多胺和氨基醇等) 中的至少一种的起始剂与环氧乙烷/或环氧丙
烷聚合而形成。合适的多羟基化合物的实例包括但不限于：烟台万华的WANOLF5356、WANOL F5335、WANOL F5342和WANOL F5256等的一种或两种或多种。

在本发明的一种具体实施方式中，所述多异氰酸酯组合物包括50～90wt%的纯二苯基甲烷二异氰酸酯和10～50wt%的聚二苯基甲烷二异氰酸酯，以多异氰酸酯组合物的总重量，其中，纯二苯基甲烷二异氰酸酯包括1～45wt%的二苯基甲烷-2,4’二异氰酸酯和55～99wt%的二苯基甲烷-4,4’二异氰酸酯，以纯二苯基甲烷二异氰酸酯的总重量。合适的多异氰酸酯组合物的实例包括但不限于：烟台万华的WANNATE 8221、WANNATE 8223、ZQ-1、ZQ-2和ZQ-3等的一种或两种或多种。

在本发明的另一种具体实施方式中，所述多异氰酸酯组合物可以是异氰酸酯封端的多异氰酸酯预聚物（简称异氰酸酯预聚物）与其他异氰酸酯同系物的混合物。其他异氰酸酯同系物包括纯二苯基甲烷二异氰酸酯和聚二苯基甲烷二异氰酸酯的一种或两种或多种。合适的多异氰酸酯组合物的实例包括但不限于：烟台万华的WANNATE 8018、WANNATE 8019和WANNATE 8107等的一种或两种或多种。

本发明的组分（bi）为水，其是单一发泡剂，无其他物理辅助发泡剂，根据对泡沫密度的要求及反应体系的特点，可以调整水用量。

本发明的组分（bii）为一种环氧丙烷-环氧乙烷共聚多元醇或其结合物。其实例包括但不限于：烟台万华的WANOL F3135、天津三石化的TEP330N、天津三石化的TEP560、上海高桥的G330NY、南京可利亚的FA-703和陶氏化学的DOW4701等的一种或两种或多种。

本发明的组分（biii）为另一种环氧丙烷-环氧乙烷共聚多元醇或其结合物。其实例包括但不限于：烟台万华的WANOL F3140、上海高桥的GK350D、陶氏化学的CP1421和钟山石化和ZS3602等的一种
或两种或多种。

本发明的组分 (biv) 为再一种环氧丙烷-环氧乙烷共聚多元醇或其结合物。其实例包括但不限于：淄博德信联邦的 DDL-400、DMN-500、DMN-700、DMN-1000、天津三化的 TMN-400、TMN-700、TMN-1000，山东蓝星东大的 NT-403A、上海高桥的 GR-835G 和 GLR2000 等的一种或两种或多种。其使用可进一步提高泡沫的慢回弹特性。

本发明的组分 (bv) 为扩链剂和/或交联剂。其中，扩链剂包括小分子二元醇和二元胺的一种或两种或多种；优选为乙二醇、二乙二醇、三乙二醇、丙二醇、二丙二醇、三丙二醇、丁二醇、3,5-二甲基甲苯二胺 (DETDA)、3,5-二甲硫基甲苯二胺 (DMTDA) 和 4,4-双仲丁氨基二苯基甲烷 (DBMDA) 的一种或两种或多种；交联剂是官能度大于 2 的小分子多元醇或多元胺；优选为甘油、二乙醇胺和三乙醇胺等的一种或两种或多种。制备较低密度的慢回弹泡沫时优选醇胺类交联剂，除起到泡孔网络交联的作用外，还可起催化作用，平衡发泡和凝胶的速度。

本发明的组分 (c) 为表面活性剂。它起着乳化泡沫物料、稳定泡沫和调节泡孔的作用。它增加各组分的互溶性，有助于气泡的形成，可控制泡沫的大小及均匀性，促使泡沫泡孔凝胶张力的平衡，防止泡沫崩塌。适合用作本发明的表面活性剂包括适用于聚氨酯泡沫材料的任何已知的表面活性剂，优选为聚醚硅氧烷类表面活性剂。该表面活性剂的一个重要作用是可使聚醚分散，增大聚醚与泡沫基体的相容性，这是通过其聚醚链段实现的。本发明的组分 (c) 的实例包括但不限于：迈图的 L-580、L-627、L-3002、Y-10366，气体化学的 DC6070、赢创 B-8002、B8715 和德美世创 AK8812 等的一种或两种或多种。

