
(19) United States
US 2005O268286A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0268286 A1
Obata et al. (43) Pub. Date: Dec. 1, 2005

(54) METHOD OF DETECTING MEMORY LEAK
CAUSING PORTION AND EXECUTION
PROGRAM THEREOF

(76) Inventors: Motoki Obata, Yokohama (JP);
Hiroyasu Nishiyama, Kawasaki (JP)

Correspondence Address:
ANTONELLI, TERRY, STOUT & KRAUS,
LLP
1300 NORTH SEVENTEENTH STREET
SUTE 1800
ARLINGTON, VA 22209-3873 (US)

(21) Appl. No.: 11/103,565

(22) Filed: Apr. 12, 2005

(30) Foreign Application Priority Data

Apr. 12, 2004 (JP)...................................... 2004-116581

Publication Classification

(51) Int. Cl. .. G06F 9/44

(52) U.S. Cl. .. 717/124

(57) ABSTRACT

To reduce labor required in investigating on a Source of
memory leaks with regard to the memory leaks generated in
executing a program using a language which does not
explicitly indicate release of data region. With regard to a
plurality of data Stored in a memory, relationship of data is
grasped twice after an time interval therebetween. Next,
increased data C1, E2, E3 which are not present in data of
a first time are extracted from data of a Second time, and
weights “1”, “2”, “2 in accordance with data sizes are
attached to the increased data. Next, the weights are Suc
cessively propagated from a lower order data of a destina
tion of reference to a higher order data of a Source of
reference Successively. At this occasion, when there are a
plurality of lower order data E2, E3 for a higher order D0,
a weight constituted by adding the weights “2”, “2” of the
plurality of lower data E2, E3 is made to be a weight “4” of
the higher order data D0, and the weights of the respective
data represent leak Scores which causes memory leak.

NVESTIGATING
TIME

US 2005/0268286 A1 Patent Application Publication Dec. 1, 2005 Sheet 1 of 11

- - - - - - - -

/ | |

HalldWOO L >'OSSE OORHd

|

Patent Application Publication Dec. 1, 2005 Sheet 2 of 11 US 2005/0268286A1

m n INVESTIGATING

-- TIME

Patent Application Publication Dec. 1, 2005 Sheet 3 of 11 US 2005/0268286 A1

GRASP REFERENCE
RELATIONSHIP S21
(FIRST TIME)

GRASP REFERENCE
RELATIONSHIP S22
(SECOND TIME)

EXTRACT INCREASED DATA S23
AND WEIGHT RESPECTIVE

INCREASED DATA

SECONO TIME

2 ORMORE OF DATA
HAVING HIGHEST

WEIGHT PRESENT 2

1N-S25

S27

CONSTITUTE HIGHEST LEAK
SCORE DATABY LOWEST
ORDER DATA IN 2 OR MORE
OF DATA HAVING HIGHEST

WEIGHT

CONSTITUTE DATA OF LEAK S25
SCORE BY DATA HAVING

HIGHEST WEIGHT

INFORM TO PROGRAM-CAUSE S28
PORTION EXTRACTING PORTION

AND DISPLAYPORTION

WEIGHT ALL, DATA OF S24

Patent Application Publication Dec. 1, 2005 Sheet 4 of 11

141

142

143

FRONT
ADDRESS OF
SUCCESSIVE

DATA

FG.

FRONT
ADDRESS OF
SUCCESSIVE

DATA

FRONT
ADDRESS OF
SUCCESSIVE

DATA

5

FRONT
ADDRESS OF
SUCCESSIVE

DATA

FRONT
ADDRESS OF
SUCCESSIVE

DATA

US 2005/0268286A1

FRONT
ADDRESS OF
SUCCESSIVE

DATA

FRONT
ADDRESS OF
SUCCESSIVE

DATA

Patent Application Publication Dec. 1, 2005 Sheets of 11 US 2005/0268286A1

FG. 6A
REFERENCE RELATIONSHIP GRASPEDAT FIRST TIME

F.G. 6B
REFERENCE RELATIONSHIP GRASPEDAT SECOND ME

DATA DATA
Bo D0

1 3 5

Patent Application Publication Dec. 1, 2005 Sheet 6 of 11 US 2005/0268286 A1

FG. 7

S41

SEQUENCE
INCREASED

DATA S43

CA CULATE
WEIGHT FROM

ORDER SUM UPDATA S44 |
SIZE

FOR RESPECTIVE
KINDS

UNSCANED
DATA PRESENT 2

Patent Application Publication Dec. 1, 2005 Sheet 7 of 11 US 2005/0268286A1

FG. 8
FIRST ORDER

SECONDORDER.
DATA DATA DATA
A0 B1 CO -- E

2 2
2 - 5

D ? A
1

D 6. A

FG. 9

WEIGHT WEIGHT
ORDER INCREASED SIZE DATA KND EXAMPLE | EXAMPLE

1 2

Patent Application Publication Dec. 1, 2005 Sheet 8 of 11 US 2005/0268286A1

S51

ACOURE ONE DATA
WITHOUT SUCCESSIVE

DATA

S52

REMOVE REFERENCE
FROM HIGHER ORDER

DATA

DATASET
EMPTED?

US 2005/0268286 A1 Patent Application Publication Dec. 1, 2005 Sheet 9 of 11

F.G. 11

F.G. 12

Patent Application Publication Dec. 1, 2005 Sheet 10 of 11

START

EXTRACT PORTION GENERATED
OR SUBSTITUTED DATA FROM
PROGRAM OF INTERMEDIATE

LANGUAGE

ACOURE ROW NUMBER OF
PROGRAM IN JAVALANGUAGE FROM

CORRESPONDING PORTION IN
PROGRAM OF INTERMEDIATE

LANGUAGE

US 2005/0268286 A1

Patent Application Publication Dec. 1, 2005 Sheet 11 of 11 US 2005/0268286 A1

F.G. 14

Declaration Class
TestSub Testjava
java.lang. Object java. util.Vector

162 163 164

Object Reference Graph

170

Source Code

18O Source code(Testjava)

class TestAllcc

vector vec = new Vector();

US 2005/0268286 A1

METHOD OF DETECTING MEMORY LEAK
CAUSING PORTION AND EXECUTION

PROGRAM THEREOF

CLAIM OF PRIORITY

0001. The present application claims priority form Japa
nese application P2004-116581 filed on Apr. 12, 2004, the
content of which is hereby incorporated by reference into
this application.

