8/040073 A1 I L0 00O 0 O R O A0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O OO OO

International Bureau

(43) International Publication Date
10 April 2008 (10.04.2008)

(10) International Publication Number

WO 2008/040073 Al

(51) International Patent Classification:
GOGF 9/46 (2006.01) GOGF 9/54 (2006.01)

(21) International Application Number:
PCT/AU2007/001491

(22) International Filing Date: 5 October 2007 (05.10.2007)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

2006905521
2006905527

5 October 2006 (05.10.2006) AU
5 October 2006 (05.10.2006) AU

(71) Applicant (for all designated States except US):
WARATEK PTY LIMITED [AU/AU]J; Suite 18, 12
Tyron Road, Lindfield, NSW 2070 (AU).

(72) Inventor; and

(75) Inventor/Applicant (for US only): HOLT, John,
Matthew [AU/GB]; 44 Percival Road, Hornchurch, Essex
RM11 2AH (GB).

(74) Agent: FRASER OLD & SOHN; Level 10, 275 Alfred
Street, North Sydney, NSW 2060 (AU).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

(54) Title: CONTENTION RESOLUTION WITH COUNTER ROLLOVER

M1 M2
ADDRESS #A ADDRESS # A
CONTENT =211| | CONTENT =211
COUNT =21 | COUNT =21

RESOLUTION=1

RESOLUTION:=1

ADDRESS # B
CONTENT=300
COUNT = 111
RESOLUTION=4

ADDRESS # B
CONTENT =300
COUNT =1
RESOLUTION=4

ADDRESS # C
CONTENT =100
COUNT = 21
RESH UTION=1

ADDRESS # C
CONTENT =100
COUNT = 21
RESOLUTION =1

Mn

ADDRESS A
CONTENT =211
COUNT =21
RESOLUTION=1

ADDRESS # B
CONTENT =300
“COUNT =111
RESOLUTION=4

ADDRESS # C
CONTENT =100
COUNT = 21
RESOLUTION =1}

e T

16018

R\C 1\\/1\1‘\ V2 Ligos 0P
1121 A" | 211"C"[100

RN . %

(57) Abstract: In a system such as a multiple computer system where memory locations (A, B, C) can be substantially simultane-

@ ously updated from difference sources, an updating count (C, C1) is provided indicative of the sequence of each updating message or
& signal (195, 295) in a stream of such updating messages or signals. The updating count is stored in a counter. To reduce the storage
€ requirements for the counter and the bandwidth requirements for the updating messages including the count value, small count values
O are utilized. From time to time sending of updating messages is halted and the count values re-set to avoid arithmetic overflow.

W

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

CONTENTION RESOLUTION WITH COUNTER ROLLOVER

Field of the Invention

The present invention relates to computing and, in particular, to the detection
of contention in computing activities relating to address memory but is not restricted
to such activities. The present invention finds particular application to the
simultaneous operation of a plurality of computers interconnected via a
communications network, and preferably operating in a replicated shared memory

arrangement, but is not limited thereto.

Background Art

International Patent Application No. PCT/AU2005/000580 (Attorney Ref:
5027F-WO) published under WO 2005/103926 (to which US Patent Application No.
11/111,946 and published under No. 2005-0262313 corresponds) in the name of the

present applicant, discloses how different portions of an application program written

to execute on only a single computer can be operated substantially simultaneously on
a corresponding different one of a plurality of computers. That simultaneous
operation has not been commercially used as of the priority date of the present
application. International Patent Applications Nos. PCT/AU2005/001641
(W02006/110,937) (Attorney Ref: 5027F-D1-WO) and PCT/AU2006/000532
(W02006/110,957) (Attorney Ref: 5027F-D2-WO) both in the name of the present
applicant and both unpublished as at the priority date of the present application, also
disclose further details. The contents of the specification of each of the
abovementioned prior application(s) are hereby incorporated into the present

specification by cross reference for all purposes.

Briefly stated, the abovementioned patent specification discloses that at least
one application program written to be operated on only a single computer can be
simultaneously operated on a number of computers each with independent local
memory. The memory locations required for the operation of that program are
replicated in the independent local memory of each computer. On each occasion on
which the application program wrifes new data to any replicated memory location,

that new data is transmitted and stored at each corresponding memory location of each

1

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

computer. Thus apart from the possibility of transmission delays, each computer has
a local memory the contents of which are substantially identical to the local memory
of each other computer and are updated to remain so. Since all application programs,
in general, read data much more frequently than they cause new data to be written, the
abovementioned arrangement enables very substantial advantages in computing speed
to be achieved. In particular, the stratagem enables two or more commodity
computers interconnected by a commodity communications network to be operated
simultaneously running under the application program written to be executed on only

a single computer.

In many situations, the above-mentioned arrangements work satisfactorily.
This applies particularly where the programmer is aware that there may be updating
delays and so can adjust the flow of the program to account for this. However, the
need to update each local memory when any change is made to any memory location,
can create contention where corresponding memory locations are being updated in
simultaneous or near simultaneous fashion from different sources. This can establish
a race condition or similar anomalous conditions. Such conditions can also arise in
other computing, information processing, electronics, and electrical engineering

situations.

Genesis of the Invention

It is towards storing an updated count value useful in the detection and

resolution of contention or a race condition that the present invention is directed.

Summary of the Invention

In accordance with the first aspect of the present invention there is disclosed a
method of ensuring correct operation of a data updating system using a count value to
signify the position of an updating message in a sequence of updating messages, said
method comprising the steps of:
® halting the flow of updating messages, and

(i) during said halt re-setting the count values.

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

In accordance with the second aspect of the present invention there is
disclosed a multiple memory system in which at least one memory location at each of
at least two physical locations are connected by a communications link over which
memory updating messages are set, wherein a count value is associated with each the
sent message to signify its position in a sequence of sent messages, and wherein the

sending of the messages is temporarily halted to re-set the count values.

In accordance with the third aspect of the present invention there is disclosed a
method ensuring correct operation of a finite counter storing an updating count value
in a multiple computer system, each the computer comprising an independent local
memory and each operating an application program written to operate on only a single
computer, and at least on application program memory location/content replicated in
each of the independent memories and updated to remain substantially similar, the
method comprising the steps of:

@ resetting or reinitialising the updating count value of each the computer upon

the updating count value reaching a threshold value.

In accordance with the fourth aspect of the present invention there is disclosed
a method ensuring correct operation of a finite counter storing an updating count
value in a multiple computer system, each the computer comprising an independent
local memory and each operating an application program written to operate on only a
single computer, and at least on application program memory location/content
replicated in each of the independent memories and updated to remain substantially
similar, the method comprising the steps of:
@) halting replica updating transmissions of replicated application memory

locations/contents when associated the updating count value reaches a threshold value

. or a predetermined time interval has elapsed,

(i) resetting or reinitialising the updating count value on each of the computers,

(iif) resuming the previously halted replica updating transmissions.

In accordance with further aspects of the present invention a single computer,

a computer program product, and updated stored data are also disclosed.

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Brief Description of the Drawings

Preferred embodiments of the present invention will now be described with
reference to the drawings in which:

Fig. 1A is a schematic illustration of a prior art computer arranged to operate
JAVA code and thereby constitute a single JAVA virtual machine,

Fig. 1B is a drawing similar to Fig. 1A but illustrating the initial loading of
code,

Fig.' 1C 1illustrates the interconnection of a multiplicity of computers each
being a JAVA virtual machine to form a multiple computer system,

Fig. 2 schematically illustrates “n” application running computers to which at
least one additional server machine X is connected as a server,

Figs. 3-5 illustrate the steps of in due course updating memory locations,

Figs. 6 and 7 illustrate the stages by which contention can occur,

Figs. 8, 9, 10, 11, and 12 illustrate the stages of an embodiment whereby
contention can be detected,

Figs. 13-18 each illustrate various time graphs of replica update transmissions,

Fig. 19 illustrates a preferred arrangement of storing “count values”,

Figs. 20-22 illustrate two arrangements of replicated shared memory multiple
computer systems, and

Fig. 23 illustrates an alternative arrangement of replicated memory instances.

Fig. 24 illustrates a data format of a first,

Fig. 25 illustrates a data format of a second embodiment which reduces the
bandwidth requirements of the communication network,

Fig. 26 illustrates a data format of a third embodiment which further reduces
the bandwidth requirements of the communications network,

Figs. 27-29 each illustrate a stage of an embodiment utilising the data format
of Fig. 26, and

Fig. 30 illustrates a data format of a fourth embodiment with reduced

bandwidth requirements of the communications network.

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Detailed Description

The embodiments will be described with reference to the JAVA language,
however, it will be apparent to those skilled in the art that the invention is not limited
to this language and, in particular can be used with other languages (including
procedural, declarative and object oriented languages) including the
MICROSOFT.NET platform and architecture (Visual Basic, Visual C, and Visual
C++, and Visual C#), FORTRAN, C, C++, COBOL, BASIC and the like.

It is known in the prior art to provide a single computer or machine (produced
by any one of various manufacturers and having an operating system operating in any
one of various different languages) utilizing the particular language of the application

by creating a virtual machine as illustrated in Fig. 1A.

The code and data and virtual machine configuration or arrangement of Fig.
1A takes the form of the application code 50 written in the JAVA language and
executing within the JAVA virtual machine 61. Thus where the intended language of
the application is the language JAVA, a JAVA virtual machine is used which is able
to operate code in JAVA irrespective of the machine manufacturer and internal details

of the computer or machine.

For further details, see “The JAVA Virtual Machine Specification” 2™ Edition
by T. Lindholm and F. Yellin of Sun Microsystems Inc of the USA which is

incorporated herein by reference.

This conventional art arrangement of Fig. 1A is modified by the present
applicant by the provision of an additional facility which is conveniently termed a
“distributed run time” or a “distributed run time system” DRT 71 and as seen in Fig.

1B.

In Figs. 1B and 1C, the application code 50 is loaded onto the Java Virtual
Machine(s) M1, M2,...Mn in cooperation with the distributed runtime system 71,
through the loading procedure indicated by arrow 75 or 75A or 75B. As used herein

the terms “distributed runtime” and the “distributed run time system” are essentially

5

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

synonymous, and by means of illustration but not limitation are generally understood
to include library code and processes which support software written in a particular
language running on a particular platform. Additionally, a distributed runtime system
may also include library code and processes which support software written in a
particular language running within a particular distributed computing environment.
The runtime system typically deals with the details of the interface between the
program and the operating system such as system calls, program start-up and
termination, and memory management. For purposes of background, a conventional
Distributed Computing Environment (DCE) (that does not provide the capabilities of
the inventive distributed run time or distributed run time system 71 used in the
preferred embodiments of the present invention) is available from the Open Software
Foundation. This Distributed Computing Environment (DCE) performs a form of
computer-to-computer communication for software running on the machines, but
among its many limitations, it is not able to implement the desired modification or
communication operations. Among its functions and operations the preferred DRT 71
coordinates the particular communications between the plurality of machines MI,
M2,...Mn. Moreover, the preferred distributed runtime 71 comes into operation
during the loading procedure indicated by arrow 75A or 75B of the JAVA application
50 on each JAVA virtual machine 72 or machines JVM#1, JVM#2,...JVM#n of Fig.
1C. It will be appreciated in light of the description provided herein that although
many examples and descriptions are provided relative to the JAVA language and
JAVA virtual machines so that the reader may get the benefit of specific examples,
there is no restriction to either the JAVA language or JAVA virtual machines, or to

any other language, virtual machine, machine or operating environment.

Fig. 1C shows in modified form the arrangement of the JAVA virtual
machines, each as illustrated in Fig. 1B. It will be apparent that again the same
application code 50 is loaded onto each machine M1, M2...Mn. However, the
communications between each machine M1, M2...Mn are as indicated by arrows 83,
and although physically routed through the machine hardware, are advantageously
controlled by the individual DRT’s 71/1...71/n within each machine. Thus, in
practice this may be conceptionalised as the DRT’s 71/1, ...71/n communicating with

each other via the network or other communications link 53 rather than the machines

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

M1, M2...Mn communicating directly themselves or with each other. Contemplated
and included are either this direct communication between machines M1, M2...Mn or
DRT’s 71/1, 71/2...71/n or a combination of such communications. The preferred

DRT 71 provides communication that is transport, protocol, and link independent.

The one common application program or application code 50 and its
executable version (with likely modification) is simultaneously or concurrently
executing across the plurality of computers or machines M1, M2...Mn. The
application program 50 is written with the intention that it only operate on a single
machine or computer. Essentially the modified structure is to replicate an identical

memory structure and contents on each of the individual machines.

The term common application program is to be understood to mean an
application program or application program code written to operate on a single
machine, and loaded and/or executed in whole or in part on each one of the plurality
of computers or machines M1, M2...Mn, or optionally on each one of some subset of
the plurality of computers or machines M1, M2...Mn. Put somewhat differently,
there is a common application program represented in application code 50. This is
either a single copy or a plurality of identical copies each individually modified to
generate a modified copy or version of the application program or program code.
Each copy or instance is then prepared for execution on the corresponding machine.
At the point after they are modified they are common in the sense that they perform
similar operations and operate consistently and coherently with each other. It will be
appreciated that a plurality of computers, machines, information appliances, or the
like implementing the above described arrangements may optionally be connected to
or coupled with other computers, machines, information appliances, or the like that do

not implement the above described arrangements .

The same application program 50 (such as for example a parallel merge sort,
or a computational fluid dynamics application or a data mining application)is run on
each machine, but the executable code of that application program is modified on
each machine as necessary such that each executing instance (copy or replica) on each

machine coordinates its local operations on that particular machine with the

7

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

operations of the respective instances (or copies or replicas) on the other machines
such that they function together in a consistent, coherent and coordinated manner and
give the appearance of being one global instance of the application (i.e. a “meta-

application”).

The copies or replicas of the same or substantially the same application codes,
are each loaded onto a corresponding one of the interoperating and connected
machines or computers. As the characteristics of each machine or computer may
differ, the application code 50 may be modified before loading, or during the loading
process, or with some disadvantages after the loading process, to provide a
customization or modification of the code on each machine. Some dissimilarity
between the programs may be permitted so long as the other requirements for
interoperability, consistency, and coherency as described herein can be maintained.
As it will become apparent hereafter, each of the machines M1, M2...Mn and thus all
of the machines M1, M2...Mn have the same or substantially the same application

code 50, usually with a modification that may be machine specific.

Before the loading of, or during the loading of, or at any time preceding the
execution of, the application code 50 (or the relevant portion thereof) on each
machine M1, M2...Mn, each application code 50 is modified by a corresponding
modifier 51 according to the same rules (or substantially the same rules since minor

optimizing changes are permitted within each modifier 51/1, 51/2...51/n).

Each of the machines M1, M2...Mn operates with the same (or substantially
the same or similar) modifier 51 (in some embodiments implemented as a distributed
run time or DRT71 and in other embodiments implemented as an adjunct to the code
and data 50, and also able to be implemented within the JAVA virtual machine itself).
Thus all of the machines M1, M2...Mn have the same (or substantially the same or
similar) modifier 51 for each modification required. A different modification, for
example, may be required for memory management and replication, for initialization,
for finalization, and/or for synchronization (though not all of these modification types

may be required for all embodiments).

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

There are alternative implementations of the modifier 51 and the distributed
run time 71. For example as indicated by broken lines in Fig. 1C, the modifier 51
may be implemented as a component of or within the distributed run time 71, and
therefore the DRT 71 may implement the functions and operations of the modifier 51.
Alternatively, the function and operation of the modifier 51 may be implemented
outside of thé structure, software, firmware, or other means used to implement the
DRT 71 such as within the code and data 50, or within the JAVA virtual machine
itself. In one embodiment, both the modifier 51 and DRT 71 are implemented or
written in a single piece of computer program code that provides the functions of the
DRT and modifier. In this case the modifier function and structure is, in practice,
subsumed into the DRT. Independent of how it is implemented, the modifier function
and structure is responsible for modifying the executable code of the application code
program, and the distributed run time function and structure is responsible for
implementing communications between and among the computers or machines. The
communications functionality in one embodiment is implemented via an intermediary
protocol layer within the computer program code of the DRT on each machine. The
DRT can, for example, implement a communications stack in the JAVA language and
use the Transmission Control Protocol/Internet Protocol (TCP/IP) to provide for
communications or talking between the machines. Exactly how these functions or
operations are implemented or divided between structural and/or procedural elements,

or between computer program code or data structures, is not crucial.

However, in the arrangement illustrated in Fig. 1C, a plurality of individual
computers or machines M1, M2...Mn are provided, each of which are interconnected
via a communications network 53 or other communications link. Each individual
computer or machine is provided with a corresponding modifier 51. Each individual
computer is also provided with a communications port which connects to the
communications network. The communications network 53 or path can be any
electronic signalling, data, or digital communications network or path and is
preferably a slow speed, and thus low cost, communications path, such as a network
connection over the Internet or any common networking configurations including
communications ports known or available as of the date of this application such as

ETHERNET or INFINIBAND and extensions and improvements, thereto. Preferably

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

the computers are provided with known communication ports (such as CISCO Power

Connect 5224 Switches) which connect with the communications network 53.

As a consequence of the above described arrangement, if each of the machines
M1, M2, ..., Mn has, say, an internal or local memory capability of 10MB, then the
total memory available to the application code 50 in its entirety is not, as one might
expect, the number of machines (n) times 10MB. Nor is it the additive combination
of the internal memory capability of all n machines. Instead it is either 10MB, or
some number greater than 10MB but less than n x 10MB. In the situation where the
internal memory capacities of the machines are different, which is permissible, then in
the case where the internal memory in one machine is smaller than the internal
memory capability of at least one other of the machines, then the size of the smallest
memory of any of the machines may be used as the maximum memory capacity of the
machines when such memory (or a portion thereof) is to be treated as ‘common’
memory (i.e. similar equivalent memory on each of the machines Ml...Mn) or

otherwise used to execute the common application code.

However, even though the manner that the internal memory of each machine is
treated may initially appear to be a possible constraint on performance, how this
results in improved operation and performance will become apparent hereafter.
Naturally, each machine M1, M2...Mn has a private (i.e. ‘non-common’) internal
memory capability. The private internal memory capability of the machines M1, M2,

..., Mn are normally approximately equal but need not be.

Non-commercial operation of a prototype multiple computer system indicates
that not every machine or computer in the system utilises or needs to refer to (e.g.
have a local replica of) every possible memory location. As a consequence, it is
possible to operate a multiple computer system without the local memory of each
machine being identical to every other machine, so long as the local memory of each
machine is sufficient for the operation of that machine. That is to say, provided a
particular machine does not need to refer to (for example have a local replica of) some
specific memory locations, then it does not matter that those specific memory

locations are not replicated in that particular machine.

10

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

It may also be advantageous to select the amounts of internal memory in each
machine to achieve a desired performance level in each machine and across a
constellation or network of connected or coupled plurality of machines, computers, or
information appliances M1, M2, ..., Mn. Having described these internal and
common memory considerations, it will be apparent in light of the description
provided herein that the amount of memory that can be common between machines is

not a limitation.

In some embodiments, some or all of the plurality of individual computers or
machines can be contained within a single housing or chassis (such as so-called
“blade servers” manufactured by Hewlett-Packard Development Company, Intel
Corporation, IBM Corporation and others) or the multiple or dual core processor or
machines manufactured by Intel, AMD, or others, or implemented on a single printed

circuit board or even within a single chip or chip set.

When implemented in a non-JAVA language or application code environment,
the generalized platform, and/or virtual machine and/or machine and/or runtime
system is able to operate application code 50 in the language(s) (possibly including
for example, but not limited to any one or more of source-code languages,
intermediate-code languages, object-code languages, machine-code languages, and
any other code languages) of that platform and/or virtual machine and/or machine
and/or runtime system environment, and utilize the platform, and/or virtual machine
and/or machine and/or runtime system and/or language architecture irrespective of the
machine manufacturer and the internal details of the machine. It will also be
appreciated that the platform and/or runtime system can include virtual machine and
non-virtual machine software and/or firmware architectures, as well as hardware and

direct hardware coded applications and implementations.

For a more general set of virtual machine or abstract machine environments,
and for current and future computers and/or computing machines and/or information
appliances or processing systems, and that may not utilize or require utilization of

either classes and/or objects, the structure, method and computer program and

11

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

computer program product are still applicable. Examples of computers and/or
computing machines that do not utilize either classes and/or objects include for
example, the x86 computer architecture manufactured by Intel Corporation and
others, the SPARC computer architecture manufactured by Sun Microsystems, Inc
and others, the Power PC computer architecture manufactured by International
Business Machines Corporation and others, and the personal computer products made

by Apple Computer, Inc., and others.

For these types of computers, computing machines, information appliances,
and the virtual machine or virtual computing environments implemented thereon that
do not utilize the idea of classes or objects, may be generalized for example to include
primitive data types (such as integer data types, floating point data types, long data
types, double data types, string data types, character data types and Boolean data
types), structured data types (such as arrays and records), derived types, or other code
or data structures of procedural languages or other languages and environments such
as functions, pointers, components, modules, structures, reference and unions. These
structures and procedures when applied in combination when required, maintain a
computing environment where memory locations, address ranges, objects, classes,
assets, resources, or any other procedural or structural aspect of a computer or
computing environment are where required created, maintained, operated, and
deactivated or deleted in a coordinated, coherent, and consistent manner across the

plurality of individual machines M1, M2...Mn.

This analysis or scrutiny of the application code 50 can take place either prior
to loading the application program code 50, or during the application program code 50
loading procedure, or even after the application program code 50 loading procedure.
It may be likened to an instrumentation, program transformation, translation, or
compilation procedure in that the application code can be instrumented with
additional instructions, and/or otherwise modified by meaning-preserving program
manipulations, and/or optionally translated from an input code language to a different
code language (such as for example from source-code language or intermediate-code
language to object-code language or machine-code language). In this connection it is

understood that the term “compilation” normally or conventionally involves a change

12

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

in code or language, for example, from source code to object code or from one
language to another language. However, in the present instance the term
“compilation” (and its grammatical equivalents) is not so restricted and can also
include or embrace modifications within the same code or language. For example, the
compilation and its equivalents are understood o encompass both ordinary
compilation (such as for example by way of illustration but not limitation, from
source-code to object code), and compilation from source-code to source-code, as
well as compilation from object-code to object code, and any altered combinations
therein. It is also inclusive of so-called “intermediary-code languages™ which are a

form of “pseudo object-code”.

