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METHOD AND APPARATUS FOR DEFERRED SCHEDULING FOR JTAG

SYSTEMS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Patent Application

Serial No. 12/495,237, entitled "METHOD AND APPARATUS FOR SYSTEM

TESTING USING MULTIPLE INSTRUCTION TYPES" (Attorney Docket No.

ALU/1 301 37), U.S. Patent Application Serial No. 12/495,295, entitled

"METHOD AND APPARATUS FOR SYSTEM TESTING USING MULTIPLE

PROCESSORS" (Attorney Docket No. ALU/1 301 37-2), and U.S. Patent

Application Serial No. 12/495,336, entitled "METHOD AND APPARATUS

FOR SYSTEM TESTING USING SCAN CHAIN DECOMPOSITION" (Attorney

Docket No. ALU/1 301 37-3), each of which was filed on June 30, 2009, and

each of which claims the benefit of U.S. Provisional Patent Application Serial

No. 61/1 57,41 2 , filed on March 4 , 2009, entitled TEST INSTRUCTION SET

ARCHITECTURE, which applications are hereby incorporated herein by

reference in their entirety. This application is related to U.S. Patent

Application Serial No. 13/33,8431 , entitled "METHOD AND APPARATUS

FOR POSITION-BASED SCHEDULING FOR JTAG SYSTEMS" (Attorney

Docket No. 809732-US-CIP), which is hereby incorporated herein by

reference in its entirety.

TECHNICAL FIELD

The invention relates generally to JTAG systems and, more specifically

but not exclusively, to scheduling of testing in JTAG systems.

BACKGROUND

In Joint Test Action Group (JTAG) applications, access to a System

Under Test (SUT) is provided through application of vectors to a scan chain of

the SUT. The vectors are serially applied to the standardized Test Access



Port (TAP), which provides an interface to the scan chain of the SUT. The

vectors represent the binary value of each bit in the scan chain. A typical test

routine may include anywhere from a few vector bits to a large number of

vector bits (e.g., hundreds, thousands, or even more). As a result, given that

vector sets must be computed and serially applied to the TAP, the size of a

vector set is an important consideration in testing for a SUT, especially in

embedded applications. Furthermore, vectors are computed for a specific

JTAG setup and, thus, need to be modified each time that the JTAG setup

changes (an operation that is known as retargeting, which is quite onerous

especially when the subsystem to retarget is complext). As a result, dynamic

testing (e.g., situations where the vector inputs must be adapted "on the fly"

based on the actual outputs) is limited because it requires a continuous

retargeting of the entire scan chain and, similarly, use of dynamic topologies

(e.g., where the length of the scan chain varies depending on the value of

some elements) is limited as concurrent use of instruments is quite difficult

because of the computational intesity associated with the required retargeting.

Thus, although theoretically possible,the above-described problems make

dynamic and portable testing unfeasible.

SUMMARY

Various deficiencies in the prior art are addressed by scheduling of

scan chain access.

In one embodiment, an apparatus includes a processing module, a

reordering buffer module, and a vector transformation module. The

processing module is configured to receive a plurality of test operations

associated with a plurality of segments of a unit under test and to generate

therefrom input test data configured to be applied to the unit under test via a

Test Access Port (TAP). The reordering buffer module is configured to

receive the input test data from the processing element and to buffer the input

test data in a manner for reordering the input test data to compose an input



test vector tor a scan chain of the unit under test. The vector transformation

module is configured to receive the input test vector from the reordering buffer

module and to apply a vector transformation for the input test vector.

In one embodiment, a non-transitory computer-readable storage

medium stores instruction which, when executed by a processor, cause the

processor to perform a method including receiving a plurality of test

operations associated with a plurality of segments of a unit under test,

generating, from the test operations, input test data configured to be applied

to the unit under test via a Test Access Port (TAP), buffering the input test

data in a manner for reordering the input test data to compose an input test

vector for a scan chain of the unit under test, and applying a vector

transformation for the input test vector.

In one embodiment, a method including receiving a plurality of test

operations associated with a plurality of segments of a unit under test,

generating, from the test operations, input test data configured to be applied

to the unit under test via a Test Access Port (TAP), buffering the input test

data in a manner for reordering the input test data to compose an input test

vector for a scan chain of the unit under test, and applying a vector

transformation for the input test vector.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings presented herein can be readily understood by

considering the following detailed description in conjunction with the

accompanying drawings, in which:

FIG. 1 depicts a high-level block diagram of a system testing

environment including a testing system and a system under test;

FIG. 2 depicts a high-level block diagram of one embodiment of the

testing system of FIG. 1, including a test generation tool and a software

compiler cooperating to generate test instructions for a system under test;



FIG. 3 depicts a high-level block diagram of one embodiment of the

testing system of FIG. 1, including a test generation tool and a software

compiler cooperating to generate test instructions for a system under test;

FIGs. 4A - 4E depict an implementation of the TISA using a SPARC

V8 ISA, illustrating the details of instruction coding for the implementation of

the TISA using a SPARC V8 ISA;

FIG. 5 depicts an implementation of the TISA using a SPARC V8 ISA,

illustrating an exemplary TISA architecture for implementation of the TISA

using a SPARC V8 ISA;

FIG. 6 depicts an embodiment of a TISA-based testing environment

supporting interactive testing capabilities;

FIG. 7 depicts an exemplary implementation of the TISA-based testing

environment of FIG. 6 ;

FIG. 8 depicts an exemplary program architecture for performing

optimization of the transmitter-receiver channel of the system under test of

FIG. 5A;

FIG. 9 depicts one embodiment of a method for adapting an Instruction

Set Architecture (ISA) flow of a processor to form a Test Instruction Set

Architecture (TISA) flow;

FIG. 10 depicts one embodiment of a method for generating

instructions adapted for use in testing at least a portion of a system under

test;

FIG. 11A depicts one embodiment of a method for generating

instructions adapted for use in testing at least a portion of a system under

test;

FIG. 11B depicts one embodiment of a method for generating

instructions adapted for use in testing at least a portion of a system under

test;

FIG. 12 depicts an exemplary embodiment of a TISA processor

architecture;



FIG. 13 depicts an exemplary embodiment of a test processor

architecture utilizing multiple processors to provide system testing capabilities;

FIG. 14 depicts an exemplary embodiment of a test co-processor

architecture;

FIG. 15 depicts an exemplary embodiment of a test adjunct processor

architecture;

FIG. 16 depicts an exemplary register set that can be used by a TISA

processor;

FIG. 17 depicts a high-level block diagram of a system under test,

illustrating an exemplary decomposition of an exemplary scan chain of the

system under test;

FIG. 18 depicts a high-level block diagram of one embodiment of a

method for testing a portion of a system under test via a scan chain of the

system under test using Scan Segment Level abstraction of the scan chain;

FIG. 19 depicts one embodiment of a scheduler execution architecture

configured to provide position-based scheduling for testing a system under

test;

FIG. 20 depicts an exemplary TISA segment concatenation for an

exemplary scan chain composition;

FIG. 2 1 depicts an exemplary scan chain composition and associated

Circuit Model for the system under test of FIG. 19 ;

FIG. 22 depicts one embodiment of a process for performing position-

based scheduling of access requests using the concept of critical section;

FIG. 23 depicts one embodiment of a scheduler execution architecture

configured to provide position-based scheduling for testing a system under

test;

FIG. 24 depicts an exemplary scan chain composition and associated

Circuit Model where the scan chain composition includes a dynamic segment;

FIG. 25 depicts one embodiment of a method for supporting position-

based scheduling for testing a system under test;



FIG. 26 depicts one embodiment of a scheduler execution architecture

configured to provide position-based scheduling for testing a system under

test;

FIG. 27 depicts one embodiment of a method for supporting position-

based scheduling for testing a system under test;

FIG. 28 depicts one embodiment of a deferred scheduler execution

architecture configured to provide position-based scheduling for testing a

system under test;

FIG. 29 depicts one embodiment of a scheduler execution architecture

configured to provide position-based scheduling for testing a system under

test; and

FIG. 30 depicts a high-level block diagram of a computer suitable for

use in performing functions described herein.

To facilitate understanding, identical reference numerals have been

used, where possible, to designate identical elements that are common to the

figures.

DETAILED DESCRIPTION

Various system testing capabilities are provided for use in performing

testing of a system under test (SUT).

In one embodiment, a test instruction set architecture (TISA) is

provided. The TISA is provided for use in performing system testing. The

TISA combines computer science capabilities with system testing capabilities

to provide improved system testing capabilities, including interactive testing

capabilities, remote testing capabilities, and various other capabilities

described herein. The TISA is formed by adapting a software-based

instruction set architecture (ISA) using system testing capabilities. The

software-based ISA may utilize any suitable software programming language

(e.g., C++, Java, and the like, as well as various combinations thereof) and

may be implemented using any suitable processor. The system testing



capabilities may utilize any suitable TAP, such as IEEE 1149.1 (also known

as JTAG) TAPs or any other suitable TAPs. In general, the TISA is formed by

combining the atomic operations of a software process with atomic testing

operations of a test procedure. In the TISA, the algorithmic portions of the

test procedure are handled by the software flow, such that the algorithmic

portions of the test procedure are translated into the atomic testing

operations. The TISA is formed by combining the atomic operations of the

software process with the atomic testing operations of the test procedure,

such that the atomic testing operations are treated in the same manner as the

atomic operations of the software process that is handling the algorithmic

portions of the test procedure. This enables finer-grain control of embedded

test execution, remote test execution, and various other improved system

testing capabilities as depicted and described herein.

FIG. 1 depicts a high-level block diagram of a system testing

environment including a testing system and a system under test.

As depicted in FIG. 1, system testing environment 100 includes a

testing system (TS) 110 and a system under test (SUT) 120.

The TS 110 may be any system suitable for testing SUT 120. The TS

110 is configured for testing SUT 120. The TS 110 may perform any testing of

SUT 120, e.g., testing one or more individual components of SUT 120, one or

more combinations of components of SUT 120, one or more interconnections

between components of SUT 120, one or more system level functions of SUT

120, and the like, as well as various combinations thereof. The TS 110 may

perform any of the functions typically associated with testing a system under

test, such as executing test procedures, providing input data to the system

under test, receiving output data from the system under test, processing

output data received from the system under test for determining system

testing results, and like functions, as well as various combinations thereof.

The design and use of TS 110 for testing a system under test is described in

additional detail hereinbelow.



The SUT 120 may be any system which may be tested using TS 110 .

The SUT 120 may include any component(s), at least a portion of which may

be tested, individually and/or in combination, by TS 110 . The TS 120 may

include one or more scan chains, having one or more sets of associated input

and output access pins, providing access to the component(s) to be tested by

SUT 120. The manner in which a scan chain(s) may be utilized in SUT 120 for

testing SUT 120 will be appreciated by one skilled in the art. For example,

SUT 120 may include one or more boards, testing of which may be performed

using one or more scan chains having associated input and output access

pins which may be used for applying input testing signals to SUT 120 and

collecting output testing signals from SUT 120.

As depicted in FIG. 1, TS 110 accesses SUT 120 via a test access

interface (TAI) 115 . The test access interface may be implemented using any

suitable test access interface, which may depend on one or more of the TS

110 , the SUT 120, the type of testing to be performed, and the like, as well as

various combinations thereof.

For example, TAI 115 may include a Joint Test Action Group (JTAG)

Test Access Port (TAP) as standardized in IEEE 1149.1 standard, which is

incorporated by reference herein in its entirety. The IEEE 1149.1 standard

defines a TAP that supports the following set of signals: Test Data In (TDI),

Test Data Out (TDO), Test Mode Select (TMS), Test Clock (TCK), and,

optionally, Test Reset Signal (TRST). The TDI and TDO pins of SUT 120 are

interconnected in a boundary scan chain by which TS 110 may access SUT

120 for testing at least a portion of SUT 120.

The TAI 115 may include any other suitable test access interface.

It will be appreciated by one skilled in the art that TS 110 , TAI 115 , and

SUT 120 may be implemented in any manner suitable for providing features

of the embodiments covered herein.

As described herein, the TISA is able to leverage computer science

capabilities in combination with system testing capabilities to provide a



significant improvement in system testing. A general description of system

testing capabilities and computer science capabilities follows, followed by a

description of the manner in which computer science capabilities and system

testing capabilities may be utilized together to provide the TISA.

The TISA improves upon system testing capabilities by leveraging

computer science capabilities. The system testing capabilities may include

the capabilities generally supported in all stages of the "automated test" flow

(which generally includes all of the steps and resources that may be needed

to get from a definition of the test algorithm(s) to actual testing operations).

In order to help test automation, test resources often are embedded

inside the boards and devices, and can be accessed using a standardised

interface, usually called the Test Access Port (TAP). This has the effect of

limiting the pin count and rationalising resource access and management. A

number of languages are available for describing resources inside a system

under test, and, thus, which may be used as inputs to Test Generation Tools

(TGTs). TGTs can apply algorithms to generate testing sequences which may

be used by a Test Control Unit (TCU) to command the TAP and execute the

associated testing operations. The features and performances of the testing

operations depend on these three elements: the access standard, the data

format, and the TCU implementation.

The TISA is able to leverage computer science capabilities to provide

improved system testing capabilities. This may include use of computer

science capabilities that are available in all stages of the "software

development flow" (which generally includes any or all of the steps and

resources that may be needed to get from a software algorithm coded in a

software language(s) of choice to the final debugging and execution on a

target processor, such as compilation, an Instruction Set Architecture (ISA),

interactive debugging, and the like, as well as various combinations thereof).

The use of compilation in computer science reduces an algorithm

defined in a programmer-friendly high level abstraction to a series of machine-



executable instructions. This process can vary greatly, depending on the input

programming language and project complexity; however, most, if not all, of

the approaches share the same basic assumption: any algorithm can be

decomposed into basic instructions, regardless of its complexity. This applies

to classic languages, as well as to more modern high-level and object

oriented languages such as, for example, C++, Java, Python, and the like.

The Instruction Set Architecture (ISA) is the core of any processor, and

the reason for which compilation is so effective. In general, each processor

offers a set of instructions which define the manner in which the processor

can be operated. The instructions form at least part of the ISA of the

processor. It will be appreciated that the ISA may be considered to include

various constructs associated with the instructions, such as registers,

addressing modes, opcodes, memory structures, and the like, as well as

various combinations thereof. The ISA enables the processor to execute

simple instructions, such as reading/writing values from/to memory, perform

logical or arithmetical operations on registers, handle interruption, and the

like. This basic behaviour has remained essentially unchanged over time,

and modern processors achieve exceptional performances because they can

efficiently exploit great numbers of resources, and, thus, are able to complete

a much larger number of such basic instructions in approximately the same

amount of time. Furthermore, even higher performances may be reached from

the use of co-processors (e.g., floating-point co-processors, graphical co

processors, and the like), which can help the main processor by hard-coding

complex operations.

The use of debugging in computer science allows monitoring and

verification of the software development and execution process. In general,

software development is a long and difficult process, which is strictly

monitored and verified to assure that the final product is free of defaults, or

"bugs" are they are usually called. In order to help test software programs, the

software development flow provides many powerful debug features. For



example, common software development flow debug features include step-by-

step execution; observability/controllability of all registers and memory

locations, use of breakpoints and watchpoints, and the like. These debug

features, as well as various other debug features, are more often enabled by

algorithms and structures embedded into the final code by the software

compiler, but may also be assisted by hardware resources available inside of

the processor,. From this information the debugger can reconstruct the

original code and correlate all the ISA-level operations to the programming

abstraction layer.

The use of automated test execution capabilities and computer science

software capabilities together to enable improved system testing capabilities

may be better understood by way of reference to FIG. 2 and FIG. 3 .

FIG. 2 depicts a high-level block diagram of one embodiment of the

testing system of FIG. 1, including a test generation tool and a software

compiler cooperating to generate test instructions for a system under test.

As depicted in FIG. 2 , the TS 110 includes a test generation tool (TGT)

2 10 and a software compiler (SC) 220.

The TGT 2 10 includes a TGT composer 2 12 and TGT algorithms 2 14 .

The TGT composer 2 12 accepts system description files 2 1 1 as input.

The system description files 2 11 include any suitable description files which

may be used by a TGT to produce testing instructions/vectors for testing a

system under test. For example, system description files 2 1 1 may include

circuit description files, board/fixture netlist files, other description files, and

the like, as well as various combinations thereof. The system description

files 2 1 1 may be available on TGT 2 10 and/or may be obtained from one or

more remote components and/or systems.

The system description files 2 11 may include one or more circuit

description files, The circuit description files may be specified using any

suitable description language(s), such as the Boundary Scan Description

Language (BSDL, which was developed as part of the IEEE 1149.1 standard



tor board-level JTAG), the Hierarchical Scan Description Language (HSDL,

which was developed as an extension of BSDL), New Scan Description

Language (NSDL), and the like, as well as various combinations thereof.

The system description files 2 11 may include one or more board/fixture

netlist files, The board/fixture netlist files may include files related to the

physical description of the device(s), describing the netlist, connections, and

like information. The board/fixture netlist files may be specified in any suitable

format, such as PCB, Gerber, and/or any other format suitable for

board/fixture netlist files.

The system description files 2 11 may include one or more other

description files. The other description files may include any other suitable

description files which may be used as input for producing a circuit model. For

example, other description files may include any suitable application-specific

and/or tool-specific description language files, such as Asset's Macro

Language, Goepel's CASLAN Language, and/or any other suitable

description language files.

The TGT composer 2 12 processes the system description files 2 11 to

produce a circuit model 2 13 . The processing of system description files 2 11

by TGT composer 2 12 to produce circuit model 2 13 may be performed in any

suitable manner. The circuit model 2 13 specifies a model of the system under

test or portion of the system under test for which TGT 2 10 is being run. The

TGT composer 2 12 provides circuit model 2 13 to TGT algorithms 2 14 .

The TGT algorithms 2 14 accept circuit model 2 13 . The TGT algorithms

2 14 process the circuit model 2 13 to produce TGT atomic test operations 2 16 .

The processing of circuit model 2 13 by TGT algorithms 2 14 to produce the

TGT atomic test operations 2 16 may be performed in any suitable manner.

The SC 220 includes SC front-end algorithms 222 and SC back-end

algorithms 224.

The SC front-end algorithms 222 accept computer science source files

221 as input. The computer science source files 221 include any suitable



computer science source files which may be compiled by a compiler. For

example, computer science source files 221 may include computer science

source files for any suitable computer programming language(s), such as

C++, Java, Python, and the like, as well as various combinations thereof. For

example, computer science source files 221 may include one or more of one

or more C files, one or more C++ files, and/or any other suitable computer

science source files.

The SC front-end algorithms 222 process the computer science source

files 221 to produce a program model 223. The program model 223 specifies

an intermediate representation of the computer science source files 221 . The

SC front-end algorithms 222 provide the program model 223 to the SC back-

end algorithms 224.

The SC back-end algorithms 224 accept program model 223 as input.

The SC back-end algorithms 224 process the program model 223 to produce

one or more ISA Binary Files 225 including ISA atomic operations 226. The

processing of program model 223 by the SC back-end algorithms 224 to form

the ISA Binary Files 225 including the ISA atomic operations 226 may be

performed in any suitable manner. The ISA atomic operations 226 are

assembly-level instructions supported by the processor for which the TISA is

implemented.

As depicted in FIG. 2 , in addition to the respective processing flows of

TGT 2 10 and SC 220, additional interaction between TGT 2 10 and SC 220

may be utilized for controlling generation of the TISA atomic operations 235.

In one embodiment, SC back-end algorithms 224 may initiate one or more

vector computation requests 230 to TGT algorithms 2 14 . The SC back-end

algorithms 224 may initiate a vector computation request 230 when the SC

back-end algorithms need to access the TAP. The TGT algorithms 2 14 , upon

receiving a vector computation request 230 from SC back-end algorithms 224,

generate one or more TGT atomic test operations 2 16 for the TAP based on

the received vector computation request 230. The one or more TGT atomic



test operations 2 16 may then be applied to the TAP in a manner controlled by

SC back-end algorithms 224, because the TGT atomic test operations 2 16

are combined with the ISA atomic operations 226 to enable algorithmic control

over TGT atomic test operations 2 16 using ISA atomic operations 226. In

this manner, the SC 220 provides algorithmic control of access to the TAP.

As depicted in FIG. 2 , in addition to TGT 2 10 and SC 220, TS 110

further includes a TISA composer 240. The TISA composer 240 accepts the

TGT atomic test operations 2 16 and the ISA atomic operations 226. The

TISA composer 240 converts the TGT atomic test operations 2 16 into TISA

instructions and inserts the TISA instructions into the ISA Binary File(s) 225

(i.e., combining the TISA instructions with the ISA atomic operations 226 to

form thereby TISA Binary files 245 including TISA atomic operations 246.

The TISA composer 240 may be part of TGT 2 10 , part of SC 220, split across

TGT 2 10 and SC 220, implemented separate from TGT 2 10 and SC 220, and

the like.

It will be appreciated that the various inputs and outputs depicted and

described with respect to FIG. 2 may be stored, displayed, executed,

propagated, and/or handled in any other suitable manner, as well as various

combinations thereof.

FIG. 3 depicts a high-level block diagram of one embodiment of the

testing system of FIG. 1, including a test generation tool and a software

compiler cooperating to generate test instructions for a system under test.

As depicted in FIG. 3 , TS 110 of FIG. 3 operates in a manner similar to

TS 110 of FIG. 2 , in that TISA Binary files including TISA atomic operations

are generated using interaction between the test generation tool and the

software compiler; however, interaction between the test generation tool and

the software compiler in TS 110 of FIG. 3 is different than interaction between

the test generation tool and the software compiler in TS 110 of FIG. 2 .

As depicted in FIG. 3 , the TS 110 includes a test generation tool (TGT)

3 10 and a software compiler (SC) 320.



The TGT 3 10 includes a TGT composer 3 12 and TGT algorithms 3 14 .

The TGT composer 3 12 accepts system description files 3 1 1 as input.

The system description files 3 11 include any suitable description files which

may be used by a TGT to produce testing instructions/vectors for testing a

system under test. For example, system description files 3 1 1 may include

circuit description files, board/fixture netlist files, other description files, and

the like, as well as various combinations thereof. The system description

files 3 1 1 of FIG. 3 may include system description files similar to system

description filed 2 11 depicted and described with respect to FIG. 2 (e.g., one

or more circuit description files, one or more board/fixture netlist files, one or

more other description filed, and the like, as well as various combinations

thereof). The system description files 3 1 1 may be available on TGT 3 10

and/or obtained from one or more remote components and/or systems.

The TGT composer 3 12 accepts one or more test operation description

files 331 - 331 N (collectively, test operation description files 331 ) as input.

The test operation description files 331 are generated by SC 320. The

generation of test operation description files 331 by SC 320 is described in

detail hereinbelow.

The TGT composer 3 12 processes the system description files 3 11

and the test operation description files 331 to produce a circuit model 3 13 .

The processing of system description files 3 11 by TGT composer 3 12 to

produce circuit model 3 13 may be performed in any suitable manner. The

circuit model 3 13 specifies a model of the system under test or portion of the

system under test for which TGT 3 10 is being run. The processing of system

description files 3 11 in conjunction with test operation description files 331

enables the TGT composer 3 12 to produce circuit model 3 13 in a manner for

enabling TGT 3 10 to produce appropriate TAP atomic operations. The TGT

composer 3 12 provides circuit model 3 13 to TGT algorithms 3 14 .

The TGT algorithms 3 14 accept circuit model 3 13 . The TGT algorithms

3 14 process the circuit model 3 13 to produce TGT atomic test operations 3 16 .



The processing of circuit model 3 13 by TGT algorithms 3 14 to produce the

TGT atomic test operations 3 16 may be performed in any suitable manner.

As depicted in FIG. 3 , in addition to TGT 3 10 and SC 320, TS 110

includes a TISA translator 340. The TISA translator 340 receives the TGT

atomic test operations 3 16 . The TISA translator 340 translates TGT atomic

test operations 3 16 to form TISA atomic test operations 346. The TISA

translator 340 provides TISA atomic test operations 346 to SC 320 for

inclusion in the software compilation process. The use of TISA atomic test

operations 346 by SC 320 is described in detail hereinbelow. The TISA

translator 340 may be part of TGT 3 10 , part of SC 320, split across TGT 3 10

and SC 320, implemented separate from TGT 3 10 and SC 320, and the like.

The SC 320 includes a SC pre-compiler 330, SC front-end algorithms

322, and SC back-end algorithms 324.

The SC pre-compiler 330 accepts computer science source files 321 .

The computer science source files 321 include any suitable computer

programming source files which may be compiled by a compiler. For example,

computer science source files 321 may include computer programming

source files for any suitable computer programming language(s), such as

C++, Java, Python, and the like, as well as various combinations thereof. IFor

example, computer science source files 321 may include one or more of one

or more C files, one or more C++ files, and/or any other suitable computer

science source files.

The SC pre-compiler 330 processes the computer science source files

321 .

The SC pre-compiler 330 processes the computer science source files

321 , producing therefrom pre-processed computer science source files 321 P.

The computer science source files 321 may be pre-processed by SC pre

compiler 330 to form pre-processed computer science source files 321 P in any

suitable manner. The SC pre-compiler 330 provides the pre-processed

computer science source files 321 P to front-end algorithms 322.



The SC pre-compiler 330 detects test operations during processing of

the computer science source files 321 , and generates the test operation

description files 331 . The test operation description files 331 may be specified

using any suitable test description language (e.g., using one or more standard

test description languages, using a test description language specific to the

TGT 3 10 , and the like, as well as various combinations thereof). The SC pre

compiler 330 provides the test operation description files 331 to TGT 3 10

(illustratively, to the TGT composer 3 12 of TGT 3 10 , which processes the test

operation description files 331 in conjunction with the system description files

3 1 1 to produce circuit model 3 13 .