BACKGROUND OF THE INVENTION

0002 The present invention relates to a method of detect
ing a memory leak causing portion generated in executing a
program described in a programming language of Java
language or the like capable of tracking a data relationship
with regard to a plurality of data Stored in a memory of a
computer and an execution program thereof.
0003. As one of causes by which a computer program
does not achieve a performance as expected, there is pointed
out a phenomenon referred to as memory leak in which a
data memory region used in the program continues to
increase. Normally, data generated in executing a program is
arranged at a memory region referred to as a heap region.
The heap region is a kind of a memory region used in
executing a program and is utilized for Storing data a size of
a storage region of which is dynamically determined Such as
data inputted to the program. In Storing data, it is necessary
to secure a storing region based on a size of data to be stored
and when the data becomes unnecessary, an operation of
releasing the ensured Storage region is needed. When the
operation of releasing the ensured region is not executed
properly or when data of unfreed area become invisible from
the executing System, there is generated a State in which the
memory region used by the program continues to increase,
that is, the memory leak.
0004 Patterns of generating the memory leak can be
classified broadly into two kinds. One is a memory leak
happens in a language which explicitly executes an opera
tion of releasing the region as in C language or C++
language and another is a memory leak happens in a
language which implicitly releases the region as in Java
language (Java is a trademark or a registered trademark of
Sun Microsystems, Inc. in USA and other countries).
0005. In a case of a language explicitly instructing release
of region in the heap region as in C language or C++
language, a memory leak may occur due to a deficiency in
release of region. Further, there may also occur a memory
leak by disappearance of a reference to the data Storage
region ensured in the heap region when other reference is
assigned erroneously to a field in the heap region holding the
reference to the data Storage region before release of the
region. As a method of resolving the memory leak, there is
a technology of monitoring allocation and release of a data
region in executing a program, regarding a region which is
not released as data causing memory leak and Specifying a
portion of memory leak as described in RATIONAL Soft
ware, “Purify: Fast Detection of Memory Leaks and Access
Errors”, Purify Product Information White Papers. (herein
after, referred to as Non-patent Document 1) and a technol
ogy for preventing memory leak by Static pointer analysis in
compiling as described in David L. Heine and Monica S.
Lam, “A Practical Flow-Sensitive and Context Sensitive C

Dec. 1, 2005

and C++ Memory Leak Detector”, Proc. of the ACM SIG
PLAN 2003 conference on Programming language design
and implementation, 2003 (hereinafter, referred to as Non
patent Document 2).
0006. On the other hand, in the case of a programming
language for implicitly executing data region release as in
Java language, a garbage collection function of recovering
an unnecessary data Storing region can frequently be uti
lized. A program by Java language is temporarily converted
into a program by an intermediate language and the program
by the intermediate language is executed on a virtual
machine. According to the program by Java language,
release of the memory region is not designated but unnec
essary data is collected by the garbage collection function
provided to the virtual machine. The above-described
implicit release of the data region means that, release of the
memory region is not designated in the program per Se by
Java language but the region of data is released by the
garbage collection function and the like. The garbage col
lection function is a function of collecting data deviated
from the data reference relationship and therefore, when
there is generated a reference for unnecessary data which is
not anticipated by a programmer due to a failure in pro
gramming, data does not become an object of collecting by
the garbage collection function and this causes a memory
leak by which the necessary data continues to increase in the
memory. That is, according to the garbage collection func
tion, even in the case of data which is not needed for a user,
the data having the data reference relationship does not
become the object of data recovery.

0007 AS described above, in the case of a programming
language as Java language, the operation of releasing the
data region is not explicit and therefore, it is extremely
difficult to Specify the leak causing portion in the program,
and the method of detecting a memory leak causing portion
used for C language or C++ language cannot be used.
Therefore, when memory leak is Suspected with regard to a
program by Java language, there have been developed a
technology of indicating a data group whose an amount of
memory usage is increased in the memory as described in,
for example, U.S. Pat. No. 6,167,535 (hereinafter, referred
as Patent Document 1), or U.S. Pat. No. 6,370,684 (herein
after, referred to as Patent Document 2), a method of
assisting to discover a portion of generating memory leak by
illustrating a reference relationship with regard to a certain
data Selected from a data group as described in Wim De
Pauw and Gary Sevitsky, “Visualizing Reference Patterns
for Solving Memory Leaks in Java”, Proc. of the 13th
European Conference on Object-Oriented Programming,
1999 (hereinafter, referred to as Nonpatent Document 3).
0008. With regard to memory leak generated in executing
a program using a language which executes release of the
data region implicitly, Such as Java language, according to
the background arts, only the data group whose amount of
memory usage is increased in the memory as in Patent
Documents 1, 2, mentioned above, or a reference relation
ship with regard to a certain data Selected from the data
group is illustrated as in Nonpatent Document 2, mentioned
above, and further, in many cases, data in which memory
leak is Suspected is not frequently Single, further, there are
an enormous number of the reference relationship of data

US 2005/0268286 A1

and therefore, there poses a problem that an investigation on
a Source of producing memory leak becomes a very difficult
operation.