By way of illustration and not limitation, in one arrangement, the analysis or
scrutiny of the application code 50 takes place during the loading of the application
program code such as by the operating system reading the application code 50 from
the hard disk or other storage device or source and copying it into memory and
preparing to begin execution of the application program code. In another
embodiment, in a JAVA virtual machine, the analysis or scrutiny may take place
during the class loading procedure of the java.lang.ClassLoader.loadClass method

(e.g. “java.lang.ClassLoader.loadClass()”).

Alternatively, the analysis or scrutiny of the application code 50 may take
place even after the application program code loading procedure, such as after the
operating system has loaded the application code into memory, or optionally even
after execution of the relevant corresponding portion of the application program code
has started, such as for example after the JAVA virtual machine has loaded the
application code into the virtual machine via the “java.lang.ClassLoader.loadClass()”

method and optionally commenced execution.
Persons skilled in the computing arts will be aware of various possible

techniques that may be used in the modification of computer code, including but not

limited to instrumentation, program transformation, translation, or compilation means.

13

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

One such technique is to make the modification(s) to the application code,
without a preceding or consequential change of the language of the application code.
Another such technique is to convert the original code (for example, JAVA language
source-code) into an intermediate representation (or intermediate-code language, or
pseudo code), such as JAVA byte code. Once this conversion takes place the
modification is made to the byte code and then the conversion may be reversed. This

gives the desired result of modified JAVA code.

A further possible technique is to convert the application program to machine
code, either directly from source-code or via the abovementioned intermediate
language or through some other intermediate means. Then the machine code is
modified before being loaded and executed. A still further such technique is to
convert the original code to an intermediate representation, which is thus modified
and subsequently converted into machine code. All such modification routes are

envisaged and also a combination of two, three or even more, of such routes.

The DRT or other code modifying means is responsible for creating or
replication a memory structure and contents on each of the individual machines M1,
M2...Mn that permits the plurality of machines to interoperate. In some arrangements
this replicated memory structure will be identical. Whilst in other arrangements this
memory structure will have portions that are identical and other portions that are not.
In still other arrangements the memory structures are different only in format or

storage conventions such as Big Endian or Little Endian formats or conventions.

These structures and procedures when applied in combination when required,
maintain a computing environment where the memory locations, address ranges,
objects, classes, assets, resources, or any other procedural or structural aspect of a
computer or computing environment are where required created, maintained,
operated, and deactivated or deleted in a coordinated, coherent, and consistent manner
across the plurality of individual machines M1, M2...Mn.

Therefore the terminology “one”, “single”, and “common” application code or

program includes the situation where all machines M1, M2...Mn are operating or

14

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

executing the same program or code and not different (and unrelated) programs, in
other words copies or replicas of same or substantially the same application code are

loaded onto each of the interoperating and connected machines or computers.

In conventional arrangements utilising distributed software, memory access
from one machine’s software to memory physically located on another machine takes
place via the network interconnecting the machines. However, because the read
and/or write memory access to memory physically located on another computer
require the use of the slow network interconnecting the computers, in these
configurations such memory accesses can result in substantial delays in memory
read/write processing operations, potentially of the order of 10% — 107 cycles of the
central processing unit of the machine. Ultimately this delay is dependent upon
numerous factors, such as for example, the speed, bandwidth, and/or latency of the
communication network. This in large part accounts for the diminished performance

of the multiple interconnected machines in the prior art arrangement.

However, in the present arrangement all reading of memory locations or data
is satisfied locally because a current value of all (or some subset of all) memory
locations is stored on the machine carrying out the processing which generates the

demand to read memory.

Similarly, all writing of memory locations or data is satisfied locally because a
current value of all (or some subset of all) memory locations is stored on the machine

carrying out the processing which generates the demand to write to memory.

Such local memory read and write processing operation can typically be
satisfied within 10% — 10 cycles of the central processing unit. Thus, in practice there

is substantially less waiting for memory accesses which involves and/or writes.

The arrangement is transport, network, and communications path independent,
and does not depend on how the communication between machines or DRTs takes
place. Even electronic mail (email) exchanges between machines or DRTs may

suffice for the communications.

15

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Non-commetcial operation of a prototype multiple computer system indicates
that not every machine or computer in the system utilises or needs to refer to (eg have
a local replica of) every possible memory location. Aé a consequence, it is possible to
operate a multiple computer system without the local memory of each machine being
identical to every other machine, so long as the local memory of each machine is
sufficient for the operation of that machine. That is to say, provided a particular
machine does not need to refer to (for example have a local replica of) some specific
memory locations, then it does not matter that those specific memory locations are not

replicated in that particular machine.

In connection with the above, it will be seen from Fig. 2 that there are a
number of machines M1, M2, Mn, n being an integer greater than or equal to two,
on which the application program 50 of Fig. 1 is being run substantially
simultaneously, and there is preferably a further machine X which is provided to
enable various housekeeping functions to be carried out, such as acting as a lock
server. In particular, the further machine X can be a low value machine, and much
less expensive than the other machines which can have desirable attributes such as
processor speed. Furthermore, an additional low value machine (X+1) is preferably
available to provide redundancy in case machine X should fail. Where two such
server machines X and X+1 are provided, they are preferably, for reasons of
simplicity, operated as dual machines in a cluster configuration. Machines X and
X+1 could be operated as a multiple computer system in accordance with the
abovedescribed arrangements, if desired. However this would result in generally
undesirable complexity. If the machine X is not provided then its functions, such as

housekeeping functions, are provided by one, or some, or all of the other machines.

Fig. 20 is a schematic diagram of a replicated shared memory system. In Fig.
20 three machines are shown, of a total of “n” machines (n being an integer greater
than one) that is machines M1, M2, ... Mn. Additionally, a communications network
53 is shown interconnecting the three machines and a preferable (but optional) server
machine X which can also be provided and which is indicated by broken lines. In

each of the individual machines, there exists a memory N8102 and a CPUN8103. In

16

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

each memory N8102 there exists three memory locations, a memory location A, a
memory location B, and a memory location C. Each of these three memory locations

is replicated in a memory N8102 of each machine.

This arrangement of the replicated shared memory system allows a single
application program written for, and intended to be run on, a single machine, to be
substantially simultaneously executed on a plurality of machines, each with
independent local memories, accessible only by the corresponding portion of the
application program executing on that machine, and interconnected via the network
53. In International Patent Application No. PCT/AU2005/001641 (WO
2006/110,937) (Attorney Ref: 5027F-D1-WO) to which US Patent Application No.
11/259885 entitled: “Computer Architecture Method of Operation for Multi-
Computer Distributed Processing and Co-ordinated Memory and Asset Handling”
corresponds and PCT/AU2006/000532 (WO 2006/110,957) (Attorney Ref: 5027F-
D2-WO) in the name of the present applicant, a technique is disclosed to detect
modifications or manipulations made to a replicated memory location, such as a write
to a replicated memory location A by machine M1 and correspondingly propagate this
changed value written by machine M1 to the other machines M2...Mn which each
have a local replica of memory location A. This result is achieved by the preferred
embodiment of detecting write instructions in the executable object code of the
application to be run that write to a replicated memory location, such as memory
location A, and modifying the executable object code of the application program, at
the point corresponding to each such detected write operation, such that new
instructions are inserted to additionally record, mark, tag, or by some such other

recording means indicate that the value of the written memory location has changed.

An alternative arrangement is that illustrated in Fig. 21 and termed partial or
hybrid replicated shared memory (RSM). Here memory location A is replicated on
computers or machines M1 and M2, memory location B is replicated on machines M1
and Mn, and memory location C is replicated on machines M1, M2 and Mn.
However, the memory locations D and E are present only on machine MI, the
memory locations F and G are present only on machine M2, and the memory

Jocations Y and Z are present only on machine Mn. Such an arrangement is disclosed

17

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

in International Patent Application No. PCT/AU2006/001447 published under WO
2007/041762 (and to which US Patent Application No. 11/583, 958 Attorney Code
50271-US corresponds). In such a partial or hybrid RSM systems changes made by
one computer to memory locations which are not replicated on any other computer do
not need to be updated at all. Furthermore, a change made by any one computer to a
memory location which is only replicated on some computers of the multiple
computer system need only be propagated or updated to those some computers (and

not to all other computers).

Consequently, for both RSM and partial RSM, a background thread task or
process is able to, at a later stage, propagate the changed value to the other machines
which also replicate the written to memory location, such that subject to an update and
propagation delay, the memory contents of the written to memory location on all of
the machines on which a replica exists, are substantially identical. Various other
alternative embodiments are also disclosed in the abovementioned prior art. Whilst
the above prior art methods are adequate for application programs which write
infrequently to replicated memory locations, the prior art method is prone to inherent
inefficiencies in those application programs which write frequently to replicated

memory locations.

All described embodiments and arrangements of the present invention are
equally applicable to replicated shared memory systems, whether partially replicated
or not. Specifically, partially replicated shared memory arrangements where some
plurality of memory locations are replicated on some subset of the total machines
operating in the replicated shared memory arrangement, themselves may constitute a

replicated shared memory arrangement for the purposes of this invention.

In Fig. 3 a number, “n”, of application running computers or machines M1,
M2, M3 ... Mn are provided and, if desired, a server machine X can also be provided.
Since the server machine is not essential it is indicated in phantom in Fig. 3. All the
machines M1-Mn, and X if present, are interconnected in some fashion, preferably via
a commodity communications network 53. In each of the application running

machines, there are replicated memory locations which, for the sake of this

18

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

discussion, will be restricted to two in number and which have addresses/identifiers of
#15 and #16 respectively (but which need not be sequential). Each replicated memory
location has a content or value which in some instances can include code but again for
the purposes of this discussion will be deemed to constitute merely a number having a
numerical value. The content of replica memory location/address #15 is the value
(number) 107 and the content of Areplica memory location/address #16 is the value
(number) 192. Each of the n application running machines has the two replicated
memory locations and each replica memory location in each machine has substantially

the same content or number.

Turning now to Fig. 4, the situation which arises when a change in the content
of a specific replicated memory location of one of the machines occurs, is explained.
For the purposes of this description, it is assumed that machine M1 in executing its
portion of the application program 50, carries out a memory write which results in the
content of replica memory location/address #15 of machine M1 being changed from
the value (number) 107 to the value (number) 211. This change is then notified
(updated) to all other machines M2, M3 Mn via the network 53, such as in
accordance with the above mentioned specifications and/or description for updating of
replicated memory locations. This is schematically illustrated in Fig. 4 by the sending
of an update notification from machine M1 to all the other machines on which a
corresponding replica memory location resides, of the identity or address of the
modified replica memory location with the changed content, and also the new

changed content. This message is schematically illustrated as message 61 in Fig. 4.

In Fig. 5, the message 61 from machine M1 of Fig. 4 has passed through the
network 53 and been received by each of the other machines M2, M3 ... Mn, which
on receipt of the message 61 utilize an.overwrite means or arrangement to store the
changed content 211 in the local replica memory location corresponding to address
#15. In this connection it should be understood that the actual address in each of the
machines M1-Mn may be different from each other machine but that each of the
replica memory locations has a substantially similar global identifier or global
address. Preferably, the local memory address and the global memory

identifier/address are recorded or tabulated either in tables maintained by each of the

19

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

machines M1-Mn, or in the server machine X. In Fig. 5, the updating has been
successfully carried out and all machines M2, M3 ... Mn have been consistently

updated to take into account the change brought about by (and within) machine M1.

Turning now to Fig. 13, the example of Figs. 4-5 is collectively illustrated in a
time-diagram. Here, machine M1 transmits replica memory update N101 (which
corresponds to replica update 61 of Figs. 4 and 5) at time-unit 1, with the updated
value “211” of address #15, to machines M2, M3...Mn on which corresponding
replica memory locations reside. However, as is indicated in Fig. 13, ‘transmission
N101 does not arrive at the receiving machines M2-Mn immediately (;hat is, at the
same time-unit 1 of transmission). Instead, each receiving machine is indicated to
receive replica update transmission N101 at time-unit 5 by the arrows shown for each
machine M2-Mn.

Thus, Fig. 13 illustrates a time-delay that typically results between
transmission and receipt of a replica memory update, due to latency and delay of the
communications network used to interconnect and transmit the replica memory
updates between the multiple computers of the multiple computer system. This
period of delay, N110, represents the “transmission latency/delay™ between the
sending of replica update transmission N101 by machine M1, and the receipt of the

same replica update transmission N101 by machines M2-Mn. |

Following transmission N101 at time-unit 1, at time-unit 5 the receiving
machines M2, M3...Mn each independently receive the transmission N101, and
update their local corresponding replica memory locations of address #15 with the

received updated replica value “211” of transmission N101.

Thus in the circumstances where only a single machine at a time updates a
replica memory address(es)/location(s) of other machines with changed value(s) or
content, then no conflict or inconsistency arises (or will arise) between the values of

the replicated memory locations on all the machines M1, M2, M3 ... Mn.

20

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

For example, consider Fig. 14. Fig. 14 follows on from Fig. 13, where at
time-unit 7, and following receipt of transmission N101, machine M3 transmits
replica memory update N102, with the updated value “999” of address #15, to
machines M1, M2, M4...Mn. As all machines M2-Mn are indicated to have received
transmission N101 prior to transmission N102, then no potential inconsistency or
conflict will arise between transmissions N101 and N102. Thus, consistent and
coherent updating of replicated memory locations is preserved in cases where only a

single machine at a time updates a replicated memory location.

However, it is possible for the content of a single replica memory
location/address, say address #15, to be modified (written-to) simultaneously, or
substantially simultaneously, by two machines, say M1 and M3. The term
“substantially simultaneously” as used herein is used to refer to events which happen
at the same time, or concurrently, or to events which are nearly simultaneous or nearly
concurrent. In the example to be described hereafter the new content of replica
memory location/address #15 written by machine M1 is the value/number 404 and the
new content of replica memory location/address #15 of machine M3 is the
value/mumber 92. As a consequence of their execution of their different portions of
the application program 50, the two machines M1 and M3 modifying the same replica
memory location/address #15, substantially simultaneously/concurrently send a
update notification 81 and 82 respectively via the network 53 to all the other
machines. These update notifications are intended to update the corresponding replica

memory locations of all other machines in the manner indicated in Fig. 6.

In Fig. 7, machine M1 which has just changed (written) its content at replica
memory location/address #15 to value/number 404, now receives update message 82
from machine M3 and therefore in accordance with the replica updating method of
Fig. 5 updates its value/content of replica memory location/address #15 to be the
value/number 92. Similarly, machine M3 which has just updated (written) its content
at replica memory location/address #15 to the value/number 92, then receives the
update message 81 from machine M1 and thus updates its value/content of replica

memory location/address #15 to be the value/number 404.

21

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

However, each of the other machines M2, M4, M5 ... Mn receives both
messages 81 and 82 (in either order, and potentially dissimilar orders, depending upon
the speed and latency of the network 53). Thus the value/content appearing at replica
memory location/address #15 for these machines will be either the value/number 404

or 92 depending upon whether message 81 or message 82 was received last.

Clearly, the consequence of the circumstances described above in relation to
Fig. 7 is that the memory values/contents for corresponding replica memory
locations/addresses of the plural machines M1-Mn are no longer consistent.
Machines M1 and M3 will have swapped values caused by the receipt of each other’s
update notification of each other machine’s change, whilst the remaining machines
will each independently have either one or the other of the values of the two message
originating machines (M1 and M3 in this example). It follows that in circumstances
where updating messages are issued simultaneously, or nearly simultaneously, it is not
possible to guarantee that the replicated memory locations on all of the machines M1,
M2 ... Mn will be updated in a consistent and coherent manner, and consequently that
all machines will have consistent contents or values for the same replicated memory
location(s). Therefore the desirable behaviour of consistently updated replicated
memory locations of plural machines, and the desirable state of consistent replicated
memory locations of plural machines, is not achieved and/or is not guaranteed to be

achieved.

It will be apparent that such contention/inconsistency arises because of
differences in timing caused by latency/delay and/or ordering of network
transmissions. Fig. 15 illustrates how such latency/delay of network transmissions

can cause the “contention/inconsistency” case of Figs. 6-7.

Thus in Fig. 15, the example of Figs. 6-7 is collectively illustrated in a time-
diagram. Here, machine M1 transmits replica memory update N301 (which
corresponds to replica update 81 of Figs. 6 and 7), with the updated value “404” of
address #15, to machines M2, M3...Mn on which corresponding replica memory
locations reside. Also, substantially simultaneously/concurrently machine M3 also

transmits a replica memory update N302 (which corresponds to replica update 82 of

22

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Figs. 6 and 7), with the updated value “92” of the same address #15, to machines M1,

M2, M4...Mn on which corresponding replica memory locations reside.

However, as is indicated in Fig. 15, transmissions N301 and N302 do not
arrive at the receiving machines immediately (that is, at the same time-unit 1 of
transmission). Instead, each receiving machine is indicated to receive replica update
transmissions N301 and N302 at time-unit 5 by the arrows shown for each machine
M1-Mn.

The problem of such contention/conflict between plural replica update
transmissions of Figs. 6-7, arises due to the latency and delay of network
communication through the network 53 interconnecting the multiple computers.
Specifically, where there is a latency/delay (e.g. N310 of Fig. 15) between
transmission and receipt of a replica update transmission, such delay represents a
“blind-spot” of a first transmitting machine (e.g. machine M1) attempting a replica
update transmission for a specific replicated memory location, as such first machine is
not able to know at the time of transmission (e.g. time-unit 1) whether a second (or
more) machine (e.g. machine M3) has already transmitted a yet to be received replica
update transmission for the same specific replicated memory location (such as
transmitted prior to time-unit 1), or is currently transmitting a replica update
transmission for the same specific replicated memory location (such for example
transmission N302 at time-unit 1), or will transmit prior to receipt of the first
machine’s transmission a replica update transmission for the same specific replicated
memory location (such as for example transmitted at time-units 2-4). Such a “blind

spot” (or “contention window”) is indicated as the shaded area N310 of Fig. 15.

Consequently, two or more replica update transmission(s) for a same
replicated memory location(s) transmitted during such a “blind spot” (or “contention
window”), may be or will be at risk of “conflicting” with one another, thus potentially
resulting in inconsistent updating of such replicated memory location(s) of the plural

machines if undetected.

23

10

15

20

25

30

WO 2008/040073) PCT/AU2007/001491

Thus, Fig. 15 illustrates the case of the two machines M1 and M3 of Figs. 6-7
each transmitting a replica memory update for a same replicated memory location
(address #15) at a substantially simultaneous time, where each transmitting machine
does not know in advance of transmission that another machine is also transmitting a

replica memory update for the same replicated memory location.

The time-delay N310 that results between transmission and receipt of each
machine’s replica memory update, due to latency and delay of the communications
network used to interconnect and transmit the replica memory updates between the
multiple computers of the multiple computer system, represents a “blind spot” (or
“contention window’”) where potential transmissions by other machines are not able to
be known or detected until some-time later (e.g. upon receipt of such other potential
transmissions, such as time-unit 5 when the “blind-spot” N310 is indicated to end).
This period of delay, N310, represents the “transmission latency/delay” between the
sending of replica update transmissions N301 and N302 by machines M1 and M3, and

the receipt of each replica update transmission by the receiving machines.

Therefore, in order to overcome the risk of inconsistent replica updating of
Figs. 6-7, it is necessary to conceive a method to detect multiple transmissions for a
same replicated memory location/address #15 which are (or were) transmitted
substantially simultaneously/concurrently, such as during the “blind spot” (or
“contention window”) N310 of Fig. 15 — for example, detecting two or more replica
update transmissions (sent by two or more machines) for a same replicated memory
location which were each sent prior to the receipt of each other machine’s
transmission(s) (or prior to receipt of all transmission(s) of one or more of the other

machine(s)).

Most solutions of such contention/inconsistency problems rely upon time
stamping or a synchronizing clock signal (or other synchronization means) which is
common to all machines/computers (entities) involved. However, in the multiple
computer environment in which the preferred embodiment of the present invention
arises, there is no synchronizing signal common to all the computers (as each

computer is independent). Similarly, although each computer has its own internal

24

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

time keeping mechanism, or clock, these are not synchronized (and even if they could
be, would not reliably stay synchronized since each clock may run at a slightly
different rate or speed, potentially resulting in undesirable clock-skew and/or clock-
drift between the plural machines). Thus solutions based on time or attempted
synchronization between plural machines are bound to be complex and/or inefficient
and/or are not likely to succeed or will/may result in undesirable/unsatisfactory
overhead. Instead, the preferred embodiment utilizes the concept of sequence, rather

than time.

In conceiving of a means or method to overcome the abovedescribed
undesirable behaviour, it is desirable that such solution not impose significant
overhead on the operation of the multiple computer system — either in terms of
additional communication overhead (such as additional transmissions in order to
detect the potential for conflicting updates, or avoid such conflicting updates from
occurring in the first place), or in terms of additional or delayed processing by sending
and/or receiving machine(s) (such as additional or delayed processing by receiving
machines of one or more received transmissions, or additional or delayed processing

by sending machines of one or more to-be-sent transmissions).

For example, it is desirable that receiving machines be permitted to receive
and action packets/transmissions in any order (including an order different to the
order in which such transmission/packets were sent), and potentially different orders
for the same plural transmissions on different receiving machines. This is desirable,
because a requirement to process/action received transmissions in specific/fixed
orders imposes additional undesirable overhead and delay in processing of received
transmissions, such as for example delayed processing/actioning of a later sent but
earlier received transmission until receipt and processing/actioning of an earlier sent

but later received (or yet-to-be-received) transmission.

Specifically, one example of a prior art method of addressing the above
described problem would be to cause each receiving machine to store received replica
update transmission in a temporary buffer memory to delay the actioning of such

received replica update transmissions. Specifically, such received update

25

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

transmissions are stored in such a temporary buffer memory for some period of time
(for example one second) in which the receiving machine waits for potentially one or
more conflicting replica update transmissions to be received. If no such conflicting
replica update transmissions are received within such period of time, then the received
transmission(s) stored in the temporary buffer memory may be proceeded to be
actioned (where such actioning results in the updating of replica memory locations of
the receiving machine). Alternatively, if one or more conflicting replica update
transmissions are received, then signalling that a conflicting replica update
transmission(s) has been received. However, such prior art method is undesirable as
additional delay (namely, storing received transmissions in a temporary buffer
memory and not processing/actioning them for a period of time) is caused by such

prior art method.