本发明的组分 (d) 为催化剂。该催化剂可以包括叔胺化合物的
一种或两种或多种。合适的叔胺催化剂的实例包括但不限于：三亚乙基二胺，双 (二甲氨基乙基)醚，N,N,N’-三甲基-N-羟乙基-二氨基乙醚，环己基甲基叔胺，五甲基二亚烷基三胺，二甲基乙醇胺，N-（3-二甲氨基丙基）-N,N-二异丙醇胺，N-甲基吗啉，N-甲基咪唑和Huntsman公司的JEFFCAT LED103等。

本发明的组分(e)包括各种本领域技术人员已知的可以用于本发明的粘弹性泡沫材料中的那些添加剂。其用量为混合聚醚重量的0~20wt%。本发明的添加剂包括但不限于色浆、内脱模剂、阻燃剂、填料、抗静电剂、香料、抗氧剂、光稳定剂、矿物油和抗微生物剂中的一种或两种或多种。

上述扩链剂和/或交联剂、表面活性剂、催化剂及添加剂的用量取决于所需要产品的性能，并可以在聚氨酯泡床技术人员所了解的范围内变化。

本发明的积极效果在于：本发明所述的反应体系通过混合聚醚及多异氰酸酯组合物的选择，可以不含甲苯二异氰酸酯，原料毒性小，不含除水以外的其他物理发泡剂，不含金属类催化剂，对人体健康和环境没有危害，制备的泡沫的密度为50~70kg/m³，在物理性能测试中，回弹率为15~30%，最大吸音系数0.99。该泡沫在具备低密度、粘弹性特征的前提下，可保持优良的吸音性能，改善传统粘弹性聚氨酯泡沫吸音效果较差的问题，可以通过模塑或块泡的制备技术制备该粘弹性泡沫，并可广泛用于汽车和家具行业产品，如隔音地毯、座椅、枕头、垫子等，并可用于吸/隔音类产品。

下面进一步详细说明本发明的粘弹性聚氨酯吸音泡沫及其制备方法，但本发明并不因此而受到任何限制。

为确定该泡沫是否呈现粘弹性及其吸音性能优劣，主要由以下三
方面性能决定：

其一是泡沫的球回弹率，不同于高回弹泡沫，慢回弹泡沫的球回弹率通常在30%以下；测试所用仪器为江苏省化工研究所HTY-B型泡沫回弹系数测定仪。

其二是泡沫的复原时间。在其他性能良好的前提下，慢回弹泡沫的回复时间一般在3~15s之间，回弹时间在3s以下基本失去了慢回弹的特征，而在15s以上泡沫缺乏弹性，舒适度降低，尤其在支撑性本身较为有限的低密度泡沫表现更为明显。

其三是泡沫的吸音系数，吸音系数按GB/T 18696.2-2002“阻抗管中吸音系数和声阻抗的测量”传递函数法进行测试，试样为直径100mm和30mm，厚度为22mm的圆片，测试所用仪器为北京声望公司双通道测试仪，型号为SW230，频率范围64~6300Hz。

泡沫在熟化72小时后根据下列标准或方法进行各项性能测试。

- 泡沫塑料和橡胶密度 kg/m^3 GB/T 6343-1995，同GB/T 24451-2009
- 软泡球回弹率，% GB/T 6670-2008，同GB/T 24451-2009
- 软泡吸音系数 GB/T 18696.2-2002
- 泡沫复原时间，s GB/T 24451-2009

本发明的实施例所涉及的原料特征描述如下：

异氰酸酯反应活性组分（bii）：

聚醚A：平均官能度3，羟值34mgKOH/g，25wt%EO-75wt%PO共聚，重均分子量4950，甘油为起始剂，购自烟台万华的WANOL F3135

聚酯B：平均官能度3，羟值56mgKOH/g，10wt%EO-90wt%PO共聚，重均分子量3000，甘油为起始剂，购自天津三石化的TEP560
聚醚 C：平均官能度 3，羟值 42mgKOH/g，75wt%EO-25wt%PO
共聚，重均分子量 4000，甘油为起始剂，购自烟台万华的 WANOL F3140
异氰酸酯反应活性组分 (biv):