SUMMARY OF THE INVENTION

0009. In view of the above-described problem of the
related art, the object of the present invention is to provide
a method of detecting a memory leak causing portion
capable of reducing labor required for investigating a Source
of memory leak with regard to memory leak caused by
executing a program using a language which does not
explicitly indicate release of a data region, and an execution
program thereof.
0010) A first aspect of the invention with regard to a
method of detecting a memory leak causing portion in order
to achieve the above-described object is a method of detect
ing a memory leak causing portion generated in executing a
program described in a programming language capable of
tracking a reference relationship among data with regard to
a plurality of data Stored in a memory of a computer, the
method comprising:
0.011 a first relationship grasping step of grasping the
reference relationship among data with regard to a plurality
of data Stored in the memory;
0012 a Second relationship grasping Step of grasping the
reference relationship among data with regard to the plural
ity of data stored in the memory after the first relationship
grasping Step;
0013 an increased data extracting step of extracting one
or more pieces of increased data which are not present in the
plurality of data whose reference relationship is grasped in
the first relationship grasping Step from among the plurality
of data whose reference relationship is grasped at the Second
relationship grasping Step, ; and
0.014) a weighting step of attaching weights to each one
or more pieces of the increased data extracted at the
increased data extracting Step in accordance with data Size of
each of the increased data, Successively propagating the
weights from lower order data of a destination of reference
to higher order data of a Source of reference Successively,
and in a propagation process of the weights, when one
higher order data constitutes the reference relationship with
a plurality of lower order data, adding the weights of the
plurality of lower order data to constitute the weight of the
one higher order data and making the weights of the respec
tive data as leak Scores indicating a possibility of causing the
memory leak.
0.015 According to the second aspect of the invention
with respect to the method of detecting a memory leak
causing portion, in the weighting Step of the first aspect of
the invention, one or more pieces of the increased data are
classified for respective data kinds and the weights in
accordance with data sizes of respective data groups are
attached to the classified data groups.
0016. According to the third aspect of the invention with
respect to the method of detecting a memory leak causing
portion, the first or the Second invention further comprises:
0017 a highest leak score data extracting step of extract
ing a lower order data as a data having a high possibility of
causing a memory leak when a plurality of data having a

Dec. 1, 2005

highest weight are present in respective weights of the
plurality of data constituting the reference relationship and
the plurality of data having the highest weight constitutes a
relationship between the higher order data and the lower
data.

0018. According to the fourth aspect of the invention
with respect to the method of detecting a memory leak
causing portion, any one of the first to the third aspects of the
invention further comprises:
0019 a memory leak detecting step of investigating an
amount of using the memory by a plurality of times and
determining whether the memory leak is generated based on
a result of the investigation of the plurality of times,
0020 wherein the second relationship grasping step is
executed in parallel with the time when it is determined that
the memory leak is generated in the memory leak detecting
Step or thereafter.
0021 According to a fifth aspect of the invention with
respect to the method of detecting a memory leak causing
portion, any one of the first to the fourth aspects of the
invention further comprises:
0022 a program cause portion extracting step of extract
ing a portion described with a data having a high possibility
of causing the memory leak from the program.

0023. According to a first aspect of the invention with
respect to a program for detecting a memory leak causing
portion in order to achieve the above-described object, there
is provided a program for detecting a memory leak causing
portion generated in executing a program described in a
programming language capable of tracking a reference rela
tionship among data with regard to a plurality of data Stored
in a memory of a computer, the program causes the com
puter to execute:

0024 a first relationship grasping step of grasping the
reference relationship among the data with regard to a
plurality of data Stored in the memory;
0025 a second relationship grasping Step of grasping the
reference relationship among data with regard to the plural
ity of data stored in the memory after the first relationship
grasping Step;

0026 an increased data extracting Step of extracting one
or more pieces of increased data which are not present in the
plurality of data whose reference relationship is grasped in
the first relationship grasping Step from among the plurality
of data whose reference relationship is grasped at the Second
relationship grasping Step; and

0027 a weighting step of attaching weights to each of
one or more pieces of the increased data extracted at the
increased data extracting Step in accordance with data sizes
of each increased data, Successively propagating the weights
from lower order data of a destination of reference to higher
order data of a Source of reference Successively, and in a
propagation Step of the weights, when one higher order data
constitutes the reference relationship with a plurality of
lower order data, adding the weights of the plurality of lower
order data to constitute the weight of the one higher order
data and making the weights of the respective data leak
Scores indicating a possibility of causing the memory leak.

US 2005/0268286 A1

0028. According to a second aspect of the invention with
respect to the program of detecting a memory leak causing
portion, in the first aspect of the invention, the program
causes the computer to execute:
0029 a highest leak score data extracting step of extract
ing a lower order data as a data having a high possibility of
causing a memory leak when a plurality of data having a
highest weight are present in respective weights of the
plurality of data constituting the reference relationship and
a plurality of data having the highest weight constitutes a
relationship between the higher order data and the lower
data.

0.030. According to a third aspect of the invention with
respect to the program of detecting a memory leak causing
portion, in the first or the Second aspect of the invention, the
program causes the computer to execute:
0.031) a memory leak detecting step of investigating an
amount of using the memory by a plurality of times and
determining whether the memory leak is generated based on
a result of the investigation of the plurality of times,
0.032 wherein the Second relationship grasping Step is
executed in parallel with the time when it is determined that
the memory leak is generated in the memory leak detecting
Step or thereafter.
0.033 According to a fourth aspect of the invention with
respect to the program of detecting a memory leak causing
portion, in any one of the first to the third aspects of the
invention, the program causes the computer to execute:
0034) a program cause portion extracting step of extract
ing a portion of a program where data having the high leak
Score is described from the program.
0035. According to a fifth aspect of the invention with
respect to the program of detecting a memory leak causing
portion, in any of the first to the fourth aspects of the
invention, the program causes the computer to execute:
0.036 a displaying step of displaying at least a result of
the weighting Step.

0037 According to a sixth aspect of the invention with
respect to the program of detecting a memory leak causing
portion, in the fifth aspect of the invention, in the displaying
Step, a plurality of data grasped at the Second relationship
grasping Step are displayed in a manner that the reference
relationship is seen and the leak Scores of the plurality of
data are respectively displayed.

0.038 According to a seventh aspect of the invention with
respect to the program of detecting a memory leak causing
portion, in the fourth aspect of the invention, the program
causes the computer to execute:
0.039 a displaying step of displaying a name of the data
having the highest leak Score, a declaration of a kind of the
data, and a portion of describing the data in the program
described in the programming language.