In accordance with a first embodiment of the present invention, this problem is
addressed (no pun intended) by the introduction of a “count value” (or logical
sequencing value) and a “resolution value” (or per node value) associated with each
replicated memory location (or alternatively two or more replicated memory locations
of a related set of replicated memory locations). The modified position is
schematically illustrated in Fig. 8 where each of the replicated memory
locations/addresses #15 and #16 is provided with a “count value” and a “resolution
value”. In the particular instance illustrated in Fig. 8, the content of replicated
memory location/address #15 is 107, its “count value” is 7, and its “resolution value”
is “2”, whilst the content of replicated memory location/address #16 is 192 and its

“count value” is 84 and its “resolution value” is “5”.

In Fig. 9, the operation of machine M1 causes the content of address #15 to be
changed from 107 to 211. Following such write operation, such as upon transmission
of message 73A (or some time prior to transmission of message 73A), the “count
value” associated with address #15 is incremented from 7 to 8 and the “resolution
value” is overwritten to the value of “1” (corresponding to the identity of machine
M1). This incrementing of the “count value” indicates that message 73A is the next
logical update message in the sequence of update messages of address #15 known to

machine M1 at the time of transmission of message 73A, and the setting of the

26

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

“resolution value” to “1” indicates that message 73A has been sent by machine M1..
Machine M1 then sends a message 73 via the network 53 to all other application
running machines M2, M3 ... Mn to instruct them to update their content for their

corresponding replica memory location/address #15.

More specifically, the “resolution value” of Figs. 8-12 is a numerical (integer)
identifier of the machine which transmitted an updated replica value. So for example,
in the situation of Fig. 9, the “resolution value” of replica update transmission 73A is
the value of “1” which is the numerical identifier of the machine M1. However, any
other arrangement of numerical or content value may be employed as a “resolution
value”. Specifically, any arrangement of numerical value (or other content value)
may be employed as a “resolution value” so long as the resolution value(s) employed
by a transmitting machine for replica memory updates is unique to the transmitting
machine and that no other replica memory update transmissions of any other machine

may employ the same “resolution value(s)”.

Additionally, it is not a requirement of this invention that replica memory
updates associated with a single transmitting machine all carry the same “resolution
value”, or that only a single “resolution value” is associated with a transmitting
machine. Instead, any number of discreet “resolution value(s)” may be employed be a
transmitting machine and associated with replica memory update transmissions, so
long as such employed “resolution value(s)” are unique to the transmitting machine
and that no other replica memory update transmissions of any other machine may

employ the same “resolution value(s)”.

This is exactly what happens as illustrated in Fig. 10 in which the single
message 73A is received by all of the other machines M2, M3 ... Mn so that address
#15 for all these receiving machines are updated with the new content 211, the new
“count value” 8 and the new “resolution value” of “1”. Thus, Fig. 10 indicates the
receipt of message 73A by all other machines M2...Mn, and the “actioning” of such
received message 73A in accordance with the methods of this invention resulting in
the updated “count value” of “8” and the updated “resolution value” of “1” for the

replica memory locations of machines M2...Mn. How exactly the “count value” and

27

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

the “resolution value” for each of the replica memory locations/addresses #15 has
been changed or overwritten to indicate that a change in content has occurred, will

now be explained.

Specifically, upon receipt of message 73A, comprising an identifier of a
replicated memory location(s), an associated updated value of the identified replicated
memory location(s), an associated contention value(s) (that is, a “count value” or a
“logical sequence value”), and an associated “resolution value”, such associated
contention value(s) and “resolution value” may be used to aid in the detection and
resolution of a potential update conflict or inconsistency that may arise between two
or more update messages for a same replicated memory location sent by two or more

machines.

The use of the “count value” and “resolution value” in accordance with the
methods of this invention, allows the condition of conflicting or inconsistent updates
sent by two or more machines for a same replicated memory location to be detected
and resolved independently by each receiving machine of a plurality of machines.
Specifically, the associating of a “count value” and a “resolution value” with a
replicated memory location makes it possible to detect when two or more update
transmissions relating to the same replic;ated memory location were transmitted by
two or more machines without each transmitting machine knowing in advance of its
transmission that another machine has (or is) similarly attempting to update the same
replicated memory location, and resolve which of the two or more replica memory
update transmissions is to prevail (that is, which one of the two or more replica update
transmissions is to become the ultimate updated value of the affected replicated
memory location). In otherwords, the association of a “count value” and a
“resolution value” with a replicated memory location makes it possible to detect when
two or more updates of two or more machines relating to a same replicated memory
location were transmitted without knowledge of one or more of the other update
transmissions sent by some or all of the one or more other machines, and resolve

which one or the two or more replica memory update transmissions will prevail.

28

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Such a problem arises due to the latency and delay of network communication
through the network 53, where there is a latency/delay between transmission and
receipt of a replica update transmission, and consequently such delay may be
described as a “blind-spot” for a transmitting machine in that a first machine
attempting a replica update transmission for a specific replicated memory location is
not able to know at the time of transmission whether a second (or more) machine is
also attempting a replica update transmission for the same specific replicated memory
location at substantially the same time. Such a “blind spot” (or potential “contention

window”) is illustrated in Figs. 13-18.

Thus, through the use of a “count value” and a “resolution value” associated
with a replicated memory location, where such “count value” indicates an
approximate known update count of a replicated memory location by a transmitting
machine, and where such “resolution value” is a unique value associated with a
transmitting machine, the occurrence of two or more update transmissions for a same
replicated memory location sent by two or more machines, each transmitted
substantially simultaneously/concurrently, is able to be detected and resolved, and
thus the potential inconsistency and/or conflict that may arise from such plural
transmissions may be avoided and the replicated memory location updated in a

consistent manner by all machines.

How exactly “count value(s)” and “resolution values” may be utilised during
transmission of replica memory updates (comprising such “count value(s)” and
“resolution value”) to achieve this result, will now be described. Firstly, after a
replicated memory location (such as memory location “A”) is updated, such as
written-to, or modified, during operation of the application program of a first machine
(such as machine M1), then the updated value of such written-to replicated memory
location is signalled or queued to be updated to other corresponding replica memory
locations of one or more other machines of the plurality, so that such corresponding
replica memory locations, subject to a updating and transmission delay, will remain

substantially similar.

29

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Sometime after such replicated memory location “A” has been written-to, and
preferably before the corresponding replica update transmission has taken place, the
local/resident “count value” and “resolution value” associated with the written-to
replicated memory location (that is, the local copy of the “count value” and
“resolution value” on machine M1 associated with replicated memory location “A”)
are updated. Specifically, such updating of the local/resident “count value” preferably
comprises the local/resident “count value” being incremented, and the incremented
value is consequently stored to overwrite the previous local/resident “count value”
(that is, the local/resident “count value” is incremented, and then overwritten with the
incremented “count value”). Such updating of the local/resident “resolution value”

preferably comprises the local/resident “resolution value” being overwritten with a

unique value associated only with machine M1 (such as for example a unique

integer/numerical identity of machine M1, or some other unique value associated only

with machine M1 and no other machines).

Either at substantially the same time as the “count value” and “resolution
value” are updated, or at a later time, an updating transmission is prepared for the
network 53. Such updating transmission preferably comprises four “contents™ or
“payloads” or “values”, that is a first content/payload/value identifying the written-to
replicated memory location (for example, replicated memory location “A”), the
second content/payload/value comprising the updated (changed) value of the written-
to replicated memory location (that is, the current value(s) of the written-to replicated
memory location), the third content/payload/value comprising the updated (e.g.
incremented) “count value” associated with the written-to replicated memory location,
and finally the fourth content/payload/value comprising the updated “resolution

value” associated with the written-to replicated memory location.

Preferably, a single replica update transmission comprises all four “contents”,
“payloads” or “values” in a single message, packet, cell, frame, or transmission,
however this is mnot necessary and instead each of the four
“contents”/*payloads”/”values” may be transmitted in two, three or more different
messages, packets, cells, frames, or transmissions - such as each

“content”/’payload”/*value” in a different transmission. Alternatively, two

30

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

“contents™/’payloads™/”values” may be transmitted in a single first transmission and
the third and fourth remaining “content”’/”payload”/”’values” in a second transmission.
Further alternatively, other combinations or alternative multiple transmission and/or
pairing/coupling arrangements of the four “contents”/*payloads™/”values” will be
known to those skilled in the computing arts, and are to be included within the scope

of the present invention.

Importantly, the “count value” and “resolution value” of a specific replicated
memory location are updated only once per replica update transmission of such
replicated memory location, and not upon each occasion at which the specific
replicated memory location is written-to by the application program of the local
machine. Restated, the “count value” and “resolution value” are only updated upon
occasion of a replica update transmission and not upon occasion of a write operation
by the application program of the local machine to the associated replicated memory
location. Consequently, regardless of how many times a replicated memory location
is written-to by the application program of the local machine prior to a replica update
transmission, the “count value” and “resolution value” are only updated once per
replica update transmission. For example, where a replicated memory location is
written-to 5 times by the application program of the local machine (such as by the
application program executing a loop which writes to the same replicated memory
location 5 times), but only a single replica update transmission of the last written-to
value is transmitted (that is, the value of the 5" and last write operation), then the
“count value” and “resolution value” associated with the written-to replicated memory

location are updated once corresponding to the single replica update transmission.

How exactly the “count value” and “resolution value” are utilised during
receipt of replica update transmissions comprising a “count value” and “resolution
value” will now be described. The following steps upon receipt of a replica update
transmission comprising an associated “count value” and “resolution value”, are to
take place on each receiving machine of the plurality of machines of a replicated
shared memory arrangement on which a corresponding replica memory location
resides. Importantly, the following steps are operable independently and

autonomously by each machine (that is, are to preferably operate independently and

31

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

autonomously by each receiving machine), such that no re-transmissions, conflict
requests, or any other “resolving” or “correcting” or “detecting” transmissions
between two or more machines are required or will take place in order to detect
potentially conflicting transmissions and resolve such multiple conflicting
transmissions to a single prevailing transmission (and therefore a single prevailing
replica update value). This is particularly advantageous as each receiving machine is
therefore able to operate independently and autonomously of each other machine with
respect to receiving and actioning replica memory updates comprising “count
value(s)” and “resolution values”, and detecting and resolving

“conflicting”/”contending” transmissions.

Firstly, a replica updating transmission comprising an identity of a replicated
memory location to be updated, the changed value to be used to update the
corresponding replica memory locations of the other machine(s), and finally an
associated “count value” and “resolution value”, is received by a machine (for
example, machine M2). Before the local corresponding replica memory location may
be updated with the received changed value, the following steps take place in order to
ensure the consistent and “un-conflicted” updating of replica memory locations, and

detect and resolve potentially “conflicting”/”contending” updates.

Firstly, the received associated “count value” is compared to the local/resident
“count value” corresponding to the replica memory location to which the received
replica update transmission relates. If the received “count value” of the received
update transmission is greater than the local/resident “count value”, then the changed
value of the received replica update transmission is deemed to be a “newer” value
(that is, a more recent value) than the local/resident value of the local corresponding
replica memory location. Consequently, it is desirable to update the local
corresponding replica memory location with the received changed value. Thus, upon
occasion of updating (overwriting) the local corresponding replica memory location
with the received value, so too is the associated local “count value” also updated
(overwritten) with the received “count value”, and the associated local “resolution
value” also updated (overwritten) with the received “resolution value™. Such a first

case as this is the most common case for replica memory update transmission, and

32

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

represents an “un-conflicted”/”un-contended” (or as yet un-contended/un-conflicted)

replica update transmission.

On the other hand, if the received “count value” of the received update
transmission is less than the local/resident “count value”, then the changed value of
the received replica update transmission is deemed to be an “older” value than the
local/resident value of the local corresponding replica memory location.
Consequently, it is not desirable to update the local corresponding replica memory
location with the received changed value (as such value is a “stale” value), and as a

result the received changed value may be disregarded or discarded.

However, a third condition is also possible — that is; where the received “count
value” of the received transmission is equal to (the same as) the local/resident “count
value”. When such a case as this occurs, the received changed value of the received
replica update transmission can be neither guaranteed to be “newer”, nor “older” than
the local/resident value of the local corresponding replica memory location.
Consequently, when a condition such as this occurs (that is, the “count value” of a
received replica update transmission is the same as the local/resident “count value” of
the local corresponding replica memory location), then the received replica update
transmission is deemed to be “in conflict” (or “contending”) with the local

corresponding replica memory location.

Such a potential “conflicting” condition between a received replica memory
update and a local corresponding replica memory location will generally come about
when two or more machines transmit a replica memory update for the same replicated
memory location(s) at substantially the same time (that is, substantially
simultaneously/concurrently). Such two or more transmissions are said to be “in
contention”, as they conflict with each other, and if not detected to be “in contention”
(that is, in conflict), then there is a risk that the multiple corresponding replica
memory locations of the affected replicated memory location (that is, the replicated
memory location to which the contending/conflicting updating transmissions relate)
will not be updated by the plural machines in a consistent and coherent manner. Such

an example of substantially simultaneous/concurrent updating by two or more

33

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

machines of a same replicated memory location resulting in inconsistent updating of

replica memory locations of the plural machines is illustrated in Figs. 6-7 and 15.

For example, upon occasion of two replica update transmission for the same
replicated memory location occurring (being transmitted) substantially
simultaneously/concurrently (that is, transmitted by two machines where each
transmitting machine has not received the other transmitting machine’s transmission
prior to sending its own transmission), and each transmitted with the same associated
“count value”, then by utilising the abovedescribed methods it is possible for each
receiving machine to independently detect such “conflicting” transmission
independently (that is without the aid of) any other machine, and without requiring
any additional transmissions by either the receiving or sending machine(s).
Furthermore, each receiving machine is able to detect such “conflicting”
transmissions regardless of the order in which they arrive at the receiving machine

(and potentially in differing orders for different receiving machines).

Additionally, the abovedescribed methods also facilitate the detecting of
conflicting transmissions by each of the sending machines. That is, for each of the
plural conflicting sending machines, each one of such sending machines is able to
similarly independently detect the conflicting replica memory updates of each other
transmitting machine upon occasion of the receipt of each such update(s), and without

requiring any additional transmissions by either the receiving or sending machine(s).

Thus, the “count value” associated with each replicated memory location (and
replica memory update transmission) may be used to detect when a received replica
update transmission is “in conflict” with a local/resident replica value. Upon such a
condition where the “count value” of a received replica update transmission is the
same as the local/resident “count value” of the local corresponding replica memory
location, then the “resolution value” accompanying the received transmission may be
used to resolve the detected “conflict” and determine whether or not the received
“conflicting” replica update transmission is to be discarded or alternatively update the

local corresponding replica memory location. How the “resolution value” may be

34

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

used to resolve a detected “conflict” between a received replica update transmission

and the local corresponding replica value, will now be explained.

" The “resolution value” accompanying each replica update transmission may be
used to resolve a detected conflict between a received replica memory update
transmission and the local/resident value of the corresponding replica memory
location (such as may be detected for example by the “count value” of a received
replica memory update transmission being equal to the local/resident “count value” of
the corresponding replica memory location). When such a “contention”/”conflicting”
situation is detected for a received replica memory update transmission, the
accompanying “resoiution value” of the received replica memory update transmission
and the corresponding local/resident “resolution value” may be examined and
compared in order to determine which of the two replica values (that is, the
local/resident replica value or the received updated replica value) will “prevail”.
Thus, the purpose of the “resolution value” accompanying each replicated memory
location and each replica update transmission is to provide a means to determine
which of two such replica values will prevail, and therefore, whether or not a received

conflicting replica update transmission is to be updated to local memory or not.

Specifically, the use of “resolution values” and an accompanying comparison
rule may be used to compare two “resolution values™ in order to consistently select a
single one of the two values as a “prevailing” value. Ifit is determined in accordance
with such rule(s) that the “resolution value” of the received conflicting replica update
transmission is the prevailing value (compared to the local/resident corresponding
“resolution value”), then the receiving machine may proceed to update the local
corresponding replica memory location with the received replica update value of the
“prevailing” transmission (including overwriting the corresponding local/resident
“count value” and “resolution value” with the received “count value” and “resolution
value”). Alternatively, if it is determined that such “resolution value” of the received
conflicting replica update transmission is not the prevailing value (that is, the
local/resident “resolution value” is the prevailing value), then the receiving machine is

not to update the local corresponding replica memory location with the received

35

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

replica update value of the conflicting transmission, and such conflicting transmission

may be discarded.

For example, in the case of Figs. 8-12, the resolution rule may be as simple as
choosing the higher of two “resolution values” as the “prevailing” value.
Alternatively, a different employed resolution rule may be to chose the lower of the
two “resolution values” as the prevailing value. Ultimately, the specific value(s)
chosen to be used as “resolution values”, and the specific resolution rule(s) chosen to
determine a “prevailing” value, are not important to this invention, so long as the
chosen “resolution values” are unique to each transmitting machine (that is, two
transmissions of two machines may not have the same “resolution value”), and so
long as the chosen resolution rule(s) consistently chose a same prevailing “resolution

value” upon each comparison of two specific “resolution values™.

Combined, the “count value” and the “resolution value” in accordance with
the abovedescribed methods facilitate/enable the detection of “conflicting” replica
update transmissions received by a machine, and facilitate/enable the consistent
updating of the effected replicated memory location(s) by plural receiving machines
when receiving a “conflicting” replica update transmission. Importantly, the “count
value” and “resolution value” when operated in accordance with the abovedescribed
methods, facilitate the consistent updating of replicated memory locations by plural
receiving machines, regardless of the receipt order of “conflicting” replica update
transmissions, and without further communication or interaction between any two or
more receiving and/or sending machines to ensure the consistent updating of the
effected replica memory location(s). Altogether then, the abovedescribed methods
for the operation of replica update transmissions comprising “count values” and
“resolution values” achieve the desired aim of being able to detect and resolve
contending/conflicting replica update transmissions ~without requiring re-
transmissions by one, some, or all of the transmitting machines of the effected (that is,

conflicting) transmissions.

Thus, the abovedescribed methods disclose a system of transmitting replica

memory updates in such a manner in which consideration or allowance or special

36

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

handling or other special steps (such as acquiring exclusive update permission for a
replicated memory location) during transmission for detecting and resolving
potentially conflicting transmissions by other machines, is not required. In
otherwords, the abovedescribed use of associated “count value(s)” and “resolution
values” with replicated memory locations, makes it possible to transmit “self-
contained” replica memory updates to all receiving machines, where the
values/information of such “self-contained” replica memory updates have all the
necessary information to facilitate the detection and resolution of potential conflicting
transmission (for a same replicated memory location) unknown to the transmitting
machine at the time of transmission. Importantly, such “self-contained” replica
memory updates comprising “count values” and “resolution values”, may be
transmitted by a sending machine without regard for potentially conflicting
transmissions by one or more other machines, as such “self-contained” replica update
transmissions (including “count values” and “resolution values”) contain all the
necessary information to facilitate the detection and resolution of conflicting updates

of other machines for the same replicated memory location.

Consequently, each transmitting machine is able to operate independently and
unfettered, and without requiring any “transmission authorization”, transmission
permissions (such as exclusive transmission permissions), exclusive update or write
permissions or the like, and instead each transmitting machine (and each potentially
simultaneously transmitting machine) may transmit replica memory updates whenever
and however it chooses without regard for potential conflicting transmissions of other
machines as the use of the abovedescribed methods are able to detect such potential
conflicting transmissions on each receiving machine independently of each other
machine, and resolve to a single common prevailing replica update transmission and

associated updated replica value by the plural machines.

Thus, it will be appreciated by the reader, that the abovedescribed methods for
replica update transmission (comprising “count values” and “resolution values™)
achieves a desired operating arrangement which allows the transmission of a single
replica memory update transmission (such as a single message, cell, frame, packet, or

other transmission unit) by a first transmitting machine whether or not such single

37

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

transmission will ultimately “conflict” or contend with one or more other
transmissions of one or more other machines. As a result, through the use of “count
values” and “resolution values” as described above, transmitting machines may
transmit single or plural replica memory updates at any time, and for any replicated
memory location, to any one or more other machines regardless of whether or not
such replica memory updates will or may conflict or contend with one or more other

transmissions of one or more other machines.

Furthermore, it will be appreciated by the reader that the abovedescribed
methods for replica update transmission (comprising “count values” and “resolution
values”) achieves an additional desired operating arrangement in which re-
transmissions, re-tried transmissions, stalled transmissions or the like do not result

from a condition of two or more update transmissions contending/conflicting.

Furthermore again, the abovedescribed methods for replica update
transmission achieves a further desired operating arrangement/result in which, upon
occasion of two or more conflicting replica update transmissions (such as a first
replica update transmission of machine M1 for replicated memory location “A”, and a
conflicting second replica update transmission of machine M2 for the same replicated
memory location “A”), that further ongoing replica update transmissions by machines
M1 and M2 for either or both of the same replicated memory location “A”, or any
other replicated memory location(s), may continue in an uninterrupted and unhindered
manner — specifically, without causing further/later replica memory update
transmissions (including further/later update transmissions of replicated memory
location “A”) following such “conflicting” transmission(s) to be stalled, interrupted or

delayed.

Furthermore again, the abovedescribed methods for replica update
transmission achieves a further desired operating arrangement/result in which, upon
occasion of two or more conflicting replica update transmissions (such as a first
replica update transmission of machine M1 for replicated memory location “A”, and a
conflicting second replica update transmissions for machine M2 for the same

replicated memory location “A”), will not effect the replica memory update

38

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

transmissions of any other machine (for example, machines M3...Mn) whether such
other transmissions apply/relate to replicated memory location “A” or not. Thus,
transmissions of other machines (for example, machines M3....Mn) are able to also
proceed and take place in an uninterrupted, unhindered and unfettered manner in the
presence of (for example, substantially simultaneously to) two or more conflicting
transmissions (such as of machines M1 and M2), even when such other transmissions

of machines M3...Mn relate/apply to replicated memory location “A”.