聚醚 D：平均官能度 2，羟值 280ragKOH/g，100wt%PO 聚合，
重均分子量 400，—缩二丙二醇为起始剂，购自淄博德信联邦的
DDL-400

聚醚 E：平均官能度 3，羟值 240mgKOH/g，8wt%EO-92wt%PO 聚合，
重均分子量 700，甘油为起始剂，购自上海高桥石化公司的
GLR2000

聚醚 F：平均官能度 3，羟值 420mgKOH/g，100wt%PO 聚合，重
均分子量 400，甘油为起始剂，购自天津三石化的 TMN-400

聚醚 G：平均官能度 4，羟值 770mgKOH/g，100wt%PO 聚合，
重均分子量 290，乙二胺为起始剂，购自山东蓝星东大的 NT-403A

聚醚 H：平均官能度 4.3，羟值 440mgKOH/g，100wt%PO 聚合，
重均分子量 550，蔗糖和甘油为混合起始剂，购自上海高桥石化的
GR-835G

表面活性剂 A：气体化学的 DABCO DC6070
表面活性剂 B：EVONIK 的 TEGOSTAB B8715
交联剂 A：三乙醇胺
交联剂 B：甘油
交联剂 C：二乙醇胺
催化剂 A：Huntsman 公司的 JEFFCAT LED103
催化剂 B：Air Products 公司的 Dabco 33LV (三亚乙基二胺)
催化剂 C：Huntsman 公司的 JEFFCAT DPA (N- (3-二甲氨基丙基)-N,N-二异丙醇胺)
催化剂D: Air Products公司的Dabco BL-11
催化剂E: Air Products公司的Dabco 8154

异氰酸酯A: 烟台万华的WANNATE 8018，其为多异氰酸酯预聚物，纯二苯基甲烷二异氰酸酯和聚二苯基甲烷二异氰酸酯的混合物，具有大约29.5wt%的NCO含量。

异氰酸酯B: 烟台万华的WANNATE 8223，其为纯二苯基甲烷二异氰酸酯和聚二苯基甲烷二异氰酸酯的混合物，具有大约32.6%的NCO含量。

异氰酸酯C: 烟台万华的WANNATE 8102，其为多异氰酸酯预聚物，纯二苯基甲烷二异氰酸酯和聚二苯基甲烷二异氰酸酯的混合物，具有大约27.2wt%的NCO含量。

本发明的实施例和对比例的通用制备工艺说明如下:

用本领域技术人员熟知的方法，将异氰酸酯反应活性组分加入到一个1L塑料烧杯中，并用一个转速为3000转/分、带7cm直径的圆搅拌桨头的立式搅拌器混合1分钟，然后加入多异氰酸酯组物一起迅速混合5～8秒，将混合物流入温度为50～60°C的20cmx20cmx5cm的铝质模具中，闭模3分钟后取出泡沫。其间未反应前的液体料温度应控制在25±3°C。

实施例

以下实施例是对本发明进一步的说明，但本发明的权限并不仅局限于此，本领域的技术人员都很清楚在实施例基础上的任何改动都不会离开本发明的宗旨。

以下实施例中各组分用量均以重量份表示。

表1说明了在不同的聚醚组合配方下，使用异氰酸酯A实现本发明。其中的异氰酸酯反应活性组分(biii和biv)起到提高慢回弹泡沫
特质的作用，加入该组分可降低球回弹率及提高玻璃化转变温度（Tg）。

表 1 异氰酸酯 A 制备粘弹性泡沫及其性能

<table>
<thead>
<tr>
<th>实例</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
</tr>
</thead>
<tbody>
<tr>
<td>配方</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bii</td>
<td>聚醚 A</td>
<td>50</td>
<td>50</td>
<td>55</td>
<td>50</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>biii</td>
<td>聚醚 C</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>biv</td>
<td>聚醚 D</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>聚醚 E</td>
<td>20</td>
<td>40</td>
<td>35</td>
<td>20</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>聚醚 G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>表面活性剂 B</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>催化剂 A</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>催化剂 B</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>催化剂 C</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>交联剂 A</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>交联剂 B</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>水</td>
<td>3.5</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>异氰酸酯 A</td>
<td>75.0</td>
<td>77.8</td>
<td>77.8</td>
<td>77.8</td>
<td>77.8</td>
<td>77.8</td>
<td>77.8</td>
</tr>
<tr>
<td>异氰酸酯指数</td>
<td>0.67</td>
<td>0.66</td>
<td>0.68</td>
<td>0.63</td>
<td>0.64</td>
<td>0.62</td>
<td>0.62</td>
</tr>
</tbody>
</table>