0040 According to the invention, the weights are
attached to the plurality of data constituting the reference
relationship, the weights are made to constitute leak Scores
indicating a possibility of causing the memory leak and
therefore, data being the Source of causing the memory leak

Dec. 1, 2005

is easy to specify and labor required for investigating on the
Source of memory leak can be reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

0041 FIG. 1 is an explanatory view showing a configu
ration of a computer in an embodiment according to the
invention;

0042 FIG. 2 is a flowchart showing an operation of a
memory leak detection portion in an embodiment according
to the invention;
0043 FIG. 3 is an explanatory diagram showing a
change in a memory using amount along with an elapse of
time;

0044 FIG. 4 is a flowchart showing an operation of a
leak Score calculating portion in an embodiment according
to the invention;

004.5 FIG. 5 is an explanatory view showing a data
Storing State in a data memory in an embodiment according
to the invention;

0046 FIGS. 6A and 6B are explanatory views showing
a reference relationship grasped at a reference relationship
grasping Step in an embodiment according to the invention,
FIG. 6A shows a reference relationship grasped at the first
reference relationship grasping Step-and FIG. 6B shows a
reference relationship grasped at the Second reference rela
tionship grasping step-;

0047 FIG. 7 is a detailed flowchart of S23 in the
flowchart of FIG. 4;

0048 FIG. 8 is an explanatory view showing extraction
of increased data and Sequencing thereof in an embodiment
according to the invention;
0049 FIG. 9 is an explanatory view showing an example
of a weight of each increased data in an embodiment
according to the invention;

0050 FIG. 10 is a detailed flowchart of S24 in the
flowchart of FIG. 4;

0051 FIG. 11 is an explanatory view (part 1) for explain
ing weighting respective data having a data relationship in
an embodiment according to the invention;

0.052 FIG. 12 is an explanatory view (part 2) for explain
ing weighting respective data having a data relationship in
an embodiment according to the invention;

0053 FIG. 13 is a flowchart showing an operation of a
program cause portion extracting portion in an embodiment
according to the invention; and
0054 FIG. 14 is an explanatory view showing an infor
mation display example in an embodiment according to the
invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0055 An embodiment of a method of detecting a
memory leak causing portion according to the present inven
tion will be now explained in the followings in reference to
the drawings.

US 2005/0268286 A1

0056 FIG. 1 is a view showing a configuration of a
computer 100 executing a method of detecting a memory
leak causing portion according to the embodiment.
0057 The computer 100 is a server connected to a
network 1. The server 100 is provided with a processor 110
for executing various processings, a program memory 130
stored with various programs 131, 135 executed by the
processor 110, a data memory 140 stored with various data,
an external storage device 120, a display device 150, an
interface 160 for communicating with other device via the
network 1.

0058. The external storage device 120 is stored with a
program 121 for executing a Web service provided by the
server 100. The program 121 is described in Java language.
0059. The program memory 130 is stored with a program
131 in which the program 121 in Java language Stored in the
external Storage device 120 is converted into an intermediate
language, and the program 135 for detecting a memory leak
causing portion produced by executing the program 131.
0060. The processor 110 functionally includes a compiler
112 which converts the program 121 stored in the external
Storage device 120 from Java language to the intermediate
language, a virtual machine 111 which executes the program
131 described in the intermediate language, and a leak cause
portion detecting portion 115 which functions by executing
the program 135 for detecting a memory leak causing
portion. Further, both of the compiler 112 and the virtual
machine 111 function by executing a program (not illus
trated) stored in the program memory 130. The virtual
machine 111 is provided with the garbage collection func
tion described in the background art. Unnecessary data is
collected from the data memory 140 by the garbage collec
tion function. The leak cause portion detecting portion 115
includes a memory leak detecting portion 116 which detects
memory leak by monitoring a memory using amount of the
data memory 140, a leak score calculating portion 117 which
calculates leak Score of a plurality of data Stored in a heap
region in the data memory 140, a program cause portion
extracting portion 118 which extracts a portion of the
programs described with data having high leak Score from
the inspection object programs 121, 131, and a display
portion 119 for making the display device 150 display
results of the above-described respective portions.
0061 Further, although there are the program memory
130 stored with programs and the data memory 140 stored
with data according to the embodiment, it is Sufficient in the
present invention that both a program region and a data
region maybe present in a memory and it is not necessary
that memories are present in the respective regions. Further,
although in this case, the inspection object programs 121,
131 and the leak cause portion detecting program 135 are
executed in the Single computer 100, the respective pro
grams may be executed by computers different from each
other.

0.062 Next, operation of the memory leak detecting por
tion 116 will be explained in accordance with a flowchart
shown in FIG. 2.

0.063. The memory leak detecting portion 116 executes an
investigation on a using amount of the data memory 140 by
n times (S11, S12), and determines whether memory leak is
generated in the data memory 140 from a result of the

Dec. 1, 2005

investigation of n times (S13). When it is determined that
memory leak is not generated, the processing is finished, and
when it is determined that memory leak is generated, it is
notified to the leak score calculating portion 117 (S14) and
the processing is finished.

0064 Various methods are conceivable as a method of
determining whether memory leak is generated in the data
memory 140 from the result of the investigation of n times.
For example, it may be determined that memory leak is
generated when a difference Sa between an average value
AVEO of the using amounts in the initial m times of the
investigation and an average value AVE1 of the using
amounts in the investigation of later m times is larger than
a predetermined value as shown by FIG. 3. Further, the
ordinate in the drawing designates the memory using
amount and the abscissa designates investigation time.

0065. Further, it may be determined that memory leak is
generated when a difference Sb between an initial maximum
value T0 and a final minimum value Bn in the investigation
of n times is larger than a previously determined value.
0066 Next, operation of the leak score calculating por
tion 117 will be explained in accordance with a flowchart
shown in FIG. 4.