Thus, the abovedescribed methods of detecting potentially conflicting or

contending replica update transmissions addresses various problems.

Altogether, the operation of a multiple computer system comprising
transmitting and receiving machines, and utilising the abovedescribed “count value”
and “resolution value” to detect and resolve conflicting updates, will now be

explained.

Turning now to Fig. 16, the example of Figs. 9-10 is collectively illustrated in
a time-diagram. Here, machine M1 transmits replica memory update N401A (which
corresponds to replica update 73A of Figs. 9 and 10) at time-unit 1, with the updated
value “211” of address #15, the contention value (“count value”) of “8” and the
“resolution value” of “1”, to machines M2, M3...Mn on which corresponding replica

memory locations reside.

Corresponding to transmission N401 by machine M1, in accordance with the
abovedescribed rules, the “count value” of machine M1 of the updated replicated
memory location/address #15 is incremented by 1 to become “8” (that is, the
local/resident “count value” of “7” is incremented to become the new “count value” of
“8”), and the “resolution value” is updated to become “1” (that is, the previous
local/resident “resolution value” is overwritten with the new value of “1”). Replica
memory update N4O1A is then transmitted to machines M2-Mn, taking the form of
the updated value “211” of the written-to replicated memory location of machine M1
(that is, replicated memory location/address #15), the identity of the replicated

memory location to which the updated value corresponds (that is, replicated memory

39

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

location/address #15), the associated incremented “count value” of the replicated
memory location to which the updated replica value corresponds (that is, the new
resident “count value” of “8”), and the associated updated “resolution value” of the
replicated memory location to which the updated replica value corresponds (that is,

the new resident “resolution value” of “1”).

Importantly, the specific choice of an updated integer/numeric value for the
“resolution value” is not important to this invention, so long as the chosen
numeric/integer value is a unique value to the transmitting machine, and for which no
other replica update transmission sent by any other machine may have an identical
“resolution value”. In the examples of Figs. 8-12, the numeric value chosen for each
updated “resolution value” is the integer/numeric identifier of the transmitting
machine (for example, the numeric value of “1” corresponding to replica update 73A
transmitted by machine M1). So for example, were a replica update transmission to
be sent by machine M5 for replicated memory location/address 16, then the associated
“resolution value” for such replica update transmission would be a value of “5”
corresponding to the numeric identity of machine M5 as the transmitting machine of
such replica update transmission. Any other arrangement of values may be employed
for use as “resolution values™ of replica update transmissions and replicated memory
locations, so long a$ each “resolution value” is unique to each transmitting machine
and no two replica update transmissions from two machines may contain a same

“resolution value”,

However, as is indicated in Fig. 16, transmission N401A does not arrive at the
receiving machines M2-Mn immediately (that is, at the same time-unit 1 of
transmission). Instead, each receiving machine is indicated to receive replica update
transmission N401A at time-unit 5 by the arrows shown for each machine M2-Mn.
Thus, Fig. 16 illustrates a time-delay N410A that typically results between
transmission and receipt of a replica memory update, due to latency and delay of the
communications network used to interconnect and transmit the replica memory
updates between the multiple computers of the multiple computer system. This period

of delay, N410A, represents the “transmission latency/delay” between the sending or

40

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

replica update transmission N401A by machine M1, and the receipt of the same

replica update transmission N401A by machines M2-Mn.

Following transmission N401A by machine M1, the receiving machines M2-
Mn each independently receive the transmission N401A, and proceed to
independently “action” the received transmission according to the abovedescribed
rules. Specifically, by comparing the “count value” of the received transmission
N401A with the resident (local) “count value” of the corresponding replica memory
location of each receiving machine (which is indicated to be “7” for all machines), it
is able to be determined that the received “count value” of transmission N401A (that
is, the count value “8”) is greater than the resident “count value” of the corresponding

replica memory location of each machine (that is, the resident count value “7*).

As a result, the determination is made that the received updated value of
transmission N401A is a newer value than the resident value of machines M2-Mn,
and therefore receiving machines M2-Mn are permitted to update their local
corresponding replica memory locations with the received updated replica value.
Accordingly then, each receiving machine M2-Mn replaces the resident (local) “count
value” of the local corresponding replica memory location with the received “count
value” of transmission N401A (that is, overwrites the resident “count value” of “7”
with the received “count value” of “8”), and also replaces the resident (local)
“resolution value” of the local corresponding replica memory location with the
received “resolution value” of transmission N401A (that is, overwrites the resident
“resolution value” of “2” with the received “resolution value” of “1”), and updates the
local corresponding replica memory location with the received updated replica
memory location value (that is, overwrites the previous value “107” with the received

value “2117).

Thus, the use of the “count value” as describéd, allows a determination to be
made at the receiving machines M2-Mn that the transmitted replica update N401A of
machine M1 is newer than the local resident value of each receiving machine.

Therefore, machines M2-Mn are able to be successfully updated in a consistent and

41

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

coherent manner with the updated replica value of transmission N401A, and thus

consistent and coherent updating of replicated memory location(s) is achieved.

For example, consider Fig. 17. Fig. 17 follows on from Fig. 16, where at
time-unit 7, and following receipt of transmission N401A, machine M3 transmits
replica memory update N402A, with the updated value “999” of address #15, the
updated “count value” of “9” and the “resolution value” of “3” to machines M1, M2,
M4...Mn. Specifically, the additional transmissions N402A by machine M3 to
machines M1, M2, M4...Mn is a transmission of an updated replica value generated
by the operation of machine M3 for the same replicated memory location updated by

transmission N401A (that is, replicated memory location/address #15).

Corresponding to transmission N402A by machine M3, in accordance with the
abovedescribed rules the “count value” of machine M3 of the updated replicated
memory location/address #15 is incremented by 1 to become “9” (that is, the resident
“count value” of “8” is incremented to become the new “count value” of “9”), and the
“resolution value” is updated with the value “3” (corresponding to the numerical
identity of machine M3). Replica memory update N402A is then transmitted to
machines M1, M2, M4..Mn, comprising the updated value “999” of the written-to
replicated memory location of machine M3 (that is, replicated memory
location/address #15), the identity of the replicated memory location to which the
updated value corresponds (that is, replicated memory location/address #15), the
associated incremented “count value” of the replicated memory location to which the
updated value corresponds (that is, the new resident “count value” of “9”), and the
associated “resolution value” of “3” (as a unique numerical identity corresponding to

machine M3).

Next, at time-unit 11 is indicated that machines M1, M2, M4...Mn receive
transmission N402A, and proceed to independently “action” the received transmission
according to abovedescribed rules in a similar manner to the actioning of the received
transmission N401A by machines M2-Mn. Specifically, by comparing the “count
value” of the received transmission N402A with the resident (local) “count value” of

the corresponding replica memory location of each receiving machine (which is

42

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

indicated to be “8” for all machines), it is able to be determined that the received
“count value” of transmission N402A (that is, the count value “9”) is greater than the
resident “count value” of the corresponding replica memory location of each machine

(that is, the resident count value “8”).

As a result, the determination is made that the received updated value of
transmission N402A is a newer value than the resident value of machines M1,M2,M4-
Mn, and therefore machines M1,M2,M4-Mn are permitted to update their local
corresponding replica memory locations with the received updated replica value.
Accordingly then, each receiving machine M1,M2,M4-Mn replaces the resident
(local) “count value” of the local corresponding replica memory location with the
received “count value” of transmission N402A (that is, overwrites the resident “count
value” of “8” with the received “count value” of “9”), replaces the resident (local)
“resolution value” of the local corresponding replica memory location with the
received “resolution value” of transmission N402A (that is, overwrite the resident
“resolution value” of “1” with the received “resolution value” of “3”), and updates the
local corresponding replica memory location with the received updated replica
memory location value (that is, overwrites the previous value “211” with the received

value “999”).

Thus, the use of the “count value” as described, allows a determination to be
made at the receiving machines M1,M2, M4...Mn that the transmitted replica update
N402A of machine M3 is newer than the local resident value of each receiving
machine. Therefore, machines M1, M2, M4...Mn are able to be successfully updated
in a consistent and coherent manner with the updated replica value of transmission

N402A, and coherent updating of replicated memory location(s) is achieved.

Critically, what is accomplished through the use of an associated “count
value” for each replica memory location (or set of replica memory locations), is that
such “count value” may be used to signal when a replica update is newer or older (or
neither newer nor older) than a replica memory location value already resident on a
receiving machine. As can be seen in Figs. 16 and 17, the first transmission N401A

of machine M1 has a count value of “8”, which is subsequently received by machines

43

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

M2-Mn. Some time subsequent to the receipt of transmission N401A by machine
M3 (e.g. time-unit 7), machine M3 transmits a replica update of a new value for the
same replicated memory location of transmission N401A (that is, replicated memory
location/address #15), and consequently associates with such transmission N402A a
new “count value” of “9”, indicating that such transmission N402A is “newer” (or

“later”) than transmission N401A (which had a “count value” of “8”).

As a result, by using the abovedescribed methods, it is able to Be ensured that
for example were transmission N401A to be received by a machine (such as machine
M2) gfter receipt of transmission N402A by the same machine (e.g. machine M2),
that the “late” received transmission N401A would not cause the replica memory
location value of machine M2 (in which is stored the value of the previously received
transmission N402A) to be overwritten with the “older” (or “earlier”) value of
transmission N401A. This is because, in accordance with abovedescribed operation
of “count values”, the resident “count value” of machine M2 for replicated memory
location/address #15 after receipt of transmission N402A would have been
overwritten to become “9”. Therefore upon receiving transmission N401A with a
“count value” of “8” gffer receipt and actioning of transmission N402A, in accordance
with the abovedescribed “count value” rules, such received transmission N401A
would not cause the local replica memory location #15 of machine M2 to be updated
with the received updated value of transmission N401A as the “count value” of
transmission N401A would be less than the resident “count value” of “9” resulting
from the previous receipt and actioning of transmission N402A. Thus, consistent and

coherent replica updating is achieved.

Fig. 11 illustrates what happens in the circumstance discussed above in
relation to Fig. 6 where two (or more) machines M1 and M3 simultaneously, or
substantially simultaneously, update the same replicated memory location/address.
As in Fig. 10, machine M1 in executing its portion of the application program causes
the contents of replicated memory location/address #15 to be written with a new
content “211”. As a result, the “count value” associated with replicated memory
location/address #15 is incremented from “7” to “8”, the “resolution value” is

overwritten with a new value of “1” (corresponding to the numerical identity of

44

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

machine M1), and message 73A is sent via the network 53 to all other machines M2,
M3, ... Mn comprising the updated value of replicated memory location/address #15
(that is, “211”), the identity of the written-to replicated memory location (that is,
address #15), the associated incremented “count value” (that is, “8”), and the
associated updated “resolution value” (that is ”1”). Substantially simultaneously,
machine M3 in executing its portion of the application program writes a new content
“92” to the same replicated memory location/address #15, and as a result similarly
increments its “count value” from “7” to “8”, overwrites its “resolution value” with a
new value of “3” (corresponding to the numerical identity of machine M3), and sends
a message 74A containing these particulars (that is, the identity of the written-to
replicated memory location, the updated value of the written-to replicated memory
location, the associated incremented “count value”, and the associated updated
“resolution value”) to all other machines M1, M2, M4, M5, ... Mn. This is the

situation illustrated in Fig. 11.

The consequence of the situation illustrated in Fig. 11 is illustrated in Fig. 12.
As in Fig. 7, machines M2, M4, M5 ... Mn which did not initiate any/either message
will have received a first one of either messages 73A or 74A (in either order), and
proceed to “action” such first received transmission in accordance with the
abovedescribed methods. Specifically, regardless of whether message 73A or 74A is
received first, such first received message will cause the updating of the local
corresponding replica memory location, as such first received message will have a
“count value” of “8” which is greater than the resident “count value” of “7” for each
of the receiving machines (that is, the value of the first received transmission is
deemed newer than current value of the local corresponding replica memory location).
Therefore, in actioning the first received message/transmission, the resident “count
value” will be caused to be overwritten from “7” to “8”, the resident “resolution
value” will be caused to be overwritten with the received updated “resolution value”
of the first received transmission, and the local corresponding replica memory
location will be update/replaced (e.g. overwritten) with the received updated value of
the first received transmission. Consequently, following such actioning of the first
received transmission, the content stored (or overwritten) at the local memory

corresponding to replicated memory location/address #15 will be either 211 or 92

45

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

depending upon which one of messages 73A or 74A is received first, the associated
local/resident “count value” will be “8”, and the associated local/resident “resolution
value” will be either “1” or “3” depending upon which one of messages 73A or 74A

respectively is received first.

However, upon occasion of each receiving machine M2, M4, MS5...Mn
receiving the second of the two transmissions/messages 73A and 74A, and proceeding
to “action” such second received transmission in accordance with the abovedescribed
methods, a condition of “conflict”/’contention” will be detected between the “count
value” of the second received transmission and the corresponding local/resident
“count value”. Specifically, in actioning the second received message/transmission, a
comparison of the resident “count value” (with a value of “8”), and the “count value”
of the second received transmission (also with a value of “8”), will result in a
determination that the second received transmission “conflicts”/’contends” with the
resident “count value”. Therefore, upon receipt and actioning of the second received
transmission/message, each receiving machine M2, M4, M5...Mn is able to detect
and signal a condition of “conflict” between the first and second received
transmissions, by detecting a “conflict” between the updated resident “count value”
resulting from the actioning of the first received transmission, and the “count value”

of the second received transmission (both values of which are identical).

It will thus be appreciated that the machines M2, M4, M5, ...Mn having
received the first one of messages 73A and 74A and thereby having an updated “count
value” of “8” (resulting from the actioning of such first received message), when they
receive the second of the messages 73A and 74A will have a resident “count value”
which is the same as the “count value” of the second received message. Thus these

machines can detect and signal contention.

However, for machines M1 and M3, each of which transmits message 73A
and 74A respectively, only a single message will be received (that is, the other one of
the two transmitted messages 73A and 74A). Specifically, in accordance with the
abovedescribed methods, upon occasion of transmission of messages 73A and 74A by

machines M1 and M3 respectively, each transmitting machine increments the

46

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

local/resident “count value” for replicated memory location/address #15 (for example,
from a value of “7” to a value of “8”) and stores the incremented count value to
overwrite/replace the previous resident “count value”, and also transmits the
incremented “count value” within (or otherwise a part of or associated with) message
73A and 74A respectively. Thus, upon transmission of messages 73A and 74A by
machines M1 and M3 respectively, each transmitting machine (that is, machines M1
and M3) will each have a local/resident “count value” of “8” for replicated memory
location/address #15 corresponding to the transmission of replica memory update

message 73A and 74A respectively.

Thus by comparing the resident “count value” with the received “count value”
of message 74A (by means of a comparator, for example) machine M1 is able to
detect and signal that a “conflict”/’contention” situation has arisen because it detects
the situation where the incoming message 74A contains a “count value” (that is, a
“count value” of “8”) which is identical to the existing state of the resident “count
value” associated with replicated memory location/address #15 (which is also a

“count value” of “8”).

Similarly, machine M3 on receipt of message 73A also receives an incoming
message with the same “count value” as the corresponding resident “count value”.
Thus, machine M3 is also able to detect and signal that a “conflict”/”contention”
situation has arisen because it detects the situation where the incoming message 73A
contains a “count value” (that is, a “count value” of “8”) which is identical to the
existing state of the resident “count value” associated with replicated memory

location/address #15 (which is also a “count value” of “8”).

It will thus be appreciated that the two transmitting machines M1 and M3
having transmitted messages 73A and 74A respectively, and thereby having an
incremented “count value” of “8” (resulting from the transmission of the respective
one of messages 73A and 74A), when they receive message 74A and 73A
respectively will have a resident “count value” which is the same as the “count value”

of the received message. Thus these machines too can detect and signal contention.

47

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Corresponding to detection of such a contention situation by a receiving
machine, where a received replica memory update transmission “contends” (or
“conflicts””) with the local/resident replica value (and associated local/resident “count
value”), the associated “resolution value” of the received conflicting replica update
transmission and the local/resident “resolution value” of the local replica memory
location may be used together to resolve the conflict between the received replica
update transmission and local resident value. Specifically, such a contention situation
can be resolved by comparing the two “resolution values™ (that is, the resident/local
“resolution value” and the “resolution value” of the received conflicting transmission)
according to specific resolution rules in order to chose a single “prevailing” resolution
value, and therefore a prevailing replica update value (that i, the

associated/corresponding replica update value of the prevailing “resolution value”).

For example, in Figs. 8-12, the employed resolution rules are as simple as the
selection of the higher of the two compared “resolution values”. In the situation of
Figs. 8-12, where the “resolution value” of a replica memory update transmission
corresponds to the numerical identity of the transmitting machine, the consequences
of the abovementioned simple resolution rule is that the replica update transmissions
sent by the numerically highest identity machine will prevail. However, in
alternative embodiments, any other rules or methods may be employed to chose a
“prevailing” resolution value from two compared “resolution values” (that is, the
“resolution value” of the received conflicting replica update transmission and the
corresponding local/resident “resolution value”). Thus, any resolution rules or
methods different to the ones described herein may alternatively be used and
employed that will consistently chose a same prevailing value when comparing two

“resolution values”.

Returning then to Fig. 12, upon occasion of each receiving machine M2, M4,
MS5...Mn receiving the second of the two transmissions 73A and 74A, and
proceeding to “action” such second received transmission in accordance with the
abovedescribed methods, a condition of “conflict” will be detected between the
updated “count value” of the first received transmission and the “count value” of the

second received transmission, but by using the associated “resolution values” and the

48

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

abovedescribed simple resolution rule, updating of replicated memory locations in a
consistent manner can be achieved. Specifically, upon detecting a situation of
“contention” between a second received replica update transmission and the
resident/local replica value (as detected by the use of the associated “count values”),
the associated “resolution values” (that is, the “resolution value” of the received
conflicting replica update transmission and the local/resident “resolution value”) may
be compared in accordance with the abovedescribed simple resolution rule (or any
other alternatively employed resolution rule) to chose a single prevailing replica
update value — that is, either the local/resident replica update value, or the received

replica update value of the received conflicting replica update transmission.

For example, were machine M2 to receive replica update transmission 74A as
the second received replica update transmission (and therefore, replica update
transmission 73A as the first received replica update transmission), and detect the
second received transmission 74A as “contending”/’conflicting” with the resident
replica value (that is, the resident replica value update by the first received
transmission 73A), then by comparison of the local/resident “resolution value” and
the received “resolution value” according to the abovedescribed simple rules, a
determination would be made that the received replica update transmission 74A
comprising the resolution value of “3” would prevail over the resident/local resolution
value of “1” from the previous transmission 73A (as resolution value “3” is greater
than resolution value “1”). As a result, the local corresponding replica memory
location of machine M2 would be updated with the new replica update value “92”
received from replica update transmission 74A, and the corresponding local/resident

“resolution value” would be replaced with the received value of “3”.

Alternatively, were machine M2 (or any other one of machines M4...Mn) to
receive replica update transmission 73A as the second received replica update
transmission (and therefore, replica update transmission 74A as the first received
replica update transmission), and detect the second received transmission 73A as
“contending”/’conflicting” with the resident replica value (that is, the resident replica
value updated by the first received transmission 74A), then by comparison of the

local/resident “resolution value” and the received “resolution value” according to the

49

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

abovedescribed simple rules, a determination would be made that the received replica
update transmission 73A comprising the resolution value of “1” would not prevail
over the resident/local “resolution value” of “3” from the previous transmission 74A
(as resolution value “1” is less than resolution value “3”). As a result, the local
corresponding replica memory location of machine M2 would not be updated with the
second received replica update value “211” received from replica update transmission
73A, and the corresponding local/resident “resolution value” would not be replaced

with the received “resolution value” of “1”.

Thus, regardless of the receipt order of conflicting replica update
transmissions 73A and 74A by machines M2, M4...Mn, the use of the associated
“resolution value” and corresponding resolution rules enables the consistent updating
of replicated memory locations to be achieved, so that the corresponding replica
memory locations of each of the receiving machines M2, M4...Mn are ultimately
updated to remain substantially similar upon receipt of both transmissions 73A and
T4A.

Similarly, the abovedescribed methods and rules of comparing “resolution
values” for each of the receiving machines M2, M4...Mn, also applies to each of the
transmitting machines M1 and M3. Specifically, upon occasion of each transmitting
machine M1 and M3 receiving the transmission 74A and 73A of the other machine
respectively, and proceeding to “action” such received transmission in accordance
with the abovedescribed methods, a condition of “conflict” will be detected between
the resident/local “count value” and the “count value” of the received transmission of
the other transmitting machine, but by using the associated “resolution values” and the
abovedescribed simple resolution rule, updating of replicated memory locations in a
consistent manner can be achieved. Specifically, upon detecting a situation of
“contention” between a received replica update transmission and the resident/local
replica value (as detected by the use of the associated “count values™), the associated
“resolution values™ (that is, the “resolution value” of the received conflicting replica
update transmission and the local/resident “resolution value”) may be compared in
accordance with the abovedescribed simple resolution rule (or any other alternatively

employed resolution rule) to chose a single prevailing replica update value — that is,

50

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

either the local/resident replica update value, or the received replica update value of

the received conflicting replica update transmission.

For example, when machine M1 receives replica update transmission 74A of
machine M3, and detect such received transmission 74A as
“contending”/”conflicting” with the resident replica value (that is, the resident replica
value updated by machine M1’s transmission of replica update transmission 73A),
then by comparison of the local/resident “resolution value” and the received
“resolution value” according to the abovedescribed simple rules, a determination
would be made that the received replica update transmission 74A comprising the
resolution value of “3” would prevail over the resident/local resolution value of “1”
(as resolution value “3” is greater than resolution value “1”). As a result, the local
corresponding replica memory location of machine M1 would be updated with the
new replica update value “92” received from replica update transmission 74A, and the
corresponding local/resident “resolution value” would be replaced with the received

value of “3”,

Alternatively, when machine M3 receives replica update transmission 73A of
machine M1, and detect such received transmission 73A as
“contending”/”’conflicting” with the resident replica value (that is, the resident replica
value updated by machine M3’s transmission of replica update transmission 74A),
then by comparison of the local/resident “resolution value” and the received
“resolution value” according to the abovedescribed simple rules, a determination
would be made that the received replica update transmission 73A comprising the
resolution value of “1” would not prevail over the resident/local “resolution value” of
“3” (as resolution value “1” is less than resolution value “3”). As a result, the local
corresponding replica memory location of machine M3 would not be updated with the
received replica update value “211” received from replica update transmission 73A,
and the corresponding local/resident “resolution value” would not be replaced with

the received “resolution value” of “1”.