泡沫性能

<p>| 芯密度，kg/m³ | 58.7 | 57.4 | 59.9 | 58.4 | 55.8 | 59.4 | 58.8 |
| 泡沫复原时间，s | 6 | 6 | 4.5 | 5 | 4 | 6.5 | 7 |</p>
<table>
<thead>
<tr>
<th>球回弹率，%</th>
<th>17.4</th>
<th>19</th>
<th>24</th>
<th>23</th>
<th>25</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>垂直入射吸音特性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>频率</td>
<td>吸音系数</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500Hz</td>
<td>0.20</td>
<td>0.29</td>
<td>0.21</td>
<td>0.22</td>
<td>0.20</td>
<td>0.26</td>
<td>0.22</td>
</tr>
<tr>
<td>1000Hz</td>
<td>0.43</td>
<td>0.63</td>
<td>0.49</td>
<td>0.59</td>
<td>0.43</td>
<td>0.57</td>
<td>0.48</td>
</tr>
<tr>
<td>2000Hz</td>
<td>0.80</td>
<td>0.92</td>
<td>0.96</td>
<td>0.94</td>
<td>0.89</td>
<td>0.89</td>
<td>0.86</td>
</tr>
<tr>
<td>4000Hz</td>
<td>0.88</td>
<td>0.89</td>
<td>0.82</td>
<td>0.75</td>
<td>0.86</td>
<td>0.87</td>
<td>0.90</td>
</tr>
<tr>
<td>最大吸音系数</td>
<td>0.94</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.97</td>
<td>0.99</td>
<td>0.98</td>
</tr>
<tr>
<td>最大吸音系数对应频率，Hz</td>
<td>3020</td>
<td>2650</td>
<td>2380</td>
<td>5570</td>
<td>2685</td>
<td>2720</td>
<td>2870</td>
</tr>
</tbody>
</table>

表2在不同的聚醚组合配方下，使用异氰酸酯B实现本发明。与异氰酸酯A相比，异氰酸酯B的异氰酸酯基团含量高，在本发明要求范围内，调整水、交联剂、催化剂等种类和用量，获得合乎要求的泡沫。

表2 异氰酸酯B制备粘弹性泡沫及其性能

<table>
<thead>
<tr>
<th>实例</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
</tr>
</thead>
<tbody>
<tr>
<td>配方</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bii</td>
<td>聚醚 A</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>62</td>
<td>60</td>
</tr>
<tr>
<td>biii</td>
<td>聚醚 C</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>biv</td>
<td>聚醚 E</td>
<td>45</td>
<td>45</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
表面活性剂 A

聚醚 F	0	0	0	0	15	0
聚醚 G	0	0	10	0	0	5
聚醚 H	0	0	0	13	0	0
表面活性剂 A	0.5	0.5	0.5	0.5	0.5	0.5

催化剂 A

催化剂 A	0.2	0.3	0.3	0.3	0.3	0.2
催化剂 B	0.6	0.6	0.6	0.6	0.6	0.4
催化剂 C	1.0	1.0	1.0	1.0	1.0	0.8

交联剂 C

| 交联剂 C | 0.5 | 0.5 | 1.0 | 1.0 | 1.0 | 1.0 |

交联剂 B

| 交联剂 B | 0 | 5 | 0 | 0 | 0 | 0 |

水

| 水 | 4.0 | 3.8 | 3.5 | 3.5 | 3.5 | 3.5 |

异氰酸酯 B

| 异氰酸酯 B | 64.0 | 72.5 | 62.0 | 62.0 | 64.1 | 64.0 |

异氰酸酯指数

| 异氰酸酯指数 | 0.72 | 0.68 | 0.67 | 0.74 | 0.76 | 0.76 |

泡沫性能

泡沫性能	芯密度，kg/m³	55.5	54.3	54.9	55.0	55.2	55.8
泡沫复原时间，s	6	6.5	6.5	4	3.5	3	
球回弹率，%	21.6	19.2	20.0	21.0	20.4	21.0	

垂直入射吸音特性

频率	500Hz	1000Hz	2000Hz	4000Hz
吸音系数	0.19	0.40	0.84	0.88
吸音系数	0.27	0.67	0.94	0.82
吸音系数	0.22	0.48	0.94	0.80
吸音系数	0.19	0.43	0.97	0.77
吸音系数	0.19	0.51	0.99	0.74
吸音系数	0.20	0.95	0.77	0.77