0067 First, the leak score calculating portion 117 grasps
a data relationship with regard to all of data Stored in the
heap region of the data memory 140 (S21). Successively,
thereafter, again, the data relationship is grasped with regard
to all the data Stored in the heap region of the data memory
140 (S22). By executing the inspection object program 135,
as shown by FIG. 5, each data 141 stored to the heap region
of the data memory 140 includes a payload field 142
constituting a main body of the data and a reference rela
tionship field 143 indicating a front address of Successive
data and the leak Score calculating portion 117 grasps the
data relationship from the front address of the Successive
data Stored in the reference relationship field.
0068. Here, assume that at the step of grasping the
reference relationship of a first time (S21), for example, as
shown in FIG. 6A, it is grasped that a data A0 refers to data
B0, B1, data B1 refers to data C0, data B0 refers to data D0,
and the data D0 refers to data E0, E1. Further, in the
drawing, a circle designates data and a note on a right lower
Side of the circle designates a data size. Further, data
indicated by the same alphabet indicates the Same kind of
data, that is, the data belongs to the Same class in Java
language. For example, data E0, E1 indicate data of the same
E kind. Further, at the Step of grasping the reference rela
tionship of a second time (S22), as shown in FIG. 6B,
assume that it is grasped that data B1 grasped at the first
grasping step of the reference relationship (S21) newly
refers to data C1 and data D0 newly refers to data E2, E3.
0069. Meanwhile, the first grasping step of the reference
relationship (S21) is executed in accordance with a timing of
executing the Step of investing the memory using amount
(S11) shown in FIG. 2 at an initial time. Further, the step of
grasping the reference relationship of the Second time (S22)
is executed after having been informed that memory leak is
generated by executing the Step of informing to the leak
score calculating portion shown in FIG. 2. Further, although
here, the Step of grasping the reference relationship of the
second time (S22) after having been informed that memory

US 2005/0268286 A1

leak is generated, at each time of the Steps of investigating
the memory using amount of n times shown in FIG. 2, the
reference relationship grasping Step may be executed, the
reference relationship grasping Step of the first time may be
constituted by the reference relationship grasping Step of the
initial time, and the reference relationship grasping Step of
the Second time may be constituted by a reference relation
ship grasping Step when informed that memory leak is
generated. Further, although here, memory leak is detected
by the memory leak detecting portion 116, the reference
relationship grasping step of the Second time (S22) may be
executed after a previously determined period of time after
the reference relationship grasping Step of the first time
(S21), without executing detection of leak. As a previously
determined time period, when the inspection object program
is a program for providing a Web Service which is continu
ously executed for an extremely long period of time as in the
embodiment, a time period of, for example, three days, or
one week or the like is conceivable.

0070 When the reference relationship grasping step of
the second time (S22) has been finished, the leak score
calculating portion 117 extracts newly increased data from a
plurality of data constituting the reference relationship
grasped at the reference relationship grasping Step of the first
time (S21) from a plurality of data constituting the reference
relationship grasped at the reference relationship grasping
Step of the Second time (S22) and attaches a weight to the
increased data (S23).
0071. Here, an explanation will be given of a procedure
of extracting the newly increased data and attaching the
weight thereto (S23) in accordance with a flowchart shown
in FIG 7.

0.072 First, the leak score calculating portion 117 scans a
plurality of data whose reference relationship was grasped at
the above-described reference relationship grasping Step of
the first time (S21) (S31) and successively scans the plural
ity of data whose reference relationship was grasped at the
above-described reference relationship grasping Step of the
second time (S22) (S32). In scanning the data whose refer
ence relationship was grasped at the reference relationship
grasping Step of the Second time, first, one piece of data
(datum'?) is selected from the plurality of data whose refer
ence relationship was grasped at the reference relationship
grasping Step of the Second time (S41), and it is determined
whether the data is the Same as one of the plurality of data
whose the reference relationship was grasped at the refer
ence relationship grasping Step of the first time, that is,
whether the data is new data (S42). When the data is not new
data, the operation returns again to Step 41, and when the
data is new data, the operation acquires a kind of the data
(S43). Here, a kind of data is an aggregation of data having
a constant relationship among data and corresponds to a
class to which the data belong in Java language as described
above. Further, a data Size is Summed up for each data kind
(S44), it is determined whether there is data which is not
scanned yet (S45), and when there is the data which is not
Scanned, the operation returns to S41 and when there is not
data which is not Scanned, the operation is finished.

0.073 When scanning of data whose reference relation
ship was grasped at the reference relationship grasping Step
of the second time (S32) has been finished, as shown by
FIG. 8, data C1 and data E2, E3 are extracted as newly

Dec. 1, 2005

increased data, and the data are classified into an aggregation
of a data C kind and an aggregation of a data E kind and
Summed-up data sizes of the respective data kinds are
acquired. Specifically, data C1 is aggregated as the data C
kind and data E2, E3 are aggregated as the data E kind.
Further, as the Summed-up data size of the data C kind, “2”
is acquired and as the Summed-up data Size of the data E
kind, “10 (=5+5)” is acquired. Further, in the drawing, a
numerical value attached on a left lower Side of each data
indicates a data size.

0074 The leak score calculating portion 117 successively
Sequences respective data kinds in an order of increased data
kinds having smaller data sizes (S33). Here, as shown by
FIG. 8, the data kind C having the smaller Summed-up data
Size in the increased data kinds C, E becomes at a first order
and the data kind E becomes at a Second order.