Thus, the use of the associated “resolution value” and corresponding

resolution rules enables the consistent updating of replicated memory locations to be

51

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

achieved for each of the transmitting machines M1 and M3, so that the corresponding
replica memory locations of each of the transmitting machines M1 and M3 are
ultimately updated to remain substantially similar upon receipt of both transmissions

74A and 73 A respectively.

Thus altogether, the wuse of the associated “resolution value” and
corresponding resolution rules as described above for both receiving and transmitting
machines, enables the consistent updating of replicated memory locations to be

achieved.

Turning thus to Fig. 18, the example of Figs. 11-12 is collectively illustrated in
a time-diagram. Here, machine M1 transmits replica memory update N601A (which
corresponds to replica update 73A of Figs. 11 and 12), with the updated value “211”
of address #15, the contention value (“count value™) of “8”, and the “resolution value”
of “17, to machines M2, M3...Mn on which corresponding replica memory locations
reside. Also, substantially simultaneously/concurrently machine M3 also transmits a
replica memory update N602A (which corresponds to replica update 74A of Figs. 11
and 12), with the updated value “92” of the same address #15, the contention value
(“count value”) of “8”, and the “resolution value” of “3”, to machines M1, M2,

M4...Mn on which corresponding replica mémory locations reside.

Also, as is indicated in Fig. 18, transmissions N601A and N602A do not arrive
at the receiving machines immediately (that is, at the same time-unit 1 of
transmission). Instead, each receiving machine is indicated to receive replica update
transmissions N601A and N602A at time-unit 5 by the arrows shown for each
machine M1-Mn.

However, unlike the case of Figs. 6 and 7, the use of the associated “count
value” and “resolution value” for transmissions N601A and N602A together with the
resident “count values” and “resolution values” of each receiving machine, is able to
detect and resolve the two conflicting/contending replica update transmissions N601A
and N602A. Specifically, regardless of which replica update transmission N601A or
N602A is received first by machines M2, M4...Mn, each machine will independently

52

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

be able to detect that the second of the two received transmissions conflicts/contends
with the first received transmission, and resolve the local corresponding replica
memory value to a common and consistent updated replica memory value of a same
prevailing one of the two conflicting transmissions (that is, the prevailing replica

update transmission 74A of machine M3).

Furthermore, each transmitting machine M1 and M3, will independently be
able to detect that the received transmission of the other machine conflicts/contends
with the local value of the receiving machine, and resolve the local corresponding
replica memory value to a common and consistent updated replica memory value of a
the same prevailing one of the two conflicting transmissions (that is, the prevailing

replica update transmission 74A of machine M3).

Thus, by using the abovedescribed methods of this invention to associate
“count value(s)” and “resolution value(s)” with replicated memory location(s), and by
using the rules described herein for the operation and comparison of such “count
value(s)” and “resolution value(s)”, consistent updating of replica memory locations
of plural machines may be achieved, and detection and resolution of

conflicting/contending replica update transmissions may also achieved.

Thus it will be seen from the above example that the provision of the “count
value(s)” and “resolution value(s)” in conjunction/association with replicated
memory location(s) provides a means by which contention between plural replica
update transmissions for a same replicated memory location can be detected and
resolved, and consistent updating of replicated memory locations be

achieved/ensured.

Thus the provision of the “count value” and the provision of a simple rule,
namely that incoming messages with updating content of a replicated memory
location are valid if the resident “count value” is less than the received “count value”,
but are invalid if the resident “count value” is greater than the received “count value”,

enables consistent updating of replicated memory locations to be achieved.

53

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Furthermore, the provision of the “count value” and “resolution value” and the
provision of a further simple rule, namely that incoming messages with updating
content of a replicated memory location are valid (that is, are to update the local
corresponding replica memory location) if the resident “count value” and the received
“count value” are equal and the received “resolution value” compared to the resident
“resolution value” is determined according to the chosen/operated resolution rules to
be the “prevailing value” (such as for example, a replica update transmission sent by a
machine with a higher numerical identity prevailing against a replica update
transmission sent by a machine with a lower numerical identity, and thereby causing
the local corresponding replica memory location to be updated), enables consistent
updating of replicated memory locations to be achieved (even in the presence of
“conflicting” or “contending” replica update transmissions). Stated conversely,
incoming messages with updating content of a replicated memory location are invalid
(that is, are not to update the local corresponding replica memory location) if the
resident “count value” and the received “count value” are equal but the received
“resolution value” compared to the resident “resolution value” is determined
according to the chosen/operated resolution rules not to be the “prevailing value”
(such as for example, a replica update transmission sent by a machine with a lower
numerical identity not prevailing against a replica update transmission sent by a
machine with a higher numerical identity, and thereby not causing the local

corresponding replica memory location to be updated).

Thus, as illustrated in Figs. 11-12 and 18, when a replica update
message/transmission is received with the same “count value” as the local/resident
corresponding “count value”, then the “resolution value” may be used to determine
whether the received “conflicting” replica update transmission is to “prevail” or not
(that is, will cause the local corresponding replica memory location(s) to be updated
with the received replica update value). If a determination is made that such received
conflicting replica update transmission does “prevail”, then the update replica value,
count value, and resolution value associated with such received conflicting replica
update transmission is to replace/overwrite the corresponding local/resident replica
value, count value, and resolution value of the receiving machine. Alternatively, if a

determination is made that such received conflicting replica update transmission does

54

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

not “prevail”, then the local/corresponding replica value, count value, and resolution
value is not to be updated with the received replica update value, count value, and
resolution value, and instead the received replica memory update transmission is to be
discarded or ignored or otherwise not updated to local memory. Altogether then,
using the methods of the present invention, the situation of inconsistent replica
updating illustrated in Fig 7 is avoided and consistent updating of replica memory

locations is achieved.

Additionally provided is a preferred further improved arrangement of storing
“count values” and “resolution values” corresponding to replica memory locations.
Specifically, “count vales” and “resolution values” are preferably stored in such a
manner so as to be inaccessible by the application program such as by the application

program code. Fig. 19 describes this further preferred storage arrangement.

Fig. 19 depicts a single machine M1 of the plurality of machines depicted in
Fig. 2. The other machines (M2-M4) have been omitted from this drawing for
simplicity of illustration, though the depiction of the preferred storage arrangement of
Fig. 19 is applicable to all such machines of such a plurality (such as machines M2-
Mn of Fig. 2), as well as any other replicated, distributed, or multiple computer

system arrangement.

Specifically, indicated in Fig. 19 is the memory of machine M1 in which is
indicated a non-application memory region N701A, indicated as a dotted square.
Such memory is preferably inaccessible to the application program executing on
machine M1, in contrast to memory locations A, B and C, and the dotted outline is
used in this drawing to indicate this and differentiate it from the accessible memory

locations A, B and C.
In the preferred arrangement depicted in Fig. 19, the “count value(s)” and

“resolution values” are stored in such a non-application memory region, so as to be

inaccessible to the application program and application program code.

35

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Various memory arrangements and methods for non- application-accessible
memory regions is know in the prior art, such as using virtual memory, pages, and
memory management units (MMUSs) to create memory spaces or regions or address-
ranges inaccessible to specific instructions or code (such as for example application
program code). Other arrangements are also known in the prior art, such as through
the use of namespaces, software or application domains, virtual machines, and
segregated/independent memory heaps, and all such memory partitioning, segregation
and/or memory access-control methods and arrangements are to be included within

the scope of the present invention.

Such an arrangement is preferable so that the “count values” and “resolution
values” stored in the non-application memory region N701A are not able to be
tampered with, edited, manipulated, modified, destroyed, deleted or otherwise
interfered with by the application program or application program code in an

unauthorized, unintended, unexpected or unsupported manner.

Though only a single non-application memory region is indicated in Fig. 19,
more than one non-application memory region may be used, and any such multi-
region arrangement is to be considered included within the scope of the present

invention,

In at least one embodiment of this invention, one, some, or all “count value(s)”
and “resolution values” of a single machine, may be stored in internal memory, main
memory, system memory, real-memory, virtual-memory, volatile memory, cache
memory, or any other primary storage or other memory/storage of such single
machine as may be directly accessed (or accessible) to/by the central processing

unit(s) of the single machine.

Alternatively, in at least one further alternative embodiment of this invention,
one, some, or all “count value(s)” and “resolution values” of a single machine, may be
stored in external memory, flash memory, non-volatile memory, or any other
secondary storage or other memory/storage of such single machine as may not be

directly accessed (or accessible) to/by the central processing unit(s) of the single

56

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

machine (such as for example, magnetic or optical disk drives, tape drives, flash

drives, or the like).

Alternatively again, in at least one further alternative embodiment of this
invention, some first subset of all “count value(s)” and “resolution values” of a single
machine may be stored in internal memory, main memory, system memory, real-
memory, virtual-memory, volatile memory, cache memory, or any other primary
storage or other memory/storage of such single machine as may be directly accessed
(or accessible) to/by the central processing unit(s) of the single machine, and some
other second subset of all “count value(s)” and “resolution values” of the single
machine may be stored in external memory, flash memory, non-volatile memory, or
any other secondary storage or other memory/storage of such single machine as may
not be directly accessed (or accessible) to/by the central processing unit(s) of the
single machine (such as for example, magnetic or optical disk drives, tape drives,
flash drives, or the like). Further alternatively again, in at least one further alternative
embodiment of this invention, “count value(s)” and “resolution values” of such first
subset and such second subset may be moved between/amongst (e.g. moved from or
to) such first and second subsets, and thereby also moved between/amongst (e.g.
moved from or to) such internal memory (e.g. primary storage) and such external

memory (e.g. secondary storage).

Importantly, the above-described method of actioning replica update messages
comprising a “count value” and a “resolution value” associated with an updated value
of a replicated memory location, makes possible the detection, or the ability to detect,
the occurrence of two or more conflicting replica update messages for a same
replicated memory location. Furthermore, such “actioning” of received replica
update messages by each receiving machine may occur independently of each other
machine (and potentially at different times and/or different orders on different
machines), and without additional communication, confirmation, acknowledgement or
other communications of or between such machines to achieve the actioning of each

received transmission.

57

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

For a plurality of corresponding replica memory locations of a plurality of
machines (one of each corresponding replica memory locations on each one of such
machines), there is only a single “count value” and “resolution value”, and not
multiple “per-machine” count-values or resolution-values - such as for example, a
unique “count value” and/or “resolution value” of machine M1 for replica memory
location A, and a second and different “count value” and/or “resolution value” of
machine M2 for replica memory location A. As a result, each machine does not need
to store multiple “count values” and/or “resolution values” for a single replica
memory location (such as for example machine M1 storing a copy of machine M1’s
“count value” and/or “resolution value” for replica memory location A, as well as
storing a local copy of machine M2’s “count value” and/or “resolution value” for
replica memory location A, as well as storing a local copy of machine M3’s “count
value” and/or “resolution value” for replica memory location A etc..), nor transmit
with each replica update transmission more than one “count value” and/or “resolution
value” for a single replica memory location. Consequently, as the number of
machines comprising the plurality grows, there is not a corresponding growth of
plural “count values” and/or “resolution values” of a single replicated memory
location required to be maintained. Specifically, only one “count value” and
“resolution value” is maintained for all corresponding replica memory locations of all
machines, and not one “count value” and/or “resolution value” for each machine on
which a corresponding replica memory location resides. Therefore, as the number of
machines in the plurality grows, there is not a growth of per-machine “count-values”

and/or “resolution values” for replicated memory locations.

Alternative associations and correspondences between “count value(s)” and
“resolution values” and replicated memory location(s) is anticipated by this invention.
Specifically, in addition to the above described “one-to-one™ association of a single
“count value” and a single “resolution value” with each single replicated memory
location, alternative arrangements are anticipated where a single “count value™ and/or
a single “resolution value” may be associated with two or more replicated memory
locations. For example, it is anticipated in alternative embodiments that a single
“count value” and/or “resolution value” may be stored and/or transmitted in

accordance with the methods of this invention for a related set of replicated memory

58

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

locations, such as plural replicated memory locations comprising an array data
structure, or an object, or a class, or a “struct”, or a virtual memory page, or other
structured data type comprising two or more related and/or associated replicated

memory locations.

Preferably, “count value(s)” and “resolution values” are not stored and/or
operated for non-replicated memory locations or non-replica memory locations (that
is, the memory location(s) which are not replicated on two or machines and updated to
remain substantially similar). Consequently, “count values” and “resolution values”
are preferably not stored for such non-replicated memory locations and/or non-replica

memory locations.

Also preferably, “count value(s)” and “resolution values” corresponding to a
specific replicated memory location (or set of replicated memory location(s)) are only
stored and/or operated on those machines on which such specific replicated memory
location is replicated (that is, on those machines on which a corresponding local

replica memory location resides).

Preferably, when a replicated memory location which is replicated on some
number of machines (such as for example machines M1-M3), is additionally
replicated on a further machine (such as a machine M4), then a local/resident “count
value” and “resolution value” is created on such further machine (e.g. machine M4)
corresponding to such additionally replicated memory location, and initialised with a
substantially similar value of at least one of the “count value(s)” and “resolution
value(s)” of the other machines on which the additionally replicated memory location
was already replicated (e.g. machines M1-M3, though preferably the same machine
from which was sourced the initialised replica memory value of the further machine).
Preferably, such process of creating and initialising a “count value” and “resolution
value” on such further machine (e.g. machine M4) does not cause the “count value(s)”
and “resolution value(s)” of any other machine (e.g. machines M1-M3) to be
incremented, updated or changed. Thereafter, replica update transmissions may be
sent and received by all machines (including the further machine on which the

replicated memory location was additionally replicated) on which a corresponding

59

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

replica memory location resides (e.g. machines M1-M4), in accordance with the

above-described methods and arrangements.

Preferably, when a non-replicated memory location of a first machine (such as
for example machine M1), is replicated on one or more further machines (such as a
machines M2-M4), then a local/resident “count value” and “resolution value” is
created corresponding to such replicated memory location on both of such first
machine (e.g. machine M1) and such further machines (e.g. machines M2-M4), and
initialised with a substantially similar initial value. Preferably such initial value is
zero (“0”), however any other alternative initial values may be used so long as such
alternative initial value is substantially similar across all such corresponding resident
“count values” and/or “resolution values” of all machines (e.g. machines M1-M4).
Preferably also, such process of creating and initialising a “count value” and/or
“resolution value” on such first machine (e.g. machine M1) and such further machines
(e.g. machines M2-M4) does not cause the initial “count value(s)” and/or “resolution
values” to be incremented, updated or changed. Thereafter, replica update
transmissions may be sent and received by all machines (including the first machine
and further machine(s)) on which a corresponding replica memory location resides
(e.g. machines M1-M4), in accordance with the above-described methods and

arrangements.

Thus altogether, using the above methods, each of the machines M1-Mn is
able to update their corresponding replica memory locations in a consistent and
coherent manner in the presence of multiple conflicting/contending replica update
transmissions. Specifically, in the circumstances of Fig. 12, machine M3 on receipt of
message 73A firstly detects contention because the count value of the incoming
message 73A is compared with, and found to be the same as, the existing count value
at address #15. Following detecting such contention, machine M3 then compares the
resident “resolution value” and the received “resolution value” in order to determine a
prevailing value, and since one is less than three, machine M3 rejects the incoming
message from machine M1 and therefore retains the value 92. Conversely machine
M1 on receipt of message 74A, firstly detects contention because the received

message count 8 is equal to the existing memory count 8. However, machine M1

60

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

recognising that message 73A is being sent from machine M3 (which has a resolution
value of “3”), accepts that message and overwrites the existing content 211 with the

incoming content 92 because the number three is greater than the number one.

Similarly, each of the remaining machines M2, M4, M5 ... Mn receives both
message 73A and message 74A in either order. The first message to be received is
accepted because its count 8 is compared with, and found to be greater than, the pre-
existing count value in each of the machines M2, M4, M5 ... Mn. Thus the first
message received is accepted. However, the second message received triggers the
detection of a contention state which is able to be resolved in the following way where
the machines M1, M2, etc. are allocated the numbers 1, 2, etc. in a hierarchical order
which culminates in “n”. If the incoming message is from a machine with a higher
number in the hierarchical order than the number of the machine that sent the previous
message, then the message from the machine with a higher number is accepted.
Stated another way, if the second (or subsequent) received message is from a machine
with a lower number than that which sent the previous message, then the second (or
subsequent) received message is rejected. In this way the contention situation is not
only detected but also resolved and the actions of machine M3 take precedence over
the actions of machine M1 and thus the content 92 is recorded in all machines at
address #15.

Clearly the decision to allow the machine of higher number to prevail is

entirely arbitrary, and the lower numbered machine could prevail instead, if desired.

In an alternative arrangement, instead of relying upon a number in a machine
hierarchy, each machine can be provided with a locally generated random number, or
pseudo-random number (which can be changed from time to time if desired). Thus
different machines will take precedence from time to time irrespective of whether a

higher, or lower, random number is to prevail.

Turning now to Figs. 24-30, these drawings show various advantageous
message formats to be used for the transmission of replica memory updates having

“count values” and “resolution values”. Specifically, the four alternative replica

61

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

memory update message format arrangements shown may be employed as the
data/packet format of replica memory update packets, messages, frames, cells, or any
other replica memory update transmission. Each of the four replica memory update
message formats show different formatting arrangements of “count values” and
“resolution values” in replica memory update transmissions having one or more

updated replica memory values.

Fig. 24 shows a first replica memory update message 1301 comprising “n”
updated replica memory values. Specifically, replica update message 1301 is divided
into a “header” portion 1302, and a “payload” portion 1303. Preferably within such
payload portion 1303, are the indicated replica memory update values V1, V2...Vn.
Associated with each replica memory update value, is a replica memory location
identifier “I”, a count value “C”, and a resolution value “R”. In the preferred
message format arrangement depicted in Fig. 24, each indicated replica memory
update value V1,V2...Vn is indicated to be stored together with an associated replica
memory location identifier “I”, count value “C”, and resolution value “R”, in groups
1310/1 (including I1, V1, CI1, and R1), 1310/2 (including I2, V2, C2, and
R2)...1310/n (including In, Vn, Cn, and Rn) respectively.

Turning to Fig. 25, a more efficient replica memory update message format is
shown. The more efficient replica memory update message 1401 has “n” updated
replica memory values, Like the replica update message of Fig. 24, replica update
message 1401 is divided into a “header” portion 1402, and a “payload” portion 1403.
However, unlike Fig. 24, only a single resolution value “R” is stored in the replica
update message 1401, where the single resolution value “R” is understood to be
associated with, and therefore used by, all (or two or more) replica memory values
V1, V2...Vn. Specifically, in the replica update message format of Fig. 25, the single
resolution value “R” is to be understood to be associated with all replica memory
update values, and therefore in accordance with such understanding, in the decoding
of replica memory update message 1401 by a receiving machine, the single stored
resolution value “R” is to be employed/examined as if the resolution value “R” was

stored once for each replica memory update value as illustrated in Fig. 24 (such as for

62

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

example were the single resolution value “R” stored once for each unique replica

memory update value as was the case in Fig. 24 for resolution values R1, R2...Rn).

The improvement that the replica update message format 1401 represents over
the replica memory update message format 1301 of Fig. 24, is the transmission of the
resolution value “R” only once per replica update message, instead of multiple times
for a single replica update message (as was the case in Fig. 24 for resolution values
R1, R2...Rn), thereby reducing the size of replica memory update messages. This
reduction in size enables more replica memory update values to be stored in a single
replica memory update message by sharing a single resolution value “R” between all
such stored replica memory update values, or alternatively to transmit a same number
of replica memory update values in a replica update message format of a smaller size.
Thus, the transmission of a single resolution value for multiple replica memory update
values of a single transmission (or single packet, cell, frame, message or stream),
represents a more efficient transmission arrangement and thereby requires less

transmission capacity of the network 53 interconnecting the plural machines.

Next, at Fig. 26, a further alternative message format is shown. Specifically,
Fig. 26 shows a further improved message format arrangement whereby only a single
count value “C” is transmitted for multiple replica memory update values of a single
replica memory update message/transmission. This is similar to the alternative
arrangement of Fig. 25 where a single resolution value “R” is transmitted for all (or
two or more) replica memory update values, and associated with each such value. In
the case of Fig. 26, so too is the count value “C” stored once for all (or two or more)

replica memory update values, and associated with each such value.

In particular, as for replica memory update messages 1401 and 1301 of Figs.
25 and 24 respectively, replica memory update message 1501 is divided into a
“header” portion 1502 and a “payload” portion 1503. However unlike replica
memory update messages 1401 and 1301, only a single count value “C” is stored for
all replica values V1, V2...Vn. In storing the single count value “C”, it is necessary
that such single count value “C” is consistent with the count value rules (that is, the

abovedescribed rules of incrementing count values associated with a replica memory

63

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

location upon transmission of a replica memory update) for all replica memory update
values to which such single count value “C” is associated. Specifically then, when a
single count value “C” is to be stored for two or more replica memory update values,
it is necessary that such single stored count value “C” be the incremented value of the
highest magnitude resident/local count value of all replica memory update values
V1...Vn to which such single count value “C” is to be associated in replica memory
update message 1501. Additionally, when transmitting replica memory updates
comprising a single “count value”, in a slight modification of the above rules for
updating count values on occasion of a replica memory update transmission, the
single count value “C” to be transmitted in a replica memory update message 1501 is
to be stored to overwrite the resident/local count value of each replica memory

location being updated.

For example, consider Figs. 27-29. In Fig. 27, the case of three replicated
memory locations A, B, and C replicated on machines M1, M2...Mn is shown. Next
in Fig. 28, the situation is shown where machine M1 has modified the values of
replicated memory locations A and C, and proceeds to update the other corresponding

replica memory locations A and C of machines M2...Mn.