最大吸音系数

| 最大吸音系数 | 0.97 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
| 频率, Hz | 2875 | 2570 | 2465 | 2260 | 2080 | 2430 |

对比例

表 3 是使用较低异氰酸酯基团含量的异氰酸酯 C 制备的普通慢回弹泡沫，对比例 C1 所得泡沫的密度为 70.1Kg/m^3，对比例 C2 所得泡沫的密度为 45.5Kg/m^3，两者回弹率均低于 15%，最大吸音系数低于 0.70。

表 3 异氰酸酯 C 制备粘弹性泡沫及其性能

<table>
<thead>
<tr>
<th>配方</th>
<th>对比例 C1</th>
<th>对比例 C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚醚 B</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>聚醚 C</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>聚醚 D</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>聚醚 E</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>表面活性剂 B</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>催化剂 D</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>催化剂 B</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>催化剂 E</td>
<td>0.50</td>
<td>0.60</td>
</tr>
<tr>
<td>交联剂 C</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>水</td>
<td>2.0</td>
<td>3.2</td>
</tr>
<tr>
<td>异氰酸酯 C</td>
<td>52.1</td>
<td>63.3</td>
</tr>
<tr>
<td>异氰酸酯指数</td>
<td>0.67</td>
<td>0.66</td>
</tr>
</tbody>
</table>

泡沫性能

<table>
<thead>
<tr>
<th>芯密度, Kg/m^3</th>
<th>对比例 C1</th>
<th>对比例 C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.1</td>
<td>45.5</td>
<td></td>
</tr>
</tbody>
</table>
泡沫复原时间，s

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>球回弹率，%</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

垂直入射吸音特性

<table>
<thead>
<tr>
<th>频率</th>
<th>吸音系数</th>
<th>吸音系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>500Hz</td>
<td>0.34</td>
<td>0.21</td>
</tr>
<tr>
<td>1000Hz</td>
<td>0.52</td>
<td>0.50</td>
</tr>
<tr>
<td>2000Hz</td>
<td>0.50</td>
<td>0.62</td>
</tr>
<tr>
<td>4000Hz</td>
<td>0.48</td>
<td>0.47</td>
</tr>
</tbody>
</table>

最大吸音系数 0.68 0.66

最大吸音系数对应频率，Hz 730 1670
权 利 要 求 书

1、一种粘弹性聚氨酯吸音泡沫，其特征在于，所述泡沫由包括以下组分的反应体系制备:

(a) 多异氰酸酯组合物，以多异氰酸酯组合物的总重计，所述多异氰酸酯组合物含有 0~20wt% 的丙二醇，所述多元醇的羟值为 30~65mgKOH/g，其用量为混合聚醚重量的 2~5wt%；

(b) 异氰酸酯反应活性组分，包括:

(bi) 水，其用量为混合聚醚重量的 2~5wt%；

(bii) 氨氧化丙烷-环氧乙烷共聚多元醇或其组合物，其中，环氧乙基单元含量为 5~35wt%，平均官能度为 2~4，平均羟值为 20~65mgKOH/g，其用量为混合聚醚重量的 30~70wt%；

(biii) 氨氧化丙烷-环氧乙烷共聚多元醇或其组合物，其中，环氧乙基单元含量为 70~100wt%，平均官能度 2~4，平均羟值为 20~200mgKOH/g，其用量为混合聚醚重量的 2~20wt%；

(biv) 氨氧化丙烷-环氧乙烷共聚多元醇或其组合物，其中，环氧乙基单元含量为 0~20wt%，平均官能度 2~5，平均羟值为 180~830mgKOH/g，其用量为混合聚醚重量的 20~65wt%；

(bv) 扩链剂和/或交联剂，其用量为混合聚醚重量的 0~10wt%；

其中，所述的混合聚醚为组分 (bii)、组分 (biii) 和组分 (biv) 的混合物；

(c) 表面活性剂，其用量为混合聚醚重量的 0~1wt%；

(d) 催化剂，其用量为混合聚醚重量的 0~3.5wt%；

(e) 任选的添加剂，所述添加剂包括色浆、内脱模剂、阻燃剂、填料、抗静电剂、香料、抗氧剂、光稳定剂、矿物油和抗微生物剂中的一种或两种或多种；
其中，反应体系中的异氰酸酯指数为 0.6 ~ 0.9，优选 0.6 ~ 0.8，更优选 0.6 ~ 0.75。