0075) Next, the leak score calculating portion 117
attaches weights to each of the increased data kinds C, E in
accordance with orders thereof (S34) to thereby finish the
Step of extracting the increased data and attaching the weight
to the respective increased data (S23). With regard to the
weights attached to respective increased data kinds, Specifi
cally, as shown by weight example 1 in FIG. 9, the orders
attached at S33 are attached as the weights as they are.
Further, although the weights may be constituted by the
orders as they are in this way, the weights may be constituted
by data size ratios as in weight example 2 of FIG. 9. That
is, in accordance with a data Size, data having a large data
Size may be attached with a large weight and data having a
Small data Size may be attached with a Small weight. Further,
although here, data is classified into data kinds and the
weights are attached for respective data kinds, the weights
may be attached to respective data without classifying the
data by the data kinds.
0076. When the step of S23 has been finished, as shown
by the flowchart of FIG. 4, weights are attached to all the
data grasped at the reference relationship grasping Step at the
second time (S22) (S24). That is, a weight of the increased
data at a lowest order is Successively propagated to higher
order data constituting a Source of reference.
0.077 Specifically, as shown by a flowchart of FIG. 10,
first, the leak Score calculating portion 117 acquires a set of
all the data grasped at the reference relationship grasping
Step at the Second time (S22) (S51) and acquires one piece
of data which does have no Successive data from the Set of
the data (S52).
0078. Successively, it is determined whether the acquired
data is the highest order data (S53), when the acquired data
is the highest order data, the operation proceeds to S56 and
adds the weight of the data to data at a higher order
constituting a source of reference of the data (S54) when the
acquired data is not the highest order data. Further, after
removing the reference relationship of the data and the
higher order data (S55), it is determined whether the set of
the data is emptied (S.56), when the set of the data is emptied,
the processing is finished and when the Set of the data is not
emptied, the operation returns to S52. At S52, as described
above, one piece of data which has no Successive data is
acquired from the Set of the data. In this case, at the
previously executed processing of S55, as the reference
relationship between the increased data at the lowest order
and the data of the data higher than that of the lowest order

US 2005/0268286 A1

data is removed, the higher data becomes a data which has
no Successive data and therefore, the data is acquired. That
is, by repeating the processing of S52 through S56, the
weight of the increased data is Successively propagated to
the higher order data.
007.9 For example, as shown by FIG. 11, when data C1

is acquired by the processing of S52, a weight “1” of data C1
is added to data B1 being the higher order data of the Source
of reference of the data C1 and a weight of data B1 is set to
“1”. Further, in the drawing, a numerical value attached on
a right upper Side of respective data indicates the weight.
Further, when data E2 is acquired in the processing of S52,
a weight “2” of data E2 is added to data D0 constituting the
higher order data of the Source of reference of data E2.
Further, when data E3 is acquired in the processing of S52
again, a weight “2” of data E3 is added to data D0 consti
tuting the higher order data of the Source of reference of data
E3. As a result, the higher order data D0 is added with the
weight “2” of data E2 and the weight “2” of data E3 and
therefore, the weight of the higher order data D0 becomes
“4”. Further, when data D0 is acquired in the processing of
S52, the weight “4” of data D0 is added to data B0
constituting data of the order higher than that of data D0 and
the weight of data B0 is constituted by “4”. The weight of
data A0 at the highest order is added with the weights of data
B0, B1 constituting lower order data of a destination of
reference and therefore, the weight becomes “5”.
0080 When S24 has been finished, as shown by the
flowchart of FIG. 4, the leak score calculating portion 117
determines whether there are two or more of data having the
highest weight (S25). In Such a case, that is, when there is
only one piece of data having the highest weight, the data is
made to constitute the highest leak Score data with regard to
occurrence of memory leak (S26). Specifically, as shown by
FIG. 11, when data having the highest weight “5” is
constituted only by data A0 at the highest order, data A0 is
made to constitute the highest leak Score data. When there
are two or more of data having the highest weight, data at a
lowest order in the data is made to constitute the highest leak
score data (S27). Specifically, as shown by FIG. 12, when
there is only data B0 as data of a destination of reference of
data A0 at the highest order and all of the leak scores of data
D0, data B0, data A0 are 4, data D0 at a lowest order in the
data is made to constitute the highest leak Score data.
0081. When the highest leak score data has been calcu
lated (S26, 27), a data name of the highest leak Score data
and the leak Score, a data name of data having a Secondly
higher leak Score and the leak Score, and a data name of data
having a thirdly higher leak Score and the leak Score are
informed to the program cause portion extracting portion
118 and the display portion 119. The display portion 119 is
further informed of all the data grasped at the reference
relationship grasping step of the Second time (S22) and the
reference relationship among the respective data (S28).
0082 Next, operation of the program cause portion
extracting portion 118 will be explained in reference to a
flowchart shown in FIG. 13.

0.083. When the program cause portion extracting portion
118 is informed of the name of the highest leak score data
and the leak Score from the leak Score calculating portion
117, the program cause portion extracting portion 118 Starts
operation and extracts a portion where data of the name of

Dec. 1, 2005

the highest leak Score data is generated or Substituted from
the inspection object program 131 described in intermediate
language stored to the program memory 130 (S61). The
inspection object program 131 described in the intermediate
language is described with a row number of a corresponding
portion in the inspection object program 121 described in
Java language and therefore, after extracting the correspond
ing portion from the inspection object program 131
described in the intermediate language, the row number of
the corresponding portion in the inspection object program
121 is acquired from a row number table set at a side of the
corresponding portion (S62). Next, it is determined whether
the row number of the Substituted or generated portion is
acquired with regard to all the data informed from the leak
Score calculating portion 117 and when the row number is
acquired with regard to all the data, the operation proceeds
to S64, and when the data which does not acquire the row
number remains, the operation returns to S61. At S64, the
respective row number with regard to all the data is informed
to the display portion 119.
0084. The display portion 119 displays information
informed from the leak score calculating portion 117 and the
program cause portion extracting portion 118 on the display
device 150 as described above.

0085) Specifically, as shown by FIG. 14, the display
device 150 displays a leak score ranking window 160, a
reference relationship window 170, and a source code win
dow 180.