The SC front-end algorithms 322 accept pre-processed computer

science source files 321 P. The SC front-end algorithms 322 also accept the

TISA atomic test operations 346, which are produced by TISA translator 340

using TGT atomic test operations 3 16 produced by TGT 3 10 from the test

operation description files 331 . The SC front-end algorithms 222 compile the

pre-processed computer science source files 321 P and TISA atomic test

operations 346 to produce a program model 323. The program model 323

specifies an intermediate representation of the pre-processed computer

science source files 321 P, which includes TISA atomic test operations 346

such that TISA atomic test operations 346 may be integrated within the ISA

atomic operations to form TISA atomic operations. The SC front-end

algorithms 322 provide the program model 323 to the SC back-end algorithms

324.

The SC back-end algorithms 324 accept program model 323. The SC

back-end algorithms 324 process program model 223 to produce one or more

TISA Binary Files 355 including TISA atomic operations 356. The processing

of program model 323 by the SC back-end algorithms 324 to form the TISA

Binary Files 355 including the TISA atomic operations 356 may be performed

in any suitable manner.



The TISA atomic operations 356 include ISA atomic operations (i.e.,

assembly-level instructions supported by the processor for which the TISA is

implemented) and TISA atomic test operations 346.

The TISA atomic operations 356 provide algorithmic control (using ISA

atomic operations) over TGT atomic test operations 3 16 (i.e., in the form of

the TISA atomic test operations 346), thereby enabling improved system

testing of the system under test to which the TISA atomic operations 356 are

to be applied. Thus, the TGT atomic test operations 3 16 (i.e., in the form of

the TISA atomic test operations 346) may be applied to the TAP in a manner

controlled by SC back-end algorithms 324, because the TGT atomic test

operations 3 16 are combined with the ISA atomic operations to enable

algorithmic control over TGT atomic test operations 3 16 using the ISA atomic

operations. In this manner, the SC 220 provides algorithmic control of

access to the TAP.

It will be appreciated that the various inputs and outputs depicted and

described with respect to FIG. 3 may be stored, displayed, executed,

propagated, and/or handled in any other suitable manner, as well as various

combinations thereof.

With respect to FIG. 2 and FIG. 3 , although primarily depicted and

described with respect to specific numbers of input files, intermediate files,

models, output files, and the like, it will be appreciated that the embodiments

of FIG. 2 and FIG. 3 , as well as various associated teachings provided herein,

may be implemented using any suitable numbers of input files, intermediate

files, models, output files, and the like.

FIG. 2 and FIG. 3 illustrate the manner in which computer science

capabilities may be leveraged to improve system testing capabilities (e.g.,

providing finer-grain control of system testing, enabling interactive system

testing, enabling interactive debugging during system testing, and providing

various other advantages depicted and described herein). The system testing

schemes of FIG. 2 and FIG. 3 provide improvements over existing



approaches, such as STAPL, where the goal is to add programming features

to vector formats and, therefore, debugging, remote access, and interactivity

features are added from scratch. By contrast, the TISA leverages the wealth

of information from computer programming and embedded applications to

control test access for system testing.

Referring to FIGs. 2 and 3 , it will be appreciated that the capabilities

and features of the TISA are defined by its abstraction level, i.e., the finer the

definition of the TISA atomic operations, the better performance the TISA will

provide.

In one embodiment, in which TISA is implemented in a JTAG

architecture, three abstraction levels may be supported for scan operations.

The first abstraction level is the Vector Level. The Vector Level is the

coarsest grain of the three abstraction levels, where the atomic operations are

inputs and outputs of scan vectors. The Vector Level is best represented in a

vector format, such as Serial Vector format (SVF) or any other suitable vector

format, and gives the highest-level control.

The second abstraction level is the TAP Level. In the TAP Level, the

atomic operations are enhanced to allow full control over the TAP state

machine. This enables more refined control over scan operations, support of

non-standard sequences (e.g., like the ones required, for instance, in the

Addressable Shadow Protocol or other similar protocols).

The third abstraction level is the Scan Segments Level. The Scan

Segments Level is the finest grain of the three abstraction levels. The Vector

Level and TAP Level abstraction levels use the scan vector as the atomic

data format, which is sufficient for traditional continuity tests where the entire

scan chain is involved, but is cumbersome for instrument-based testing where

there is a need for fine-grain control over the tens or hundreds of instruments

that compose the scan chain. The Scan Segments Level allows the definition

of "scan segments" inside the overall scan path, which can be handled

separately, thereby providing a flexible and powerful set of primitives that can



be used to define scan operations directly in the problem space and resolve

the scan operations at implementation time. This approach is advantageous in

embedded applications, where the available computational resources may be

quite limited. The use of Scan Segments Level is depicted and described in

additional detail hereinbelow.

As depicted in FIG. 2 and FIG. 3 , regardless of the abstraction level of

the scan operations, the resulting TAP atomic operations (illustratively, TGT

atomic test operations 2 16 and TGT atomic test operations 3 16) computed by

the TGT are converted into corresponding TISA atomic test operations and

inserted into the binary executable (i.e., into the ISA atomic operations

generated by the SC).

Referring to FIG. 2 , TGT atomic test operations 2 16 and ISA atomic

operations 226 can be processed to form the TISA atomic operations 246 in

the TISA binary executables (illustratively, TISA binary files 245). The TISA

atomic operations 246 include TISA atomic test operations and ISA atomic

operations.

Referring to FIG. 3 , TISA atomic test operations (generated by TISA

translator 340 from TGT atomic test operations 3 16 produced by TGT 3 10)

can be input into the SC front end 324 as pre-compiled assembly instructions,

without any need to modify the SC front end 324 of SC 3 10 . It will be

appreciated that almost all programming languages allow for such operations.

In C, for example, this operation is obtained using the "asm" command. In

one embodiment, minor modifications to SC back-end algorithms 324 may be

required (e.g., to handle binary conversion of the TISA assembler

instructions). An example of such a process is depicted and described herein

with respect to FIG. 11.

Although primarily depicted and described with respect to levels of

granularity of TISA atomic operations in a JTAG architecture, it will be

appreciated by one skilled in the art that the same levels of granularity of TISA

atomic operations may be utilized in other architectures, that different levels of



granularity of TISA atomic operations may be utilized in a JTAG architecture

and/or other architectures, and the like, as well as various combinations

thereof.

As described hereinabove, the TISA may be implemented using any

suitable instruction set architecture (ISA). For example, the TISA may be

implemented using the SPARC V8 ISA, an INTEL ISA, and the like.

For purposes of clarity in describing implementation of the TISA, an

exemplary implementation of the TISA using a SPARC V8 ISA is depicted and

described herein with respect to FIGs. 4A-4E. In this exemplary

implementation, the TISA is implemented as a Vector Level TISA, which

allows direct coding of the instructions that compose the SVF format;

however, as described hereinabove, it will be appreciated that implementation

of the TISA using the SPARC V8 ISA also may be performed where the TISA

is implemented as a TAP Level TISA or a Scan Segment Level TISA.

The SPARC V8 ISA is implemented in many products, such as the

open-source soft processor family Leon 2 and Leon 3 .

A review of "The SPARC Architecture Manual Version 8," published by

SPARC International, Inc, 1992 (hereinafter "SPARC Architecture Manual"),

reveals that there are many code words not exploited by the SPARC V8 ISA.

This is evident at least from a review of the "opcodes and condition codes" of

Appendix F.

FIG. 4A depicts the unexploited code words of the SPARC V8 ISA. The

unexploited code words depicted in FIG. 4A may be used to code the "test"

instructions for the TISA. More specifically, when both "op" and "op2" are set

to 0 , the instruction is marked as unimplemented in "The SPARC Architecture

Manual Version 8," such that the instruction may be used for the TISA.

FIG. 4B depicts a coding format able to represent all thirteen of the

SVF instructions. As depicted in FIG. 4B, bits 30-25 include the instruction

coding itself, bits 2 1- 18 may be used to code a TAP state if one is to be used



with the instruction, and bits 17-1 4 can be used by each instruction to specify

optional information where needed.

FIG. 4C depicts an exemplary bit coding of the TAP states for an IEEE

1149.1 TAP. The bit coding of the TAP states is represented using a first

column that identifies the IEEE 1149.1 TAP State Name, a second column

that identifies the SVF TAP State Name associated with the IEEE 1149.1 TAP

State Name, and a third column that identifies the bit coding for bits 2 1- 18 of

FIG. 4B. It will be appreciated that the bit codings may be assigned to the

TAP states in various other ways.

The SVF instructions allow for multiple parameters, which need to be

coded inside the final code. In order to represent the parameters, and in the

interest of the usual architectural best practice of keeping instruction and data

separated, register-based parameter passing is defined for this exemplary

implementation of a Vector Level TISA. Thus, the Vector Level TISA presents

six dedicated 32-bit registers: GENERIC1 , GENERIC2, TDI, TDO, MASK and

SMASK. The six dedicated 32-bit registers are depicted in FIG. 4D. The

usage of the six dedicated 32-bit registers is described in detail hereinbelow,

but, as a general rule, these registers are used either to store a parameter or

to point to the memory location in which a parameter is stored. Thus, at

compilation time, normal ISA instructions can be used to load these registers

before the TISA instruction is invoked. More specifically, in this SPARC V8

ISA implementation of the TISA, coprocessor registers may be used directly

as parameters for the usual load/store instructions.

The SVF instructions which may be utilized in this SPARC V8 ISA

implementation of the TISA include ENDDR, ENDIR, STATE, FREQUENCY,

PIO, PIOMAP, HDR, HIR, TDR, TIR, SDR, SIR, and RUNTEST. These SVF

instructions may be better understood by way of reference to the "Serial

Vector Format Specification," by ASSET InterTech, Inc., 1997 (hereinafter

referred to as the SVF Manual), which is herein incorporated by reference in



its entirety. The use of these SVF instructions in this SPARC V8 ISA

implementation of the TISA is described in more detail hereinbelow.

ENDDR. ENDIR, STATE

The ENDDR and ENDIR instructions indicate the TAP state at which

the TAP interface ends its operation. The STATE instruction forces the TAP

interface to a specified state. In this exemplary implementation of the TISA,

the SVF codings for the ENDDR, ENDIR, and STATE instructions are

"000000", "000001 " , and "00001 0", respectively, as depicted in FIG. 4E. The

SVF coding of these SVF instructions may be performed using the "TAP

STATE" file (i.e., the exemplary bit coding of the TAP states as depicted in

FIG. 4C) as needed. It will be appreciated, at least from a review of the SVF

Manual, that the STATE instruction can optionally take the explicit sequence

of states as parameters. In this exemplary implementation of the TISA, taking

the explicit sequence of states as parameters would be coded by a series of

instructions, one for each state in the sequence.

FREQUENCY

The FREQUENCY instruction is used to specify the working frequency

of the TAP interface. The FREQUENCY instruction is expressed as a 32-bit

integer of Hz cycles. In this exemplary implementation of the TISA, the SVF

coding for the FREQUENCY instruction is "00001 1" , as depicted in FIG. 4E.

The value for the FREQUENCY instruction is stored in the GENERIC1

register.

PIO. PIOMAP

The PIO instruction can be used to handle parallel vectors, in a format

previously set by a call to PIOMAP. In this exemplary implementation of the

RISA, PIOMAP is seen as a pre-processor directive that generates the

appropriate commands to set up the TAP interface. Thus, the PIO instruction



merely needs to express the parallel vector, which can be expressed by

indicating (in the GENERIC1 register) the address in which the parallel vector

is stored. The number of words "n" that compose the vector is specified in bits

13-0 of the instruction, and, thus, the vector has an upper size limit of 213 =

8K words = 32 Kbytes. If the vector size is not an exact multiple of a word,

padding and re-alignment may be provided in memory, as needed. In this

exemplary implementation of the TISA, the SVF coding for the PIO instruction

is "0001 00".

HDR, HIR. TDR, TIR

The roles of the HDR, HIR, TDR, and TIR instructions are different.

Here, these SVF instructions are considered together because ( 1) these SVF

instructions are functionally similar (i.e., they all command shift operations,

even if they are of a different nature), and (2) these SVF instructions accept

the same parameters:

( 1 ) length: a 32-bit number expressing the number of bits to shift;

(2) TDI (optional): the input shift vector;

(3) TDO(optional): the expected output shift vector;

(4) MASK (optional): a mask to be used when comparing actual values

with TDO. A Ί ' indicated a care, a Ό ' a don't care; and

(5) SMASK (optional): a mask to mark which bits are to be considered

in TDI. Ί ' indicates a care, Ό ' a don't care.

In this exemplary implementation of the TISA, the SVF codings for the

HDR, HIR, TDR, and TIR instructions are "0001 10", "0001 11" , "001 0 10", and

"001 0 11" , respectively, as depicted in FIG. 4E.

In this exemplary implementation of the TISA, the following additional

codings may be used:

( 1 ) length is stored in the GENERIC1 register;

(2) 0 1 is when TDI is present, Ό ' otherwise. If set, the TDI register

contains the address at which the input vector is stored;



(3) 0 2 is Ί ' when TDO is present, Ό ' otherwise. If set, the TDO register

contains the address at which the expected output is stored;

(4) 0 3 is T when MASK is present, Ό ' otherwise. If set, the MASK

register contains the address at which the output mask is stored; and

(5) 0 4 is Ί ' when SMASK is present, Ό ' otherwise. If set, the SMASK

register contains the address at which the output mask is stored.

SDR. SIR

The SDR and SIR instructions have the same syntax as the HDR, HIR,

TDR, and TIR instructions, but have a functional difference: SDR and SIR

trigger the actual scan operation on the TAP. In interactive testing the actual

output vector read from the system is fundamental for the algorithm, so the

TISA offers the possibility of storing the actual output vector in memory. When

the "TAP STATE" field (bits 2 1- 18 , as depicted in FIG. 4B) is different than

zero, the GENERIC2 register indicates the storage location of the actual

output vector. Thus, SDR and SIR can support a maximum of seven

parameters. If TDO is specified and the actual output vector is different from

the expected output vector, an overflow flag is set in the Processor State

Register (PSR), as described in Section 4.2 of the SPARC Architecture

Manual.

RUNTEST

The RUNTEST instruction forces the TAP interface to run a test at a

specified state for a specified amount of time, and is used mainly to control

RUNBIST operations (e.g., as defined in IEEE 1149.1 ) . The RUNTEST

instruction accepts one or more of the following parameters (all of which are

optional):

( 1 ) run_state: the state the interface must maintain during test

execution;

(2) run_count: the number of clock cycles the test must take;



(3) run_clk: which clock run_count refers to(TCK: TAP clock, SCK:

system clock);

(4) min_time: minimum run time in seconds, expressed as a real

number;

(5) max_time: maximum run time in seconds, expressed as a real

number; and

(6) endstate: the state the interface must reach at the end of the

command.

In this exemplary implementation of the TISA, the SVF coding for the

RUNTEST instruction may be "0001 0 1" or " 1 001 0 1" .

In this exemplary implementation of the TISA, the following additional

codings may be used:

( 1 ) TAP_STATE: it contains run_state of which it is defined;

(2) 0 1: ' if TAP_STATE is defined, Ό ' otherwise;

(3) 02: T if min_count is specified, Ό ' otherwise. If set, the GENERIC1

register contains the 32-bit unsigned representation of min_count;

(4) 03: T if maxjime is set, Ό ' otherwise. If set, the GENERIC2

register contains the 32-bit unsigned representation of max_count;

(5) 04: if endstate is set, Ό ' otherwise. If set, Bits 13-1 0 contain the

end state.

(6) Bits 9-0: if run_count is specified, expressed as an unsigned integer

(max run_count=2 10= 1024). If this field is not "0", then Bit 30 indicates

run_clock (Ί '=TCK, O'=SCK).

Although primarily depicted and described herein with respect to use of

specific SVF instructions in this SPARC V8 ISA implementation of the TISA

(i.e., namely, ENDDR, ENDIR, STATE, FREQUENCY, PIO, PIOMAP, HDR,

HIR, TDR, TIR, SDR, SIR, and RUNTEST), it will be appreciated that fewer or

more SVF instructions may be used.

Although primarily depicted and described herein with respect to an

implementation of the TISA using the SPARC V8 ISA, it will be appreciated



that various other ISAs may be utilized to implement a TISA in accordance

with the TISA teachings depicted and described herein.

In interactive testing approaches, the data handoff point is quite

important. As described hereinabove, a test program is composed of two main

portions: the algorithmic portion (as represented by the software compiler)

and the test access portion (as represented by the test generation tool).

During a test operation using a testing program, there will be moments when

the test program is accessing the system under test, and moments when the

test program is examining the testing results and deciding the next step(s)

required. The hand-off between these two operations is important for

obtaining efficient interactive testing.

In existing script-based approaches, such as SVF and STAPL, a script

takes care of all TAP operations at the Vector Level. At this level, the interface

(or "player") is able to communicate with the TAP protocol, and send/receive

vectors to/from the system under test. Furthermore, STAPL also allows some

basic flow control (if-then-else) and algorithmic operations on the bit vectors. If

there is need for more sophisticated processing (e.g., identifying a register

inside a received vector, or computing the vector to access a specific device),

the player hands control over to the algorithmic portion. In STAPL, this is done

through the "export" command. Disadvantageously, however, neither SVF nor

STAPL has a standardized format for this (e.g., in the case of STAPL, the

handoff process is usually proprietary to a given vendor).

In existing embedded approaches, like Master Test Controller (MTC)

from Ericsson and the System BIST Processor, the same partitioning between

the algorithmic portion and the test access portion is used. In such embedded

approaches, the algorithmic portion and the test access portion are executed

by different coprocessors that must be programmed separately. Furthermore,

the memory spaces of the algorithmic portion and the test access portion are

physically different, such that the resulting handoff mechanisms are similar to

the handoff mechanisms of STAPL. The result is that the coprocessor for the



test access portion is forced to store a lot of scan operations before handoff to

the algorithmic portion, which, given the increasing size of scan chains, may

require a huge amount of resources.

In contrast with existing approaches to integrated testing (e.g., script-

based approaches such as SVF and STAPL, and embedded approaches

such as MTC and System BIST Processor), the TISA integrates the test

access portion (i.e. the test operations) inside the algorithmic portion (i.e., the

classical ISA), such that the test access portion and the algorithmic portion

share the same physical memory space, thereby making handoff (and, thus,

data passing) between the test access portion and the algorithmic portion

automatic. In TISA, handoff between the test access portion and the

algorithmic portion is made at the instruction level, such that the processor

can freely mix scan and algorithm (i.e., freely mix test operations and

algorithmic operations) as required according to the associated scheduling

strategy.

In this exemplary implementation of the TISA, using the SPARC V8

ISA, all operations handling vectors use absolute addressing (as described

hereinabove with respect to the SVF instructions). As a result, testing vectors

may be used like normal variables inside the ISA program, thereby making

the interface between the test access portion and the algorithmic portion

automatic. As an example, based on the exemplary implementation of the

TISA using the SPARC V8 ISA as described hereinabove, the following steps

exemplify an archetypical testing sequence:

( 1 ) An SDR instruction is used to obtain testing output data from the

system under test. The resulting output data is places in a specific memory

location (e.g., the "actual" parameter in the GENERIC2 register);

(2) A classical LOAD instruction can transfer this output data to be

loaded into a register;

(3) Once the output data is loaded in the register, arithmetic operations

and/or logical operations may be used to process the output data (note that



since the SPARC V8 ISA is a load/store architecture, all data must be loaded

into a register before being handled);

(4) A classical STORE instruction is used to transfer the result of the

algorithm into memory; and

(5) An SDR instruction can send new testing input data to the TAP

(e.g., using the "TDI" parameter in the TDI register).

Note that the classical algorithmic operations (2) through (4) are

standard for any ISA algorithm implementation, and are not modified in any

way by the TISA.

Thus, from this simple example, it is clear that TISA can be supported

using any given algorithm or computer program, with a natural and efficient

hand-off between the algorithmic portion and the test access portion.

In this exemplary implementation of the TISA, using the SPARC V8

ISA, absolute addressing is used (for purposes of clarity in describing the

TISA); however, one skilled in the art and informed by the teachings herein

would be able to modify this exemplary implementation of the TISA to support

all legal SPARC V8 addressing modes described in the SPARC Architecture

Manual.

Although primarily depicted and described herein with respect to an

exemplary implementation of the TISA in which SVF is used, SVF was used in

the exemplary implementation because it is a well-known format proven to

provide a complete, even if basic, handling of 1149.1 TAPs. It will be

appreciated, by one skilled in the art and informed by the teachings herein,

that the TISA may be implemented using any other suitable control formats,

many of which may allow finer grain control of the TAP state machine and

support more sophisticated testing operations.

Although primarily depicted and described herein with respect to an

exemplary implementation of the TISA in which the abstraction level is the

Vector Level, it will be appreciated, by one skilled in the art and informed by

the teachings herein, that the exemplary TISA implementation depicted and



described herein may be modified such that the abstraction level of the TISA

is the TAP Level or the Scan Segment Level.

For purposes of clarity in describing the TISA, an exemplary use of the

TISA to perform testing on an exemplary system under test is depicted and

described herein with respect to FIGs. 5 and 6 . In this exemplary use of the

TISA, the TISA is implemented as a Vector Level TISA using a SPARC V8

ISA and SVF (i.e., in continuation of the exemplary implementation depicted

and described with respect to FIGs. 4A - 4E).

FIG. 5A and FIG. 5B depicts an exemplary use of the TISA to perform

testing on a system under test.

FIG. 5A depicts a system test environment 500 including a JTAG TAP

5 10 and a system under test 520.

The JTAG TAP 5 10 provides test access to a system under test 520.

The JTAG TAP 5 10 provides test access to the system under test 520, for

sending input data to system under test 520 and receiving output data from

system under test 520. The JTAG TAP 5 10 includes an instruction register

(IR) 5 12 , which is an 8-bit instruction register.

The JTAG TAP 5 10 is controlled by a testing system (e.g., such as

testing system 110 depicted and described with respect to FIG. 3 , which is

omitted for purposes of clarity).

The system under test 520 includes a first board 521 (denoted as B 1)

and a second board 525 (denoted as B2). The first board 521 includes a

transmitter 522 (denoted as T). The second board 525 includes a receiver 526

(denoted as R). The transmitter 522 sends data, on a connection 529, to

receiver 526. In this example, the connection 529 is an 8-bit connection.

As depicted in FIG. 5A, each board is accessible from JTAG TAP 5 10

via its own scan chain. Namely, first board 521 is accessible via a first scan

chain 523 and second board 525 is accessible via a second scan chain 527.

The first scan chain 523 and second scan chain 527 are selectable by the IR

5 12 of JTAG TAP 5 10 (e.g., IR=0 selects first board B 1 , IR=1 selects second



board B2). The transmitter 522 and the receiver 526 are not alone on their

boards; rather, they are part of wider scan chains (e.g., for purposes of this

example, 24 bits and 16 bits, respectively).

In a test program, input data is sent to transmitter 522 via the first scan

chain 523, and the resulting output data is collected from the receiver 526 by

exploiting the second scan chain 527. In order to perform an exhaustive test,

all possible values are sent through the connection 529, such that 28=256

vectors are sent through the connection 529. Using C, an exemplary program

could be the following:

1 include <stdio.h>
2 include <jtag.h>
3
4 char sent_value, received value;
5
6 define MAX_COUNT 256;
7
8 void main(void)
9 {
10 for (sent_value=0;sent_value<MAX_COUNT;sent_value++)
11 {
12 apply_JTAG(sent_value,B1 .T);
13 read_JTAG (received_value,B2.R);
14 if (sent_value != received value) exit (0);
15 }
16 exit(1 ) ;
17 }

In this program, line 2 includes the C module that is handling JTAG

operations, where the functions "apply_JTAG" and "Read_JTAG", used in

lines 12 and 13 , respectively, are defined. The pre-compiler 330 of SC 320

recognizes these functions, and generates test operation description files 331

for TGT 3 10 . The format of the test operation description files 331 may vary,

depending on the actual implementation of first board 521 and second board

525. For example, if first board 521 and second board 525 both are IJTAG

compliant, test operation description files 331 could be specified, for example,



using New Scan Description Language (NSDL) code. The TGT 3 10 , using

test operation description files 331 , generates TGT atomic test operations

3 16 , which are translated, by TISA translator 340, into TISA atomic test

operations 346. The TISA atomic test operations 346 are provided to front-

end 324 of SC 320. The TGT atomic test operations 3 16 , the associated

TISA atomic test operations 346, and the resulting TISA binary code are

depicted in FIG. 5B.

FIG. 5B depicts a mapping from C commands to TISA coding for use

by a testing system performing testing of the system test environment 500 of

FIG. 5A.

As depicted in FIG. 5B, the mapping from C commands to TISA coding

is represented using a table 540 having four columns: a "C command" column

541 , an "SVF instructions" column 542, a "TISA assembler" column 543, and

a "TISA coding" column 544. The table 540, from left to right, illustrates the

manner in which a C command can be translated into an SVF instruction,

which can be translated into TISA assembler, which can be coded into TISA

binary coding.

The Apply_JTAG(value,B1 ) command is translated into two SVF

instructions: SIR 8 TDI(00) and SDR 24 TDI(value).

The SIR 8 TDI(00) SVF instruction is translated into TISA assembler as

three operations:

SET 8 , %cGENERIC1

SET 00, %cTDI

SIR TDI, which is translated into TISA coding as 1201 0000.

The SDR 24 TDI(value) SVF instruction is translated into TISA

assembler as three operations:

SET 24, %cGENERIC1

SET value, %cTDI

SDR TDI, which is translated into TISA coding as 1001 0000.



The Read_JTAG(value,B2.R) command is translated into two SVF

instructions: SIR 8 TDI(01 ) and SDR 16 ACTUAL(value).

The SIR 8 TDI(01 ) SVF instruction is translated into TISA assembler

as three operations:

SET 8 , %cGENERIC1

SET 0 1 , %cTDI

SIR TDI, which is translated into TISA coding as 1201 0000.

The SDR 16 ACTUAL(value) SVF instruction is translated into TISA

assembler as three operations:

SET 16 , %cGENERIC1

SET "value", %cGENERIC2

SDR ACTUAL, which is translated into TISA coding as

10008000.