Utilising the single replica memory update message format of Fig .26,
machine M1 proceeds to transmit the replica memory update message 1601B via
network 53 as shown. Also shown, are the values comprising the replica memory
update message 1601B, where a header field 1602B and a payload field 1603B are
indicated. Specifically indicated are the single resolution value R with a value of
“1”, a single count value C with a value of “21”, a first identified replica memory
location I1 with a value of “A” (that is, the identity of replicated memory location A),
and the updated value V1 of replicated memory location A (which is the value “2117),
followed by a second identified replica memory location I2 with a value of “C” (that
is, the identity of replicated memory location C), and the updated value V2 of
replicated memory location C (which is the value “100”). Thus, replica memory
update message 1601B illustrates an applied example of the replica memory update

message format 1501 of Fig. 26.

64

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Attention is specially directed however to the updated count value and
resolution value of replicated memory locations A and C of machine MI.
Specifically, it will be observed that the updated count value and resolution value of
the two updated replicated memory locations A and C of machine M1 are identical
(that is, the count value and resolution value of each are identical). How this comes

about will now be explained.

With reference to Fig. 27, the count value of replicated memory location A is
indicated to be “7”, whilst the count value of replicated memory location C is
indicated to be “20”. Also indicated in Fig. 27, the resolution value of replicated
memory location A is indicated to be “2”, whilst the resolution value of replicated
memory location C is indicated to be “1”. Thus, Fig. 27 illustrates the state of
replicated memory locations A-C of machine M1 prior to the updated replica values

211 and 100 of replicated memory locations A and C respectively, being applied.

Following the operations of machine M1 which result in the modification of
the values of replica memory locations A and C as indicated in Fig. 28 (that is, the
updated value “211” of replicated memory location A, and the updated value of “100”
of replicated memory location C), machine M1 prepares replica memory update
message 1601B to comprise the updated replica memory values of A and C in
accordance with the replica memory update message format 1501 of Fig. 26.
Illustrated in message 1601B of Fig. 28 is a first identified replica memory location I1
with a value of “A” (which identifies replicated memory location “A”), and an
associated updated value V1 (which is the updated value “211” of replicated memory
location A). Similarly illustrated is a second identified replica memory location 12
with a value of “C” (which identifies replicated memory location “C”), and an
associated updated value V2 (which is the updated value “100” of replicated memory
location C). Also indicated is a single resolution value R (with a value of “1”), and a
single count value C (with a value of “21”). Specifically, how such single resolution

value R and single count value C are computed/generated will now be explained.

In this example, the single resolution value R, indicated with a value of “1” in

message 1601B, is the numerical identity of the transmitting machine of the replica

65

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

memory update message 1601B (which is machine M1). Thus, in accordance with
the abovedescribed example of resolution values, the numerical identity of machine
M1 to be used as the resolution value for message 1601B is stored/transmitted as the
resolution value R. This single resolution value R is to be used by the receiving
machine(s) upon receipt of message 1601B in the actioning of each replica memory

update value (e.g. V1 and V2), as is illustrated in Fig. 29.

Also illustrated in Fig 28, corresponding to the resolution value “1” being
computed/generated for the single resolution value R of message 1601B, such
resolution value “1” to be used as the single resolution value R is also to be stored to
overwrite the resident resolution values of the replicated memory locations to be
updated by message 1601B (that is, replicated memory locations A and C). Thus, as
illustrated in Fig. 28, in accordance with the generated single resolution value R for
message 1601B, such single resolution value (that is, a value of “1”) is stored to
replace the resident/local resolution values of replicated memory locations A and C,

CCI”

which are overwritten to be come “1” and “1” respectively.

Next, the single count value C is computed/generated from the set of
resident/local count values of the replica memory locations to be updated by message
1601B (that is, replicated memory locations A and C). Specifically then, in
accordance with the above description, the highest magnitude resident count value of
the replicated memory locations to be updated by message 1601B (that is, replicated
memory locations A and C) is sought to be determined by examining the resident
count value of each to-be-updated replicated memory location of message 1601B in
order to determine the largest (greatest) value to be used as the incremented single
count value C of message 1601B. With reference to Fig. 27, such examination
determines that the resident count value “20” of replicated memory location “C” is
greater than any other resident count value of the replicated memory locations to be
updated as part of message 1601B (that is, replicated memory location A with a
resident count value of “7” and replicated memory location C with a resident count
value of “20”). Therefore, the resident count value of replicated memory location C

(that is, the value “207) is chosen as the count value to be incremented and

66

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

subsequently used as the single count value C, and such value “20” is incremented

becoming value “21” of the single count value C of message 1601B.

Once the single count value C to be used in message 1601B has been
determined/calculated, such single count value C is then stored to replace/overwrite
the resident/local count value of each replicated memory location to be updated by
message 1601B — that is, replicated memory locations A and C. This is also
illustrated in Fig. 28 where the resident count value of replicated memory location A
is indicated to have been replaced with the value “21” of the single count value C of
message 1601B, and so too is the resident count value of replicated memory location

C also replaced with the value “21” of the single count value C of message 1601B.

Turning now to Fig. 29, the results of machines M2...Mn receiving and
actioning replica memory update message 1601B is shown. In particular, it will be
observed that replica memory location A of machines M2...Mn has an updated
content of “211”, and also an updated count value of “21” and an updated resolution
value of “1”. In a similar manner, replicated memory location C of machines
M2...Mn has been updated with a value of “100”, and also has an identical updated
count value and resolution value as replica memory location A, which is “21” and “1”
respectively. Specifically, what happens in Fig. 29 upon receipt of replica memory

update message 1601B will now be explained.

Upon a treceiving machine (such as machine M2) receiving replica memory
update message 1601B, such receiving machine proceeds to action such received
message 1601B. In actioning such replica update message 1601B, the receiving
machine proceeds to compare the single count value C with the resident count value
associated with each replicated memory location to be updated by message 1601B
(that is, replica memory locations A and C). Thus, the receiving machine initially
compares the single count value C of message 1601B with the resident count value
associated with replica memory location A, in accordance with the above described
rules for comparing count values. In accordance with the above described count
value comparison rules, if the single count value C of message 1601B is greater than

the resident count value associated with replica memory location A, then replica

67

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

memory location A of the receiving machine is updated (overwritten) with the
updated replica value V1 of message 1601B, and so too is the associated resident
count value and resolution value of the receiving machine updated (overwritten) with
the single count value C (that is, value “21”), and the single resolution value R (that

is, value “1”) respectively.

Alternatively, if the single count value C of message 1601B is less than the
resident count value associated with replica memory location, A, then replica memory
location A of the receiving machine is not updated (overwritten) with the updated
reﬁlica value V1 of message 1601B, and neither is the associated resident count value

and resolution value updated (overwritten).

Finally, a third situation is also possible where a comparison of the single
count value C of message 1601B (that is, value “21”) is the same as (e.g. equal to) the
resident count value associated with replica memory location A of the receiving
machine. When such a situation as this occurs, a contention situation is detected and
signalled, and the single resolution value R of message 1601B (that is, value “1”) is
compared with the resident resolution value associated with replica memory location
A of the receiving machine. In accordance with the resolution rules, a determination
is then made which of the two compared resolution values is to prevail. If it is
determined that the single resolution value R of message 1601B is to prevail over the
resident resolution value associated with replica memory location A, then the
receiving machine would proceed to update (overwrite) replica memory location A
with the updated replica value V1 of message 1601B, and so too update (overwrite)
the associated resident resolution value and optionally the associated count value with
the single resolution value and single count value respectively. Alternatively, if it
were determined that the resident resolution value associated with replica memory
location A is to prevail over the single resolution value R of message 1601B, then the
receiving machine would not update (overwrite) replica memory location A with the
updated replica value V1 of message 1601B, and also not update the associated

resident resolution value and/or count value.

68

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Such a process of actioning replica update message 1601B as described for
replica memory location A (that is, as related to identity I1 and associated value V1 of
replica update message 1601B), is similar repeated mutatis mutandis for each
identified replica memory location identified to be updated by message 1601B (that is,
replicated memory location C). Thus, it will be observed in Fig. 29 that replica
memory location C of each receiving machine (that is, machines M2...Mn) has been
updated with a new value of “100”, and a new resolution value of “1” and count value
of “21” which corresponds to the single resolution value R and single count value C
of message 1601B (and which is common to replica memory location A). With
reference to message format 1501 of Fig. 26, the abovedescribed steps of receiving
and actioning a replica update message comprising a single resolution value and/or a
single count value is repeated for each separate identified replica memory location

and associated value (such as for example, I1 and V1, 12 and V2,....., In and Vn)

Fig. 30 shows an alternative arrangement of storing a single resolution value R
and a single count value C in the replica update message 1601D. Specifically, replica
update message 1601D shows the single resolution value R and the single count value
C stored as part the header field 1602D (instead of the payload field 1603D as was the
case in Fig. 26). In further alternative arrangements, either one of the single count
value C or the single resolution value R may be stored in the header field 1602D,
whilst the other of the two values may be stored in the “payload” field 1603D.
Various other storage and transmission arrangements of the single resolution value R
and single count value C will be apparent to those skilled in the computer and/or
electrical engineering arts and are to be included within the scope of the present

invention.

In an alternative embodiment of Fig. 24, rather than each of the machines M1,
M2 ... Mn sending an individual message to all other machines, the individual
machines send only a single message to the server machine X which then prepares a
broadcast message (such as message 1301 schematically illustrated in Fig. 24). In this
example, “n” replicated memory locations/addresses are simultaneously updated by
the message 1301 each with their individual content/value V1, V2...Vn, and the

corresponding identities of the replicated memory locations to which the values relate

69

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

(that is, identities I1, 12...In respectively). Thus the broadcast or group message 1301
has “n” count values, in this example C1, C2...Cn (corresponding to values V1,
V2...Vn respectively), and also has “n” resolution values (also corresponding to
values V1, V2...Vn respectively), and the group message is broadcast to all

application running machines M1, M2 Mn by the server machine X.

Importantly, in all arrangements of Figs 26 and 30, the single count value of
the group message 1501 is compared with the identified (that is, via identifiers I1,
I2...In respectively) corresponding resident/local count value stored for each
identified replicated memory location and the abovementioned rules of comparing
count values and detection and resolution of contention are applied. Specifically, the
rules for comparing count values and detection and resolution of contention are
substantially the same mutatis mutandis as for the arrangement of Fig. 24 (where each
replica memory update value is associated with a unique count value and a unique
resolution value), but are based upon the single count value and single resolution
value of the broadcast message 1301 which are understood to be associated with each

replica memory update value as indicated schematically in Fig. 26.

In a still further embodiment of Figs. 26 and 30, the individual machines send
only a single message to the server machine X which then prepares a broadcast
message (such as message 1501 schematically illustrated in Fig. 26, and message
1601D schematically illustrated in Fig. 30). In this example, “n” addresses are
simultaneously updated by the message 1501/1601D each with their individual
content/values. Thus the broadcast or group message 1501/1601D has a single count
value “C” and a single resolution value “R”, and the group message is broadcast to all
application running machines M1, M2 Mn by the server machine X. The single
count value of the group message 1501/1601D is compared with the corresponding
resident count value stored for each replicated memory location and the
abovementioned rules of comparing count values and detection and resolution of
contention are applied. The rules for detection and resolution of contention are the
same and are based upon the single count value C and single resolution value R of the
broadcast message 1501/1601D which are understood to be associated with each

replica memory update value V1, V2...Vn as indicated schematically in Fig. 26.

70

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Importantly, in all arrangements of Figs 26 and 30, the single count value of
the group message 1501/1601D is compared with the identified (that is, via identifiers
I1, I2...In respectively) corresponding resident/local count value stored for each
identified replicated memory location and the abovementioned rules of comparing
count values and detection and resolution of contention are applied. Specifically, the
rules for comparing count values and detection and resolution of contention are
substantially the same mutatis mutandis as for the arrangement of Fig. 24 (where each
feplica memory update value is associated with a unique count value and a unique
resolution value), but are based upon the single count value and single resolution
value of the broadcast message 1501/1601D which are understood to be associated

with each replica memory update value of message 1501/1601D.

Preferably, as indicated in Figs. 26 and 30, the count value “C” which
becomes the single count value broadcast to be incremented, stored and transmitted, is
chosen as the highest magnitude resident/local count value present for the “n”
replicated memory location/addresses to be updated by message 1501/1601D. The
highest magnitude count has the advantage that it will operate in accordance with the
above described comparison rules for all “n” replicated memory locations to which it
is to be associated, and additionally is less likely to encounter contention than a count

value of lower magnitude..

It will be apparent that the grouping together of updating messages so as to
provide a group message 1501/1601D as indicated in Figs. 26 and 30 (and
additionally in alternative arrangements of Figs. 24 and 25), substantially reduces both
the number of messages and total volume of data being sent over the network 53 and

thus lightens the load on the network 53.

Finally, in alternative arrangements of replica memory update messages, a
single count value and/or a single resolution value may be transmitted for a single
replica memory update transmission, where such single transmission potentially
includes a plurality of packets, cells, frames, or messages. Thus, in such alternative

embodiments as this, where a single replica memory update transmission comprising

71

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

a single transmitted count value and/or resolution value, then preferably only a single
replica memory update message of the multiple messages having such single replica
memory update transmission will include the single count value and/or resolution

value.

It will also be apparent that the abovementioned arrangement substantially increases
the volume of memory required on each machine, since the storing of a “count value”
and/or “resolution value”, for example a single combined 32 bit value, associated with
each replicated application memory location/content, occupies substantial memory
space/capacity which may approach that of the space/capacity occupied by the
replicated application memory locations/contents themselves. Thus, such stored
“count values” and/or “resolution values” associated with replicated application
memory locations/contents represent a potentially substantial local memory overhead
of each of the multiple computers operating together as a replicated shared memory
arrangement. This is less than ideal, and thus it is desirable to conceive of a method
for reducing this local memory overhead by reducing the local memory capacity
occupied by local/resident “count values” and/or “resolution values” associated with

replicated application memory locations/contents.

In accordance with a first embodiment there is disclosed a method of deleting
“count values” and/or “resolution values” associated with replicated application
memory locations/contents in the local memory of each machine in such a manner
that the memory overhead which such stored “count values” and/or “resolution
values” represent, may be reduced. The herein disclosed method utilizes the fact that
during the processing of the application program by a multiple computer system
operating as a replicated shared memory arrangement, there are often many more
memory reads of replicated application memory locations/contents than memory
writes of replicated application memory locations/contents, and thus writing to
replicated application memory locations/contents is often relatively infrequent
compared with reading of replicated application memory locations/contents.
Specifically, non-commercial operation of a prototype multiple computer system
operating as a replicated shared memory arrangement has revealed that for many

application programs there are often bursts of writing activity during initialisation of

72

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

one or more replicated application memory locations/contents by the application
program, followed thereafter by the remaining operation of the application program
where no writing activity to the same replicated application memory
location(s)/content(s) occurs at all. One such example (but not the sole example), is
the initialisation by the application program of replicated application memory
contents/values which remain constant after initialization (that is, are not written to or

modified after initialisation).

In accordance with a preferred embodiment, a “count value” and/or
“resolution value” associated with a replicated application memory location/content,
and stored in the local memory of a member machine of multiple computer system
operating as a replicated shared memory arrangement, is deleted after an elapsed
period of time in which no replica memory update transmissions have been sent or

received for the associated replicated application memory location/content.

For example, in one such arrangement the elapsed period of time chosen may
be one hour, so that after a period of one hour has elapsed in which no replica
memory update transmissions have been sent or received for a specific replicated
application memory location/content, then the associated “count value” and/or
“resolution value” stored in the local memory of the local machine may be deleted,
reclaimed, garbage collected, or otherwise the local memory occupied by such
associated “count value” and/or “resolution value” may be “freed” so as to be
available to store other data/content (including potentially other application or non-

application memory content or data).

Clearly the above arrangement can also be made to operate with any minimum
elapsed period of time, including potentially variable or changing minimum petiods of
time, before effecting the above methods. In one example, an chosen minimum
elapsed period of time may be 1 hour. In an alternative example, another chosen

minimum elapsed period of time may be 1 second.

Additionally, it is not a requirement of this invention that the above methods

be effected immediately upon the minimum elapsed period of time being reached.

73

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Instead, after the chosen minimum period of time has elapsed (including potentially
variable or changing minimum periods of time), the above methods may be effected at
any point thereafter without limitation or constraint. For example, after the
minimum elapsed period of time has occurred, the effected results of the above
methods (that is, the deleting of associated “count values™ and/or “resolution values™)

may take place many seconds, many minutes, or even many hours later.

Furthermore, after the minimum elapsed period of time has occurred, the
effected results of the above methods and embodiments may be deferred or postponed
until such time where the local CPU or similar processing logic of the local machine
is not busy (or substantially busy), and thus the deletion (or the like) of the associated
“count value(s)” and/or “resolution value(s)” is undertaken as a housekeeping
function without impacting the performance of the application program or the

computer as a whole.

Additionally, or alternatively, after the minimum elapsed period of time has
occurred, the effected results of the above methods and embodiments (that is, deletion
of associated “count value(s)” and/or “resolution value(s)”) can be carried out in the
event that the available/spare/”free” memory for the application program or computer
is low, and thus it is desirable that memory be consolidated and reduced in order to

satisfy other legitimate needs or demands for local memory capacity.

It is also possible that instead of deleting a “count value” and/or “resolution
value”, they can instead be reduced in size to a single bit (or any lesser format or

arrangement of bits than prior to the reduction).

In some application programming languages, application memory
contents/values which are intended by the programmer not to change after intialisation
are able to be marked as “final” or the like to signal to the computing system that such
value will not change after initialisation. For application programs which utilise such
“final” or the like markers or identifiers for specific application memory

locations/contents, the abovedescribed method of deleting count values is able to be

74

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

advantageously utilised to reduce the local memory overhead which “count values”
and/or “resolution values” associated with such “final” or the like marked application

memory locations/values represent.

Additionally, for application programming languages where such “final” or
the like markers or identifiers are not provided or supported, the above described
methods of deleting “count values” and/or “resolution values” are able to be
advantageously used, as the above described methods do not rely on the programmer
marking application memory locations/contents as “final” or the like in order to
achieve the advantageous result of reduced local memory overhead for the multiple

computers operating as a replicated shared memory arrangement.

However, non-commercial operation of a prototype multiple computer system
operating as a replicated shared memory arrangement has also revealed that even
when a programming language supports the use of “final” markers or the like for
application memory locations/contents, programmers (and therefore the application
programs they write) very often do not utilise the available “final” markers or the like.
Instead, even when programmers could potentially make use of such “final” markers
or the like, they often do not make use of such “final” markers or the like (either
intentionally, or unintentionally). Thus, it is a further benefit of the above described
methods and embodiments, that the use of “final” makers and the like is not necessary
in order to achieve the advantageous benefits afforded by the above methods. Thus,
in application programs where the application programmer omitted (either
intentionally or unintentionally) the use of “final” markers or the like, the methods of
this invention are able to be beneficially applied, thereby reducing the local memory
overhead which associated “count values” and/or “resolution values” represent for

such replicated application memory locations/contents.

A particular example of storing and updating “count value(s)” will now be
described. Specifically, “count values” described above may be beneficially used to
ensure the consistent updating of replicated application memory locations across

plural machines of a replicated shared memory arrangement.

75

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

However, such “count value(s)” may substantially increase the volume of
memory required on each machine, since the storing of a “count value”, for example a
32 bit value, associated with each replicated application memory location/content,
occupies substantial memory space/capacity which may approach that of the
space/capacity occupied by the replicated application memory locations/contents
themselves. Thus, such stored “count values” associated with replicated application
memory locations/contents represent a potentially substantial local memory overhead
of each of the multiple computers operating together as a replicated shared memory
arrangement. This is less than ideal, and thus it is desirable to chose small values
(that is, small values which occupy less local memory capacity) to be used as the
“count values” so as to reduce the local memory overhead that stored count values

represent.

For example, where the “count value” is a 32bit integer value, then for each
replicated application memory location there is associated a 32bit “count value”.
This may represent a very considerable local memory overhead. On the other hand,
where the “count values” are 16 bit, or even 8 bit values instead of 32bit values, then
the local memory overhead that such “count values” represent is effectively reduced
by a factor of 2 or 4 respectively. Thus, the utilisation of reduced size/capacity

“count values” is desirable.

However, as the value size of the “count value” reduces (such as for example,
from 32bits to 8 bits), so too does the maximum number of abovedescribed increment
operations (that is, the abovedescribed increment operations performed to a
local/resident “count value” upon occasion of a replica memory update transmission)
that can be performed before the maximum value limit of the reduced “count value” is
reached. When the value size is very large (such as for example 32 bits, or even 64
bits), then many millions, billions, or even more abovedescribed increment operations
may take place without reaching the maximum incremented value supported by such
very large value sizes. On the other hand, when small value sizes are used, such as
for example 8bit value sizes, then the maximum number of abovedescribed increment
operations is dramatically reduced to just 256 discreet values and therefore a

maximum of 255 discreet increments operations as described above. Thus, 8 bit

76

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

“count values”, whilst attractive as offering a reduced local memory overhead
(compared to 32 bit values for example), will only work well so long as the maximum
increments performed on such 8bit “count value” does not exceed the maximum

supported number of 255.

If an 8 bit unsigned byte value for the stored “count values” is used, and no
strategy is employed to ensure that “arithmetic overflow” of the “count value” does
not occur, then the following undesirable situation will arise when the 256™ increment
operation takes places. Initially, for the first 255 increment operations, all operates
correctly and the stored “count values” increase in value in accordance with the above
description (for example 1, followed by 2, 3, 4.... 253, 254, 255). As aresult, the
incremented “count values” operate effectively as intended and described above to

ensure the consistent updating of replicated application memory locations.

However, upon occasion of the 25 6" increment operation when the
“count value” is 255, instead of an incremented value of 256 being generated as the
result of such 256™ increment operation and stored as the new local/resident “count
value”, a “count value” of “0” will result. This is termed “arithmetic overflow” in the
computing arts, and occurs when a calculation (e.g. the increment operation) produces
a result that is greater in magnitude than what a given register or data type or memory
storage location can store or represent. Furthermore, upon occasion of the 257
increment, the resulting value will be “1”, and so on and so forth until a value of 255
is once again reached, at which point the next increment operation will cause an

arithmetic overflow condition once more, and the process will continue.