2、根据权利要求 1 所述的泡沫，其特征在于，所述多异氰酸酯组合物包括甲苯二异氰酸酯、纯二苯基甲烷二异氰酸酯、聚二苯基甲烷二异氰酸酯和异氰酸酯封端的多异氰酸酯预聚物中的一种或两种或多种；优选地，所述多异氰酸酯组合物的甲苯二异氰酸酯的含量为 0wt%。

3、根据权利要求 1 或 2 所述的泡沫，其特征在于，所述多异氰酸酯组合物的异氰酸酯基团的数均能度为 2.1 ~ 2.3，NCO 含量为 25 ~ 33wt%。

4、根据权利要求 1 ~ 3 任一项所述的泡沫，其特征在于，组分 (bi) 的用量为混合聚醚重量的 2.5 ~ 4.5wt%，优选为 3 ~ 4wt%。

5、根据权利要求 1 ~ 4 任一项所述的泡沫，其特征在于，组分 (bii) 的氧亚乙基单元含量为 8 ~ 30wt%，平均能度为 2.7 ~ 3，平均羟值为 30 ~ 60mgKOH/g，其用量为混合聚醚重量的 40 ~ 65wt%；优选地，氧亚乙基单元含量为 10 ~ 28wt%，平均能度为 2.7 ~ 3，平均羟值为 32 ~ 58mgKOH/g，其用量为混合聚醚重量的 45 ~ 60wt%。

6、根据权利要求 1 ~ 5 任一项所述的泡沫，其特征在于，组分 (biii) 的氧亚乙基单元含量为 72 ~ 90wt%，平均能度为 2.5 ~ 3.8，平均羟值为 30 ~ 100mgKOH/g，其用量为混合聚醚重量的 3 ~ 15wt%；优选地，氧亚乙基单元含量为 75 ~ 80wt%，平均能度为 2.8 ~ 3.5，平均羟值为 35 ~ 60mgKOH/g，其用量为混合聚醚重量的 5 ~ 10wt%。

7、根据权利要求 1 ~ 6 任一项所述的泡沫，其特征在于，组分 (biv) 的氧亚乙基单元含量为 0 ~ 15wt%，平均能度为 2 ~ 4.8，平均羟值为 200 ~ 810mgKOH/g，其用量为混合聚醚重量的 30 ~ 60wt%；优选地，氧亚乙基单元含量为 0 ~ 12wt%，平均能度为 2 ~ 4.5，平均羟值为
220 ~ 790 mgKOH/g，其用量为混合聚醚重量的35~55wt%。

8、根据权利要求1~7任一项所述的泡沫,其特征在于,组分 (bv)
的用量为混合聚醚重量的0.5~6wt%; 组分 (c) 的用量为混合聚醚重量
的0.2~0.8wt%; 组分 (d) 的用量为混合聚醚重量的0.5~3wt%; 优选地，组分 (bv) 的用量为混合聚醚重量的1~5.5wt%; 组分 (c) 的
用量为混合聚醚重量的0.4~0.6wt%; 组分 (d) 的用量为混合聚醚重量
的1~2.5wt%。

9、根据权利要求1~8任一项所述的泡沫，其特征在于，所述泡沫
的密度为 50~70kg/m³，球回弹率为15~30%，500Hz 吸音系数
为 0.15~0.35，1000Hz 吸音系数为 0.40~0.70，2000Hz 吸音系数
为 0.80~0.99；所述吸音系数由驻波法测定 22mm 厚度的泡沫获得。

10、一种粘弹性聚氨酯吸音泡沫的制备方法，其特征在于，所述
泡沫由包括以下组分的反应体系制备：

(a) 多异氰酸酯组合物，以多异氰酸酯组合物的总重计，所述多
异氰酸酯组合物含有 0~5wt% 甲苯二异氰酸酯，所述多异氰酸酯组合
物的异氰酸酯基团的数均官能度为 2~2.4，NCO 含量为 20~35wt%；

(b) 异氰酸酯反应活性组分，包括：

(bi) 水，其用量为混合聚醚重量的 2~5wt%；

(bii) 环氧丙烷-环氧乙烷共聚多元醇或其结合物，其中，氧
亚乙基单元含量为 5~35wt%，平均官能度为 2~4，平均羟值为 20~
65mgKOH/g，其用量为混合聚醚重量的 30~70wt%；