The TISA coding of the SET operations is not specified because the

SPARC V8 Manual identifies them as "pseudo-instructions" which can have a

different coding following the implementation of the processor.

Using the determined TISA codings, the pre-compiler 330 may now

substitute the high-level JTAG accesses with their associated TISA assembler

instructions. The result is the following code, specified using C, in which the

calls to the JTAG TAP have been replaced by the associated TISA assembler

coding:

1 include <stdio.h>
2 include <jtag.h>
3
4 char sent_value, received value;
5
6 define MAX_COUNT 256;
7
8 void main(void)
9 {
10 for (sent_value=0;sent_value<MAX_COUNT;sent_value++)
11 {
12 asm volatile ("SET 8 , %cGENERIC1 ;
13 SET 00, %cTDI;



14 SIR TDI;
15 SET 24, %cGENERIC1 ;
16 SET &sent value, %cTDI;
17 SDR TDI;");
18 asm volatile ("SET 8 , %cGENERIC1 ;
19 SET 0 1 , %cTDI;
20 SIR TDI;
2 1 SET 16 , %cGENERIC1 ;
22 SET &received value, %cGENERIC2;
23 SDR ACTUAL");
24 if (sent_value != received value) exit (0);
25 }
26 exit(1 ) ;
27 }

This code can be input into the front-end algorithms 322, which will

generate the program model 323. The program model 323 can be input into

the back-end algorithms 324, which will generate the executable TISA binary

file(s) 355 including the TISA atomic operations 356.

The "TISA coding" column 544 of table 540 depicts the binary coding of

the TISA assembler instructions (e.g., using the various rules defined with

respect to the exemplary implementation of the TISA using a SPARC V8 ISA,

as depicted and described with respect to FIGs 4A - 4E).

As described herein, the TISA provides complete freedom regarding

test granularity in performing testing of a system under test (i.e., from TAP

Level through Scan Segment Level). As depicted in FIG. 2 and FIG. 3 , and

further explained using the exemplary TISA implementation of FIGs. 4A-4E

and FIGs. 5A - 5B, test patterns may be computed using explicit queries by

the Software Compiler to the Test Generation Tool, such that the only limit for

the software algorithm is the resolution of the queries themselves.

As an example, at a coarse level, queries from the SC to the TGT may

involve the entire scan chain of the system under test (e.g., such as in

classical BSDL-based Boundary Scan testing).



As an example, at a fine level, queries from the SC to the TGT may

involve registers or even bits. For example, dedicated Scan Segment

primitives could significantly accelerate instrument access and TAP

reconfiguration, boost code reuse, and provide various other advantages.

As an example, at a middle level somewhere between the coarse and

fine levels, queries from the SC to the TGT may be done functionally (e.g.,

using standards such as IJTAG and other suitable standards, and using

description languages such as NSDL and other suitable object-oriented

description languages).

In this manner, the TISA does not force device/register access to be

resolved at the model space (i.e., in the TGT), but, rather, allows developers

to handle device/register access at the problem space (i.e., in the SC),

thereby enabling developers to adapt the analysis grain to their needs and to

the available resources.

Furthermore, in embodiments in which the TISA processor has

sufficient resources, e.g., such as in the case of Automated Test Equipment

(ATE), at least a portion of the circuit model may be implemented within the

program model, thereby enabling the TISA machine to directly compute the

vector patterns.

Furthermore, the TISA enables support for various other system test

capabilities not previously possible without TISA, such as interactive testing

including interactive debugging (locally and/or remotely), concurrency,

portability, and the like, as well as various combinations thereof. These

additional capabilities are now addressed in additional detail.

FIG. 6 depicts an embodiment of a TISA-based testing environment

supporting interactive testing capabilities.

As depicted in FIG. 6 , TISA-based testing environment 600 includes a

host computer (HC) 601 , a testing system (TS) 6 10 , and a system under test

(SUT) 620.



The HC 601 is configured to control TS 6 10 for controlling testing of

SUT 620. The HC 601 includes a processor 602 coupled to a memory 604.

The processor 602 and memory 604 may be any suitable processor and

memory.

The memory 604 stores one or more debugger control programs 605.

The debugger control program(s) enable HC 601 to trace and, where desired

or necessary, alter, the execution of computer program(s) running on TS 6 10 .

For example, debugger control program(s) 605 may include one or more of

the GNU Debugger (GDB), the dbx debugger, the Perl debugger, the Bash

debugger, the Python debugger, and like suitable debugger programs, as well

as various combinations thereof.

The memory 604 also may store one or more debugger display

programs 606. The debugger display program(s) enable HC 601 to display

information associated with the debugger control program(s) 605. The

information associated with debugger control program(s) 605 may be

displayed by debugger display program(s) 606 in any suitable manner (e.g.,

using one or more display devices). For example, debugger display

program(s) 606 may include one or more of Insight (which is a graphical user

interface to GDB), the Data Display Debugger (DDD, which provides a

graphical user interface for various command-line debuggers, such as GDB

and others), and like suitable debugger display programs, as well as various

combinations thereof.

The TS 6 10 is controlled by HC 601 for purposes of testing SUT 620.

The TS 6 10 is configured to function in a manner consistent with the TISA

(e.g., such as depicted and described with respect to TS 110 of FIG. 1 - FIG.

3) and, further, is configured to support interactive testing (e.g., by enabling

access by debuggers running on HC 601 ) .

The TS 6 10 includes a TISA processor 6 12 coupled to a memory 6 14 .

The TISA processor 6 12 may be implemented using any suitable processor,

such as SPARC V8 (as depicted and described hereinabove with respect to



FIGs. 4A-4E and FIG. 5), INTEL, and the like. The memory 604 may be any

suitable memory.

The memory 6 14 stores one or more debugger program stubs 6 15 .

The debugger program stubs 6 15 understand the debugger protocol of the

corresponding debugger control program(s) 605 running on HC 601 , thereby

enabling HC 601 to communicate with TS 6 10 . For example, debugger stub(s)

6 15 may include one or more of GDB stub, a DBX stub, a Perl stub, a Bash

stub, a Python stub, and like suitable debugger program stubs, as well as

various combinations thereof.

The memory 6 14 stores TISA Binary Files 6 16 . The TISA Binary Files

6 16 are generated by TS 6 10 in a manner as depicted and described herein

with respect to FIG. 2 and FIG. 3 . The TISA Binary Files 6 16 are executed by

TISA processor 6 12 to perform testing on SUT 620.

The TS 6 10 also includes a Test Access Port (TAP) 6 18 coupled to

TISA processor 6 12 . The TAP 6 18 provides a test interface between TISA

processor 6 12 and SUT 620 for enabling TISA processor 6 12 to perform

testing of SUT 620 while being controlled by HC 601 . The TAP 6 18 may be

any suitable TAP (e.g., an 1149.1 TAP).

The TISA processor 6 12 interfaces with TAP 6 18 using an interface

6 17 . The interface 6 17 may be any suitable interface between a TAP and a

system under test (e.g., such as an interface that supports TCK, TMS, TDI,

TDO, and, optionally, TRST, where TAP 6 18 is implemented as an 1149.1

TAP).

As depicted in FIG. 6 , there is an interface 609 between HC 601 and

TS 6 10 . The interface 609 may support local communications and/or remote

communications between HC 601 and TS 6 10 . Thus, HC 601 may control

interactive testing of SUT 620 via TS 6 10 locally and/or remotely.

For example, for local testing, interface 609 may be implemented as

one or more of a Universal Asynchronous Receiver-Transmitter (UART)



interlace, serial interface, and the like, as well as various combinations

thereof.

For example, for remote testing, interface 609 may be implemented

using any suitable communications capabilities, such as Transmission Control

Protocol (TCP) / Internet Protocol (IP) or any other suitable communications

protocols. This enables remote testing in which the HC 601 and TS 6 10 may

be separated by large geographical distances, and HC 601 will still be able to

control TS 6 10 for purposes of performing testing of SUT 620.

In the TISA-based testing environment 600, the HC 601 is able to

control, step-by-step, test execution on SUT 620, by controlling operation of

TS 6 10 via a standard connection (e.g., UART, TCP/IP, and the like), thereby

enabling interactive testing and debugging capabilities.

Although omitted for purposes of clarity, it will be appreciated that HC

601 and TS 6 10 may include various other components, such as additional

processors, additional memories, internal communications buses, input/output

modules, additional support circuits (e.g., power supplies), and the like, as

well as various combinations thereof.

Although omitted for purposes of clarity, it will be appreciated that SUT

620 may be any system under test which may be tested using the TISA.

Although primarily depicted and described with respect to specific

types of debugger control programs, debugger display programs, interfaces,

and the like, it will be appreciated that TISA-based testing environment 600

may be implemented in a manner enabling fully-interactive testing capabilities

using various other debugger control programs, debugger display programs,

interfaces, and the like, as well as various combinations thereof.

FIG. 7 depicts an exemplary implementation of the TISA-based testing

environment of FIG. 6 .

As depicted in FIG. 7 , exemplary TISA-based testing environment 700

of FIG. 7 is an implementation of the TISA-based testing environment 600 of



FIG. 6 in which the GNU Tool Suite is used to support interactive testing of

the exemplary system testing environment 500 of FIG. 5A.

As depicted in FIG. 7 , exemplary TISA-based testing environment 700

includes a host computer (HC) 701 , a testing system (TS) 7 10 , and a system

under test (SUT) 720.

The HC 701 includes a processor 702 and a memory 704. The HC 701

of FIG. 7 is an implementation of HC 601 of FIG. 6 , in which debugger control

program(s) 605 is implemented using GDB (GDB 705) and debugger display

program(s) 606 is implemented using DDD (DDD 706).

The TS 7 10 includes a TISA processor 7 12 and a memory 7 14 . The TS

7 10 of FIG. 7 is an implementation of TS 6 10 of FIG. 6 , in which the TISA

processor 6 12 is implemented using a SPARC V8 ISA (denoted as SPARC

V8 TISA processor 7 12), debugger program stub(s) 6 15 is implemented using

a GDB stub (GDB stub 7 15), and the TISA Binary Files 6 16 are generated

based on the SPARC V8 ISA associated with SPARC V8 TISA processor 7 12

(TISA Binary Files 7 16).

The TS 7 10 also includes a Test Access Port (TAP) 7 18 coupled to

SPARC V8 TISA processor 7 12 . The TS 7 10 of FIG. 7 is an implementation

of TS 6 10 of FIG. 6 , in which the TAP 6 18 is implemented using a 1149.1 TAP

( 1 149.1 TAP 7 18).

The SPARC V8 TISA processor 7 12 interfaces with 1149.1 TAP 7 18

using an interface 7 17 . The interface 7 17 is a standard 1149.1 interface that

supports TCK, TMS, TDI, TDO, and, optionally, TRST.

The SUT 720 is the SUT 520 of FIG. 5A. The SUT 720 includes a

transmitter and receiver on different boards, as in SUT 520 of FIG. 5A.

The 1149.1 TAP 7 18 provides a test interface between SPARC V8

TISA processor 7 12 and SUT 720 for enabling SPARC V8 TISA processor

7 12 to perform testing of SUT 720 while being controlled by HC 701 .

As depicted in FIG. 7 , there is an interface 709 between HC 701 and

TS 7 10 . The interface 709 may support local communications and/or remote



communications (e.g., via a network) between HC 701 and TS 7 10 . Thus, HC

701 may control interactive testing of SUT 720 via TS 7 10 locally and/or

remotely.

In the exemplary TISA-based testing environment 700, the HC 701 is

able to control, step-by-step, test execution on SUT 720, by controlling the

operation of TS 7 10 via interface 709, thereby enabling interactive testing and

debugging capabilities.

It will be appreciated that most of the left-hand side of FIG. 7 reuses

existing Computer Science elements: namely, the entire HC 701 , as well as

the GDB stub 7 15 on TS 7 10 . It is the same for the central part of FIG. 7 ,

where analogies between HC 701 and TS 7 10 (as well as their associated

sub-elements) are evident. The TISA allows this entire infrastructure to be

leveraged to provide system testing.

As an example, in reference to the system test environment 500 of

FIG. 5A (including the associated exemplary C programs, SVF instructions,

TISA assembler instructions, and TISA codings), there are many interactive

test operations that the TISA can enable by leveraging on GDB (or any other

suitable debuggers), such as: (a) step-by-step execution while monitoring the

variables "sent_value" and "received_value"; (b) on-the-fly modification of the

value to be sent to the tap (variable "sent_value"); (c) modification of the

looping end condition; (d) monitoring of all variables; and the like, as well as

various combinations thereof. These interactive test operations are standard

operations for GDB, and the TISA can directly use them, due to the ability of

the TISA to automatically hand of control between the algorithmic and test

access portions, as described hereinabove. In the absence of the TISA,

special tooling would need to be developed and adapted to each hand-off

implementation.

Although exemplary TISA-based testing environment 700 of FIG. 7 is

primarily depicted and described herein with respect to using the GNU Tool

Suite to support interactive testing of a specific system under test, it will be



appreciated, by those skilled in the art and informed by the teachings herein,

that interactive testing capabilities in a TISA-based test environment may be

realized using any suitable tool suites for testing any type of system under

test.

Although TISA-based testing environment 600 of FIG. 6 and exemplary

TISA-based testing environment 700 of FIG. 7 are primarily depicted and

described herein with respect to linear test procedures where testing is done

step-by-step following a pre-determined algorithm (for purposes of clarity in

describing the interactive testing capabilities that are enabled by TISA), it will

be appreciated that other more complicated interactive testing scenarios are

possible due to the leverage of Computer Science experience and techniques

enabled by TISA. An example of a more complicated interactive testing

scenario enabled by TISA is depicted and described herein with respect to

FIG. 8 . It will be appreciated that this is merely one example, and that one

skilled in the art and informed by the teachings herein may use TISA in many

other interactive testing scenarios and applications.

As described herein, in addition to supporting both granularity and

interaction, the TISA also supports concurrency.

The TISA naturally and fully merges the system testing flow with the

computer science software flow and, therefore, can leverage the best aspects

of both flows. As an example, approaches such as STAPL have difficulty in

handling concurrent control of instruments, because such approaches are, by

definition, fully sequential. Furthermore, approaches such as the MTC and

SystemBIST are intrinsically sequential and single-task and, thus, it would be

difficult and awkward to program such approaches to support concurrency. By

contrast, concurrent execution is a well-known problem in Computer Science

and is now, for instance, at the base of all operating systems. A large number

of libraries supporting concurrent execution are available (e.g., the POSIX

suite, the BOOST suite, and the like), and most modern processors are

designed to efficiently support multi-tasking and context-switching (e.g., the



SPARC V8, for instance, implements a rotating register window). The natural

interaction between the system testing flow and the computer science

software flow that is enabled by the TISA allows the TISA to completely

leverage such computer science approaches to concurrency.

The support of concurrency capabilities by the TISA may be better

understood by way of an example. As an example, consider the problem of

optimizing the data transfer rate of the T-R channel between the transmitter

522 and the receiver 526 of the system under test 520 of FIG. 5A and FIG. 7 .

This would involve transmitting a stream of data patterns from transmitter 522

on first board 521 , receiving a corresponding stream of data patterns at

receiver 526 on second board 525, and comparing the transmitted and

received streams of data patterns to compute bit/error rates and to tune

parameters of transmitter 522 and/or receiver 526 accordingly. This

optimization may be performed efficiently using three programs operating

concurrently.

FIG. 8 depicts an exemplary program architecture for performing

optimization of the transmitter-receiver channel of the system under test of

FIG. 5A and FIG. 7 .

As depicted in FIG. 8 , exemplary program architecture includes a

pattern generator 802, a pattern receiver 804, and a comparator 806. The

pattern generator 802, pattern receiver 804, and comparator 806 cooperate to

optimize the data transfer rate of the T-R channel between the transmitter 522

and the receiver 526 of the system under test 520 of FIG. 5A and FIG. 7 .

The pattern generator 802 sends the appropriate input data patterns to

the transmitter 522 (T) on first board 521 . The pattern generator 802 can

access the TAP (illustratively, TAP 5 10 in FIG. 5A, TAP 7 18 in FIG. 7) in order

to provide the input data patterns to transmitter 522 via the scan chain 523 of

first board 521 (B1 ) . The pattern generator 802 may provide the input data

patterns to the transmitter 522 in any suitable manner (e.g., as specified in

lines 12-1 3 of the code described herein with respect to FIG. 5A). The input



data patterns may be any data patterns suitable for optimizing the T-R

channel between transmitter 522 and receiver 526. For example, the input

data patterns may be pre-computed patterns, random patterns, and the like,

as well as various combinations thereof.

The pattern receiver 804 collects the appropriate output data patterns

from the receiver 526 (R) on second board 525. The pattern receiver 804 can

access the TAP (illustratively, TAP 5 10 in FIG. 5A, TAP 7 18 in FIG. 7) in order

to collect the output data patterns from receiver 526 via the scan chain 527 of

second board 525 (B2). The pattern receiver 804 may collect the output data

patterns from the receiver 526 in any suitable manner (e.g., as specified in

lines 14-1 5 of the code described herein with respect to FIG. 5A).

The comparator 806 communicates with pattern generator 802 and

pattern receiver 804. The comparator compares the input data patterns and

the output data patterns. The comparator 806 evaluates the bit transmission

rate and the bit error rate of the T-R channel and, based on the results of the

comparison, can access the control registers of both the transmitter 522 and

the receiver 526 (omitted from FIG. 5A and FIG. 7 , for purposes of clarity) to

optimize the parameters of the T-R channel.

In order to perform such an optimization testing procedure, pattern

generator 802, pattern receiver 804, and comparator 806 need to work in

parallel, and each must be able to access the TAP independently of the

others. This type of control structure is very difficult to code in traditional

environments, which are developed only to support one-point serial handoff

control over the TAP. This type of control structure also is very difficult to code

in environments employing MTC or other such approaches which also share

the same serial TAP access paradigm. By contrast, the TISA is not designed

with any such assumption regarding test access; rather, in the TISA, test

access is handled in a manner similar to other processor resources, and test

access instructions are mixed directly with classical ISA instructions. Using

the TISA, the optimization testing procedure of FIG. 8 may be executed by



any multitasking Operating System using standard constructs like processes,

threads, inter-process communications (IPC), and the like, as well as various

combinations thereof. In this manner, pattern generator 802, pattern receiver

804, and comparator 806 can share access to the TAP, and can resolve any

eventual TAP sharing issues as is done for all processor resources, e.g.,

using well-known constructs and algorithms such as, for example, Dijkstra's

semaphores. Thus, whereas existing system testing capabilities do not

support concurrency, it is clear that the TISA easily and fully supports

concurrency.

As described hereinabove, the TISA does not make any assumptions

regarding the test access method or the associated test program partitioning;

rather, test instructions are treated in the same manner, or substantially the

same manner, as classical ISA instructions, without any a priori separation

between the two. This enables the TISA to be completely compatible with all

existing (and, most likely, future) computer science algorithms and constructs,

something that no existing test processor approaches can support.

Thus, it will be appreciated that any existing software libraries can be

ported into the TISA architecture. For example, it would be easy to obtain

multitasking and concurrency (e.g., as depicted and described herein with

respect to FIG. 8) by exploiting the POSIX and BOOST suites. Further, it will

be appreciated that where the TISA is obtained as a generalization of an

existing ISA (e.g., as depicted and described with respect to the exemplary

SPARC V8 TISA implementation depicted and described with respect to the

FIG. 5A and FIG. 5B), porting may not even be necessary since the ISA that

the TISA has been developed from will already include such software

libraries.

Furthermore, it will be appreciated that various other computer science

techniques may be utilized for providing improved system testing using the

TISA. For example, some examples of such computer science techniques

which may be leveraged for the TISA include: (a) use of platform-independent



coding styles, (b) use of ISA-to-ISA converters; (c) use of a Virtual Machine

approach, e.g., like for Java, to obtain platform-independent bytecode, or

even extension of the Java Virtual Machine itself to become a TISA; and (d)

use of an Application Programming Interface (API) to standardize some TISA

software interfaces, which would then be translated into primitives by the

appropriate drivers. It will be appreciated that these examples are merely a

few examples of computer science techniques which may be leveraged for

the TISA.

FIG. 9 depicts one embodiment of a method for adapting an Instruction

Set Architecture (ISA) flow of a processor to form a Test Instruction Set

Architecture (TISA) flow including TISA instructions adapted for use by the

processor in testing at least a portion of a system under test.

Although primarily depicted and described herein as being performed

serially, at least a portion of the steps of method 900 may be performed

contemporaneously, or in a different order than depicted and described with

respect to FIG. 9 .

At step 902, method 900 begins.

At step 904, a first set of instructions is generated. The first set of

instructions includes ISA instructions supported by the processor (i.e., ISA

instructions being leveraged to provide the TISA for the processor).

At step 906, a second set of instructions is generated. The second set

of instructions includes test instructions associated with the system under test.

The second set of instructions may be generated in any suitable manner, e.g.,

as depicted and described with respect to TGT 2 10 of FIG. 2 , as depicted and

described with respect to TGT 3 10 of FIG. 3 , and/or using any other suitable

method of generating test instructions.

At step 908, the first set of instructions and the second set of

instructions are integrated to form thereby TISA instructions. The TISA

instructions provide the TISA for the processor.



At step 9 10 , the TISA instructions are stored, displayed, propagated,

and/or executed, or any combination thereof. The TISA instructions may be

handled in any other suitable manner.

At step 9 12 , method 900 ends.

The TISA may be formed in any suitable manner, e.g., as depicted and

described with respect to method 1000 of FIG. 10 , as depicted and described

with respect to the test system of FIG. 2 and associated method 1110 of FIG.

11A , as depicted and described with respect to the test system of FIG. 3 and

associated method 1120 of FIG. 11B, and/or using any other suitable method

of forming a TISA.

FIG. 10 depicts one embodiment of a method for generating

instructions adapted for use in testing at least a portion of a system under

test. Although primarily depicted and described herein as being performed

serially, at least a portion of the steps of method 1000 may be performed

contemporaneously, or in a different order than depicted and described with

respect to FIG. 10 . At step 1002, method 1000 begins.

At step 1004, a first set of instructions is generated. The first set of

instructions includes instructions generated by compiling at least one

computer science software file (e.g., ISA instructions of an ISA supported by a

processor).

At step 1006, a second set of instructions is generated. The second set

of instructions includes test instructions generated by compiling at least one

description file associated with the system under test.

At step 1008, the first and second sets of instructions are combined to

form a combined set of instructions. In the combined set of instructions, the

instructions of the first set of instructions are adapted for use in controlling

execution of the test instructions of the second set of instructions.

At step 10 10 , the combined set of instructions is stored, displayed,

propagated, and/or executed, or any combination thereof. The combined set

of instructions may be handled in any other suitable manner.



At step 10 12 , method 1000 ends.

FIG. 11A and FIG. 11B depict more detailed embodiments of the

method 900 depicted and described with respect to FIG. 9 and/or the method

1000 depicted and described with respect to FIG. 10 .

FIG. 11A depicts one embodiment of a method for generating

instructions adapted for use in testing at least a portion of a system under

test. Although primarily depicted and described herein as being performed in

a specific sequence, at least a portion of the steps of method 1110 of FIG.

11A may be performed in a different order than depicted and described with

respect to FIG. 11A . FIG. 11A may be better understood by viewing it in

conjunction with FIG. 2 and the associated description of FIG. 2 .

At step 1111, method 1000 begins.

At step 1112 , a program model is generated. The program model is

generated by compiling at least one computer science software file (e.g., ISA

instructions of an ISA supported by a processor), where the at least one

computer science software file includes at least one call.

At step 1113 , a first set of instructions is generated. The first set of

instructions is generated using the program model. At least one computation

request also is generated using the at least one call included in the at least

one computer science software file.

At step 1114 , a circuit model is generated. The circuit model is

generated by compiling at least one system description file associated with

the system under test.

At step 1115 , a second set of instructions is generated. The second

set of instruction is generated using the circuit model and the at least one

computation request.

At step 1116 , the first and second sets of instructions are combined to

form a combined set of instructions. In the combined set of instructions, the

instructions of the first set of instructions are adapted for use in controlling

execution of the test instructions of the second set of instructions.



At step 1117 , the combined set of instructions is stored, displayed,

propagated, and/or executed, or any combination thereof. The combined set

of instructions may be handled in any other suitable manner.

At step 1118 , method 1000 ends. FIG. 11B depicts one embodiment of

a method for generating instructions adapted for use in testing at least a

portion of a system under test. Although primarily depicted and described

herein as being performed serially, at least a portion of the steps of method

1120 of FIG. 11B may be performed contemporaneously, or in a different

order than depicted and described with respect to FIG. 11B. FIG. 11B may be

better understood by viewing it in conjunction with FIG. 3 and the associated

description of FIG. 3 .

At step 112 1 , method 1100 begins.

At step 1122, at least one pre-processed computer science software

file and at least one test operation description file are generated by pre-

processing at least one computer science software file.

At step 1123, a circuit model is generated. The circuit model is

generated by compiling at least one system description file associated with

the system under test and the at least one test operation description file.

At step 1124, a set of test operations is generated. The set of test

operations is generated using the circuit model. The test operations from the

set of test operations are described using a set of test primitives (e.g., test

primitives defined by a test generation tool which generates the circuit model).

The set of test primitives includes test operations adapted for use in testing

the system under test.

At step 1125, the set of test operations is translated into a set of test

instructions by translating the test primitives of the set of test operations into

test instructions adapted for use in combination with software instructions of

an instruction set architecture.



At step 1126, a program model is generated. The program model is

generated by compiling the at least one pre-processed computer science

software file and the set of test instructions.

At step 1127, a combined set of instructions is generated. The

combined set of instructions is generated using the program model. The

combined set of instructions includes (a) software instructions determined

from the at least one pre-processed computer science software file and (b)

test instructions from the set of test instructions.