As a result of such arithmetic overflow of a count value (such as an 8 bit
“count value™), then if a replica memory update transmission associated with the 256
increment operation is sent with the associated overflowed “count value” of “0”, then
such replica update transmission (and later replica update transmissions with “count
values” 1,2,3....254) will be considered by the receiving machines to be “stale” or
“old” values, as the “count values” of such replica memory update transmissions will
be less than the corresponding local/resident “count values” of the receiving machine

which will be for example “255” (that is, the last incremented value prior to the

77

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

arithmetic overflow). Thus, this has the consequence of effectively “halting” replica
memory updating events on the plural machines, as all later sent replica memory
update transmissions with “overflowed count values” are discarded/rejected by the
receiving machines when compared against the local/resident “count values” with a
greater value prior to the arithmetic overflow. The result is chaos, or at least
uncertainty, with the replica application memory locations/contents of the various
computers no longer being updated, and/or no longer being consistent with each other.

Obviously this is very undesirable.

In a first embodiment to overcome the above described undesirable
consequences, a check is performed by each machine from time to time of one or
more (or each or all) “count value(s)”. When an examined “count value” reaches
some threshold (such as for example a number such as 250 near to the maximum
value of 255, or alternatively immediately upon or before occasion of an arithmetic
overflow of a “count value”), then all replica memory updating transmissions of the
replicated application memory location/content corresponding to such “count value”
is/are temporarily halted. At the initiation of the temporary halt in transmission prior
to an arithmetic overflow (or immediately upon occasion of an arithmetic overflow),
all memory locations will be coherent (i.e. have the same value), and potentially
inconsistent updating of replica application memory location(s)/content(s) will not
have yet occurred due to the arithmetic overflow. During the halt in replica memory
update transmissions for the effected replicated application memory
location(s)/content(s), each corresponding “count value” of each machine for that (or
those) effected replica application memory location(s)/content(s) are re-set or re-
initialised to zero (or some other low magnitude number, such as 1, 2, or 3 etc). Once
this re-setting or re-initialisation is accomplished, the halt in transmissions is
discontinued, and replica memory update transmissions for the effected replica
application memory location(s)/content(s) resume. This cycle of events is repeated
each time a “count value” reaches the predetermined threshold (such as for example

250 in the above described example).

In a second embodiment, a temporary halt to replica memory update

transmissions for one or more replica application memory location(s)/content(s)

78

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

occurs at regular or semi-regular or predetermined time intervals, such as for example
every second, or once every 60 seconds. Again during each halt in replica memory
updating transmissions, all associated “count values™ are re-set or re-initialised to

Z€10.

In a third embodiment, the two above described embodiments may be
combined, where a temporary halt to replica memory update transmissions for one or
more replica application memory location(s)/content(s) occurs at regular or semi-
regular or predetermined intervals, however should a “count value” reach some
threshold prior to the next regular or semi-regular or predetermined halt occuring,
then all replica memory update transmissions of the replicated application memory
location/content corresponding to such “count value” is/are temporarily halted and

res-set or re-initialised to zero.

The foregoing describes only some embodiments of the present invention and
modifications, obvious to those skilled in the computing arts, can be made thereto
without departing from the scope of the present invention. For example, reference to

JAVA includes both the JAVA language and also JAVA platform and architecture.

Similarly, the “count values” and “resolution values” described above are
integers but this need not be the case. Fractional “count values” and/or “resolution
values” (i.e. using a float or floating point arithmetic or decimal fraction) are possible

but are undesirably complex.

It will also be appreciated to those skilled in the art that rather than
incrementing the “count value” for successive messages, the “count value” could be
decremented instead. This would result in later messages being identified by lower

“count values” rather than higher “count values™ as described above.

Alternative arrangements of transmitted “resolution values” are provide by this
invention. Specifically, it is anticipated that transmitted “resolution value(s)” of a
replica memory update transmission may take the form of an header value of a packet

or message, such as the address or identity or the source machine of the packet or

79

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

message. Thus, the “resolution value” may take any transmitted form so long as such
transmitted value may be used in accordance with the abovedescribed methods for

resolving conflicting replica update transmissions by the use of “resolution value(s)”.

It is also provided in alternative embodiments of this invention that “count
values” and/or “resolution values” transmitted in replica memory update

transmissions may take any form, including headers, or other packet fields.

In the various embodiments described above, local/resident “count value(s)”
of written-to replicated memory location(s) are described to be incremented by a
value of “1” prior to, or upon occasion of, a replica update transmission by a sending
machine being transmitted. Such incremented “count value” is also described to be
stored to overwrite/replace the previous local/resident “count value” of the
transmitting machine (e.g. that is, the local/resident “count value” from which the
incremented “count value” was calculated). However, it is not a requirement of the
present invention that such incremented “count values” must be incremented by a
value of “1”. Instead, alternative arrangements are provided where such incremented
“count value(s)” may be (or have been) incremented by a value of more than “1” (for
example, “2”, or “10”, or “100”). Specifically, exactly what increment value is
chosen to be employed to increment a “count value” is not important for this
invention, so long as the resulting “incremented count value” is greater than the

previous local/resident “count value”.

Furthermore, alternative arrangements to incrementing the resident “count
value” are also provided. Specifically, it is not a requirement of the present invention
that such updated “count value(s)” of a replica update transmission must be
incremented, and instead any other method or means or arrangement may be
substituted to achieve the result of updated “count value(s)” which are greater than the
previous local/resident “count value(s)”. Consequently, what is important is that
corresponding to a replica update transmission being transmitted, that such replica
update transmission comprises an “updated count value” which is greater than the
previous known “local/resident count value” of the transmitting machine (such as may

be known for example at the time of transmission, or alternatively as may be known at

80

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

a time when the replica update transmission is prepared for, or begins preparation for,
transmission), and also that such previous known “local/resident count value” of the
transmitting machine is overwritten/replaced with the transmitted “updated count

value”,

Also, alternative arrangements of the present invention provide that “count
values” and “resolution values” may be stored and/or operated as a combined value,
such as for example, the “count value” stored as the lower 24 bits of a single 32 bit
value, and the “resolution value” stored as the upper 8 bits of the same single 32bit
value. Alternatively or additionally, such combined storage scheme may be
employed during transmission of “count values™ and “resolution values”, such that a
replica update transmission cbmprising a “count value” and a “resolution value” are
transmitted as a single combined value (such as described above). Ultimately, the
specific storage arrangement of “resolution values™ and “counter values” for
replicated memory locations and transmission of replica memory updates is not
important to this invention, so long as both such values are transmitted and/or stored

in a form compatible with the abovedescribed methods.

The term “distributed runtime syétem”, “distributed runtime”, or “DRT” and
such similar terms used herein are intended to capture or include within their scope
any application support system (potentially of hardware, or firmware, or software, or
combination and potentially comprising code, or data, or operations or combination)
to facilitate, enable, and/or otherwise support the operation of an application program
written for a single machine (e.g. written for a single logical shared-memory machine)
to instead operate on a multiple computer system with independent local memories
and operating in a replicated shared memory arrangement. Such DRT or other
“application support software” may take many forms, including being either partially
or completely implemented in hardware, firmware, software, or various combinations

therein.

The methods described herein are preferably implemented in such an
application support system, such as DRT described in International Patent Application
No. PCT/AU2005/000580 published under WO 2005/103926 (and to which US

81

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Patent Application No. 11/111,946 Attorney Code 5027F-US corresponds), however
this is not a requirement. Alternatively, an implementation of the above methods
may utilize a functional or effective application support system (such as a DRT
described in the abovementioned PCT specification) either in isolation, or in
combination with other softwares, hardwares, firmwares, or other methods of any of

the above incorporated specifications, or combinations therein.

The reader is directed to the abovementioned PCT specification for a full
description, explanation and examples of a distributed runtime system (DRT)
generally, and more specifically a distributed runtime system for the modification of
application program code suitable for operation on a multiple computer system with
independent local memories functioning as a replicated shared memory arrangement,
and the subsequent operation of such modified application program code on such
multiple computer system with independent local memories operating as a replicated

shared memory arrangement.

Also, the reader is directed to the abovementioned PCT specification for
further explanation, examples, and description of various anticipated methods and
means which may be used to modify application program code during loading or at

other times.

Also, the reader is directed to the abovementioned PCT specification for
further explanation, examples, and description of various anticipated methods and
means which may be used to modify application program code suitable for operation
on a multiple computer system with independent local memories and operating as a

replicated shared memory arrangement.

Finally, the reader is directed to the abovementioned PCT specification for
further explanation, examples, and description of various methods and means which
may be used to operate replicated memories of a replicated shared memory
arrangement, such as updating of replicated memories when one of such replicated

memories is written-to or modified.

82

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

In alternative multicomputer arrangements, such as distributed shared memory
arrangements and more general distributed computing arrangements, the above
described methods may still be applicable, advantageous, and used. Specifically, any
multi-computer arrangement where replica, “replica-like”, duplicate, mirror, cached
or copied memory locations exist, such as any multiple computer arrangement where
memory locations (singular or plural), objects, classes, libraries, packages etc are
resident on a plurality of connected machines and preferably updated to remain
consistent, then the above methods apply. For example, distributed computing
arrangements of a plurality of machines (such as distributed shared memory
arrangements) with cached memory locations resident on two or more machines and
optionally updated to remain consistent comprise a functional “replicated memory
system” with regard to such cached memory locations, and is to be included within
the scope of the present invention. Thus, it is to be understood that the
aforementioned methods apply to such alternative multiple computer arrangements.
The above disclosed methods may be applied in such “functional replicated memory

systems” (such as distributed shared memory systems with caches) mutatis mutandis.

It is also provided and envisaged that any of the described functions or
operations described as being performed by an optional server machine X (or multiple
optional server machines) may instead be performed by any one or more than one of
the other participating machines of the plurality (such as machines M1, M2, M3...Mn
of Fig. 1).

Alternatively or in combination, it is also further provided and envisaged that
any of the described functions or operations described as being performed by an
optional server machine X (or multiple optional server machines) may instead be
partially performed by (for example broken up amongst) any one or more of the other
participating machines of the plurality, such that the plurality of machines taken
together accomplish the described functions or operations described as being
performed by an optional machine X. For example, the described functions or
operations described as being performed by an optional server machine X may broken

up amongst one or more of the participating machines of the plurality.

33

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Further alternatively or in combination, it is also further anticipated and
envisaged that any of the described functions or operations described as being
performed by an optional server machine X (or multiple optional server m0achines)
may instead be performed or accomplished by a combination of an optional server
machine X (or multiple optional server machines) and any one or more of the other
participating machines of the plurality (such as machines M1, M2, M3...Mn), such
that the plurality of machines and optional server machines taken together accomplish
the described functions or operations described as being performed by an optional
single machine X. For example, the described functions or operations described as
being performed by an optional server machine X may broken up amongst one or
more of an optional server machine X and one or more of the participating machines

of the plurality.

Various record storage and transmission arrangements may be used when
implementing this invention. One such record or data storage and transmission
arrangement is to use “lists” or “tables”, or other similar data storage structures.
Regardless of the specific record or data storage and transmission arrangements used,
what is important is that the replicated written-to memory locations are able to be
identified, and their updated values (and identity) are to be transmitted to other
machines (preferably machines of which a local replica of the written-to memory
locations reside) so as to allow the receiving machines to store the received updated

memory values to the corresponding local replica memory locations.

Thus, the methods of this invention are not to be restricted to any of the
specific described record or data storage or transmission arrangements, but rather any
record or data storage or transmission arrangement which is able to accomplish the

methods of this invention may be used.

Specifically with reference to the described example of a “table” or “list”, the
use of a “table” storage or transmission arrangement (and the use of the term “table”
or “list” generally) is illustrative only and to be understood to include within its scope
any comparable or functionally equivalent record or data storage or transmission

means or method, such as may be used to implement the methods of this invention.

84

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

The terms “object” and “class” used herein are derived from the JAVA
environment and are intended to embrace similar terms derived from different

environments, such as modules, components, packages, structs, libraries, and the like.

The use of the term “object” and “class” used herein is intended to embrace
any association of one or more memory locations. Specifically for example, the term
“object” and “class” is intended to include within its scope any association of plural
memory locations, such as a related set of memory locations (such as, one or more
memory locations comprising an array data structure, one or more memory locations
comprising a struct, one or more memory locations comprising a related set of

variables, or the like).

Reference to JAVA in the above description and drawings includes, together
or independently, the JAVA language, the JAVA platform, the JAV A architecture,
and the JAVA virtual machine. Additionally, the present invention is equally
applicable mutatis mutandis to other non-JAVA computer languages (including for
example, but not limited to any one or more of, programming languages, source-code
languages, intermediate-code languages, object-code languages, machine-code
languages, assembly-code languages, or any other code languages), machines
(including for example, but not limited to any one or more of, virtual machines,
abstract machines, real machines, and the like), computer architectures (including for
example, but not limited to any one or more of, real computer/machine architectures,
or virtual computer/machine architectures, or abstract computer/machine
architectures, or microarchitectures, or instruction set architectures, or the like), or
platforms (including for example, but not limited to any one or more of,
computer/computing platforms, or operating systems, or programming languages, or

runtime libraries, or the like).

Examples of such programming languages include procedural programming
languages, or declarative programming languages, or object-oriented programming
languages. Further examples of such programming languages include the
Microsoft. NET language(s) (such as Visual BASIC, Visual BASIC.NET, Visual

85

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

C/C++, Visual C/C++NET, C#, CENET, etc), FORTRAN, C/C++, Objective C,
COBOL, BASIC, Ruby, Python, etc.

Examples of such machines include the JAVA Virtual Machine, the Microsoft
NET CLR, virtual machine monitors, hypervisors, VMWare, Xen, and the like.

Examples of such computer architectures include, Intel Corporation’s x86
computer architecture and instruction set architecture, Intel Corporation’s NetBurst
microarchitecture, Intel Corporation’s Core microarchitecture, Sun Microsystems’
SPARC computer architecture and instruction set architecture, Sun Microsystems’
UltraSPARC HII microarchitecture, IBM Corporation’s POWER computer
architecture and instruction set architecture, IBM Corporation’s
POWER4/POWERS5/POWERG6 microarchitecture, and the like.

Examples of such platforms include, Microsoft’s Windows XP operating
system and software platform, Microsoft’s Windows Vista operating system and
software platform, the Linux operating system and software platform, Sun
Microsystems’ Solaris operating system and software platform, IBM Corporation’s
AIX operating system and software platform, Sun Microsystems’ JAVA platform,
Microsoft’s .NET platform, and the like.

When implemented in a non-JAVA language or application code environment,
the generalized platform, and/or virtual machine and/or machine and/or runtime
system is able to operate application code in the language(s) (including for example,
but not limited to any one or more of source-code languages, intermediate-code
languages, object-code languages, machine-code languages, and any other code
languages) of that platform, and/or virtual machine and/or machine and/or runtime
system environment, and utilize the platform, and/or virtual machine and/or machine
and/or runtime system and/or language architecture irrespective of the machine
manufacturer and the internal details of the machine. It will also be appreciated in
light of the description provided herein that platform and/or runtime system may

include virtual machine and non-virtual machine software and/or firmware

86

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

architectures, as well as hardware and direct hardware coded applications and

implementations.

For a more general set of virtual machine or abstract machine environments,
and for current and future computers and/or computing machines and/or information
appliances or processing systems, and that may not utilize or require utilization of
either classes and/or objects, the structure, method, and computer program and
computer program product are still applicable. Examples of computers and/or
computing machines that do not utilize either classes and/or objects include for
example, the x86 computer architecture manufactured by Intel Corporation and
others, the SPARC computer architecture manufactured by Sun Microsystems, Inc
and others, the PowerPC computer architecture manufactured by International
Business Machines Corporation and others, and the personal computer products made
by Apple Computer, Inc., and others. For these types of computers, computing
machines, information appliances, and the virtual machine or virtual computing
environments implemented thereon that do not utilize the idea of classes or objects,
may be generalized for example to include primitive data types (such as integer data
types, floating point data types, long data types, double data types, string data types,
character data types and Boolean data types), structured data types (such as arrays and
records) derived types, or other code or data structures of procedural languages or
other languages and environments such as functions, pointers, components, modules,

structures, references and unions.

Inthe JAVA language memory locations include, for example, both fields and
elements of array data structures. The above description deals with fields and the

changes required for array data structures are essentially the same mutatis mutandis.

Any and all embodiments of the present invention are to be able to take
numerous forms and implementations, including in software implementations,
hardware implementations, silicon implementations, firmware implementation, or

software/hardware/silicon/firmware combination implementations.

87

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Various methods and/or means are described relative to embodiments of the
present invention. In at least one embodiment of the invention, any one or each of
these various means may be implemented by computer program code statements or
instructions (including by a plurality of computer program code statements or
instructions) that execute within computer logic circuits, processors, ASICs,
microprocessors, microcontrollers, or other logic to modify the operation of such logic
or circuits to accomplish the recited operation or function. In another embodiment,
any one or each of these various means may be implemented in firmware and in other
embodiments such may be implemented in hardware. Furthermore, in at least one
embodiment of the invention, any one or each of these various means may be
implemented by a combination of computer program software, firmware, and/or

hardware.

Any and each of the aforedescribed methods, procedures, and/or routines may
advantageously be implemented as a computer program and/or computer program
product stored on any tangible media or existing in electronic, signal, or digital form.
Such computer program or computer program products comprising instructions
separately and/or organized as modules, programs, subroutines, or in any other way
for execution in processing logic such as in a processor or microprocessor of a
computer, computing machine, or information appliance; the computer program or
computer program products modifying the operation of the computer on which it
executes or on a computer coupled with, connected to, or otherwise in signal
communications with the computer on which the computer program or computer
program product is present or executing. Such computer program or computer
program product modifying the operation and architectural structure of the computer,
computing machine, and/or information appliance to alter the technical operation of

the computer and realize the technical effects described herein.

For ease of description, some or all of the indicated memory locations herein
may be indicated or described to be replicated on each machine, and therefore, replica
memory updates to any of the replicated memory locations by one machine, will be
transmitted/sent to all other machines. Importantly, the methods and embodiments of

this invention are not restricted to wholly replicated memory arrangements, but are

38

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

applicable to and operable for partially replicated shared memory arrangements
mutatis mutandis (e.g. where one or more replicated memory locations are only

replicated on a subset of a plurality of 'machines).

All described embodiments and arrangements of the present invention are
equally applicable to replicated shared memory systems, whether partially replicated
or not. Specifically, partially replicated shared memory arrangements where some
plurality of memory locations are replicated on some subset of the total machines
operating in the replicated shared memory arrangement, themselves may constitute a

replicated shared memory arrangement for the purposes of this invention.

With reference to Fig. 22, where memory locations “A”, “B”, and “C” are
replicated on three machines M1, M2, and M3 of a five machine replicated shared
memory arrangement (having additional machines M4 and M5), then for the purposes
of this invention the term replicated shared memory arrangement is not to be restricted
to all 5 machines M1-MS5, but may be also encompass any lesser plurality of machines
(less than the total number of machines) in the operating arrangement, such as for
example machines M1-M3. Thus, machines M1, M2 and M3 with replicated
memory locations “A”, “B” and “C” constitute a replicated shared memory

arrangement in their own right (without machines M4 or M5).

Typically, the replicated shared memory arrangements described and
illustrated within this invention generally are explained to include a plurality of
independent machines with independent local memories, such as that depicted in Figs.
2 and 22. However, various alternative machine arrangements including a replicated
shared memory system are provided by, and included within the scope of, this

invention.

Specifically, the term “machine” used herein to refer to a singular computing
entity of a plurality of such entities operating as a replicated shared memory
arrangement is not to be restricted or limited to mean only a single physical machine
or other single computer system. Instead, the use of the term “machine” herein is to

be understood to encompass and include within its scope a more broad usage for any

89

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

“replicated memory instance” (or “replicated memory image”, or “replicated memory

unit”) of a replicated shared memory arrangement.

Specifically, replicated shared memory arrangements as described herein
include a plurality of machines, each of which operates with an independent local
memory. Each such independent local memory of a participating machine within a
replicated shared memory arrangement represents an “independent replicated memory
instance” (whether partially replicated or fully replicated). That is, the local memory
of each machine in a plurality of such machines operating as a replicated shared
memory arrangement, represents and operates as an “independent replicated memory
instance”. Whilst the most common embodiment of such a “replicated memory
instance” is a single such instance of a single physical machine comprising some
subset, or total of, the local memory of that single physical machine, “replicated
memory instances” are not limited to such single physical machine arrangements

only.

For example, it is provided by this invention in the use of the term “machine”
to include within its scope any of various “virtual machine” or similar arrangements.
One general example of a “virtual machine” arrangement is indicated in Fig. 23. Such
virtual machine arrangements may take the form of hypervisor or virtual machine
monitor assisted arrangements such as VMWare virtual machine instances, or Xen
paravirtualization instances. Alternative substantially equivalent virtual machine
arrangements also include Solaris Containers, Isolated Software Domains, Parallel
Operating System instances, substantially indépendent Application Processes or Tasks
with independent and/or isolated and/or protected memories, or any other such
independent virtual machine instance or such similar multi-program arrangement with
an independent or isolated or protected memory. Those skilled in the computing arts

will be familiar with various alternative “virtual machine” arrangements.

Utilising any of the various “virtual machine” arrangements, multiple “virtual
machines” may reside on, or occupy, a single physical machine, and yet operate in a
substantially independent manner with respect to the methods of this invention and

the replicated shared memory arrangement as a whole. Essentially then, such “yirtual

90

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

machines” appear, function, and/or operate as independent physical machines, though
in actuality share, or reside on, a single common physical machine. Such an

arrangement of “n” “virtual machines” N11410 is depicted in Fig. 23.

In Fig. 23, a single physical machine N11401 is indicated comprising
hardware N'11402 and a hypervisor and/or operating system N11403. Shown to be
operating within machine N11401 and above the hypervisor/operating system layer,
are n “virtual machines” N11410 (that is, N11410/1, N11410/2... N11410/n), each
with a substantially independent, isolated and/or protected local memory (typically

comprising some subset of the total memory of machine N11401).