(biii) 环氧丙烷-环氧乙烷共聚多元醇或其结合物，其中，氧
亚乙基单元含量为 70~100wt%，平均官能度 2~4，平均羟值为 20~
200mgKOH/g，其用量为混合聚醚重量的 2~20wt%；

(biv) 环氧丙烷-环氧乙烷共聚多元醇或其结合物，其中，氧
亚乙基单元含量为 0~20wt%，平均官能度 2~5，平均羟值为 180~
830mgKOH/g，其用量为混合聚醚重量的20~65wt%；

(bv)扩链剂和/或交联剂，其用量为混合聚醚重量的0~10wt%；

其中，所述的混合聚醚为组分(bii)、组分(biii)和组分(biv)的混合物；

(c)表面活性剂，其用量为混合聚醚重量的0~1wt%；

(d)催化剂，其用量为混合聚醚重量的0~3.5wt%；

(e)任选的添加剂，所述添加剂包括色浆、内脱模剂、阻燃剂、填料、抗静电剂、香料、抗氧剂、光稳定剂、矿物油和抗微生物剂中的一种或两种或多种；

其中，反应体系中的异氰酸酯指数为0.6~0.9，优选0.6~0.8，更优选0.6~0.75。

11.根据权利要求10所述的制备方法，其特征在于，所述多异氰酸酯化合物包括甲苯二异氰酸酯、纯二苯基甲烷二异氰酸酯、聚二苯基甲烷二异氰酸酯和异氰酸酯封端的多异氰酸酯预聚物中的一种或两种或多种；优选地，所述多异氰酸酯化合物的甲苯二异氰酸酯的含量为0wt%。

12.根据权利要求10或11所述的制备方法，其特征在于，组分(bii)的氧亚乙基单元含量为8~30wt%，平均官能度为2.7~3，平均羟值为30~60mgKOH/g，其用量为混合聚醚重量的40~65wt%；优选地，氧亚乙基单元含量为10~28wt%，平均官能度为2.7~3，平均羟值为32~58mgKOH/g，其用量为混合聚醚重量的45~60wt%。

13.根据权利要求10~12任一项所述的制备方法，其特征在于，组分(biii)的氧亚乙基单元含量为72~90wt%，平均官能度为2.5~3.8，平均羟值为30~100mgKOH/g，其用量为混合聚醚重量的3~15wt%；优选地，氧亚乙基单元含量为75~80wt%，平均官能度为2.8~3.5，平
均羟值为35～60 mgKOH/g，其用量为混合聚醚重量的5～10wt%。

14. 根据权利要求10～13任一项所述的制备方法，其特征在于，
组分（biv）的氧亚乙基单元含量为0～15wt%，平均官能度为2～4.8，
平均羟值为200～810 mgKOH/g，其用量为混合聚醚重量的30～
60wt%；优选地，氧亚乙基单元含量为0～12wt%，平均官能度为2～
4.5，平均羟值为220～790 mgKOH/g，其用量为混合聚醚重量的35～
55wt%。

15. 根据权利要求10～14任一项所述的制备方法，其特征在于，
组分（bv）的用量为混合聚醚重量的0.5～6wt%；组分（c）的用量为混合聚醚重量的0.2～0.8wt%；组分（d）的用量为混合聚醚重量的0.5～
3wt%；优选地，组分（bv）的用量为混合聚醚重量的1～5.5wt%；组分（c）的用量为混合聚醚重量的0.4～0.6wt%；组分（d）的用量为混合聚醚重量的1～2.5wt%。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C08G 18/76 (2006.01) i; C08G 18/72 (2006.01) i; C08G 18/48 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: C08G 18/

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT, CNKI, DWPI, CNTEXT, USTXT, WOTXT: polyurethane, sound absorption, foam, polyether, polyisocyanate, viscoelastic, toluene disocyanate, ethylene oxide, functionality, hydroxyl value

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 102504175 A (BEIJING KEJU NEW CHEMICAL MATERIALS CO., LTD.), 20 June 2012, description, paragraphs [0016]-[0027] and [0044]-[0045]</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>CN 1749292 A (SHANGHAI MAOHAI CHEMICAL CO., LTD.), 22 March 2006, description, embodiment 1</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>CN 1618834 A (QINGDAO UNIVERSITY OF SCIENCE AND TECHNOLOGY et al.), 25 May 2005, description, embodiments 1-8</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. [X]: See patent family annex.