0086 The leak score ranking window 160 displays an
order and a leak Score 161, a declaration class 162, a data
name 163, a class to which data belongs 164, a program
Source name and a row number 165 described with the
corresponding data with regard to data having higher three
orders of leak Scores informed from the leak Score calcu
lating portion 117. Further, although according to the
example shown in FIG. 14, the leak Scores are aligned in an
order of the higher Score degrees from above, a display in an
order of lower leak Scores or leak Scores classified by names
can also be displayed.
0087. The reference relationship window 170 displays a
diagram showing all the data grasped at the reference
relationship grasping Step of the Second time and the refer
ence relationship among the respective data which are
informed from the leak score detecting portion 117. Accord
ing to the reference relationship diagram, an emphasized
display 171 of data designated by the leak Score ranking
window 160 is executed. Further, a line 172 between nodes
indicating the reference relationship is displayed by a bold
neSS in accordance with the leak Score. Further, with regard
to data 173 displayed in the leak score ranking window 160,
the data 173 is displayed by a different color etc. in order to
differentiate from other data out of ranking. Further,
although not illustrated here, the numerical value of the leak
Score calculated at the leak Score calculating portion 117
may be displayed at a side of a node indicating data.
0088. The source code window 180 displays a corre
sponding row 181 in the inspection object program 121
described in Java language with regard to data designated by
the leak score ranking window 160 and the rows at the
vicinities of the row. Contents of the rows are extracted from
the inspection object program 121 in Java language Stored to
the external storing device 120. The corresponding row 181

US 2005/0268286 A1

is displayed in an emphasized manner to differentiate from
other rows. Here, there is designated the data name “vec” at
a third order of the leak Score ranking in the leak Score
ranking window 160 and therefore, a row 181 using the data
name “vec is displayed in an emphasized manner.
0089. A system controller executes a processing of
changing a program of removing a corresponding element
data from an array class with regard to the corresponding
portion of the inspection object program 121 described in,
for example, Java language or disconnecting the reference
relationship of the corresponding element data by looking at
the above-described display content. Further, the data the
reference relationship of which is disconnected is collected
from the data memory 140 by the above-described garbage
collection function.

0090. As described above, according to the embodiment,
data having a high leak Score is displayed along with the
numerical value of the leak Score, the reference relationship
diagram of the data and the row of the inspection object
program 121 described in Java language in which data
having a high leak Score is used are displayed and therefore,
data constituting a Source of generating memory leak is
easily Specified, further, time and labor of Searching for the
corresponding portion from the program 121 can be saved
and labor required for investigating the Source of -memory
leak can considerably be reduced.
0.091 Further, although according to the above-described
embodiments, the object of the invention is the program
described in Java language, the invention is not limited
thereto but So far as the program is a program described in
a language capable of tracking a reference relationship
among data with regard to a plurality of data Stored in a
memory without explicitly executing allocation and release
of a region in the memory, a program described in any
language can be the object of the invention.
0092. Having described a preferred embodiment of the
invention with reference to the accompanying drawings, it is
to be understood that the invention is not limited to the
embodiments and that various changes and modifications
could be effected therein by one skilled in the art without
departing from the Sprit or Scope of the invention as defined
in the appended claims.

What is claimed is:
1. A method of detecting a memory leak causing portion

generated in executing a program described in a program
ming language capable of tracking a reference relationship
among a plurality of data Stored in a memory of a computer,
Said method comprising:

a first relationship grasping Step of grasping the reference
relationship among a plurality of data Stored in the
memory;

a Second relationship grasping Step of grasping the refer
ence relationship among the plurality of data Stored in
the memory after the first relationship grasping Step;

an increased data extracting Step of extracting one or more
pieces of increased data which are not present in the
plurality of data whose reference relationship is
grasped by the first relationship grasping Step from the
plurality of data whose reference relationship is
grasped at the Second relationship grasping Step; and

Dec. 1, 2005

a weighting Step of attaching weights to each one or more
pieces of the increased data extracted at the increased
data eXtracting Step in accordance with data Sizes of the
respective increased data, Successively propagating the
weights from lower order data of a destination of
reference to higher order data of a Source of reference
Successively, when in a propagation process of the
weights, one higher order data constitutes the reference
relationship with a plurality of lower order data, adding
the weights of the plurality of lower order data to
constitute the weight of the one higher order data and
making the weights of the respective data leak Scores
indicating a possibility of causing the memory leak.

2. The method of detecting a memory leak causing portion
according to claim 1, wherein in the weighting Step, one or
more pieces of the increased data are classified for respec
tive data kinds and the weights in accordance with data sizes
of respective data groups are attached to the classified data
groupS.

3. The method of detecting a memory leak causing portion
according to claim 1, further comprising:

a highest leak Score data extracting Step of extracting a
lower order data as a data having a high possibility of
causing a memory leak when a plurality of data having
a highest weight are present in respective weights of the
plurality of data constituting the reference relationship
and the plurality of data having the highest weight
constitutes a relationship between the higher order data
and the lower data.

4. The method of detecting a memory leak causing
portion, according to claim 2 comprising:

a highest leak Score data extracting Step of extracting a
lower order data as a data having a high possibility of
causing a memory leak when a plurality of data having
a highest weight are present in respective weights of the
plurality of data constituting the reference relationship
and the plurality of data having the highest weight
constitutes a relationship between the higher order data
and the lower order data.

5. The method of detecting a memory leak causing portion
according to claim 1, further comprising:

a memory leak detecting Step of investigating on an
amount of using the memory by a plurality of times and
determining whether the memory leak is generated
from a result of the investigation of the plurality of
times,

wherein the Second relationship grasping Step is executed
in parallel with when it is determined that the memory
leak is generated in the memory leak detecting Step or
thereafter.

6. The method of detecting a memory leak causing portion
according to claim 5, wherein in the memory detecting Step,
it is determined that the memory leak is generated when the
memory using amount has been increased at a investigation
after a certain investigation among a plurality of investiga
tions in a amount equal to or larger than a previously
determined increased amount relative to the memory using
amount in the certain investigation.

7. The method of detecting a memory leak causing portion
according to claim 1, further comprising:

a program cause portion extracting Step of extracting a
portion described with a data having a high possibility
of causing the memory leak from the program.

US 2005/0268286 A1

8. The method of detecting a memory leak causing portion
according to claim 5, further comprising:

a program cause portion extracting Step of eXtracting a
portion described with a data having a high possibility
of causing the memory leak from the program.