At step 1128, the combined set of instructions is stored, displayed,

propagated, and/or executed, or any combination thereof. The combined set

of instructions may be handled in any other suitable manner.

At step 1129, method 1120 ends.

FIG. 12 depicts an exemplary embodiment of a TISA processor

architecture.

As depicted in FIG. 12 , TISA processor architecture 1200 includes a

TISA processor 12 10 and a memory 1220.

The TISA processor 12 10 may be any processor that is suitable for

performing system testing using a TISA, such as a SPARC V8 processor, an

INTEL processor, or any other suitable processor.

The memory 1220 may include any memory suitable for use by TISA

processor 12 10 to support system testing using a TISA, including one or more

of random access memory, persistent memory, and the like, as well as

various combinations thereof. The memory 1220 may store any information

required for performing system testing using a TISA, such as test programs,

TISA instructions, testing data, and the like, as well as various combinations

thereof.

In one embodiment, for example, TISA processor architecture 1200 of

FIG. 12 may support the TISA flows depicted and described with respect to

FIG. 2 and FIG. 3 .



In one embodiment, for example, TISA processor architecture 1200 of

FIG. 12 may operate in a manner similar to TISA processor 6 12 and memory

6 14 of testing system 6 10 depicted and described with respect to FIG. 6 . For

example, TISA processor architecture 1200 of FIG. 12 may be implemented

using a SPARC V8 TISA processor and associated memory, such as in the

testing system 7 10 depicted and described with respect to FIG. 7 . In such an

embodiment, the TISA processor 12 10 itself interprets and executes both the

ISA and TISA instructions.

In one embodiment, an apparatus for use in testing at least a portion of

a system under test via a Test Access Port (TAP) includes a memory for

storing a set of instructions of a test instruction set architecture and a

processor executing the set of instructions of the test instruction set

architecture for testing at least a portion of the system under test via the TAP.

The set of instructions of the test instruction set architecture includes a first

set of instructions comprising a plurality of instructions of an Instruction Set

Architecture (ISA) supported by the processor and a second set of

instructions comprising a plurality of test instructions associated with the TAP,

where the instructions of the first class of instructions and the instructions of

the second class of instructions are integrated to form thereby the set of

instructions of the test instruction set architecture.

In one embodiment, a TISA processor for use in testing at least a

portion of a system under test via a Test Access Port (TAP) includes a first

class of instructions including instructions of an Instruction Set Architecture

(ISA) supported by the processor and a second class of instructions including

test instructions associated with the TAP, wherein the ISA instructions of the

first set of instructions and the test instructions of the second set of

instructions are integrated to form a TISA adapted for testing at least a portion

of the system under test.

In one embodiment, a computer processor, for testing a system under

test (SUT) via a Test Access Port (TAP), includes circuitry configured to



process instructions according to a test instruction set architecture (TISA)

having semantics that enable interaction with the system under test via the

TAP. The TISA includes a plurality of instructions of a first type and a plurality

of instructions of a second type, where the first type of instructions include

instructions of an instruction set architecture (ISA) supported by the computer

processor and the second type of instructions include test instructions for

testing the system under test via the TAP.

Although primarily depicted and described hereinabove with respect to

embodiments in which the TISA processor is defined in a particular manner

(e.g., using particular language to describe different classes and/or types of

instructions), it will be appreciated that a TISA may be defined in other ways

that are fully supported by the depiction and description of various TISAs as

provided herein.

Although primarily depicted and described herein with respect to

embodiments in which the TISA processor architecture is implemented using

a single processor to support the TISA, in other embodiments the TISA

processor architecture may be implemented using multiple processors.

FIG. 13 depicts an exemplary embodiment of a test processor

architecture utilizing multiple processors to provide system testing capabilities.

As depicted in FIG. 13 , test processor architecture 1300 includes a

primary processor 13 10 and a secondary processor 1320 in communication

via a communication path 1330.

The primary processor 13 10 may be any processor suitable for

supporting system testing, such as a SPARC V8 processor, an INTEL

processor, or any other suitable processor. The primary processor 13 10

executes instructions for testing a system under test. In one embodiment, for

example, primary processor 13 10 may support testing functions similar to the

functions supported by CPU 12 10 of TISA processor architecture 1200 of FIG.

12 (e.g., where test processor architecture 1300 utilizes a TISA). In one

embodiment, for example, primary processor 13 10 may support testing



functions supported by testing processors in test processor architectures that

do not utilize a TISA. The primary processor 13 10 may support various other

testing capabilities.

The secondary processor 1320 may be any processor suitable for

supporting system testing, such as a SPARC V8 processor, an INTEL

processor, or any other suitable processor. The secondary processor 1320

supports a Test Access Port (TAP) interface to the system under test (which

is omitted for purposes of clarity). The TAP interface may interface with any

suitable TAP. For example, the TAP interface may provide an interface to an

IEEE 1149.1 TAP or any other suitable TAP which may be used for testing a

system under test.

The primary processor 13 10 and secondary processor 1320 cooperate

to perform testing of at least a portion of a system under test.

The primary processor 13 10 executes test instructions for testing a

system under test. The test instructions may be test instructions of a TISA

(where test processor architecture 1300 utilizes a TISA) or test instructions

not associated with a TISA (where test processor architecture 1300 does not

utilize a TISA). The primary processor 13 10 , during execution of the test

instructions, detects instructions related to control of the TAP of the system

under test (e.g., such as instructions for loading input data to a TAP controller

of the system under test, instructions for reading output data from a TAP

controller of the system under test, and like instructions, as well as various

combinations thereof). The primary processor 13 10 provides the TAP-related

instructions to secondary processor 1320. The secondary processor 1320

receives the TAP-related instructions from primary processor 13 10 . The

secondary processor 1320 executes the TAP-related instructions. The

primary processor 13 10 continues executing test instructions while secondary

processor 1320 executes the TAP-related instructions received from primary

processor 13 10 . In this manner, primary processor 13 10 may perform a

context switch and continue operating while secondary processor 1320



controls scan operations via the TAP of the system under test. This is difficult

using a single-processor approach, because while the single processor is

controlling the TAP, the single processor is prevented from performing other

operations. Therefore, the use of multiple processors, as in the test processor

architecture 1300, provides a significant improvement in testing efficiency

without a need to use high-end processors, especially considering that

operations over the TAP typically take a long time compared to the time

required for a processor to perform a single operation.

The cooperation between primary processor 13 10 and secondary

processor 1320 to perform testing of at least a portion of a system under test

is facilitated by communication path 1330. The communication path 1330

may be implemented using any suitable means of communication between

primary processor 13 10 and secondary processor 1320, which may depend

on the type of multi-processor architecture with which the test processor

architecture 1300 is implemented. For example, communication path 1330

may include one or more of a main processor interface bus, an auxiliary

processor interface, a communication interface (e.g., such as a serializer-

deserializer (SERDES) interface or other suitable communication interface),

and the like, as well as various combinations thereof.

Although omitted for purposes of clarity, it will be appreciated that the

test processor architecture 1300 will include memory (e.g., random access

memory, persistent memory, cache memory, and the like, as well as various

combinations thereof). The memory of test processor architecture 1300 may

include one or more of memory shared by primary processor 13 10 and

secondary processor 1320, memory dedicated to primary processor 13 10 ,

memory dedicated to secondary processor 1320, and the like, as well as

various combinations thereof.

Although omitted for purposes of clarity, it will be appreciated that the

test processor architecture 1300 may include various other support circuits,



such as buses, I/O circuits, and the like, as well as various combinations

thereof.

The test processor architecture 1300 of FIG. 13 may be implemented

in a number of ways.

In one embodiment, for example, the test processor architecture may

use a test co-processor unit architecture in which a central processor unit

(CPU) cooperates with a test co-processor unit (TCPU) in order to support

system testing. An exemplary embodiment is depicted and described with

respect to FIG. 14 .

In one embodiment, for example, the test processor architecture may

use a test adjunct processor unit architecture in which a central processor unit

(CPU) cooperates with a test adjunct processor unit (TAPU) in order to

support system testing. An exemplary embodiment is depicted and described

with respect to FIG. 15 .

FIG. 14 depicts an exemplary embodiment of a test co-processor

architecture. The test co-processor architecture 1400 is suitable for use as a

TISA processor architecture for supporting system testing using a TISA. The

test co-processor architecture 1400 also is suitable for use as a test processor

architecture for supporting system testing that does not employ a TISA.

The test co-processor architecture 1400 includes a central processor

unit (CPU) 14 10 , a test co-processor unit (TCPU) 1420, a main memory 1430,

and a flash memory 1440.

The test co-processor architecture 1400 includes a main processor

interface bus 1451 . The CPU 14 10 , TCPU 1420, main memory 1430, and

flash memory 1440 each are coupled to (or otherwise configured to be able to

communicate with) the main processor interface bus 1451 .

The test co-processor architecture 1400 also may include an auxiliary

processor interface 1452 which directly couples CPU 14 10 and TCPU 1420,

thereby enabling direct communications between CPU 14 10 and TCPU 1420.



The CPU 14 10 may be any CPU suitable for performing system testing

of a system under test. The CPU 14 10 supports testing capabilities supported

by primary processor 13 10 depicted and described with respect to FIG. 13 .

The TCPU 1420 may be any CPU suitable for facilitating system

testing of a system under test. The TCPU 1420 supports a Test Access Port

(TAP) interface 1460, which may interface with any suitable TAP (e.g., such

as an IEEE 1149.1 TAP or any other suitable TAP used for testing a system

under test). The TCPU 1420 supports testing capabilities supported by

secondary processor 1320 depicted and described with respect to FIG. 13 .

The CPU 14 10 and TCPU 1420 cooperate to perform testing of at least

a portion of a system under test in a manner similar to primary processor

13 10 and secondary processor 1320 depicted and described with respect to

FIG. 13 . The CPU 14 10 and TCPU 1420 utilize instruction exception handling

in order to enable CPU 14 10 to continue operating to process test instructions

while TCPU 1420 executes TAP-related instructions for controlling the TAP of

the system under test during testing.

The CPU 14 10 executes test instructions for testing a system under

test. The CPU 14 10 , during execution of the test instructions, detects

instruction exceptions (i.e., instructions related to control of the TAP of the

system under test) and provides the instruction exceptions to TCPU 1420.

The TCPU 1420 receives the instruction exceptions from CPU 14 10 and

processes the instruction exceptions such that the TCPU 1420 may handle

the instruction exceptions while CPU 14 10 continues to operate to perform

other tasks (e.g., executing other testing instructions). In other words, CPU

14 10 and TCPU 1420 cooperate during system testing such that CPU 14 10

may switch context and continue to operate to perform other tasks while

TCPU 1420 handles instruction exceptions detected by CPU 14 10 , thereby

improving system testing efficiency.

In one embodiment, the CPU 14 10 includes a cache 14 11, e.g., for

improving the performance of CPU 14 10 .



In one embodiment, the TCPU 1420 includes a direct memory access

(DMA) unit 1421 , which may be any type of DMA unit suitable for use in

support system testing. In one embodiment, for example, DMA unit 1421 is a

scatter/gather (S/G) DMA unit. The TCPU 1420 may utilize DMA unit 1421 for

purposes of handling instruction exceptions received from CPU 14 10 , and for

efficiently accessing sensible data stored in memory. In one embodiment,

CPU 14 10 may configure S/G DMA tables prior to encountering an instruction

exception.

In one embodiment, the TCPU 1420 supports a set of specialized

TCPU instructions. The set of specialized TCPU instructions may support

TAP access and control. The set of specialized TCPU instructions may be

used by TCPU 1420 to perform specific TAP operations on the TAP State

Machine.

The CPU 14 10 and TCPU 1420 utilize main memory 1430 and/or flash

memory 1440 for performing various testing functions, such as execution of

test instructions by CPU 14 10 , instruction exception handling by TCPU 1420,

execution of TCPU instruction by TCPU 1420, and the like, as well as various

combinations thereof. The main memory 1430 may be any suitable processor

memory. The flash memory 1440 may be any suitable flash memory or any

other suitable form of persistent memory. The CPU 14 10 and TCPU 1420

share the memory with arbitrated access. The CPU 14 10 and TCPU 1420

also may share the memory for purposes of exchanging information. Although

primarily depicted and described with respect to specific numbers and types

of memory, it will be appreciated that various other memory schemes may be

used for supporting the functions performed by CPU 14 10 and TCPU 1420.

The CPU 14 10 and TCPU 1420 perform testing of the system under

test using communication between CPU 14 10 and TCPU 1420 and

communication between CPU 14 10 and/or TCPU 1420 and other components

of test co-processor architecture 1400 (e.g., main memory 1430, flash

memory 1440, and other components), and the like, as well as various



combinations thereof. The communications may be supported using one or

both of the main processor interface bus 1441 and the auxiliary processor

interface 1452. The communications between CPU 14 10 and TCPU 1420

may include communications associated with instruction exception

notification, interrupt access, DMA arbitration, and the like, as well as various

combinations thereof. The communications between CPU 14 10 and TCPU

1420 and other components of the test co-processor architecture 1400 may

include communications associated with reading from memory, writing to

memory, and/or any other tasks which may be performed in support of testing

the system under test.

FIG. 15 depicts an exemplary embodiment of a test adjunct processor

architecture. The test adjunct processor architecture 1500 is suitable for use

as a TISA processor architecture for supporting system testing using a TISA.

The test adjunct processor architecture 1500 also is suitable for use as a test

processor architecture for supporting system testing that does not employ a

TISA.

The test adjunct processor architecture 1500 includes a central

processor unit (CPU) 15 10 and a test adjunct processor unit (TAPU) 1520.

The CPU 15 10 and TAPU 1520 may reside on the same board or may reside

on different boards.

The CPU 15 10 may be any CPU suitable for performing system testing

of a system under test. The CPU 15 10 supports testing capabilities supported

by primary processor 13 10 depicted and described with respect to FIG. 13 .

The CPU 15 10 has a main memory 1530M, a flash memory 1530F, and

an input/output module 1540 associated therewith. The CPU 15 10 has a

main processor interface bus 1550 associated therewith. The CPU 15 10 ,

main memory 1530M, flash memory 1530F, and input/output module 1540

each are coupled to (or otherwise configured to be able to communicate with)

the main processor interface bus 1550.



In one embodiment, the CPU 15 10 includes a cache 15 11, e.g., for

improving the performance of CPU 15 10 .

The TAPU 1520 may be any CPU suitable for facilitating system testing

of a system under test. The TAPU 1520 includes an input/output module

1521 . The TAPU 1520 supports a Test Access Port (TAP) interface 1590,

which may interface with any suitable TAP (e.g., such as an IEEE 1149.1 TAP

or any other suitable TAP used for testing a system under test). The TAPU

1520 supports testing capabilities supported by secondary processor 1320

depicted and described with respect to FIG. 13 .

The TAPU 1520 has a local test memory 1560 associated therewith.

The TAPU 1520 has an internal interface bus 1570 associated therewith. The

TAPU 1520 and local test memory 1560 each are coupled to (or otherwise

configured to be able to communicate with) the internal interface bus 1570.

The input/output module 1540 associated with CPU 15 10 and the

input/output module 1521 of TAPU 1520 support a communication interface

1580 enabling communications between CPU 15 10 and TAPU 1520. The

communication interface 1580 supports streaming of TAP-related commands

from CPU 15 10 to TAPU 1520.

In one embodiment, the input/output module 1540 associated with CPU

15 10 and the input/output module 1521 of TAPU 1520 support Serializer-

Deserializer (SERDES) communications capabilities and, therefore, the

communications interface 1580 is a SERDES-based communications

interface. In this embodiment, the SERDES-based communications interface

1580 may be implemented using any suitable SERDES communications

protocol (e.g., such as Gigabit Ethernet (GigE), Serial Rapid IO (SRIO),

Peripheral Component Interconnect Express (PCIe), and the like). Although

primarily depicted and described herein with respect to using SERDES-based

communications between the CPU 15 10 and the TAPU 1520, other suitable

communications capabilities may be used in order to support communications

between CPU 15 10 and TAPU 1520.



The CPU 15 10 and TAPU 1520 cooperate to perform testing of at least

a portion of a system under test in a manner similar to primary processor

13 10 and secondary processor 1320 depicted and described with respect to

FIG. 13 . The CPU 15 10 and TAPU 1520 utilize command streaming via the

communication interface 1580 in order to enable CPU 15 10 to continue

operating to process test instructions while TAPU 1520 executes TAP-related

instructions for controlling the TAP of the system under test during testing.

The CPU 15 10 executes test instructions for testing a system under

test. The CPU 15 10 , during execution of the test instructions, detects

instructions related to control of the TAP of the system under test. The CPU

15 10 propagates the TAP-related instructions to the TAPU 1520 via the

communication interface 1580 (i.e., from CPU 15 10 to input/output module

1540 via the main processor interface bus 1550, for propagation via

communication interface 1580). The TAPU 1520 receives the TAP-related

instructions from CPU 15 10 and processes the TAP-related instructions such

that the TAPU 1520 may handle control of the TAP while CPU 15 10 continues

to operate to perform other tasks (e.g., executing other testing instructions).

In other words, CPU 15 10 and TAPU 1520 cooperate during system testing

such that CPU 15 10 may switch context and continue to operate to perform

other tasks while TAPU 1520 handles TAP-related instructions detected by

CPU 15 10 , thereby improving system testing efficiency.

In one embodiment, the TAP-related instructions detected by CPU

15 10 and processed by TAPU 1520 are packetized by the CPU 15 10 for

propagation to TAPU 1520.

In one embodiment, the TAP-related instructions detected by CPU

15 10 and processed by TAPU 1520 include opcodes supported by TAPU

1520. In one such embodiment, the TAP-related instructions also may

include one or more extension commands adapted for use in performing block

memory copies between memory associated with the CPU 15 10 and memory



associated with the TAPU 1520 (e.g., between main memory 1530M and local

test memory 1560).

The CPU 15 10 utilizes main memory 1530M and/or flash memory

1530F for performing various testing functions, such as execution of test

instructions, detection of TAP-related instructions, packetization of TAP-

related instructions, and the like, as well as various combinations thereof.

The main memory 1530M may be any suitable processor memory. The flash

memory 1530F may be any suitable flash memory or any other suitable

persistent memory.

The TAPU 1520 utilizes local test memory 1560 for performing various

testing functions, such as storage of TAP-related instructions received from

CPU 15 10 , processing of TAP-related instructions received from CPU 15 10 ,

and the like, as well as various combinations thereof. The local test memory

1560 may be any suitable processor memory. In one embodiment, the local

test memory 1560 may be relatively small since it handles processing of scan

chain segments of the scan chain of the system under test, rather than the

entire scan chain (as may be required in an on-chip memory).

Although primarily depicted and described with respect to specific

numbers and types of memory, it will be appreciated that various other

memory schemes may be used for supporting the functions performed by

CPU 15 10 and TCPU 1520.

Although primarily depicted and described herein with respect to use of

a co-processor architecture or an adjunct processor architecture to implement

the TISA, it will be appreciated that the TISA may be implemented using any

suitable processor architecture, which may include processor architectures

other than the co-processor architecture or the adjunct processor architecture.

Thus, the TISA processor architecture may be implemented using multiple

processors in various other ways, at least some of which may include use of

more than two processors for supporting the TISA.



Although primarily depicted and described herein with respect to use of

the co-processor architecture or the adjunct processor architecture in order to

implement the TISA architecture, it will be appreciated by one skilled in the art

and informed by the teachings herein that the co-processor architecture and

the adjunct processor architecture each may be used to implement other

types of testing architectures (i.e., other testing architectures that do not

employ TISA).

It will be appreciated that the test co-processor architecture and the

test adjunct processor architecture are functionally similar in that each

enables a TISA to be executed by two communicating processors. In a given

application, the choice between the two architecture may be made by the

designer on the basis of implementation-dependent parameters, such as

available resources, costs, performances, physical constraints (integration in

the same chip, in different chips and/or boards or any combination thereof), as

well as any other implementation parameter. Although primarily depicted and

described herein with respect to test co-processor and test adjunct processor

architectures, it will be appreciated by one skilled in the art and informed by

the teachings herein that these implementation considerations will apply to

any other types of testing architectures/infrastructure.

The TISA processor architectures depicted and described herein may

employ any suitable TISA for use in performing system testing.

A description of one exemplary embodiment of a TISA adapted for use

with the TISA processor architectures follows. This exemplary embodiment of

a TISA is an implementation of Scan Segment Level primitives depicted and

described herein. In a Scan Segment Level abstraction level, the overall scan

chain of the system-under-test is divided into segments, which are then used

as the data atom of the algorithm. It will be appreciated that the system-under-

test may be partitioned into the scan segments by the algorithm developer,

which may be a human and/or an automated tool. A more general description

of the use of TISA to enable scan operations to be performed at the Scan



Segment Level, i.e., a description that is independent of this exemplary TISA

implementation, is provided detail hereinbelow.

The following embodiment of a TISA proposes a set of registers and

instructions able to define and handle those scan segments. The following

embodiment is based on a 32-bit sized TISA, but it could be adapted to any

other word size (e.g., 16-bit, 64-bit, or any other suitable word size).

FIG. 16 depicts an exemplary register set that can be used by a TISA

processor. The exemplary TISA includes the four register sets (denoted as

register sets R 1 through R4), which are depicted in FIGs. 16A - 16D,

respectively.

As depicted in FIG. 16A, the first register set R 1 includes the following

User Accessible Data Registers:

• StatusRegister: 32-bit register containing status state information;

• Control Register: 32-bit register containing command encodings;

· BlockRegister: 32-bit register containing the offset in memory to

Preformatted data structures indirectly pointing to the scan data in

(gather data) and where to write the data out (scatter data) [Used for all

scan and compare operations for accessing Scatter/Gather Segment

Descriptions];

· ScanLengthRegister: 32-bit register where the current number of bits

remaining to be scanned resides (also automatically populated from

Scatter/Gather Segment Descriptions for block mode opcodes);

• ScanStateRegister: 32-bit register containing 3 banks of 4 bits

representing the startState, scanState, and endState of a scan

operation. The 4 bits represent the encoding of the 16 states of the

TAP state machine (also populated from Scatter/Gather Segment

Descriptions in block mode); and

• UserDataRegisters[1 - 1 1] : 32-bit registers containing scan segment

data for small scan operations and data reuse (may be source or

destination register).



As depicted in FIG. 16B, the second register set R2 includes the

following Internal Scratch Registers:

• BlockPointerRegister: 32-bit register pointing to the current

Scatter/Gather Segment Description reference to be processed during

Multiple Scan Instructions;

• BlockCountRegister: 32-bit register containing the count of

Scatter/Gather Segment Descriptions to be processed during Multiple

Scan Instructions; and

• InstructionRegister: 32-bit register where the current opcode is placed

for decoding.

As depicted in FIG. 16C, the third register set R3 includes the following

Scatter/Gather Segment Descriptions registers:

• BlockOffsetField: 32-bit number describing the bank of address when

64-bit architectures are used;

· ScanLengthField: 32-bit integer specifying the number of bits to scan

for this segment;

• StateTraversal Field: 3 fields of 4 bits each that represent the start

state, scan state, and end state for this scan operation (each 4 bits

represent the 16 state TAP State Machine states);

· SourceLocationField: 32-bit base address for where the TDI data

resides in memory;

• DestinationLocationField: 32-bit base address for where the TDO data

will be stored in memory;

• ExpectedValueField: 32-bit address for where the expected vector

resides in memory;

• ResponseLocation Field: 32-bit base address for where the captured

TDI data resides in memory;

• MaskField: 32-bit base address for where the MASK data used to limit

the comparison operation resides in memory;



• ResultLocationField: 32-bit base address for where the results of the

comparison will be stored in memory.

As depicted in FIG. 16D, the fourth register set R4 includes the

following MultiBlock Scatter/Gather Segment Descriptions registers:

· BlockOffsetField: 32-bit number describing the bank of address when

64-bit architectures are used;

• BlockCountField: 32-bit number defining the number of scan segments

that are represented by this MultiBlock scan (used to initialize the

BlockCountRegister during a MultiBlock scan operation);

· ScatterGatherOpcodeField: 32-bit command opcode used for the

Scatter/Gather Segment Description pointed to by the associated

ScatterGatherBlockField; and

• ScatterGatherBlockField: 32-bit address for where the Scatter/Gather

Segment Description associated with the previous

ScatterGatherOpcodeField is located in memory.

It will be appreciated that the exemplary TISA register sets may be

modified in any suitable manner. For example, each of the exemplary register

sets may be modified to include fewer, more, and/or different registers. For

example, the exemplary registers may be regrouped into fewer, more, and/or

different sets. For example, fewer, more, and/or different register sets may be

used. In other words, the exemplary TISA register sets may be replaced with

any other TISA register set(s) suitable for use with TISA instructions sets to

implement a TISA processor architecture.

The exemplary TISA may employ any suitable TISA instruction set (i.e.,

command dictionary) for use in performing system testing.

The exemplary TISA instruction set includes the following opcodes,

which may be utilized to manipulate register sets R 1 through R depicted and

described with respect to FIGs. 16A - 16D, as well as the original ISA register

sets depicted and described herein:

StateTransition <TMS Value>, <TCK cycles>



• This opcode is used to traverse the TAP state machine using

the value of TMS for the given number of TCK clock cycles.

This opcode is used to perform general state transitions

between states of the TAP state machine. The <TMS Value>

represents a single bit, while the <TCK cycles> represents the

remaining data bits of the opcode.

RunTest <startState>, <testState>, <endState>

• This opcode is used to transition from <startState> to

<testState>, and to loop in <testState> for the number of TCK

cycles as specified by the ScanLengthRegister. This opcode is

used to transition to the <endState> as the conclusion of

looping.

Scan Register <source registers destination register>[,<expected

register>] [,<mask register>]

• This opcode is used to scan the data in the user data register

<source register> and store the captured value into the user

data register destination registers If the <expected_register>

is present, compare captured data with it and raise error

accordingly, eventually using the <mask_register>, if present.