* Special categories of cited documents:
 A: document defining the general state of the art which is not considered to be of particular relevance
 E: earlier application or patent but published on or after the international filing date
 L: document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O: document referring to an oral disclosure, use, exhibition or other means
 P: document published prior to the international filing date but later than the priority date claimed
 I: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X: document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y: document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 S: document member of the same patent family

Date of the actual completion of the international search: 10 April 2014 (10.04.2014)

Date of mailing of the international search report: 09 May 2014 (09.05.2014)

Name and mailing address of the ISA/CN:
State Intellectual Property Office of the P.R. China
No. 6, Xitucheng Road, Jinnengqiao
Haidian District, Beijing 100088, China
Facsimile No.: (86-10) 62019451

Authorized officer: Li, Xiaotong
Telephone No.: (86-10) 82246779

Form PCT/IS A/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 102504175 A</td>
<td>20.06.2012</td>
<td>CN 102504175 B</td>
<td>06.11.2013</td>
</tr>
<tr>
<td>CN 1749292 A</td>
<td>22.03.2006</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 1618834 A</td>
<td>25.05.2005</td>
<td>CN 1295266 C</td>
<td>17.01.2007</td>
</tr>
<tr>
<td>US 2004/0044091 A I</td>
<td>04.03.2004</td>
<td>US 6734220 B2</td>
<td>11.05.2004</td>
</tr>
</tbody>
</table>
A. 主题的分类

C08G 18/76 (2006.01) i; C08G 18/72 (2006.01) i; C08G 18/48 (2006.01) i

按照国际专利分类 (IPC) 或同时按照国家分类和IPC两种分类

B. 检索领域

检索的最低限度文献 (标明分类系统和分类号)

C08G 18/ -

包含在检索领域中的除最低限度文献以外的检索文献

在国际检索时查阅的电子数据库 (数据库的名称、和使用的检索词 (如使用))

CNPAT, CNKI, DWPI, CNTXT, USTXT, WOTXT, 聚氨酯, 聚氨酯, 聚氨酯, 聚氨酯, 聚氨酯, viscoelastic,
diisocyanate, ethylene oxide, functionality, hydroxyl, toluene

C. 相关文件

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件, 必要时, 指明相关段落</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 1749292A ((上海海沃化工有限公司)) 2006年 3月 22日 (2006 - 03 - 22) 说明书实施例 1</td>
<td>1-15</td>
</tr>
</tbody>
</table>

其他文件在C栏的续页中列出。

在申请日或优先权日之后公布, 并使申请人由优先权文件中要求保护的发明之主题能够理解的由申请人撰写的文件。

在申请日或优先权日之后公布, 并使申请人由优先权文件中要求保护的发明之主题能够理解的由申请人撰写的文件。

在申请日或优先权日之后公布, 并使申请人由优先权文件中要求保护的发明之主题能够理解的由申请人撰写的文件。

在申请日或优先权日之后公布, 并使申请人由优先权文件中要求保护的发明之主题能够理解的由申请人撰写的文件。

C 上述未提及的文件。

国际检索实际完成的日期

2014年 4月 10日

国际检索报告邮寄日期

2014年 5月 09日

ISA/CN 的名称和邮寄地址

中华人民共和国国家知识产权局 (ISA/CN)
中国北京市海淀区知春路西土城路6号
100088 中国

授权官员

李 小 亮

传真号 (86-10) 62019451 电话号码 (86-10) 82246779

表 PCT/ISA/210 (第 2 页) (2009 年 7月)
国际检索报告
关于同族专利的信息

<table>
<thead>
<tr>
<th>检索报告引用的专利文件</th>
<th>公布日 (年/月/日)</th>
<th>同族专利</th>
<th>公布日 (年/月/日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 102504175A</td>
<td>2012年6月20日</td>
<td>CN 102504175B</td>
<td>2013年11月6日</td>
</tr>
<tr>
<td>CN 1749392A</td>
<td>2006年3月22日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 1618334A</td>
<td>2005年3月25日</td>
<td>CN 1265266C</td>
<td>2007年1月17日</td>
</tr>
</tbody>
</table>

表 PCT/ISA/210 (同族专利附件) (2009年7月)