9. The method of detecting a memory leak causing portion
according to claim 7;

wherein the program described in the programming lan
guage is a program executed by being converted into an
intermediate language; and

wherein in the program cause portion extracting Step, a
portion described with the data having a high possibil
ity of causing the memory leak is found from the
program converted into the intermediate language and
a portion corresponding to the portion thus found is
extracted from the program described in the program
ming language.

10. The method of detecting a memory leak causing
portion according to claim 8;

wherein the program described in the programming lan
guage is a program executed by being converted into an
intermediate language; and

wherein in the program cause portion extracting Step, a
portion described with a data having a high possibility
of causing the memory leak is found from the program
converted into the intermediate language and a portion
corresponding to the portion thus found is extracted
from the program described in the programming lan
guage.

11. The method of detecting a memory leak causing
portion according to claim 1, further comprising:

a displaying Step of displaying at least a result of the
Weighting Step.

12. A program for detecting a memory leak causing
portion generated in executing a program described in a
programming language capable of tracking a reference rela
tionship among a plurality of data Stored in a memory of a
computer, the program causing the computer to execute:

a first relationship grasping Step of grasping the reference
relationship among the plurality of data Stored in the
memory;

a Second relationship grasping Step of grasping the refer
ence relationship among the plurality of data Stored to
the memory after the first relationship grasping Step;

an increased data extracting Step of extracting one or more
pieces of increased data which are not present in the
plurality of data whose reference relationship is
grasped by the first relationship grasping Step from the
plurality of data the reference relationship of which is
grasped at the Second relationship grasping Step; and

a weighting Step of attaching weights to each of one or
more pieces of the increased data extracted at the
increased data extracting Step in accordance with data
Sizes of the respective increased data, Successively
propagating the weights from lower order data of a
destination of reference to higher order data of a Source
of reference Successively, when in a propagation Step of
the weights, one higher order data constitutes the
reference relationship with a plurality of lower order

Dec. 1, 2005

data, adding the weights of the plurality of lower order
data to constitute the weight of the one higher order
data and making the weights of the respective data leak
Scores indicating a possibility of causing the memory
leak.

13. The program for detecting a memory leak causing
portion according to claim 12, wherein in the weighting Step,
one or more pieces of the increased data are classified for
respective data kinds and weights in accordance with data
sizes of respective data groups are attached to the classified
data groups.

14. The program for detecting a memory leak causing
portion according to claim 12, the program causing the
computer to execute:

a highest leak Score extracting Step of extracting a lower
order data as a data having a high possibility of causing
a memory leak when there are a plurality of data having
a highest weight in respective weights of the plurality
of data constituting the reference relationship and the
plurality of data having the highest weight constitutes
a relationship between the higher order data and the
lower order data.

15. The program for detecting a memory leak causing
portion according to claim 13, the program causing the
computer to execute:

a highest leak Score data extracting Step of extracting a
lower order data as a data having a high possibility of
causing a memory leak when a plurality of data having
a highest weight are present in respective weights of the
plurality of data constituting the reference relationship
and a plurality of data having the highest weight
constitutes a relationship between the higher order data
and the lower data.

16. The program for detecting a memory leak causing
portion according to claim 12, the program causing the
computer to execute:

a memory leak detecting Step of investigating on an
amount of using the memory by a plurality of times and
determining whether the memory leak is generated
from a result of the investigation of the plurality of
times,

wherein the Second relationship grasping Step is executed
in parallel with the time when it is determined that the
memory leak is generated in the memory leak detecting
step therewith or thereafter.

17. The program for detecting a memory leak causing
portion according to claim 16, wherein in the memory leak
detecting Step, in the investigation of the plurality of times,
it is determined that the memory leak is generated when the
memory using amount has been increased in an investigation
after a certain investigation among a plurality of investiga
tions in a amount equal to or larger than a previously
determined increased amount, relative to the memory using
amount in the certain investigation,

18. The program for detecting a memory leak causing
portion according to claim 12, the program causing the
computer to execute:

a program cause portion extracting Step of extracting a
portion described with a data having the high leak Score
from the program.

US 2005/0268286 A1

19. The program for detecting a memory leak causing
portion according to claim 16, the program causing the
computer to execute:

a program cause portion extracting Step of eXtracting a
portion described with a data having the high leak Score
from the program.

20. The program for detecting a leak-causing portion
memory leaks according to claim 18, wherein the program
described in the programming language is a program
executed by being converted into an intermediate language;
and

wherein in the program cause portion extracting Step, a
portion described with the data having the high leak
Score is found from the program converted into the
intermediate language and a portion corresponding to
the portion thus found is extracted from the program
described in the programming language.

21. The program for detecting a memory leak causing
portion according to claim 19, wherein the program
described in the programming language is a program
executed by being converted into an intermediate language;
and

wherein in the program-caused extracting portion extract
ing Step, a portion described with the data having the
high leak Score is found from the program converted
into the intermediate language and a portion corre
sponding to the portion thus found is extracted from the
program described in the programming language.

Dec. 1, 2005

22. The program for detecting a memory leak causing
portion according to claim 19, the program causing the
computer to execute:

a displaying Step of displaying at least a result of the
Weighting Step.

23. The program for detecting a memory leak causing
portion according to claim 22, wherein in the displaying
Step, the plurality of data grasped at the Second relationship
grasping Step is displayed in a manner that the reference
relationship is seen and the leak Scores of the plurality of
data are respectively displayed.

24. The program for detecting a memory leak causing
portion according to claim 18, the program causing the
computer to execute:

a displaying Step of displaying a data name of the data
having the highest leak Score, a declaration of a data
kind of the data, a portion of describing the data in the
program described in the programming language.

25. The program for detecting memory leak causing
portion according to claim 24, wherein the program lan
guage is Java language, and

wherein in the displaying Step, the data kind to which the
data belongs is displayed in relation to the data name of
the data having the highest leak Score.

26. The program of detecting a memory leak causing
portion according to claim 19 wherein the program is a
program provided by a Web service.

k