The number of bits scanned is defined in the

ScanLengthRegister (0 <= n < 32). The start, scan, and end

states are defined in the ScanStateRegister.

Scan Reg isterZero destination register>[,<expected register>] [,<mask

register>]

• This opcode is used to scan the vector value of all "0" and store

the captured value into the user data register destination

registers The number of bits scanned is defined in

ScanLengthRegister (0 <= n < 32). The start, scan, and end

states are defined in the ScanStateRegister.



<expected_register> and <mask_register> are used as in the

ScanRegister instruction.

ScanRegisterOne destination register>[,<expected register>] [,<mask

register>]

• This opcode is used to scan the vector value of all " 1 " and store

the captured value into the user data register destination

registers The number of bits scanned is defined in

ScanLengthRegister (0 <= n < 32). The start, scan, and end

states are defined in the ScanStateRegister.

<expected_register> and <mask_register> are used as in the

ScanRegister instruction.

ScanBlock

• This opcode is used to scan the data pointed to by the

BlockRegister to the SUT starting at the <startState>, scanning

the data in the <scanState>, with the <endState> finalizing the

operation state as defined by the Block's StateTraversal Field.

The ScanStateRegister is populated with the data from the

StateTraversal Field prior to the scan operation. The

ScanLengthRegister is populated with the data from the

ScanLengthField prior to the scan operation. No data from TDO

is preserved. If the ExpectedValueField and Maskfield are set,

comparison and error generation are done accordingly.

ScanBlockCapture

• This opcode is used to scan the data pointed to by the

BlockRegister to the SUT starting at the <startState>, scanning

the data in the <scanState>, with the <endState> finalizing the

operation state as defined by the Block's StateTraversal Field.

The ScanStateRegister is populated with the data from the

StateTraversal Field prior to the scan operation. The

ScanLengthRegister is populated with the data from the



ScanLengthField prior to the scan operation. The data captured

from TDO is preserved. If the ExpectedValueField and Maskfield

are set, comparison and error generation are done accordingly.

ScanBlockZeroCapture

• This opcode is used to scan the data vector of all "0" to the SUT

starting at the <startState>, scanning the data in the

<scanState>, with the <endState> finalizing the operation state

as defined by the Block's StateTraversal Field capturing the

result in the register defined to by the BlockRegister. The

ScanStateRegister is populated with the data from the

StateTraversal Field prior to the scan operation. The

ScanLengthRegister is populated with the data from the

ScanLengthField prior to the scan operation. If the

ExpectedValueField and Maskfield are set, comparison and

error generation are done accordingly.

ScanBlockZero

• This opcode is used to scan the data vector of all "0" to the SUT

starting at the <startState>, scanning the data in the

<scanState>, with the <endState> finalizing the operation state

as defined by the Block's StateTraversal Field without capturing

the result. The ScanStateRegister is populated with the data

from the StateTraversal Field prior to the scan operation. The

ScanLengthRegister is populated with the data from the

ScanLengthField prior to the scan operation. If the

ExpectedValueField and Maskfield are set, comparison and

error generation are done accordingly.

ScanBlockOneCapture

• This opcode is used to scan the data vector of all " 1 " to the SUT

starting at the <startState>, scanning the data in the

<scanState>, with the <endState> finalizing the operation state



as defined by the Block's StateTraversal Field capturing the

result in the register defined to by the BlockRegister. The

ScanStateRegister is populated with the data from the

StateTraversal Field prior to the scan operation. The

ScanLengthRegister is populated with the data from the

ScanLengthField prior to the scan operation. If the

ExpectedValueField and Maskfield are set, comparison and

error generation are done accordingly.

ScanBlockOne

• This opcode is used to scan the data vector of all " 1 " to the SUT

starting at the <startState>, scanning the data in the

<scanState>, with the <endState> finalizing the operation state

as defined by the Block's StateTraversal Field without capturing

the result. The ScanStateRegister is populated with the data

from the StateTraversal Field prior to the scan operation. The

ScanLengthRegister is populated with the data from the

ScanLengthField prior to the scan operation. If the

ExpectedValueField and Maskfield are set, comparison and

error generation are done accordingly.

The exemplary TISA instruction set includes the following register

modification instructions that use explicit values:

LoadRegisterExplicit <const value>, <register name>

• This instruction loads the constant value of <const value> into

the register named by <register name>.

CopyRegister <source register>, destination register>

• This instruction copies the contents of the register named as

<source register> into the register named by destination

registers

The exemplary TISA instruction set includes the following register

modification instruction that use implicit values:



LoadRegisterlmplicit <user data register>, <register name>

• This instruction uses the value in the named <user data

register> as a pointer reference to a memory location where the

real data resides and stores the referenced value into the

register named by <register name>

The exemplary TISA instruction set includes the following register

preservation instructions:

StoreRegisterlmplicit <register name>, <user data register>

• This instruction uses the value in the named <user data

register> as a pointer reference to a memory location where the

value in the register named by <register name> is to be stored.

StoreRegisterExplicit <register name>, <const value>

• This instruction stores the value of register named by <register

name> into the memory location specified by <const value>.

The exemplary TISA instruction set includes the following logical

operations on registers:

AND <source registers destination register>

• This operation performs a logical AND operation between the

<source register> and the destination register> and places the

resulting value in the destination registers

OR <source registers destination register>

• This operation performs a logical OR operation between the

<source register> and the destination register> and places the

resulting value in the destination registers

XOR <source registers destination register>

• This operation performs a logical XOR operation between the

<source register> and the destination register> and places the

resulting value in the destination registers

NOT <source register>, destination register>



• This operation performs a logical NOT operation on the <source

register> and places the resulting value in the destination

registers

XORM <source registers <mask register>, destination register>

• This operation performs a logical XOR operation between the

user data register <source register> and the user data register

destination registers comparing only those bits aligning with

the user data register <mask register> bit containing a value of

" 1 " , and places the resulting value in the destination registers

Note that uncompared bits will result in a "0" value in the

destination registers

The exemplary TISA instruction set includes the following

miscellaneous operation on registers:

NOP

• A no operation opcode to be used as a filler to provide alignment

in some ISA instruction sets.

The exemplary TISA instruction set includes the following instructions

for extending support for streaming for an embodiment using the adjunct

processor architecture:

MemoryWrite

• This instruction writes to the local test memory using the

following arguments: <sequence number>, <block offset (32-bit

offset)>, <number of bytes to transfers destination address (in

specified memory block)>, data byte(s)>.

MemoryRead

• This instruction reads from the local test memory using the

following arguments: <sequence number>, <block offset (32-bit

offset)>, <number of bytes to transfers <source address (in

specified memory block)>. This instruction returns a stream of



data bytes tagged with the sequence number and the number of

bytes being transferred.

The exemplary TISA instruction set includes the following values for

scan state:

StartState, ScanState, EndState

• The scan state codes include: TestLogicReset (TLR),

RunTest/ldle (RTI), PauseDR (PDR), PauseIR (PIR), ScanDR

(SDR), ScanIR (SIR). There is a 4-bit representation per state

code, and 12 bits are used to describe the entire state transition

sequence for a scan operation.

It will be appreciated, by one skilled in the art and informed by the

teachings herein, that various other TISA implementations may be used with

the TISA processor architectures depicted and described herein. For

example, other TISA implementations may use fewer, more, and/or different

registers, may use fewer, more, and/or different instruction sets, and the like,

as well as various combinations thereof. In one embodiment, other TISA

implementations may be utilized where different processor architectures are

used, in order to provide TISA implementations better-suited to specific

applications, and/or for any other suitable reasons.

As described hereinabove, use of TISA in a JTAG architecture enables

scan operations to be performed at the Scan Segments Level, which allows

the definition of independently controllable "scan segments" inside the overall

scan path, thereby providing a flexible and powerful set of primitives that can

be used to define scan operations directly in the problem space and resolve

the scan operations at implementation time.

In general, JTAG operations are based on the scan operation in which

all bits are scanned in serially one-by-one while at the same time bits are

being scanned out serially one-by-one. This means that, in order to be able to

perform a scan operation, knowledge of which value is needed for each bit in

the scan chain (i.e., the input and output vectors) is required. TGTs typically



provide this capability for traditional structural testing by computing the

required vectors from a system model obtained through description languages

such as BSDL. Additionally, formats like SVF and STAPL mirror this, as they

allow the user to manipulate those vectors. While testing in this manner is

sufficient for structural (and other types) of testing, testing in this manner is

highly inefficient for interactive setups in which there is no real need to access

the whole scan chain. The inefficiency may be seen by considering an

example.

For example, consider a scan chain composed of 100 instruments,

each one having 16 bits. If the user needed to write 0x1 234 in the registers of

the 76th instrument in the scan chain, the TGT would need to generate the

vector for the whole scan chain ( 1 00* 16=1 600 bits) and send it to the TAP

interface to be input into the scan chain. Similarly, if the user wanted to read

the associated output, the TGT would need to receive the entire 1600 bit

vector before being able to extract the desired output information. In this

example, the fact that a majority of the scan bits are useless is not important,

as scan efficiency is not one of the goals (rather, in this example, the goal is

primarily to be able to efficiently access one particular entity of the scan

chain).

This type of approach is a problem at least for the following reasons:

(a) there is the computational need of handling long vectors (e.g., lots of

memory transfers have a high impact on performances); (b) there is a need to

store the entire vector(s) in memory (which may be a problem for long

chains); (c) memory storage is not limited to data inputs and data outputs, but

also includes expected data, input and output mask, and the like (thereby

multiplying memory requirements which are already potentially strained just

from the input and output data); and (d) the transformation from instrument-

vector-instrument must be made each time (which demands computational

power and time).



The Scan Segments Level abstraction level is a powerful tool for

providing efficient access to individual entities, or groups of entities, of the

scan chain of a system under test, without any special emphasis on scan

efficiency (even if, of course, still enabling it if needed).

In one embodiment, Scan Segments Level abstraction is implemented

by decomposing a scan chain into a succession of segments and defining one

or more scan operations on each of the segments. The scan chain is

composed of a plurality of elements, and each segment includes at least one

of the elements of the scan chain. The elements may be defined at many

levels of the system under test (e.g., elements may be devices, instruments,

registers, segments of a register, and the like, as well as various combinations

thereof), and, thus, that the segments into which the scan chain is

decomposed may be defined at many levels of the system under test (e.g.,

segments may include one or more devices, a portion of a device(s), one or

more instruments, a portion of an instrument(s), one or more registers, a

portion of a register(s), one or more register segments, and the like, as well as

various combinations thereof). In this manner, a segment may represent the

smallest control unit of the scan chain.

In one embodiment, decomposition of a scan chain into segments may

be hierarchical. For example, the scan chain may be decomposed into

segments, at least some of which may be composed by sub-segments, at

least some of which may be composed by sub-segments, and so forth. In this

manner, the hierarchical decomposition of the scan chain may be viewed as

having a tree-based structure in which a segment may be composed of other

segments. In one such embodiment, the segments at the leaves of the tree

may be referred to as segments (in that they represent the smallest control

unit of the scan chain), which the segments located above the leaves of the

tree may be referred to as super-segments. It will be appreciated that, in one

embodiment, one or more of the segments of the scan chain may be

composed of virtual sub-segments which are controllable, but only in a



manner that is transparent to the user/system). The hierarchical

decomposition of a scan chain may be defined in any other suitable manner.

The use of segmentation enables definition of entities for types of

segments and/or types of segment combinations. An entity is a generic

description of a type of target, which is valid for and may be reused for each

physical instance of that type of target. For example, an entity may define a

description of a device, a group of devices, a portion of a device, an

instrument, a group of instruments, a portion of an instrument, and the like, as

well as various combinations thereof. Thus, since a scan chain may be

decomposed such that segments of the scan chain include specific elements

or combinations of elements, entities may be defined for respective segments

and/or respective combinations of segments, of a scan chain. For example,

where a scan chain is decomposed such that a segment includes an

instrument, an entity may be defined for that type of segment (i.e., each

segment including that type of instrument), such that the entity may be reused

for each physical instance of that type of segment in the scan chain. Similarly,

for example, where a scan chain is decomposed such that a segment

includes multiple instruments, an entity may be defined for that type of

segment (i.e., each segment including that type combination of instruments),

such that the entity may be reused for each physical instance of that type of

segment in the scan chain. This enables additional features and functions to

be supported, as described below.

The use of segmentation allows an entity (i.e., a description of a type of

segment under control) to be correlated with a physical protocol that is used

to communicate with the entity. As a result, description languages (e.g., such

as NSDL, P 1687 IJTAG PDL, and the like) could be written specifically for the

entity, and the connectivity description portion (e.g., the structure of the NSDL

or the IJTAG HDL) would describe the ordering of the segmentation

instructions.



TISA provides a reusable modularity that can be defined once for all

occurrences of a particular entity type, as the TISA instructions are segment-

based operations rather than model-based operations. Thus, since TISA is

both modular and autonomous for the entity under test in a particular

segment, TISA provides significant advantages over existing architectures.

TISA enables a direct mapping of the Test Data Register definition into

a reusable and portable module that may be plugged into the execution flow

at any point in the scan process, in any order that is necessary, without

needing to define the entire connectivity as a static model up front as existing

tools require. TISA enables integration of the port/signal interfaces that are

non-scan with the scan operations as a single solution space architecture

based on a unified control flow and standard computer science techniques

(providing significant advantages over solutions in which native language

constructs are used to provide access to non-scan operations).

TISA enables reuse of instruction sequences for multiple instances of

the same entity, thereby enabling a reduction in code storage requirements in

the system. For example, a generalized function, which maps to description

language functions which are called by a managing program, may be written.

In this example, each of the functions are methods of native language objects

that represent the entity, and there may be separate instances of these

objects for each entity defined in the system, but there could be a single copy

of code used to communicate with each of these instances. In this manner,

the native language implementation models directly control the description

language used to specify the connectivity and functionality of the circuit.

In reference to the example given above, use of Scan Segments Level

abstraction would enable definition of three segments as follows: segment S 1

including instruments 1 through 75, segment S2 including the instrument 76,

and segment S3 including instruments 77 through 100. In this manner, access

to instrument 76 is greatly simplified. For example, access to instrument 76

could be obtained by making a "dummy shift" (e.g., ScanBlockZero) for



segment S3, executing the instruction(s) for segment S2 (i.e., instrument 76),

making another dummy shift for segment S 1 , and then terminating with an

update. In such a sequence, access to segment S2 (i.e., to a specific

instrument in the scan chain) is provided without a need of any knowledge of

segment S 1 or segment S3 apart from their length. It will be appreciated that

this is merely one example, and, thus, that other decompositions of the 100

instrument-long chains are possible to enable access to other instruments or

instrument groups.

FIG. 17 depicts a high-level block diagram of a system under test,

illustrating an exemplary decomposition of an exemplary scan chain of the

system under test.

The exemplary SUT 1700 includes four devices 17 10i - 17 10

(collectively, devices 17 10 ; and denoted in FIG. 17 as Device 1, Device 2 ,

Device 3 , and Device 4 , respectively). The devices 17 10 are arranged serially

within SUT 1700 to form a scan chain 1720. The scan chain 1720 is as

follows: the TDI of the TAP is connected to the input port of device 17 10 , the

output port of device 17 10 is connected to the input port of device 17 103, the

output port of device 17 103 is connected to the input port of device 17 102, the

output port of device 17 102 is connected to the input port of device 17 10 , and

the output port of device 17 10 is connected to the TDO of the TAP.

In the exemplary SUT 1700, each of the devices 17 10 includes ( 1) an

input de-multiplexer providing inputs to a test instruction register (TIR) and a

test data register (TDR), and (2) an output multiplexer for collecting outputs

from the TIR and the TDR. The TIR and TDR of each device 17 10 are parallel

registers. The device 17 103 includes one additional TDR, such that the input

de-multiplexer provides inputs to one TIR and two TDRs and collects outputs

from the one TIR and the two TDRs, where the one TIR and two TDRs are all

in parallel. The TIRs and TDRs each are depicted as serial shift registers,

each including nine associated elements (e.g., flip-flops ) . In this manner, (a)

the TIRs form one scan chain (denoted as an test instruction scan chain) that



includes thirty-six serial elements and (b) the TDRs form another scan chain

(denoted as a test data scan chain) that includes forty-five total elements and

thirty-six serial elements (i.e., because the two TDRs of device 7 03 are in

parallel).

In the exemplary SUT 1700, the test instruction scan chain has been

decomposed into four segments follows: a first segment SI4 which includes

the nine elements of the TIR of device 17 10 , a second segment SI3 which

includes the nine elements of the TIR of device 17 103, a third segment SI2

which includes the nine elements of the TIR of device 17 102, and a fourth

segment SI1 which includes the nine elements of the TIR of device 0 . In

this manner, the testing system may access any of the TIRs of SUT 1700,

individually or in combination, with minimal knowledge of the other TIRs of

SUT 1700 (other than the number of elements of which they are composed).

In the exemplary SUT 1700, the test data scan chain has been

decomposed into six serial segments (seven total segments) as follows: a first

segment SD4 that includes the nine elements of the TDR of device 17 10 ; a

second segment SD3 that includes the nine elements of the TDR of device

17 103; a third segment SD2 that includes either the nine elements of the first

TDR of device 17 102 (denoted as sub-segment SD2.1 ) or the nine elements

of the second TDR of device 17 102 (denoted as sub-segment SD2.2), where

these are counted as separate segments for purposes of counting the total

number of segments); and a fourth segment which is further decomposed into

three serial sub-segments as follows: a first sub-segment that includes the

first three elements of the TDR of device 17 10i (denoted as sub-segment

SD1 . 1 ) , a second sub-segment that includes the next four elements of the

TDR of device 17 1 (denoted as sub-segment SD1 .2), and a third sub-

segment that includes the last two elements of the TDR of device 7 0i

(denoted as sub-segment SD1 .3). In this manner, the testing system may

access any of the TDRs of SUT 1700 (or even sub-portions of the TDR of

device 17 10i), individually or in combination, with minimal knowledge of the



other TDRs of SUT 1700 (other than the number of elements of which they

are composed).

It will be appreciated that SUT 1700 of FIG. 17 is merely one example

of the manner in which the scan chain(s) of a system under test may be

decomposed for use in providing Scan Segments Level abstraction. Although

depicted and described herein with respect to specific types, numbers, and

arrangements of elements, components, and the like, it will be appreciated

that a system under test for which a scan chain(s) is decomposed may be

include various other types, numbers, and/or arrangements of elements,

components, and the like.

As described herein, decomposition of the scan chain of a system

under test enables scan operations to be defined on the segments, thereby

improving testing efficiency. A method, according to one embodiment, for

generating a set of instructions including scan operations for segments of a

decomposed scan chain is depicted and described herein with respect to FIG.

18 .

A more detailed example of scan decomposition and generation of

scan segment operations is provided follows.

As a general example, consider a scan chain that includes three

boards where each board includes a segment (denoted as segments A , B,

and C associated with a first board, a second board, and a third board,

respectively). In this example, where the scan segments are hierarchical, the

segment A on the first board may be composed of a plurality of sub-segments

(e.g., sub-segments A through An) , the segment B on the second board may

be composed of a plurality of sub-segments (e.g., sub-segments B through

Bn) , and/or the segment C on the third board may be composed of a plurality

of sub-segments (e.g., sub-segments Ci through Cn) .

As a more specific example, following the application and the SUT, a

segment could be: one or more registers inside an instrument, an instrument,



a cluster ot registers, one or more boards, and the like, as well as various

combinations thereof.

The overall scan operation is therefore decomposed in a series of

segment scan operations. As a result, all that is required in order to obtain the

final scan chain operation is a series of simple atomic operations. Thus, the

embodiments of Scan Segments Level abstraction, while not exclusively

limited to, are especially effective in implementations in which the atomic test

operations are treated like processor operations (e.g., such as in the various

TISA implementations depicted and described herein, or in any other similar

implementations in which atomic test operations are treated like processor

operations).

In such embodiments of Scan Segments Level abstraction, the actual

implementation of the Scan Segments Level scan operations may require that

one or more technological constraints linked to JTAG be addressed. For

example, constraints such as the need to define the state of the TAP machine

and the risk of using the Pause-DR state (not always implemented), among

others, may need to be addressed.

In order to identify instrument/segment outputs in the output bitstream

received via the scan chain, based on the position of the instrument/segment

in the scan chain, the scan chain may be treated as a first-in-first-out (FIFO)

system (given its serial nature) such that the first segment that is scanned in

is also the first segment that is scanned out (as it is closest to the end of the

scan chain).

In order to make the SUT "experience" the sequence of scan segment

operations like a single scan operation, the TCK may be frozen between

segment operations. As all elements inside the scan chain are synchronous,

the effect of freezing TCK in this manner is that the scan chain is frozen

together with TCK.

The use of Scan Segments Level in a TISA-based testing system may

be better understood by way of a few examples, In the examples that follow,



assume that a system under test (SUT) is composed of three segments

(denoted as A , B, and C, in that order), and that a user needs to write a value

V inside of segment B.

As a first example, assume that the three segments of the system (A,

B, and C) are implemented inside the same JTAG device. In this first

example, once the three segments are defined in memory, the TISA

operations would become:

i . Set Startstate = Run-Test-Idle, Scanstate=Endstate=ShiftDR;

ii. Set ScanLenghtField to the length of Segment A ;

iii. Scan a bypass sequence into segment A ;

iv. Set Startstate = Scanstate=Endstate=ShiftDR;

v. Set ScanLenghtField to the length of Segment B ;

vi. Scan V into segment B ;

vii. Set Startstate = Scanstate= ShiftDR, Endstate=Run-Test-ldle;

viii. Set ScanLenghtField to the length of Segment C ;

ix. Scan a bypass sequence into segment C.

With respect to the first example, keeping the TAP Finite State

Machine (FSM) in the ShiftDR state ensures that there is no update on the

scan chain. This may be seen from the first example, in which keeping the

TAP FSM in the ShiftDR state from step (i) to step (ix) ensures that there is no

update on the scan chain, given that the UpdateDR State will be reached only

once leaving ShiftDr.

Further with respect to the first example, the scan clock TCK is active

only during the scan operations (i.e., steps (iii), (vi), and (ix)), and is frozen in

the remaining states. The effect is that the SUT, from the point of view of the

SUT based on operations synchronous with TCK, will see steps (iii), (vi), and

(ix) as a continuous bitstream.

Further with respect to the first example, the "bypass sequence" is a

property of the scan segment, and can be, for instance, a given sequence (all



zeros, all ones, or any other suitable sequence), or "don't care", where it is up

to the TGT to decide such sequence.

As a second example, assume that the three segments of the system

(A, B, and C) are implemented on different JTAG devices (in one or more

cards). In this second example, once the three segments are defined in

memory, the TISA operations would become:

i . Set Segment A states: StartState=RunTest/ldle, ScanState=ShiftlR,

EndState=ShiftlR (gateTCK indicator);

ii. Set Segment A ScanLengthField to length of Segment A IR;

iii. Run ScanBlock with BYPASS instruction pattern for Segment A ;

iv. Set Segment B states: StartState=ShiftlR, ScanState=ShiftlR,

EndState=ShiftlR (gateTCK indicator);

v. Set Segment B ScanLengthField to length of Segment B IR;

vi. Run ScanBlock with EXTEST instruction pattern for Segment B ;

vii. Set Segment C states: StartState=ShiftlR, ScanState=ShiftlR,

EndState=RunTest/ldle;

viii. Set Segment C ScanLengthField to length of Segment C IR;

ix. Run ScanBlock with BYPASS instruction pattern for Segment C ;

x . Set Segment A states: StartState=RunTest/ldle, ScanState=ShiftDR,

EndState=ShiftDR (gateTCK);

xi. Set Segment A ScanLengthField to length of Segment A selected DR

( 1 bit BYPASS DR);

xii. Run ScanBlock with BYPASS data pattern for Segment A ;

xiii. Set Segment B states: StartState=ShiftDR, ScanState=ShiftDR,

EndState=ShiftDR (gateTCK);

xiv. Set Segment B ScanLengthField to length of Segment B selected DR

(n bit BSR DR to pins);

xv. Run ScanBlock with EXTEST data pattern for Segment B ;

xvi. Set Segment C states: StartState=ShiftDR, ScanState=ShiftDR,

EndState=RunTest/ldle;



xvii. Set Segment C ScanLengthField to length of Segment C selected DR

( 1 bit BYPASS DR);

xviii. Run ScanBlock with BYPASS data pattern for Segment C.

In comparing the first example and the second example, it will be

understood that the additional complexity associated with the second example

comes from the need to use the Instruction Register (IR) of each JTAG device

to select/deselect the segments. In that case, unused segments are directly

taken out of the chain by putting the related JTAG device in the BYPASS

mode of the 1149.1 standard (as indicated in steps (iii) and (xvii) of the

second example).

It will be appreciated that all compositions of the above two examples

are possible, with any number of segments defined on one or more JTAG

devices. It will be further appreciated that the above-two examples are merely

examples provided for the purpose of illustrating use of the Scan Segments

Level for testing a system under test, and, thus, that embodiments in which

the Scan Segments Level is used for testing a system under test are not

intended to be limited by these examples.

In such embodiments, the actual sequence of TISA instructions can

have multiple origins, including one or more of the following: ( 1 ) the TISA

instructions may be statically computed by the TGT, in which case, each time

the user wants to access a segment, the entire chain must be scanned (it will

be appreciated that, while this solution is not optimized for scan time, it can be

useful for embedded systems with limited computational resources and little

or no time constraints); (2) the TISA instructions may be issued by a software

scheduler, which receives access requests and composes them into scan

operations; and/or (3) the TISA instructions may be issued by a hardware

scheduler (e.g., such as, but not limited to, what is done for instruction

reordering and bypass in some high-performance processors). It will be

appreciated that TISA instructions associated with Scan Segments Level

control may be issued in any other suitable way, which may include a



combination of the methods described above and/or one or more other

suitable methods which may be used in place of or in addition to one or more

of the methods described above.

The Scan Segments Level abstraction level is a powerful tool for

handling dynamic topologies, such as the ones proposed by the IEEE P 1687

standard and other dynamic topologies. If a section of the scan chain can be

taken in and out the active scan path (e.g., using an SIB cell proposed by the

IEEE P 1687 standard or any other suitable hierarchy-enabling component(s)),

that section can be marked as one (or more) segments. The testing scheduler

then has knowledge, from the system state, as to whether or not this

segment(s) is active, and, therefore, if the segment should be included in the

TISA instruction scheduling. It will be appreciated by those skilled in the art

and informed by the teachings herein that this principle also may be used for

other dynamic elements, such as hot-swap boards (e.g., by detecting their

presence from a status register) or any other suitable dynamic elements.

FIG. 18 depicts a high-level block diagram of one embodiment of a

method for testing a portion of a system under test via a scan chain of the

system under test using Scan Segments Level abstraction of the scan chain.

Although primarily depicted and described herein as being performed

serially, at least a portion of the steps of method 1800 may be performed

contemporaneously, or in a different order than depicted and described with

respect to FIG. 18 .

At step 1802, method 1800 begins.

At step 1804, the scan chain is decomposed into a plurality of

segments. The scan chain is composed of a plurality of elements, and each

segment includes at least one of the elements of the scan chain. The scan

chain may be decomposed into segments in any suitable manner, as

described hereinabove. As described herein, decomposition of the scan

chain into segments may be applied anywhere in the development flow (e.g.,



by the test developer, by the test generation tool, by an embedded circuit

model, and the like).

At step 1806, a set of instructions is generated. The set of instructions

includes processor instructions associated with an ISA and test instructions

for testing the portion of the system under test. The test instructions include,

for each of the segments of the scan chain, at least one scan operation to be

performed on the segment. The test instructions may be any type of test

instructions, such as conventional test instructions, test instructions of a TISA,

and the like, and, thus, may be generated in any suitable manner. The set of

instructions may be generated in any suitable manner (e.g., in a manner the

same as or similar to as depicted and described hereinabove respect to

At step 1808, the set of instructions is executed for testing the portion

of the system under test. The set of instructions may be executed in any

suitable manner, which may depend on the type of instructions of the set of

instructions.

At step 18 10 , method 1800 ends.

Although primarily depicted and described herein with respect to

embodiments in which embodiments of TISA are used to enable scan

operations to be performed at the Scan Segments Level, it will be appreciated

that one or more of the Scan Segments Level embodiments depicted and

described herein also may be provided in environments using TISA-like

instructions architectures, non-TISA instruction architectures and/or non-TISA

testing environment implementations, and the like.

Although references are made herein to "the TISA" for purposes of

describing the enhanced system testing capabilities enabled by exemplary

embodiments of TISAs which may be formed and utilized as depicted and

described herein, it will be appreciated that many different TISAs may be

formed depending on various factors, such as one or more of the ISA of the

processor for which the TISA is formed, characteristics of the SUT for which

the TISA is formed, characteristics of the test algorithm the TISA is supposed



to execute, and the like, as well as various combinations thereof. Thus,

references made herein to "the TISA" also may be read more generally as "a

TISA" in that many different types of TISAs may be formed.

A position-based scheduling capability for supporting testing of Joint

Test Action Group (JTAG) hardware is depicted and described herein.

In one embodiment, the position-based scheduling capability utilizes

various features of TISA. In TISA, the scan chain is seen as a composition of

sub-elements called segments, which results in the following advantages: ( 1 )

the operations on a segment are local (i.e. they are independent from the

topology of which the segment is a part) and (2) an overall scan operation is

composed by an ordered series of scan operations on the segments of which

the scan chain is composed. It is noted that, in such an environment, the

notion of "vector" is no longer needed; rather, only the position of the segment

inside the scan chain is needed. As such, in one embodiment, the position-

based scheduling capability is configured such that elements needing access

to portions of the scan chain are configured to provide access requests to a

scheduler which is configured to determine a schedule according to which the

elements may access the requested portions of the scan chain, thereby

obviating the need for each of the elements to compute the complete vector

for the entire scan chain.

FIG. 19 depicts one embodiment of a scheduler execution architecture

configured to provide position-based scheduling for testing a system under

test.

As depicted in FIG. 19 , scheduler execution architecture 1900 includes

a system under test (SUT) 19 10 , a TISA processor 1920, a scheduler 1930,

and a user application 1940.

The SUT 19 10 includes a JTAG scan chain 19 11 accessible via the

TISA processor 1920 and a TAP which is omitted for purposes of clarity. The

JTAG scan chain 19 11 traverses four devices 19 12 . The four devices 19 12

are denoted, in the direction from TDI to TDO, as Device 4 , Device 3 , Device



2 , and Device 1, each of which includes a plurality of registers 19 13 . The

SUT 19 10 includes eight instruments 19 15 disposed on the devices 19 12 and

accessible via the JTAG scan chain 19 1 1. The eight instruments 19 15 are

denoted, in the direction from TDI to TDO, as Instruments 4.1 and 4.1 (which

are disposed, in series, on Device 4), Instruments 3.2 and 3.1 (which are

disposed, in series, on Device 3), Instrument 2 (which is disposed on Device

2), and Instruments 1 1.3, 1.2, and 1. 1 (which are disposed, in series, on

Device 1) . The eight instruments 19 15 are considered to be separate

segments of the JTAG scan chain 19 11 (e.g., as depicted and described

herein with respect to one or more of FIGs. 1 through 18). The segments may

be controlled individually and, thus, result in scan segment composition 19 19

depicted in FIG. 19 (i.e., the JTAG scan chain 19 11 may be considered to be

composed of a sequence of eight scan segments which correspond to the

eight instruments 19 15 , rather than being composed of each of the registers

19 13 of each of the devices 19 12 of the JTAG scan chain 19 11) .

The TISA processor 1920 is configured to receive TISA operations

from user application 1940, based on a schedule determined by scheduler

1930, for testing of SUT 19 10 . The TISA operations may include TISA

instructions (and, optionally, also may include other types of information). The

TISA processor 1920 is configured to process the TISA operations to

generate the associated input test data to be applied to SUT 19 10 and,

optionally, to receive output test data generated by SUT 19 10 . It is noted

that, for at least some embodiments, the operation of TISA processor 1920

may be better understood by way of reference to FIGs. 1 - 18 . It is noted

that, when the operations are executed by the TISA processor 1920 and the

input test data is updated, the TISA operations will be aligned within the

correct positions within the JTAG scan chain 19 11 (i.e., the TISA operations

will be associated with the scan segments for which the TISA operations are

intended, respectively). An example is depicted and described with respect to

FIG. 20. Namely, FIG. 20 depicts an exemplary TISA segment concatenation



tor an exemplary scan chain composition. As described hereinabove, a TISA

processor (such as TISA process 1920 depicted and described with respect to

FIG. 19) is configured to execute operations on partial sections of the scan

chain (the segments), and to freeze all signals, including the clock, between

operations. In FIG. 20, lines TCK, TMS, TDI depict the JTAG outputs of a

TISA processor, while TDI depict the input from a System Under Test. In FIG.

20, "FSM" depicts the state of the JTAG Finite State Machine belonging to the

SUT, and it can be seen how its state transitions are independent from the

pauses between segment operations. In FIG. 20, the last two lines show how

the input/output streams coming from TDI and TDO, respectively, are

distributed between the different segments.

The scheduler 1930 is configured to receive access requests from the

user application 1940, perform position-based scheduling of the access

requests, and respond to the user application 1940 with access responses

indicative as to when the user application 1940 may perform TISA operations

(associated with the access requests/responses, respectively) on portions of

the JTAG scan chain 19 1 1 of SUT 19 10

The scheduler 1930 includes one or more scheduler core processes

1932 and a Circuit Model 1934.

The scheduler core processes 1932 are processes configured to

perform position-based scheduling of the access requests received at the

scheduler 1930 using the Circuit Model 1934. An exemplary scheduler core

process 1932 is depicted and described with respect to FIG. 22. The

scheduler core processes 1932 may be better understood by first considering

the Circuit Model 1934.

The Circuit Model 1934 is a simplified model of the SUT 19 10 that is

specified in terms of the scan segments of which JTAG scan chain 19 11 of

SUT 19 10 is composed.

The Circuit Model 1934 is configured to specify the order of the scan

segments of the SUT 19 10 (e.g., as depicted in scan segment composition



19 19). The Circuit Model 1934 also may include any other information

suitable for use by scheduler 1930 in determining scheduling of access

requests/responses for execution of the corresponding TISA operations by

TISA processor 1920.

In one embodiment, the Circuit Model 1934 is implemented using a

tree structure. In this embodiment, each segment of which the JTAG scan

chain 19 11 is composed is represented as a leaf node in the tree, and the

remainder of the tree includes super-segments (disposed over one or more

hierarchical levels) which represent the hierarchical nature of the JTAG scan

chain 19 11. The root node of the tree represents the SUT 19 10 . It is noted

that the Circuit Model 1934 as represented by the tree has a number of

properties, including: ( 1) each node of the tree can be uniquely identified

according to its path in the tree, (2) the Circuit Model 1934 is intrinsically

hierarchal, such that systems may be composed by simply adding the entire

sub-tree to the Circuit Model 1934, and (3) a simple depth-first (also known as

post-order) traversal of the tree provides the correct order of segment

accesses on the JTAG scan chain 19 11 of SUT 19 10 . An exemplary scan

chain composition and its associated Circuit Model for use as Circuit Model

1934 of SUT 19 10 are depicted in FIG. 2 1 .

FIG. 2 1 depicts an exemplary scan chain composition and associated

Circuit Model for the system under test of FIG. 19 .

As depicted in FIG. 2 1 , exemplary scan chain composition 2 110 is

configured such that Devicel is composed of three segments corresponding

to Instruments 1. 1 , 1.2, and 1.3, Device2 is composed of one segment

corresponding to Instrument 2 , Device 3 is composed of two segments

corresponding to Instruments 3.1 and 3.2, and Device 4 is composed of two

segments corresponding to Instruments 4.1 and 4.2.

As further depicted in FIG. 2 1 , exemplary Circuit Model 2 120 is a tree-

based model of exemplary scan chain composition 2 110 . The root of

exemplary Circuit Model 2 120 (denoted as SUT) corresponds to SUT 19 10 .



The next level of exemplary Circuit Model 2 120 include four nodes (denoted

as Device 1, Instrument 2 , Device 3 , and Device 4 , where the nodes for

Devices 1, 3 , and 4 each have additional nodes subtending therefrom and the

node for Instrument 2 is a leaf node. The bottom level of exemplary Circuit

Model 2 120 includes seven leaf nodes corresponding to the seven segments

of which some of the Instruments 19 15 are composed (namely, the Device 1

node is a parent to three leaf nodes which represent Instruments 1. 1 , 1.2, and

1.3 of which Device 1 is composed; the Device 3 node is a parent to two leaf

nodes which represent Instruments 3.1 and 3.2 of which Device 3 is

composed; the Device 4 node is a parent to two leaf nodes which represent

Instruments 4.1 and 4.2 of which Device 4 is composed). In the Circuit Model

2 120, the scan segments are depicted as rectangular-shaped nodes and the

remaining nodes are depicted as oval-shaped nodes.

In the Circuit Model 2 120, each scan segment can be uniquely

identified by its path in the tree. For example, the segment that represents

Instrument 1.3 is uniquely identified by the path SUT.Devicel .Instrument .3.,

the segment that represents Instrument 2 is uniquely identified by the path

SUT.Instrument2, the segment that represents Instrument 4.2 is uniquely

identified by the path SUT.Device4.lnstrument4.2, and so forth. As such, the

exemplary scan chain composition 2 110 may be obtained from exemplary

Circuit Model 2 120 by performing a depth-first traversal of the exemplary

Circuit Model 2 120. In one embodiment, in order to assist processing using

such paths, the scheduler 1930 may be configured to associated unique

identifiers with the paths such that the unique identifiers may be used to

represent the paths, respectively (e.g., using unique integer identifiers which

may be easier to handle than character strings, although it will be appreciated

that any suitable type of unique identifiers may be used to represent the

paths).

The scheduler 1930 receives unordered access requests from user

application 1940, determines scheduling of the unordered access requests



based on the scan segment composition 19 19 as determined by scheduler

1930 from Circuit Model 1934 of SUT 19 10 which is available to scheduler

1930, and provides access responses to user application 1940 where the

access responses are indicative as to when the user application 1940 may

provide associated TISA operations (associated with the access requests and

access responses, respectively) to TISA processor 1920 for execution. In this

sense, scheduler 1930 processes an unordered set of access requests

received from user application 1940 and generates an ordered set of access

responses (e.g., ordered in accordance with scan segment composition 19 19

as determined by scheduler 1930 from Circuit Model 1934 of SUT 19 10), such

that scheduler 1930 may then instruct user application 1940 as to the order in

which TISA operations associated with the access requests may be provided

to TISA processor 1920 for processing by TISA processor 1920.

The scheduler 1930 may be configured to perform position-based

scheduling of access requests using the concept of critical section, which may

be used to arbitrate mutual exclusive access in multi-tasking operating

systems. An exemplary process by which scheduler 1930 may perform

position-based scheduling of access requests using the concept of critical

section is depicted and described with respect to FIG. 22.

The user application 1940 is configured to issue access requests

associated with testing of SUT 19 10 . The user application 1940 may issue

access requests for any of the instruments 19 15 . The user application 1940

does not have knowledge of the scan segment composition 19 19 of SUT

19 10 ; rather, the user application 1940 merely issues access requests without

accounting for the order in which the TISA operations associated with the

access requests may be or should be applied to the SUT 19 10 . The access

requests issued by user application 1940 are received by scheduler 1930 for

scheduling based on the scan segment composition 19 19 as determined by

the scheduler 1930 from the circuit model of the SUT 19 10 . The user

application 1940 is further configured to receive access responses from the



scheduler 1930 in response to the access requests, and to provide TISA

operations to the TISA processor 1920 in response to the access responses.

An exemplary process by which the user application 1940 may request and

receive access to portions of JTAG scan chain 19 11 using the concept of

critical section is depicted and described with respect to FIG. 22.

As depicted in FIG. 19 , user application 1940 includes a plurality of

user application elements 1941 - 1941 N (collectively, user application

elements 1941 ) , which may operate in a concurrent fashion. The access

request sent by the user application 1940 may be sent by ones of the user

application elements 1941 and, similarly, the access responses received and

processed by the user application 1940 may be received by processed by

ones of the user application elements 1941 from which the associated access

requests are sent. The user application elements 1941 may be application

threads or any other hardware and/or software based elements configured for

use in sending access requests and receiving and processing access

responses.

As depicted in FIG. 19 , user application 1940 sends unordered access

requests requesting access to segments of JTAG scan chain 19 1 1. The

scheduler 1930 receives the access requests from user application 1940.

The set of unordered access requests includes access requests for the

following segments in the following initial order: Instrument 3.2, Instrument

1. 1 , Instrument 3.1 , Instrument 2 , Instrument 4.2, Instrument 1.2, Instrument

4.1 , and Instrument 1.3. The scheduler 1930 determines scheduling of the

access requests using Circuit Model 1934. The scheduler 1930 determines

the ordering of the scan segments of JTAG scan chain 19 1 1 (i.e., scan

segment composition 19 19) using the Circuit Model 1934. The scheduler

1930 determines the ordering of the access requests based on the scan

segment composition 19 19 determined using Circuit Model 1934. The

scheduler 1930 responds to the access requests with respective access

responses provided to the user application. The set of ordered access



responses includes access responses for the following segments in the

following order: Instrument 1. 1 , Instrument 1,2, Instrument 1.3, Instrument 2 ,

Instrument 3.1 , Instrument 3.2, Instrument 4.1 , and Instrument 4.2. The user

application 1940 receives the set of ordered access responses from scheduler

1930. The user application 1940 then performs TISA operations on the JTAG

scan chain 19 11 of SUT 19 10 based on the ordering of the segments as

specified by the set of ordered access responses (namely, in the following

order: Instrument 1. 1 , Instrument 1,2, Instrument 1.3, Instrument 2 , Instrument

3.1 , Instrument 3.2, Instrument 4.1 , and Instrument 4.2).

FIG. 22 depicts one embodiment of a process for performing position-

based scheduling of access requests using the concept of critical section.

At step 221 0 , the user application 1940 sends an access request

(depicted as REQUEST) to the scheduler 1930.

The user application 1940 may initiate the access request whenever

the user application needs to access a resource of the SUT 19 10 .

The access request is configured to request access by the user

application 1940 to a resource of the SUT 19 10 . The resource of the access

request may be any suitable type of resource (e.g., a scan segment of the

SUT 19 10 and/or any other suitable type of resource).

The access request may identify the resource of SUT 19 10 in any

suitable manner. In one embodiment, for example, the access request may

include a unique identifier (which may be denoted herein as a Unique

Identifier (UID)) specifying the resource of the SUT 19 10 to which the user

application 1940 is requesting access.

It is noted that the access request does not need to include the

associated test data to be scanned for the resource to which access is

requested, at least because the scheduler 1930 is configured to return an

associated access response to the user application 1940 (at which time user

application 1940 may then use the relevant test data, available at and/or to



the user application 1940, when providing the associated TISA operation(s) to

TISA processor 1920).

The user application 1940 then waits for an access response from the

scheduler 1930, during which time the user application 1940 may operate in

any suitable manner (e.g., entering a sleep state or other suitable waiting

state, initiating one or more additional access requests to scheduler 1930,

performing one or more other processing functions, and the like).

At step 2220, the scheduler 1930 determines authorization of the

access request.

The scheduler 1930 is configured to receive multiple unordered access

requests for access to resources of SUT 19 10 (including the REQUEST

depicted in FIG. 22 and one or more other access requests omitted from FIG.

22 for purposes of clarity) and process the multiple unordered access

requests for determining scheduling of the unordered access requests based

on the scan segment composition 19 19 as determined by scheduler 1930

from Circuit Model 1934 of SUT 19 10 . In this sense, for the specific access

request of FIG. 22, the scheduler 1930 is configured to determine the time at

which the user application 1940 is granted access to the resource of the SUT

19 10 that was specified in the access request of FIG. 22 (within the context of

authorizing other access requests for resources of SUT 19 10 that are

received from user application 1940 which, again, are omitted from FIG. 22 for

purposes of clarity).

The scheduler 1930 processes the Circuit Model 1934 to determine

scheduling of the access request. It is noted that scheduler 1930 may explore

the Circuit Model 1934 in any suitable manner. For example, exploration of

the Circuit Model 1934 may be launched following a precise strategy (e.g., all

leaves are marked as pending, time-triggered, explicit requests, and the like).

For example, upon receipt of the access request for the scan segment, the

scheduler 1930 marks the associated leaf node of Circuit Model 1934 (which

corresponds to the requested scan segment) as pending. For example, if



during exploration a segment is encountered that is not pending, a default

sequence is shifted instead (e.g., the sequence can be fixed, can be included

inside of the leaf (e.g., defined by the instrument provider), and the like). It is

noted that, in the case when an instrument operation might be perturbed by

scan operations, the leaf node may ask the scheduler 1930 to inhibit

accesses for a certain length of time.

At step 2230, the scheduler 1930 sends an access response to the

user application 1940 (depicted as RESPONSE), responsive to the access

request (REQUEST) received from the user application 1940.

The access response includes the unique identifier provided in the

access request (again, which may be denoted herein as a UID), which

specifies the resource(s) of the SUT 19 10 to which the user application 1940

has been granted access by scheduler 1930.

The access response indicates to the user application 1940 that it is

the only entity with access rights to the resource of SUT 19 10 that is identified

by the UID (i.e., the resource of SUT 19 10 that is identified by the UID is

locked for use by the user application 1940 to which access was granted by

the scheduler 1930). Accordingly, in conjunction with sending the access

response, the scheduler 1930 locks the resource of SUT 19 10 that is

identified by the UID. The scheduler 1930 may lock the resource of SUT

19 10 that is identified by the UID in any suitable manner (e.g., via changing of

one or more values associated with the node of the Circuit Model 1934 that is

associated with the resource of SUT 19 10 that is identified by the UID, or in

any other suitable manner).

At step 2240, after receiving the access response, the user application

1940 has access rights to the resource of SUT 19 10 that is identified by the

UID (with a guarantee that it is the only entity that currently has access rights

to the resource of SUT 19 10 that is identified by the UID) and performs one or

more TISA operations on the resource of SUT 19 10 that is identified by the

UID. The operations may include sending one or more TISA operations,



related to the resource of SUT 19 10 that is identified by the UID, from user

application 1940 to TISA processor 1920 for execution by TISA processor

1920. The operation(s) performed by user application 1940 may include any

suitable number of TISA accesses via TISA processor 1920 to the SUT 19 10 .

The user application 1940 may continue to use the resource of SUT 19 10 that

is identified by the UID until it no longer needs access to the resource of SUT

19 10 that is identified by the UID, at which time the user application 1940 may

initiate release of the resource of SUT 19 10 that is identified by the UID.

At step 2250, the user application 1940 sends a resource release

message (depicted as RELEASE) to scheduler 1930. The user application

1940 sends the resource release message when the user application no

longer needs access to the resource of SUT 19 10 for which access was

originally requested. The resource release message includes the unique

identifier provided in the access request (again, which may be denoted herein

as a UID), which specifies the resource of the SUT 19 10 to which the user

application 1940 has been granted access by scheduler 1930. The scheduler

1930, upon receiving the resource release message, releases the resource of

SUT 19 10 that is identified by the UID. The scheduler 1930 may release the

resource of SUT 19 10 that is identified by the UID in any suitable manner

(e.g., via changing of one or more values associated with the node of the

Circuit Model 1934 that is associated with the resource of SUT 19 10 that is

identified by the UID).

It is noted that, although primarily depicted and described with respect

to an embodiment in which an access request is configured to request access

to a single resource, access to multiple resources may be requested via one

or more associated access requests.

It is noted that process 2200 is repeated for each access request that

is initiated by user application 1940, thereby enabling the scheduler 1930 to

authorize multiple access requests in a manner that is coherent with JTAG

scan chain 19 11 and, similarly, enabling user application 1940 to access



portions ot JTAG scan chain 19 11 in an order that is based on scan segment

composition 19 19 of JTAG scan chain 19 11 without requiring user application

to computer the complete vector for the entire JTAG scan chain 19 11. In this

sense, it is noted that from the perspective of user application 1940, process

2200 can be performed concurrently by various one of the user application

elements 1941 as various ones of the user application elements 1941 issue

access requests and receive and process associated access responses. It is

noted that process 2200 may be implemented in any suitable manner. In one

embodiment, for example, process 2200 may be implemented using

semaphores and mutexes. For example, in reference to common use of

computer science techniques and, more specifically, to Dijkstra's semaphore

formulation, a REQUEST 221 0 is equivalent to a "P" operation while a

RELEASE 2250 is equivalent to a "V" operation.

It is noted that various embodiments of the position-based scheduling

capability enable simplification of the user application 1940. In the absence of

the position-based scheduling capability, the user application 1940 would

need to maintain an associated Circuit Model that models the entire SUT

19 10 . For example, the user application 1940 would need to maintain a

Circuit Model which provides a description of SUT 19 10 that includes ( 1 ) for

each device in the SUT 19 10 , a structure description of the device (e.g., the

register(s) in the device, the instruction(s) used to access the register(s), the

length(s) of the register(s), and the like) and (2) a linked list which describes

the connections between the devices of SUT 19 10 . Similarly, in the absence

of the position-based scheduling capability, when the user application 1940

wants to write something to a particular register in SUT 19 10 the user

application 1940 would need to find the device, find the register in that device,

and update the register, and then, for each associated scan operation, also

would need to proceed through the linked list of devices in order to gather all

of the vector information for the current register that is active, write out a

super-vector representing all of the devices in the scan chain of SUT 19 10 ,



read the output data, process the output data in order to put the output data

back into the Circuit Model of SUT 19 10 in order to analyze the output data.

The position-based scheduling capability obviates the need for user

application 1940 to maintain such a Circuit Model that describes the entire

SUT 19 10 ; rather, the user application 1940 would merely need to be aware

of portions of SUT 19 10 in which it is interested (e.g., as denoted by its UID).

The position-based scheduling capability also obviates the need for user

application 1940 to deal with the entire scan chain of the SUT 19 10 when

performing operations on SUT 19 10 (e.g., obviates the need for the user

application 1940 to construct a super input vector for the entire scan chain of

SUT 19 10 and process a super output vector for the entire scan chain of SUT

19 10 when performing operations on SUT 19 10 , including when performing

operations on only a portion of SUT 19 10). Rather, in TISA, the use of

segments (and the associated representation of the scan segments in a

Circuit Model that is a tree-based representation in which a depth-first

traversal of the tree yields the composition of the scan segments of which the

scan chain of SUT 19 10 is composed), enables delegation of operations from

user application 1940 in the TISA model (e.g., where an operation intended

for a particular device or register represented by a particular scan segment

can be handled by sending the operation) to the node of the Circuit Model

which represents that scan segment such that the node can perform a scan

operation with TISA that is specific only to that device or register. In other

words, it is not necessary to construct the entire vector for the entire scan

chain of SUT 19 10 in order to perform the intended operation. It is noted that

this is a huge boost to portability for the user application 1940, which does not

need to be adapted to the actual scan chain. For example, if the user

application 1940 is only interested in interacting with Device 4 of SUT 19 10

(e.g., user application 1940 is an emulation application and Device 4 is a

microprocessor chip), user application 1940 is ( 1 ) not required to be aware of

Device 3 , Device 2 , or Device 1 of SUT 19 10 and, thus, is not required to



maintain a Circuit Model including information for Device 3 , Device 2 , or

Device 1 of SUT 19 10 and (2) not required to construct a super input vector

for the entire scan chain of SUT 19 10 and process a super output vector for

the entire scan chain of SUT 19 10 when performing operations on SUT 19 10 .

Rather, the user application 1940 merely needs to send an access request to

scheduler 1930 where the access request indicates the operation that the

user application 1940 would like to perform on Device 4 (e.g., update a

particular register in Device 4 , or any other suitable operation). In this

manner, handling of requested operations is transformed from a modelling

problem (including the associated processing and efficiency problems that are

associated therewith when trying to construct a super input vector from

structure description and linked list information and process an associated

super output vector in order to analyze the desired results) into a scheduling

problem (which may be handled by scheduler 1930 using various computer

science functions). Therefore, various embodiments of the position-based

scheduling capability are more efficient than existing testing capabilities.

Although omitted for purposes of clarity, it is noted that the various

elements of scheduler execution architecture 1900 may be implemented using

one or more devices and, similarly, that communication between the various

elements of scheduler execution architecture 1900 may be performed in any

suitable manner (e.g., depending on the number of devices used, the

locations of the device, and the like). It is further noted that various elements

of scheduler execution architecture may be implemented using hardware

and/or software. For example, scheduler 1930 and user application 1940

each may be implemented in hardware or as a software-based module stored

in one or more memories and configured for execution by one or more

processors (e.g., TISA processor 1920 and/or any other suitable processor(s),

which may depend on the locations of TISA processor 1930, scheduler 1930,

and user application 1940).



In one embodiment, for example, TISA processor 1920, scheduler

1930, and user application 1940 may be implemented in separate devices

which may communicate with each other via one or more communication

networks (e.g., via an Ethernet network, the Internet, and the like, as well as

various combinations thereof).

In one embodiment, for example, TISA processor 1920 and scheduler

1930 may be co-located in a single device and user application 1940 may be

implemented in a separate device. For example, scheduler 1930 may be a

software-based module stored in one or more memories accessible to one or

more processors (e.g., TISA processor 1920 and/or one or more other

processors which may cooperate with TISA processor 1920) configured to

execute the scheduler 1930 in order to provide the various functions depicted

and described herein. For example, user application 1940 may be

implemented in hardware or as a software-based module stored in one or

more memories and configured for execution by one or more processors to

provide the various functions depicted and described herein. For example,

communication between scheduler 1930 and user application 1940 may be

via one or more communication networks (e.g., via an Ethernet network, the

Internet, and the like, as well as various combinations thereof).

In one embodiment, for example, TISA processor 1920 and user

application 1940 may be co-located in a single device and scheduler 1930

may be implemented in a separate device. For example, user application

1940 may be a software-based module stored in one or more memories

accessible to one or more processors (e.g., TISA processor 1920 and/or one

or more other processors which may cooperate with TISA processor 1920)

configured to execute the user application 1940 in order to to provide the

various functions depicted and described herein. For example, scheduler

1930 may be implemented in hardware or as a software-based module stored

in one or more memories and configured for being executed by one or more

processors to provide the various functions depicted and described herein.



For example, communication between user application 1940 and scheduler

1930 may be via one or more communication networks (e.g., via an Ethernet

network, the Internet, and the like, as well as various combinations thereof).

In one embodiment, for example, scheduler 1930 and user application

1940 may be co-located in a single device and TISA processor 1920 may be

implemented as a separate device. For example, scheduler 1930 and user

application 1940 each may be implemented in hardware or as a software-

based module stored in one or more memories and configured to be executed

by one or more processors to provide the various functions depicted and

described herein. For example, communication between user application

1940 and TISA processor 1920 may be via one or more communication

networks (e.g., via an Ethernet network, the Internet, and the like, as well as

various combinations thereof).

In one embodiment, for example, TISA processor 1920, scheduler

1930, and user application 1940 may be co-located in a single device. For

example, scheduler 1930, and user application 1940 may be software-based

modules stored in one or more memories accessible to one or more

processors (e.g., TISA processor 1920 and/or one or more other processors

which may cooperate with TISA processor 1920) configured to execute the

scheduler 1930 and user application 1940 to provide the various functions

depicted and described herein. An exemplary embodiment is depicted and

described with respect to FIG. 23.

FIG. 23 depicts one embodiment of a scheduler execution architecture

configured to provide position-based scheduling for testing a system under

test.

As depicted in FIG. 23, scheduler execution architecture 2300, which is

similar to the scheduler execution architecture 1900 of FIG. 19 , includes a

system under test (SUT) 231 0 , a main CPU 2320, a scheduler 2330, and a

user application 2340. For purposes of clarity, it is noted that SUT 231 0 is

equivalent to SUT 19 10 , main CPU 2320 is equivalent to TISA processor



1920, scheduler 2330 is equivalent to scheduler 1930, and user application

2340 is equivalent to user application 1940 (where segment threads 2341 to

2341 N are equivalent to user application elements 1941 to 1941 N,

respectively).

The SUT 231 0 includes a JTAG scan chain 231 1 accessible via the

main CPU 2320 and a TAP (which is omitted for purposes of clarity). The

JTAG scan chain 231 1 has an associated scan chain composition 231 8

composed of a plurality of scan segments 231 9 - 231 9 M (collectively, scan

segments 231 9).

The main CPU 2320 supports a TISA 2322, such that the main CPU

2320 is configured to function as a TISA processor (e.g., in a manner similar

to TISA processor 1920 depicted and described with respect to FIG. 19).

The main CPU 2320 has access to a memory 2324, which stores

scheduler 2330 and user application 2340.

The scheduler 2330 is configured to receive access requests from the

user application 2340, perform position-based scheduling of the access

requests, and respond to the user application 2340 with access responses

indicative as to when the user application 2340 may perform TISA operations

on portions of the JTAG scan chain 231 1 of SUT 231 0 that are associated

with the access requests/responses, respectively. For example, the TISA

operations may include providing TISA operations to the TISA processor 2320

for processing.

The scheduler 2330 includes one or more scheduler core processes

2332 and a Circuit Model 2334.

The scheduler core processes 2332 are processes configured to

perform position-based scheduling of the access requests received at the

scheduler 2330 using the Circuit Model 2334. The scheduler 2330 also

includes an access Application Programming Interface (API) 2333 which

provides an API via which user application 2340 accesses scheduler core

processes 2332. The access API 2333 is configured for enabling the user



application 2340 to communicate with the scheduler 2330 using an access

scheduling protocol (e.g., access scheduling protocol 2200 depicted and

described with respect to FIG. 22). The scheduler core processes 2332 may

be configured to execute portions of the access scheduling protocol depicted

and described as being performed by scheduler 1930.

The Circuit Model 2334 is a simplified model of the SUT 231 0 that is

specified in terms of the scan segments 231 9 of which the JTAG scan chain

231 1 of SUT 231 0 is composed. The scheduler 2330 also includes a circuit

model Application Programming Interface (API) 2335 which provides an API

via which user application 2340 accesses Circuit Model 2334. The circuit

model API 2335 is configured for enabling the user application 2340 to build

and modify the Circuit Model 1934. It is noted that the Circuit Model 1934

may be built/modified via circuit model API 2335 as depicted and described

with respect to exemplary circuit model 2 110 of FIG. 2 1 .

The user application 2340 is configured to issue access requests

associated with testing of SUT 231 0 . The user application 2340 may issue

access requests for any of the scan segments 231 9 of SUT 231 0 . The user

application 2340 does not have knowledge of the scan segment composition

231 8 of SUT 231 0 ; rather, the user application 2340 merely issues access

requests without accounting for the order in which the access requests may

be or should be applied to SUT 231 0 . The access requests issued by user

application 2340 are received by scheduler 2330 for scheduling based on the

scan segment composition 231 8 as determined by the scheduler 2330 from

the circuit model of the SUT 231 0 .

The user application 2340 includes a plurality of scan segment threads

2342i - 2342N (collectively, scan segment threads 2342) and a main thread

2344. The scan segment threads 2342 are supported by main thread 2344.

The scan segment threads 2342 of user application 2340 each are

configured to communicate with scheduler core processes 2332 via access

API 2333 using respective instances of the access scheduling protocol (e.g.,



the access scheduling protocol 2200 depicted and described with respect to

FIG. 22). In this sense, the scan segment threads 2342 support multi-tasking,

as one or more of the scan segment threads 2342 may be involved in access

arbitration with scheduler 2330 via access API 2333 at any given time.

The main thread 2344 of user application 2340 is configured to build

and modify Circuit Model 2334 of scheduler 2330 via circuit model API 2335

of scheduler 2330.

It is noted that the operation of user application 2340 and scheduler

2330 in testing the SUT 231 0 via main CPU 2320 may be better understood

when the scheduler execution architecture 2300 of FIG. 23 is reviewed in

conjunction with the scheduler execution architecture 1900 of FIG. 19 .

As noted herein, main CPU 2320 has access to memory 2324, which

stores scheduler 2330 and user application 2340. In this sense, scheduler

core processes 2332 of scheduler 2330 may be accessed and executed by

main CPU 2320 for providing various functions of scheduler 2320 depicted

and described herein. Similarly, segment threads 2342 of user application

2340 may communicate with main CPU 2320 for purposes of performing TISA

accesses to JTAG scan chain 231 1 of SUT 2300 via TISA 2322. Although

primarily depicted and described with respect to use of a single memory 2324,

it is noted that scheduler 1930 and/or user application 2340 may be provided

using any suitable number of memories.

It is noted that, in at least some embodiments, scheduler execution

architecture 2300 is compatible with various multi-tasking operating systems

(OSs) and/or other types of frameworks. In one embodiment, for example,

implementation of scheduler execution architecture 2300 using POSIX allows

scheduler execution architecture 2300 to be run as a standalone application

that incorporates a reduced thread scheduler. Although primarily depicted

and described herein with respect to use of position-based scheduling

capability for scheduling of static paths, it is noted that various embodiments

of the position-based scheduling capability may support scheduling of



dynamic paths. In general, dynamic paths are one of the major limitations of

traditional retargeting, primarily due to the fact that dynamic paths force heavy

vector regeneration and/or modification.

In one embodiment of the position-based scheduling capability, a

dynamic scan path of a SUT may be supported by enabling one or more

dynamic segments to be inserted into and removed from the scan chain of the

SUT as needed or desired. In one embodiment, a dynamic segment may be

configured to be dynamically inserted into the scan chain or removed from the

scan chain via a control entity defined for an SUT, wherein the dynamic

segment is represented in the tree as a leaf node having an associated parent

node representing the control entity. The control entity may, but is not

required to, reside directly adjacent to the dynamic segment in the hierarchy.

For example, the dynamic segment could be controlled by some other data

register that is multiple segments away. For example, the dynamic segment

could be controlled by a separate data register that is accessed via its own

instruction in the 1149.1 TAP Controller that is no longer accessible in the

scan chain of the SUT, but its state is preserved as defined by the 1149.1

standard. In other words, many different types of representations for control

are possible and, thus, the control entity may be implemented in a number of

different ways. It is noted that control entity is defined for the SUT in the

sense that there exists a predefined description of control aspects of the

control entity that can be modelled and controlled by the tool.

In one embodiment of the position-based scheduling capability,

scheduling for a dynamic scan path may be supported by representing the

dynamic path as a super-segment. This embodiment may be better

understood by considering FIG. 24.

FIG. 24 depicts an exemplary scan chain composition and associated

Circuit Model where the scan chain composition includes a dynamic segment.

As depicted in FIG. 24, an exemplary SUT 241 0 supports a dynamic

scan path in which an element can be inserted into and removed from a JTAG



scan chain 241 1 of the SUT 241 0 dynamically. The SUT 241 0 supports two

different configurations depending on the value of a cell (illustratively, cell X)

that is included in the JTAG scan chain 241 1 of SUT 241 0 . In a first

configuration of SUT 241 0 (depicted as SUT 241 ), the value of cell X is set

such that only the cell X and a static section (denoted as static) are active

within the JTAG scan chain 241 1. In a second configuration of SUT 241 0

(depicted as SUT 241 02) , the value of cell X is set such that a dynamic section

(denoted as dynamic) is added to the JTAG scan chain 241 1 between the cell

X and the active section, i.e., the cell X , the dynamic section, and the static

section (denoted as static) are active within the JTAG scan chain 241 1. The

insertion of the dynamic section to JTAG scan chain 241 1 and removal of the

dynamic section from JTAG scan chain 241 1 may be controlled by changing

the value of cell X . It is noted that cell X may be implemented using any

suitable element (e.g., using the Segment Insertion Bit (SIB) of the IEEE 1687

draft standard, or using any other suitable element(s)).

As further depicted in FIG. 24, exemplary SUT 241 0 , which supports a

dynamic JTAG scan path 241 1, may be represented using a Circuit Model

2420. In the Circuit Model 2420, cell X is represented as a super-segment

2421 (represented as the trapezium in FIG. 24). The cell X has a status

associated therewith, such that super-segment 2421 has a status associated

therewith. When a depth-first traversal of Circuit Model 2420 is performed,

recursion through cell X is dependent on the status of cell X (e.g., recursion

through cell X is allowed when the status of cell X is "open"; otherwise, cell X

is treated as a leaf segment when the status of cell X is "closed").

In one embodiment, the associated scheduler (e.g., scheduler 1930 or

scheduler 2330) is able to adapt on-the-fly based on the current status of

Circuit Model 2420, without any need of retargeting.

In one embodiment, the associated scheduler is configured to detect a

REQUEST to the "dynamic" node of the Circuit Model 2420 when the

"dynamic" node of the Circuit Model 2420 is not active (when the status of cell



X is "closed" such that super-segment 2421 of cell X is closed) and, in

response, to generate one or more scan segment operations to open the

super-segment 2421 of cell X with which the non-active "dynamic" leaf node is

associated (thereby causing the "dynamic" node of the Circuit Model 2420 to

become active). More generally, in one embodiment, the scheduler is

configured to detect a REQUEST to a non-active leaf node and, in response,

to generate one or more scan segment operations to change the status of the

associated super-segment (i.e., the super-segment with which the non-active

leaf node is associated) from "closed" to "open" such that the non-active leaf

node becomes active. It is noted that the operation of changing of state of a

super-segment can be as simple or complex as needed, and in an object-

oriented paradigm can be easily delegated by the scheduler 2330 to an

implementation method (e.g., using the visitor design pattern, or any other

suitable mechanism).

It is noted that, in such embodiments, any suitable set of status values

may be used to control depth-first traversal of Circuit Model 2420. In one

embodiment, for example, status values of "open" (indicative that traversal of

the node is allowed), "closed" (indicative that recursion ends at this node and

the state remains the same), and "pending" (indicative that recursion ends at

this node and the state of the node is changed to "open" for the next iteration)

may be supported. It is noted that different sets of status values also may be

used.

It is noted that, in such embodiments, status of nodes within Circuit

Model 2420 may be managed in any suitable manner. In one embodiment,

for example, graph coloring may be used to manage the status of nodes of

Circuit Model 2420, whereby each node of the Circuit Model 2420 is assigned

a color which may be used by the depth-first traversal process to determine

the action(s) to take with respect to the node.

Although primarily depicted and described with respect to use of the

super-segment 2421 to regulate access to a single dynamic segment, the



super-segment 2421 may be used to regulate access to multiple dynamic

segments. In this case, the state of the super-segment (i.e., the value of cell

X) may determine which one or more dynamic segments are active and the

order in which they are to be traversed.

FIG. 25 depicts one embodiment of a method for supporting position-

based scheduling for testing a system under test.

As depicted in FIG. 25, steps are performed by the user application,

scheduler, and TISA processor used for testing a system under test (e.g.,

user application 1940, scheduler 1930, and TISA processor 1920 depicted

and described with respect to FIG. 19). Although primarily depicted and

described as being performed serially in a particular order, at least a portion of

the steps of method 2500 may be performed contemporaneously and/or in a

different order than depicted in FIG. 25.

At step 2505, method 2500 begins. At step 251 0 , the user application

1940 generates unordered access requests requesting access to respective

portions of the system under test. At step 251 5 , the user application 1940

sends unordered access requests to scheduler 1930. At step 2520, the

scheduler 1930 receives the unordered access requests from user application

1940. At step 2525, scheduler 1930 determines scheduling of the unordered

access requests using an associated circuit model. At step 2530, scheduler

1930 generates ordered access responses associated with the unordered

access requests. At step 2535, the scheduler 1930 sends the ordered access

responses to the user application 1940. At step 2540, the user application

1940 receives the ordered access responses from the scheduler 1930. At

step 2545, the user application 1940 generates TISA operations associated

with the ordered access responses. At step 2550, the user application 1940

sends the TISA operations to the TISA processor 1920. At step 2555, the

TISA processor 1920 receives the TISA operations. At step 2560, the TISA

processor 1920 processes the TISA operations. At step 2565, method 2500

ends. It is noted that the various steps of method 2500 may be better



understood when considered in conjunction with the description of FIGs. 19 -

24.

Although FIGs. 19 - 25 are primarily depicted and described herein

with respect to supporting position-based scheduling in the testing input

direction from the user application 1940 toward the SUT 19 10 (e.g., for

initiating tests on SUT 19 10), it will be appreciated that the various functions

of position-based scheduling may be performed in the opposite order to

support position-based scheduling in the testing output direction from the SUT

19 10 toward the user application 1940 (e.g., for receiving and analyzing the

results of tests initiated for SUT 19 10). In one embodiment, for example,

processing may proceed as follows: ( 1 ) TISA processor 1920 receives testing

output data from SUT 19 10 via TDO, processes the testing output data to

produce testing output results associated with TISA operations processed by

TISA processor 1920 to produce the testing input data provided to SUT 19 10 ,

and propagates the testing output results toward user application 1940, and

(2) user application 1940 receives the testing output results from TISA

processor 1920 and processes the testing output results (e.g., for analyzing

the results of tests initiated for SUT 19 10).Although primarily depicted and

described within the context of embodiments in which the user application is

responsible for providing TISA operations to the TISA processor, it is noted

that in one embodiment the scheduler may be responsible for providing TISA

operations to the TISA processor. An exemplary embodiment is depicted and

described with respect to FIG. 26.

FIG. 26 depicts one embodiment of a scheduler execution architecture

configured to provide position-based scheduling for testing a system under

test.

As depicted in FIG. 26, the scheduler execution architecture 2600 of

FIG. 26 is similar to the scheduler execution architecture 1900 of FIG. 19 with

the exception that the scheduler 1930, rather than the user application 1940,

is configured to provide the TISA operations to the TISA processor 1920.



The user application 1940 sends unordered access requests to the

scheduler 1930. Additionally, user application 1940 also provides associated

test data for the access requests to scheduler 1930. The test data may be

provided with the access requests and/or separate from the access requests.

The access requests and associated test data may be provided from user

application 1940 to scheduler 1930 in any suitable format (e.g., as packets,

messages, and the like, as well as various combinations thereof).

The scheduler 1930 receives the unordered access requests and the

associated test data of the access requests from user application 1940. The

scheduler 1930, rather than providing ordered access responses to the user

application 1940 (as depicted and described with respect to FIG. 19),

determines scheduling of the access requests and issues appropriate TISA

operations to TISA processor 1920 based on the determined scheduling of

the access requests. The scheduler 1930 is configured to use the test data of

the access requests in order to generate the TISA operations for the access

requests, respectively. The scheduler 1930 issues the TISA operations to

TISA processor 1920 based on the scheduling of the access requests / TISA

operations as determined by scheduler 1930.

The TISA processor 1920 receives the TISA operations from scheduler

1930, and processing proceeds as depicted and described with respect to

scheduler execution architecture 1900 of FIG. 19).

FIG. 27 depicts one embodiment of a method for supporting position-

based scheduling for testing a system under test. As depicted in FIG. 27,

steps are performed by the user application, scheduler, and TISA processor

used for testing a system under test (e.g., user application 1940, scheduler

1930, and TISA processor 1920 depicted and described with respect to FIG.

19). Although primarily depicted and described as being performed serially in

a particular order, at least a portion of the steps of method 2700 may be

performed contemporaneously and/or in a different order than depicted in

FIG. 27.



At step 2705, method 2700 begins. At step 271 0 , the user application

1940 generates unordered access requests requesting access to respective

portions of the system under test. At step 271 5 , the user application 1940

sends unordered access requests and associated input test data for the

access requests to scheduler 1930. At step 2720, the scheduler 1930

receives the unordered access requests from user application 1940. At step

2725, scheduler 1930 determines scheduling of the unordered access

requests using an associated circuit model. At step 2730, scheduler 1930

generates TISA operations associated with the scheduled access requests.

At step 2735, the scheduler 1930 sends the TISA operations to the TISA

processor 1920. At step 2740, the TISA processor 1920 receives the TISA

operations. At step 2745, the TISA processor 1920 processes the TISA

operations. At step 2750, method 2700 ends. It is noted that the various

steps of method 2700 may be better understood when considered in

conjunction with the description of FIGs. 19 - 26.

Although FIGs. 26 and 27 are primarily depicted and described herein

with respect to embodiments in which input testing data is provided from the

user application 1940 to scheduler 1930 and scheduler 1930 generates the

associated TISA operations to be provided to TISA processor 1920, it is noted

that in at least some embodiments ( 1 ) the user application 1940 is configured

to generate the TISA operations and to provide the TISA operations to the

scheduler 1930 for scheduling of the TISA operations and (2) scheduler 1930

is configured to schedule the TISA operations received from user application

1940 and to provide the TISA operations to TISA processor 1920 based on

the determined scheduling of the TISA operations. As with the embodiments

depicted and described in FIGs. 26 and 27, the user application 1940 may be

configured to send access requests to scheduler 1930 where, rather than just

providing the input testing data for the access requests, the user application

1940 provides the TISA operations (and associated input testing data) for the

access requests (e.g., as part of the access requests and/or separate from



the access requests, similar to the embodiments depicted and described with

respect to FIGs. 26 and 27). It is noted that such embodiments obviate the

need for the scheduler 1930 to generate the TISA operations, but at the

expense of requiring a larger quantity of information to be sent from the user

application 1940 to scheduler 1930.

Although FIGs. 26 and 27 are primarily depicted and described herein

with respect to supporting position-based scheduling in the testing input

direction from the user application 1940 toward the SUT 19 10 (e.g., for

initiating tests on SUT 19 10), it will be appreciated that the various functions

of position-based scheduling may be performed in the opposite order to

support position-based scheduling in the testing output direction from the SUT

19 10 toward the user application 1940 (e.g., for receiving and analyzing the

results of tests initiated for SUT 19 10). In one embodiment, for example,

processing may proceed as follows: ( 1 ) TISA processor 1920 receives testing

output data from SUT 19 10 via TDO, processes the testing output data to

produce testing output results associated with TISA operations processed by

TISA processor 1920 to produce the testing input data provided to SUT 19 10 ,

and propagates the testing output results toward scheduler 1930, (2)

scheduler 1930 receives the testing output results from TISA processor 1920

and propagates the testing output results toward user application 1940, and

(3) user application 1940 receives the testing output results from scheduler

1930 and processes the testing output results (e.g., for analyzing the results

of tests initiated for SUT 19 10).

Although omitted for purposes of clarity, it is noted that communication

between the various elements of scheduler execution architecture 2600 may

be performed in any suitable manner. Many such embodiments are depicted

and described with respect to FIG. 19 . It is noted that, in the case of the

scheduler execution architecture 2600, where the TISA processor 1920 and

the scheduler 1930 are implemented as separate devices communication

between the TISA processor 1920 and the scheduler 1930 may be via one or



more communication networks (e.g., via an Ethernet network, the Internet,

and the like, as well as various combinations thereof).

Although primarily depicted and described herein with respect to

embodiments in which the scheduler 1930 is implemented separate from the

TISA processor 1920 and the TISA processor 1920 is implemented separate

from the SUT 19 10 , it is noted that the scheduler execution architecture may

be implemented in various other ways. In one embodiment, for example, the

scheduler 1930 may be embedded on the TISA processor 1920. In one

embodiment, for example, the TISA processor 1920 and the scheduler 1930

may be embedded within the SUT 19 10 . Various other arrangements are

contemplated.

Although primarily depicted and described herein with respect to

embodiments in which test operations are issued when the scheduler allows

the test operations to be issued, in one embodiment issuance of test

operations may be deferred using a deferred scheduling capability.

FIG. 28 depicts one embodiment of a deferred scheduler execution

architecture configured to provide position-based scheduling for testing a

system under test.

As depicted in FIG. 28, deferred scheduler execution architecture 2800

is a modified version of the scheduler execution architecture 1900 depicted

and described with respect to FIG. 19 .

The deferred scheduler execution architecture 2800 includes SUT

19 10 , scheduler 1930, and user application 1940, each of which may be

configured to function as depicted and described with respect to the

embodiments the scheduler execution architecture 1900 of FIG. 19 . The

deferred scheduler execution architecture 2800 also includes a deferred

scheduling module 2801 . The deferred scheduling module 2801 includes a

TISA module 281 0 , a reordering buffer module 2820, a vector transformation

module 2830, and a JTAG TAP 2840. The TISA module 281 0 is disposed

between user application 1940 and reordering buffer module 2820. The



reordering buffer module 2820 is disposed between TISA module 281 0 and

vector transformation module 2830. The vector transformation module 2830

is disposed between the reordering buffer module 2820 and the JTAG TAP

2840. The JTAG TAP 2840 is disposed between vector transformation

module 2830 and SUT 19 10 (or, optionally, one or more additional modules

which may be configured to perform other types of operations).

It is noted that deferred scheduling module 2801 and, more specifically,

the TISA module 281 0 , the reordering buffer module 2820, and the vector

transformation module 2830, may be implemented using hardware and/or

software.

In one embodiment, for example, TISA module 281 0 , reordering buffer

module 2820, and vector transformation module 2830 may be implemented in

hardware (e.g., using one or more hardware components).

In one embodiment, for example, TISA module 281 0 and reordering

buffer module 2820 are implemented in software (e.g., as one or more

software modules configured to run on one or more processors or other

suitable hardware) and vector transformation module 2830 is implemented in

hardware (e.g., using one or more hardware components).

In one embodiment, for example, TISA module 281 0 is implemented in

software (e.g., as one or more software modules configured to run on one or

more processors or other suitable hardware), and reordering buffer module

2820 and vector transformation module 2830 are implemented in hardware

(e.g., using one or more hardware components).

In one embodiment, for example, TISA module 281 0 , reordering buffer

module 2820, and vector transformation module 2830 are all implemented in

software (e.g., as one or more software modules configured to run on one or

more processors or other suitable hardware).

In at least some implementations, as indicated above, TISA module

281 0 may be implemented as a purely software TISA. In one such

embodiment, the TISA module 281 0 is implemented as a purely software



TISA that is configured to access SUT 19 10 via a traditional vector JTAG

interface. It is noted that use of the deferred scheduler execution architecture

2800 enables such an embodiment, at least because implementation of a

purely software TISA with a traditional vector JTAG interface uses a

reconstruction of the entire vector from the TISA operations such that it is

possible to send the input vector and receive the output vector via the

traditional JTAG interface. In this manner, TISA scheduling as depicted and

described herein with respect to FIGs. 19 - 27 may be used even where the

JTAG TAP is a traditional JTAG TAP (rather than a TAP designed for TISA,

which may includes a gated TCK application or a gated TCK TAP controller

supporting gating of the TAP TCK signal).

It is noted that the TISA module 281 0 , the reordering buffer module

2820, and the vector transformation module 2830 may be implemented using

hardware and/or software in any other suitable manner.

In a direction toward SUT 19 10 , TISA module 281 0 , reordering buffer

module 2820, and vector transformation module 2830 are configured to

perform functions for enabling the TISA operations received at TISA module

281 0 to be applied to SUT as a complete input test vector for the scan chain

of SUT 19 10 . The TISA module 281 0 is configured to execute TISA

operations in order to determine input test data (e.g., input test data bits) for

SUT 19 10 and to provide the input test data to reordering buffer module 2820.

The reordering buffer module 2820 is configured to receive the input test data

from TISA module 281 0 , buffer the input data in a manner enabling reordering

of the input test data to form a complete input test vector for the scan chain of

SUT 19 10 , and provide the input test data of the complete input test vector to

vector transformation module 2830. The vector transformation module 2830

is configured to receive the input test data of the complete input test vector

from reordering buffer module 2820, transform the input test data of the

complete input test vector for use by JTAG TAP 2840, and provide the input



test data (e.g., input test data bits) of the transformed input test vector to the

JTAG TAP 2840.

In a direction from SUT 19 10 , vector transformation module 2830,

reordering buffer module 2820, and TISA module 281 0 are configured to

perform functions for enabling an output test vector received from the scan

chain of SUT 19 10 to be mapped back to the TISA operations of the

associated input test vector applied to the scan chain of SUT 19 10 . The

vector transformation module 2830 is configured to receive an output test

vector including output test data (e.g., output test data bits) from JTAG TAP

2840, apply a vector transformation to the output test vector to provide a

transformed output test vector including transformed output test data, and

provide the transformed output test data of the transformed output test vector

to reordering buffer module 2820. The reordering buffer module 2820 is

configured to receive the transformed output test data of the transformed

output test vector from vector transformation module 2830, preserve the

transformed output test data in a buffer representing the transformed output

test data to form a complete output vector for the scan chain of SUT 19 10 ,

partition the transformed output test data into buffered segments

corresponding to positions and lengths of the corresponding segments, and

provide the transformed output test data to TISA module 281 0 . It is noted that

each of the test data segments represented in the reordering buffer module

2820 represents scan segments requested by a user application (in this

exemplary embodiment, user application 1940). The TISA module 281 0 is

configured to receive the transformed output test data from reordering buffer

module 2820, map the transformed output test data to the TISA operations for

which the associated output test data was requested, determine the

associated user application(s) performing the respective TISA operations

(again, in this exemplary embodiment, user application 1940), and provide

test result data to be provided to the user application(s) (e.g., directly where

the TISA module 281 0 interacts with the user application 1940 directly, or via



the scheduler where the TISA module 281 0 interacts with the scheduler 1930

and the scheduler interacts with the user application 1940). In the case in

which access requests are issued by multiple user applications and, thus,

result in issuance of TISA operations of multiple user applications, the test

result data is mapped to the TISA operations of the user applications such

that the user applications receive portions of the test result data relevant to

the TISA operations that they initiated, respectively.

It is noted that, although omitted for purposes of clarity, the Circuit

Model 1934 associated with the SUT 19 10 is modified to include the vector

transformation module as its root. As depicted in FIG. 2 1 , the exemplary

Circuit Model 2 120 would include a parent node above the "SUT" node, where

the parent node represents the vector transformation module 2830.

It is noted that the use of deferred scheduling, such as via deferred

scheduler execution architecture 2800, enables reconstruction of the entire

scan chain from its associated scan segments, thereby enabling various types

of operations to be performed on the entire scan chain of SUT 19 10 (e.g.,

scrambling, overscan vector operations, and the like, as well as various

combinations thereof). For example, in overscan vectors one or more

additional bits are added to the scan vector input and, thus, also are being

received as part of the scan vector output and must be removed from the

scan vector output (i.e., it's not a direct 1: 1 relationship in this case), and use

of the deferred scheduler execution architecture 2800 enables realignment of

the bits of the scan vectors being shifted to account for this type of bit

padding.

It is noted that use of deferred scheduling, such as via deferred

scheduler execution architecture 2800, enables use of TISA or a TISA-like

test instruction set architecture even where gating of TCK is not supported or

available.

Although primarily depicted and described herein with respect to an

embodiment of a deferred scheduler execution architecture that is a modified



version o the scheduler execution architecture 1900 depicted and described

with respect to FIG. 19 , it is noted that deferred scheduler execution also may

be used with the scheduler execution architecture 2600 of FIG. 26. In this

embodiment, deferred scheduling module 2801 would be disposed between

scheduler 1930 and JTAG TAP 2840 rather than between user application

1940 and JTAG TAP 2840.

Although omitted for purposes of clarity, it is noted that the various

elements of deferred scheduler execution architecture 2800 may be

implemented using one or more devices and, similarly, that communication

between the various elements of deferred scheduler execution architecture

2800 may be performed in any suitable manner (e.g., depending on the

number of devices used, the locations of the device, and the like).

It is noted that various elements of deferred scheduler execution

architecture 2800 may be implemented using hardware and/or software. For

example, the scheduler 1930 and the user application 1940 each may be

implemented in hardware or as a software-based module stored in one or

more memories and configured for execution by one or more processors (e.g.,

TISA module 281 0 and/or any other suitable processor(s), which may depend

on the locations of TISA module 281 0 , scheduler 1930, and user application

1940). Many such embodiments related to scheduler 1930, user application

1940, and TISA module 281 0 (e.g., TISA processor 1920 in FIG. 19) are

depicted and described with respect to FIG. 19 . Similarly, for example, as

described hereinabove, deferred scheduling module 2801 may be

implemented in hardware and/or software (which may include implementation

of each of the elements of the deferred scheduling module 2801 in hardware

and/or software).

It is noted that the deferred scheduling module 2801 may be co-located

with JTAG TAP 2840 and separate from user application 1940, may be co-

located with user application 1940 and separate from JTAG TAP 2840, may

be co-located with JTAG TAP 2840 and user application 1940 (co-located



with or separate from scheduler 1930), or may be separate from both JTAG

TAP 2840 and user application 1940. It is noted that such arrangements are

in addition to the various arrangements of TISA module 281 0 (e.g., TISA

processor 1920), scheduler 1930, and user application 1940 as depicted and

described with respect to FIG. 19). In such embodiments, communication

between deferred scheduling module 2801 and JTAG TAP 2840, between

deferred scheduling module 2801 and user application 1940 (e.g., in the case

of deferred scheduler execution architecture 2800 being implemented as a

modified version of scheduler execution architecture 1900 in which user

application 1940 is configured to provide the TISA operations for the JTAG

TAP 2840), and between deferred scheduling module 2801 and scheduler

1930 (e.g., in the case of deferred scheduler execution architecture 2800

being implemented as a modified version of scheduler execution architecture

2600 in which scheduler 1930 is configured to provide the TISA operations for

the JTAG TAP 2840)may be provided in any suitable manner (e.g., using

direct communication, using communication via one or more communication

networks, and the like).

In one embodiment, for example, deferred scheduling module 2801 ,

scheduler 1930, and user application 1940 may be implemented in separate

devices which may communicate with each other via one or more

communication networks (e.g., via an Ethernet network, the Internet, and the

like, as well as various combinations thereof).

In one embodiment, for example, deferred scheduling module 2801

and scheduler 1930 may be co-located in a single device and user application

1940 may be implemented in a separate device. For example, scheduler

1930 may be a software-based module stored in one or more memories

accessible to one or more processors (e.g., TISA module 281 0 and/or one or

more other processors) configured to execute the scheduler 1930 in order to

provide the various functions depicted and described herein. For example,

user application 1940 may be implemented in hardware or as a software-



based module stored in one or more memories and configured for execution

by one or more processors to provide the various functions depicted and

described herein. For example, communication between scheduler 1930 and

user application 1940 may be via one or more communication networks (e.g.,

via an Ethernet network, the Internet, and the like, as well as various

combinations thereof).

In one embodiment, for example, deferred scheduling module 2801

and user application 1940 may be co-located in a single device and scheduler

1930 may be implemented in a separate device. For example, user

application 1940 may be a software-based module stored in one or more

memories accessible to one or more processors (e.g., TISA module 281 0

and/or one or more other processors) configured to execute the user

application 1940 in order to provide the various functions depicted and

described herein. For example, scheduler 1930 may be implemented in

hardware or as a software-based module stored in one or more memories and

configured for being executed by one or more processors to provide the

various functions depicted and described herein. For example,

communication between user application 1940 and scheduler 1930 may be

via one or more communication networks (e.g., via an Ethernet network, the

Internet, and the like, as well as various combinations thereof).

In one embodiment, for example, scheduler 1930 and user application

1940 may be co-located in a single device and deferred scheduling module

2801 may be implemented as a separate device. For example, scheduler

1930 and user application 1940 each may be implemented in hardware or as

a software-based module stored in one or more memories and configured to

be executed by one or more processors to provide the various functions

depicted and described herein. For example, communication between user

application 1940 and TISA module 281 0 may be via one or more

communication networks (e.g., via an Ethernet network, the Internet, and the

like, as well as various combinations thereof).



In one embodiment, for example, deferred scheduling module 2801 ,

scheduler 1930, and user application 1940 may be co-located in a single

device. For example, TISA processor 1920, scheduler 1930, and user

application 1940 may be software-based modules stored in one or more

memories executing on one or more processors. For example, scheduler

1930 and user application 1940 may be software-based modules stored in

one or more memories accessible to one or more processors which may

access and execute the scheduler 1930 and user application 1940 to provide

the various functions depicted and described herein. For example, TISA

module 281 0 may be an application running a library of ISA instructions that

emulate the operation of a TISA processor (e.g., the TISA processor 1920)

whereby actual writes and reads to the SUT are deferred by placing the vector

data into the reordering buffer module 2820 to later be applied as a unified

vector to the SUT. An exemplary embodiment is depicted and described with

respect to FIG. 29.

FIG. 29 depicts one embodiment of a deferred scheduler execution

architecture configured to provide position-based scheduling for testing a

system under test.

As depicted in FIG. 29, deferred scheduler execution architecture 2900

is similar to deferred scheduler execution architecture 2800 of FIG. 28 (and

also is a modified version of scheduler execution architecture 2300 of FIG. 23

which depicts an exemplary embodiment of scheduler execution architecture

1900 of FIG. 19).

The deferred scheduler execution architecture 2900 includes SUT

231 0 , Main CPU 2320, and memory 2324 of scheduler execution architecture

2300 of FIG. 23, including modifications to the Main CPU 2320 and memory

2324 to support an embodiment of deferred scheduler execution architecture

2800 of FIG. 28 (illustratively, an exemplary embodiment in which deferred

scheduler execution architecture 2800 is implemented in software).



The memory 2324, in addition to including scheduler 2330 and user

application 2340 of scheduler execution architecture 2300 of FIG. 23, also

includes a deferred scheduling module 2901 . The deferred scheduling

module 2901 includes a TISA module 291 0 , a reordering buffer module 2920,

and a vector transformation module 2930 which are software-based

implementations of the TISA module 281 0 , reordering buffer module 2820,

and vector transformation module 2830 of deferred scheduler execution

architecture 2800 of FIG. 28, respectively.

The Main CPU 2320, rather than including TISA 2322 of the scheduler

execution architecture 2300 of FIG. 23 (since TISA processing is provided by

TISA module 291 0 of deferred scheduling module 2901 of memory 2324),

includes a JTAG TAP 2940 corresponding to JTAG TAP 2840 of deferred

scheduler execution architecture 2800 of FIG. 28.

Although FIG. 29 is primarily depicted and described herein with

respect to an embodiment in which the deferred scheduling capability is

implemented within software, it will be appreciated (as depicted and described

with respect to deferred scheduler execution architecture 2800 of FIG. 28),

that the deferred scheduling capability may be implemented using hardware

and/or software. In one embodiment, for example, vector transformation

module 2930 may be implemented as a hardware module outside of memory

2324, while reordering buffer 2920 and TISA module 291 0 may still be

implemented using software and, thus, may still be stored within memory

2324. In one embodiment, for example, vector transformation module 2930

and reordering buffer 2920 may be implemented as one or more hardware

modules outside of memory 2324, while TISA module 291 0 may still be

implemented using software and, thus, may still be stored within memory

2324. Various other arrangements are contemplated.

Although primarily depicted and described herein with respect to

embodiments in which the deferred scheduler execution architecture is

implemented based on the scheduler execution architecture 1900 of FIG. 19



(in which the user application 1940 interacts with the TISA processor 1920), it

is noted that the deferred scheduler execution architecture also may be

implemented based on the scheduler execution architecture 2600 of FIG. 26

(in which the scheduler 1930 interacts with the TISA processor 1920 / TISA

module 281 0). This latter solution has the advantage of presenting a single

point of origin for TISA operations (namely, scheduler 1930), making

interfacing and synchronisation with TISA module 281 0 or TISA module 291 0

much easier.

Although primarily depicted and described herein with respect to

embodiments in which the deferred scheduling capability is provided in

conjunction with scheduler execution architectures and environments that are

depicted and described herein, it is noted that the deferred scheduling

capability may be provided in conjunction with any other suitable type of

scheduling-based testing architectures and environments.

In many of the embodiments of position-based scheduling that are

depicted and described herein, an assumption is made that each of the scan

segments of the scan chain of the SUT has an application assigned thereto,

such that the applications(s) provide test data sufficient to populate the global

scan chain. In many cases, however, one or more of the segments of which

the scan chain is composed may not have any application assigned thereto

when tests are executed using position-based scheduling. In these cases,

data still needs to be provided for these unused segments of the scan chain.

In other words, if no application is specifically asking to update the segment

and the segment is in series with the allocated segments of applications, the

global scan chain scan still needs to have data associated with those gaps in

the scan chain. This may be handled in a number of ways.

In one embodiment, for example, the scheduler includes (or at least

has access to) default data about each segment of the scan chain (e.g., TISA

operations) such that it can provide data to fill any unused segments.



In one embodiment, for example, an application that is configured to

deal with unallocated scan segments of the scan chain coordinates with the

scheduler to provide data for the unallocated segments such that a complete

scan vector can be generated. It is noted that supporting such a capability for

providing data for each segment of the scan chain (including for unallocated

segments) is particularly relevant in the case of a TISA-based implementation,

because even though TISA allows any given application to focus only on a

subset of the scan chain rather than the entire scan chain (e.g., on one or

more target segments of which the scan chain is composed), the 1149.1

JTAG standard still requires that all segments of the scan chain be scanned in

order to complete the entire scan sequence. In one embodiment, it may be

included as part of an acknowledgement from the scheduler since the

scheduler knows the topology of the entire scan chain.

Although primarily depicted and described herein within the context of

providing position-based scheduling in a testing architecture using TISA (and

associated TISA operations), it is noted that various embodiments of position-

based scheduling may be provided in testing architectures using other types

of test instruction sets (and other types of associated test operations).

Similarly, although primarily depicted and described herein within the context

of providing deferred scheduling in a testing architecture using TISA (and

associated TISA operations), it is noted that various embodiments of deferred

scheduling may be provided in testing architectures using other types of test

instruction sets (and other types of associated test operations).

FIG. 30 depicts a high-level block diagram of a computer suitable for

use in performing the functions described herein. As depicted in FIG. 30,

computer 3000 includes a processor element 3002 (e.g., a central processing

unit (CPU) or other suitable processor(s)), a memory 3004 (e.g., random

access memory (RAM), read only memory (ROM), and/or any other suitable

types of memory), system testing module/process 3005 adapted for

performing system testing functions depicted and described herein, and



various input/output devices 3006 (e.g., a user input device (such as a

keyboard, a keypad, a mouse, and the like), a user output device (such as a

display, a speaker, and the like), an input port, an output port, a receiver, a

transmitter, and storage devices (e.g., a tape drive, a floppy drive, a hard disk

drive, a compact disk drive, and the like)).

It should be noted that system testing functions depicted and described

herein may be implemented in software and/or in a combination of software

and hardware, e.g., using a general purpose computer, one or more

application specific integrated circuits (ASIC), and/or any other hardware

equivalents. In one embodiment, system testing process 3005 can be loaded

into memory 3004 and executed by processor 3002 to implement and/or

support implementation of at least a portion of the system testing functions

described hereinabove. Thus, system testing process 3005 (including

associated data structures) can be stored on a computer readable storage

medium or carrier, e.g., RAM memory, magnetic or optical drive or diskette,

and the like.

It is contemplated that some of the steps discussed herein as software

methods may be implemented within hardware, for example, as circuitry that

cooperates with the processor to perform various method steps. Portions of

the functions/elements described herein may be implemented as a computer

program product wherein computer instructions, when processed by a

computer, adapt the operation of the computer such that the methods and/or

techniques described herein are invoked or otherwise provided. Instructions

for invoking the inventive methods may be stored in fixed or removable media,

transmitted via a data stream in a broadcast or other signal bearing medium,

and/or stored within a memory within a computing device operating according

to the instructions.

Aspects of various embodiments are specified in the claims. Those and

other aspects of various embodiments are specified in the following numbered

clauses:



1. An apparatus, comprising:

a processing module configured to receive a plurality of test operations

associated with a plurality of segments of a unit under test and to generate

therefrom input test data configured to be applied to the unit under test via a

Test Access Port (TAP);

a reordering buffer module configured to receive the input test data

from the processing element and to buffer the input test data in a manner for

reordering the input test data to compose an input test vector for a scan chain

of the unit under test; and

a vector transformation module configured to receive the input test

vector from the reordering buffer module and to apply a vector transformation

for the input test vector.

2 . The apparatus of clause 1, wherein the processing module is

configured to receive at least a portion of the test operations from one of:

an application configured to generate test operations;

a scheduler configured to schedule test operations; and

a testing tool.

3 . The apparatus of clause 1, wherein the processing module is

configured to receive the test operations via a direct connection or a

communication network.

4 . The apparatus of clause 1, further comprising:

a JTAG TAP configured to interface with the scan chain of the unit

under test;

wherein the vector transformation module is configured to provide the

transformed input test vector to the JTAG TAP.

5 . The apparatus of clause 1, further comprising a processor and a

memory, wherein the memory is configured to store at least one of the

processing module, the reordering buffer module, and the vector

transformation module.



6 . The apparatus of clause 1, wherein the vector transformation

module is further configured to:

receive an output test vector of the unit under test, the output test

vector comprising output test data;

pp y vector transformation to the output test vector to provide

transformed output test data; and

propagate the transformed output test data toward the reordering buffer

module.

7 . The apparatus of clause 6 , wherein the reordering buffer module

is further configured to:

receive the transformed output test data from the vector transformation

module;

preserve the transformed output test data in a buffer representing the

transformed output test data to form a complete output test vector for the scan

chain of the unit under test;

partition the transformed output test data into buffered segments

corresponding to positions and lengths of the respective scan chain

segments; and

propagate the transformed output test data toward the processing

module.

8 . The apparatus of clause 7 , wherein the processing module is

further configured to:

receive the transformed output test data from the reordering buffer

module;

map the transformed output test data to test operations for which the

associated output test data was requested;

determine one or more user applications associated with the test

operations; and

provide test result data for the one or more user applications

associated with the test operations.



9 . The apparatus of clause 8 , wherein the processing module is

further configured to:

propagate the test result data toward the one or more user applications

with which the test result data is associated.

10 . The apparatus of clause 8 , wherein the processing module is

further configured to:

propagate the test result data toward a scheduler from which the test

operations were received by the processing module.

11. A non-transitory computer-readable storage medium storing

instruction which, when executed by a processor, cause the processor to

perform a method, the method comprising:

receiving a plurality of test operations associated with a plurality of

segments of a unit under test;

generating, from the test operations, input test data configured to be

applied to the unit under test via a Test Access Port (TAP) ;

buffering the input test data in a manner for reordering the input test

data to compose an input test vector for a scan chain of the unit under test;

and

applying a vector transformation for the input test vector.

12 . The non-transitory computer-readable storage medium of clause

11, wherein at least a portion of the test operations are received from one of:

an application configured to generate test operations;

a scheduler configured to schedule test operations; and

a testing tool.

13 . The non-transitory computer-readable storage medium of clause

11, wherein the test operations are received via a direction connection or a

communication network.

14 . The non-transitory computer-readable storage medium of clause

11, the method further comprising:



providing the transformed input test vector to a JTAG TAP configured

to interface with the scan chain of the unit under test.

15 . The non-transitory computer-readable storage medium of clause

11, the method further comprising:

receiving an output test vector of the unit under test, the output test

vector comprising output test data; and

applying a vector transformation to the output test vector to provide

transformed output test data.

16 . The non-transitory computer-readable storage medium of clause

15 , the method further comprising:

receiving the transformed output test data;

preserving the transformed output test data in a buffer representing the

transformed output test data to form a complete output test vector for the scan

chain of the unit under test; and

partitioning the transformed output test data into buffered segments

corresponding to positions and lengths of the respective scan chain

segments.

17 . The non-transitory computer-readable storage medium of clause

16 , the method further comprising:

mapping the transformed output test data to test operations for which

the associated output test data was requested;

determining one or more user applications associated with the test

operations; and

providing test result data for the one or more user applications

associated with the test operations.

18 . The non-transitory computer-readable storage medium of clause

17 , the method further comprising:

propagating the test result data toward the one or more user

applications with which the test result data is associated.



19 . The non-transitory computer-readable storage medium of clause

17 , the method further comprising:

propagating the test result data toward a scheduler from which the test

operations were received.

20. A method, comprising:

receiving a plurality of test operations associated with a plurality of

segments of a unit under test;

generating, from the test operations, input test data configured to be

applied to the unit under test via a Test Access Port (TAP);

buffering the input test data in a manner for reordering the input test

data to compose an input test vector for a scan chain of the unit under test;

and

applying a vector transformation for the input test vector.

Although various embodiments which incorporate the teachings of the

present invention have been shown and described in detail herein, those

skilled in the art can readily devise many other varied embodiments that still

incorporate these teachings.



What is claimed is:

1. An apparatus, comprising:

a processing module configured to receive a plurality of test operations

associated with a plurality of segments of a unit under test and to generate

therefrom input test data configured to be applied to the unit under test via a

Test Access Port (TAP);

a reordering buffer module configured to receive the input test data

from the processing element and to buffer the input test data in a manner for

reordering the input test data to compose an input test vector for a scan chain

of the unit under test; and

a vector transformation module configured to receive the input test

vector from the reordering buffer module and to apply a vector transformation

for the input test vector.

2 . The apparatus of claim 1, wherein the processing module is configured

to receive at least a portion of the test operations from one of:

an application configured to generate test operations;

a scheduler configured to schedule test operations; and

a testing tool.

3 . The apparatus of claim 1, further comprising:

a JTAG TAP configured to interface with the scan chain of the unit

under test;

wherein the vector transformation module is configured to provide the

transformed input test vector to the JTAG TAP.

4 . The apparatus of claim 1, further comprising a processor and a

memory, wherein the memory is configured to store at least one of the



processing module, the reordering buffer module, and the vector

transformation module.

5 . The apparatus of claim 1, wherein the vector transformation module is

further configured to:

receive an output test vector of the unit under test, the output test

vector comprising output test data;

apply a vector transformation to the output test vector to provide

transformed output test data; and

propagate the transformed output test data toward the reordering buffer

module.

6 . The apparatus of claim 5 , wherein the reordering buffer module is

further configured to:

receive the transformed output test data from the vector transformation

module;

preserve the transformed output test data in a buffer representing the

transformed output test data to form a complete output test vector for the scan

chain of the unit under test;

partition the transformed output test data into buffered segments

corresponding to positions and lengths of the respective scan chain

segments; and

propagate the transformed output test data toward the processing

module.

7 . The apparatus of claim 6 , wherein the processing module is further

configured to:

receive the transformed output test data from the reordering buffer

module;



map the transformed output test data to test operations for which the

associated output test data was requested;

determine one or more user applications associated with the test

operations; and

provide test result data for the one or more user applications

associated with the test operations.

8 . The apparatus of claim 7 , wherein the processing module is further

configured for at least one of:

propagating the test result data toward the one or more user

applications with which the test result data is associated; or

propagating the test result data toward a scheduler from which the test

operations were received by the processing module.

9 . A non-transitory computer-readable storage medium storing instruction

which, when executed by a processor, cause the processor to perform a

method, the method comprising:

receiving a plurality of test operations associated with a plurality of

segments of a unit under test;

generating, from the test operations, input test data configured to be

applied to the unit under test via a Test Access Port (TAP);

buffering the input test data in a manner for reordering the input test

data to compose an input test vector for a scan chain of the unit under test;

and

applying a vector transformation for the input test vector.

10. A method, comprising:

receiving a plurality of test operations associated with a plurality of

segments of a unit under test;



generating, from the test operations, input test data configured to be

applied to the unit under test via a Test Access Port (TAP);

buffering the input test data in a manner for reordering the input test

data to compose an input test vector for a scan chain of the unit under test;

and

applying a vector transformation for the input test vector.
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