Each such “virtual machine” N11410 for the purposes of this invention may
take the form of a single “replicated memory instance”, which is able to behave as,

and operate as, a “single machine” of a replicated shared memory arrangement.

When two or more such “virtual machines” reside on, or operate within, a
single physical machine, then each such single “virtual machine” will typically
represent a single “replicated memory instance” for the pﬁrposes of replicated shared
memory arrangements. In otherwords, each “virtual machine” with a substantially
independent memory of any other “virtual machine”, when operating as a member of
a plurality of “replicated memory instance” in a replicated shared memory
arrangement, will typically represent and operate as a single “replicated memory
instance”, which for the purposes of this invention comprises a single “machine” in
the described embodiments, drawings, arrangements, description, and methods

contained herein.

Thus, it is provided by this invention that a replicated shared memory
arrangement, and the methods of this invention applied and operating within such an
arrangement may include a plurality of “replicated memory instances”, which may or
may not each correspond to a single independent physical machine. For example,
replicated shared memory arrangements are provided where such arrangements

comprise a plurality (such as for example 10) of virtual machine instances operating

91

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

as independent “replicated memory instances”, where each virtual machine instance

operates within one common, shared, physical machine.

Alternatively for example, replicated shared memory arrangements are
provided where such arrangements comprise some one or more virtual machine
instances of a single physical machine operating as independent “replicated memory
instances” of such an arrangement, as well as some one or more single physical

machines not operating with two or more “replicated memory instances”.

Further alternatively arrangements of “virtual machines” are also provided and
to be included within the scope of the present invention, including arrangements
which reside on, or operate on, multiple physical machines and yet represent a single
“replicated memory instance” for the purposes of a replicated shared memory

arrangement.

Any combination of any of the above described methods or arrangements are
provided and envisaged, and is to be included within the scope of the present

invention.

In all described instances of modification, where the application code 50 is
modified before, or during loading, or even after loading but before execution of the
unmodified application code has commenced, it is to be understood that the modified
application code is loaded in place of, and executed in place of, the unmodified

application code subsequently to the modifications being performed.

Alternatively, in the instances where modification takes place after loading
and after execution of the unmodified application code has commenced, it is to be
understood that the unmodified application code may either be replaced with the
modified application code in whole, corresponding to the modifications being
performed, or alternatively, the unmodified application code may be replaced in part
or incrementally as the modifications are performed incrementally on the executing

unmodified application code. Regardless of which such modification routes are used,

92

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

the modifications subsequent to being performed execute in place of the unmodified

application code.

It is advantageous to use a global identifier is as a form of ‘meta-name’ or
‘meta-identity’ for all the similar equivalent local objects (or classes, or assets or
resources or the like) on each one of the plurality of machines M1, M2...Mn. For
example, rather than having to keep track of each unique local name or identity of
each similar equivalent local object on each machine of the plurality of similar
equivalent objects, one may instead define or use a global name corresponding to the
plurality of similar equivalent objects on each machine (eg “globalname7787”), and
with the understanding that each machine relates the global name to a specific local
name or object (eg “globalname7787” corresponds to object “localobject456” on
machine M1, and “globalname7787” corresponds to object “localobject885” on
machine M2, and “globalname7787” corresponds to object “localobjectl111” on

machine M3, and so forth).

It will also be apparent to those skilled in the art in light of the detailed
description provided herein that in a table or list or other data structure created by
each DRT 71 when initially recording or creating the list of all, or some subset of all
objects (eg memory locations or fields), for each such recorded object on each
machine M1, M2...Mn there is a name or identity which is common or similar on
each of the machines M1, M2...Mn. However, in the individual machines the local
object corresponding to a given name or identity will or may vary over time since
each machine may, and generally will, store memory values or contents at different
memory locations according to its own internal processes. Thus the table, or list, or
other data structure in each of the DRTs will have, in general, different local memory
locations corresponding to a single memory name or identity, but each global
“memory name” or identity will have the same “memory value or content” stored in
the different local memory locations. So for each global name there will be a family
of corresponding independent local memory locations with one family member in
each of the computers. Although the local memory name may differ, the asset, object,

location etc has essentially the same content or value. So the family is coherent.

93

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

It will also be apparent to those skilled in the art in light of the description
provided herein that the abovementioned modification of the application program
code 50 during loading can be accomplished in many ways or by a variety of means.
These ways or means include, but are not limited to at least the following five ways
and variations or combinations of these five, including by:

&) re-compilation at loading,

(i) a pre-compilation procedure prior to loading,

(iii) compilation prior to loading,

(iv) “just-in-time” compilation(s), or

(v) re-compilation after loading (but, for example, before execution of the

relevant or corresponding application code in a distributed environment).

Traditionally the term “compilation” implies a change in code or language, for
example, from source to object code or one language to another. Clearly the use of
the term “compilation” (and its grammatical equivalents) in the present specification
is not so restricted and can also include or embrace modifications within the same

code or language.

Those skilled in the programming arts will be aware that when additional code
or instructions is/are inserted into an existing code or instruction set to modify same,
the existing code or instruction set may well require further modification (such as for
example, by re-numbering of sequential instructions) so that offsets, branching,

attributes, mark up and the like are catered for.

Similarly, in the JAVA language memory locations include, for example, both
fields and array types. The above description deals with fields and the changes
required for array types are essentially the same mutatis mutandis. Also the present
invention is equally applicable to similar programming languages (including
procedural, declarative and object orientated) to JAVA including Microsoft. NET
platform and architecture (Visual Basic, Visual C/C™, and C#) FORTRAN, c/IcH,
COBOL, BASIC etc.

94

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

The terms object and class used herein are derived from the JAVA
environment and are intended to embrace similar terms derived from different
environments such as dynamically linked libraries (DLL), or object code packages, or

function unit or memory locations.

Various means are described relative to embodiments of the invention,
including for example but not limited to memory updating means and/or memory
replicating means, distributed run time means, modifier or modifying means, and the
like. Any one or each of these various means may be implemented by computer
program code statements or instructions (possibly including by a plurality of computer
program code statements or instructions) that execute within computer logic circuits,
processors, ASICs, microprocessors, microcontrollers or other logic to modify the
operation of such logic or circuits to accomplish the recited operation or function. In
another arrangement, any one or each of these various means may be implemented in
firmware and / or in hardware. Furthermore, any one or each of these various means
may be implemented by a combination of computer program software, firmware,

and/or hardware.

Any and each of the above described methods, procedures, and/or routines
may advantageously be implemented as a computer program and/or computer
program product stored on any tangible media or existing in electronic, signal, or
digital form. Such computer program or computer program products comprising
instructions separately and/or organized as modules, programs, subroutines, or in any
other way for execution in processing logic such as in a processor or microprocessor
of a computer, computing machine, or information appliance; the computer program
or computer program products modifying the operation of the computer in which it
executes or on a computer coupled with, connected to, or otherwise in signal
communications with the computer on which the computer program or computer
program product is present or executing. Such a computer program or computer
program product modifies the operation and architectural structure of the computer,
computing machine, and/or information appliance to alter the technical operation of

the computer and realize the technical effects described herein.

95

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

The invention may therefore be constituted by a computer program product
comprising a set of program instructions stored in a storage medium or existing
electronically in any form and operable to permit a plurality of computers to carry out
any of the methods, procedures, routines, or the like as described herein including in

any of the claims.

Furthermore, the invention includes a plurality of computers interconnected
via a communication network or other communications link or path and each operable
to substantially simultaneously or concurrently execute the same or a different portion
of an application code written to operate on only a single computer on a
corresponding different one of computers. The computers are programmed to carry
out any of the methods, procedures, or routines described in the specification or set
forth in any of the claims, on being loaded with a computer program product or upon
subsequent instruction. Similarly, the invention also includes within its scope a single
computer arranged to co-operate with like, or substantially similar, computers to form

a multiple computer system.

To summarize, there is disclosed a method of ensuring correct operation of a
data updating system using a count value to signify the position of an updating
message in a sequence of updating messages, the method comprising the steps of:

) halting the flow of updating messages, and

(ii) during the halt re-setting the count values.

Preferably the halt is initiated by the count values approaching a

predetermined magnitude.

Preferably the predetermined magnitude is determined by potential arithmetic

overflow.

Preferably the halt is initiated after a predetermined time.

Preferably the halt is initiated in the absence of predetermined message

activity.

96

10

15

20

25

30

WO 2008/040073 PCT/AU2007/001491

Preferably the count values are re-set to zero.

Also there is disclosed a multiple memory system in which at least one
memory location at each of at least two physical locations are connected by a
communications link over which memory updating messages are set, wherein a count
value is associated with each the sent message to signify its position in a sequence of
sent messages, and wherein the sending of the messages is temporarily halted to re-set

the count values.

Preferably the halt is initiated by the count values approaching a

predetermined magnitude.

Preferably the predetermined magnitude is determined by potential arithmetic

overflow.
Preferably the halt is initiated after a predetermined time.

Preferably the halt is initiated in the absence of predetermined message

activity.
Preferably the count values are re-set to zero.
Preferably the system comprises a multiple computer system.

Still further there is disclosed a single computer adapted to form one of the

computers of the above multiple computer system or systems.

Further, there is disclosed a method ensuring correct operation of a finite
counter storing an updating count value in a multiple computer system, each the
computer comprising an independent local memory and each operating an application
program written to operate on only a single computer, and at least on application

program memory location/content replicated in each of the independent memories and

97

10

15

20

25

WO 2008/040073 PCT/AU2007/001491

updated to remain substantially similar, the method comprising the steps of:
(1) resetting or reinitialising the updating count value of each the computer upon

the updating count value reaching a threshold value.

Furthermore, there is disclosed a method ensuring correct operation of a finite
counter storing an updating count value in a multiple computer system, each the
computer comprising an independent local memory and each operating an application
program written to operate on only a single computer, and at least on application
program memory location/content replicated in each of the independent memories and
updated to remain substantially similar, the method comprising the steps of:

(1) halting replica updating transmissions of replicated application memory
locations/contents when associated the updating count value reaches a threshold value
or a predetermined time interval has elapsed,

(i) resetting or reinitialising the updating count value on each of the computers,

(iii) resuming the previously halted replica updating transmissions.

In addition, there is disclosed a single computer adapted to communicate with
other computers to form a multiple computer system or systems and is arranged to

carry out the above method or methods.

Also disclosed is a computer program product which when loaded into a

computer enables the computer to carry out the above method or methods.

Additionally, disclosed is stored data updated by the above method or

methods.

The term “comprising” (and its grammatical variations) as used herein is used
in the inclusive sense of “including” or “having” and not in the exclusive sense of

“consisting only of”.

98

WO 2008/040073 PCT/AU2007/001491

CLAIMS

1. The method of ensuring correct operation of a data updating system using a

10.

11.

12.

count value to signify the position of an updating message in a sequence of
updating messages, said method comprising the steps of:

(i) halting the flow of updating messages, and

(iii) during said halt re-setting the count values.

The method as claimed in claim 1 wherein said halt is initiated by said count
values approaching a predetermined magnitude.

The method as claimed in claim 2 wherein said predetermined magnitude is
determined by potential arithmetic overflow.

The method as claimed in any one of claims 1-3 wherein said halt is initiated
after a predetermined time.

The method as claimed in any one of claims 1-4 wherein said halt is initiated
in the absence of predetermined message activity.

The method as claimed in any one of claims 1-5 wherein said count values are
re-set to zero.

A multiple memory system in which at least one memory location at each of at
least two physical locations are connected by a communications link over
which memory updating messages are set, wherein a count value is associated
with each said sent message to signify its position in a sequence of sent
messages, and wherein the sending of said messages is temporarily halted to
re-set the count values.

The system as claimed in claim 7 wherein said halt is initiated by said count
values approaching a predetermined magnitude.

The system as claimed in claim 8 wherein said predetermined magnitude is
determined by potential arithmetic overflow.

The system as claimed in any one of claims 7-9 wherein said halt is initiated
after a predetermined time.

The system as claimed in any one of claims 7-10 wherein said halt is initiated
in the absence of predetermined message activity.

The system as claimed in any one of claims 7-11 wherein said count values are

re-set to zero.

-99 -

WO 2008/040073 PCT/AU2007/001491

13.

14.

15.

16.

17.

18.

19.

The system as claimed in any one of claims 7-12 and comprising a multiple
computer system.

A single computer adapted to form one of the computers of the multiple
computer system as claimed in claims 13.

A method ensuring correct operation of a finite counter storing an updating
count value in a multiple computer system, each said computer comprising an
independent local memory and each opérating an application program written
to operate on only a single computer, and at least on application program
memory location/content replicated in each of said independent memories and
updated to remain substantially sirhilar, said method comprising the steps of:
(i) resetting or reinitialising said updating count value of each said
computer upon said updating count value reaching a threshold value.

A method ensuring correct operation of a finite counter storing an updating
count value in a multiple computer system, each said computer comprising an
independent local memory and each operating an application program written
to operate on only a single computer, and at least on application program
memory location/content replicated in each of said independent memories and
updated to remain substantially similar, said method comprising the steps of:
(i) halting replica updating transmissions of replicated application
memory locations/contents when associated said updating count value reaches
a threshold value or a predetermined time interval has elapsed,
(i) resetting or reinitialising said updating count value on each of said
computers,

(i) resuming the previously halted replica updating transmissions.

A single computer adapted to communicate with other computers to form a
multiple computer system and arranged to carry out the method as claimed in
any one of claims 1-6.

A computer program product which when loaded into a computer enables the
computer to carry out the method as claimed in any one of claims 1-6.

Stored data updated by the method as claimed in any one of claims 1-6.

- 100 -

PCT/AU2007/001491

1/28

WO 2008/040073

€8
..m;m.m
u/ig W:z - fis
Al AT Y T 7 f
_ 43141000 __ | AZHENAT EEETSA
ﬂ AUsENAT A yFldiqom: A A EWAT A
uis _, LIS
v l9s. vss ~ 2hs \ lasz var ﬂ y |85/ vess
A3 1H1AQW) [43HIdOW] H3141G0N] [HIIHIJON] HIHIAON] - |43141dON
S] viva 1 viva Vivd
L84 +300D 1dd +300D 144 300D
m X e/ls m m 2 /1S m m LS
s s 05 efes 0g /1L 0S
Hm__m/_* _\aMu_m__M_ LV HOl¥d
el :
| = "PRIE
IANIHOVIA TVNLYIA VAVE |
I . L 3INIHOVIW
1L — oz_o<9ﬁ\§mn s—05 195 | IVNLYIA VAVE
~ ’/ <
IWIL NNy d3LNaIy LsId VLva +3d0D p viv3+3d0D
nille oS

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073

2/ o8

M1

M2

M3

PCT/AU2007/001491

. — o ———————

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

3/28

& oOld

26L=LN3ILNOD
oL #5S3¥AAV

LOL=LN3LNOD
Gl&# SS34ddVv

U

¢6Ll=1IN3IINOD

Zg6L=LN3LNOD

¢61=INFLNOD

oL#SS34dav oL#5S344dAayv Ol#SS34AdV

ZOL=1N3INOD LOL=LNILNOD LOL=1N3ILNOD

GL#ESSINAAY | L SLE#ESSINAdY Gl # SS34ddVv
£ cWN LN

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

79l

c6l=LN3ILNOD
Ol#SS3¥aav

LOL=LN3INCD
Sl# SS3ddav

UpN

19

LLe=IN3LNOD
Sl#SS34¥Aaav

¢6L=LN3INOD

¢6Ll=LNILINOD

¢6Ll=INILNOD

Sl#SS34dAyv SL#SS3HAAY SL#SS3¥dAAYV

LOL=1N3INOD ZOL=IN3LINOD LLe=LN3LNOD

Sl#ESSINAAY Sl#ESS3¥AAY Sl#S5S34aav
ENW SN LN

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

5/28

<

¢6Ll=1N3LNOD
SL#SS34ddVv

L2 =LN3LNCD
Sl# SS34ddv

UN

Ol 4

1S

LLe=LN3INCD
SL#SS34ddv

=

¢6l=LN3INOD

¢6L=LN3LNOD

¢6L=IN3LNOD

Ol#SS344AaVv OL#SS34AAVY Ol#SS34ddVv.

Ll = LN3INOD L12=INJLNOD L1 =LN3LNOD

Sl#ESSIHAav Gl SS3NdaAVv Gl#SS34ddv
ENW cW LN

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

6/28

O 9Ol

(A

¢6=LN3LNOD
Sl# SS34AdV

¢6L=LN3ILNOD
OoL#SS344ddv

LOL =LN3INCD
Gl# SS34ddV

U

7Ot =LNILNOD
GL#SS34aav

261=INTILNOD

Z6L=LNILNOD

¢61=IN3LNOD

9L#SS34dav oL #SS34dAV OL#SS34AAV .

¢6 =INIINOD | | £Z0L=LNILNOD | [FO¥=LN3LNOD

GlL#ESS34AdVv Gl SS3IHAAVY Gl# SS34ddv
eENW AL LIN

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

7/28

A

18

c6

=IN3LNOD
Gl# SS3ydAv

26Ll=LN3LNOD
OL4#SS34ddVv

<6 |
YO IN3JINOD

Sl# SS34dav

UN

7OP =INJLNOD
GlL#SS34adv

¢6L=1N3JINOD
OL#xSS34AdV

¢61l=LN3LNOD
oL#5534dav

POb=IN3INOD
Sl#ESS33ddY

eW

%%wm IN3INOD

Sl#SS34aayv

¢61=LN3LNOD
Ol#SS34ddV

26 =LN3LNOD
Gl# SS34ddV

cWN

LN

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

89Ol

8/28

S=NOILNTOS3Y
P8 = 1INNOD
¢6l= LNJLNOD
Ol # SS3HAQY

2=NOILNT0S3Y

L = INNOD

01 = IN3LNOD

Sl # SS3IJAAV
UIN

— —— ——— ot — ..

SG=NOILNTOS3H

r8 = LNNOD
¢ol=1LNILNOD
Sl # SS34Aav

Z2=NOILNTOS3Y
L = INNOD
/[0l = INJLNOD

Gl # SS3INAQV

G=NOILNTO0S3Y
P8 = LNNOD
¢6l=LN3LNOD
Sl # SS3yAAv

G=NOLLNT0S3d
v8 = LINNOD
¢6l=1N3ILNOD
Sl # SS3yAdav

2=NOILNTOS3Y
L = INNOD

01 = IN3JLNOD

Sl # SS34AAV

2=NOILNTOS3Y
N. =
/0L = IN3LNOD
GL # SS3YAAYV

INNODY

& W

¢

LN

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

G oOld

of28

G=NOILNTTOS3Y
P8 = INNOD
2¢6l=IN3LNOD
Sl # SS34AQV

¢=NOILNTOS3Y

L = AINAOD

/0L = IN3JLNOD

Gl # SS34AAyV
U

S=NOILNTOS3Y
P8 = LNNOD
¢6l=LNILNOD
Ol # SS3YAav

L=NOILNTOS3Y
8 = LINNOD

Gl # SS3YAQV

lle = INILNOD|

2=NOILN10S3y

S=NOILNTOS3Y
r8 = INNOD
¢6l=1LN3ILNOD
Sl # SS3¥dQv

S=NOILNTOS3Y
V8 = INNOD
¢6l=1IN3ILNOD
Sl # SS3ddav

L = LNNOGD

0L = INZILNGD

Sl # SSIYAAY
€ W

2=NOILNTOS3Y

L =NOILNTOS3Y

/= INNOD 8 = LNNOD

0L = IN3LNOD llg = IN3ILNOD

Gl # SS3y¥AQV Gl # SS3yNAQYV
W LN

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

Ol ol

10/28

G=NOILNTOS3d
e = LNNOD
c6l=LN3ILNOD
Ol # SS3dAdv

"1 =NOILNTOS3Y
8 = INNOD
11g= INILNOD
Sl # SS3HAAV

UN

S=NOILNTOS3

r8 = LNNOD
¢6l= LNJLNQOD
Sl # SS3dddv

] =

L=NOILN10S3d
INNOD
L2 = LNILNOD
Gl # SS3YAQv

\

L =NOILNTOS3IY
g = INNOD
12 = LNILNOD

Gl # SS3dAdV |

S=NOILNTOS3d
8 = LINNOD
¢6l= LN3ILNOD
Sl # SS34Aav

G=NOILNTOS3H
g8 = 1NNOD
¢6l=LNZILNOD
ol # SS3d4Adv

£ W

L=NOILNTOS3Y
8 = LNNOD
Lle = IN3LNOD
Sl # SS34AQV

L=NOILNT0S3
8 = INNOD
ILe = IN3LNOD
Sl # SS34dAV

N

LN

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

ARSI

viL

Q
~

e = LNNOD
26l= LNILNOD
ol # SS3ddAv

S=NOILNTOS3d}|

2=NOILNT0S3Y
/01 = LN3ILNOD
Gl # SS3ddAdVv

N

w.n...

€=NOILNT10S3Y
LNNOD
26 = LN3LINOD
Gl H# SS34AdV

QL =

1=NOILNT10S3Y
LNNOD
lLZ = LNILNOD
GlL #H# SS3¥Adv

G=NOILNTOS3H|

8 = LNNOD
261L= LN3LNOD
Ol # SS3dAdV

SG=NOILNTOS3d

Fe = 1INNOD
261l= LN3LNOD
Sl # SS3YdAav

G=NOILNT0OS3H
ve = INNOD
26L= 1LN3LNOD
Ol ‘& SS3HAAVv

€=NOILNT10S3Y
8 = INNOD
26 = LNILNOD

Gl # SS3¥ddV]

2=NOILN10S3d
L = LNNOD

/01 = LN3LNOD

Gl # SS344ddV

L =NOILNTOS3Y
8 = LINNOD
llg = LNILNOD
GL # SS3d4ddv

€ W

¢ N

LN

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

2L O

VL

12 /28

1S # ss3dagv

£=NOILNTOS3Y
8 = INNOD
¢6 = LN3ILNOD

L=NOILNTOS3Y
8 = INNOD
llg = LN3LNOD
Gl # SS3IYAQV

P8 = 1NNOD
c6l=LNILNOD
Ol # SS34AdV

G=NOILNTOS3H|

£=NOILNTOS3Y
8 = INNOD
¢6 = INILNOD
Sl # SS3dAdv

UN

;

S=NOILNTOS3Y
P8 = . LNNOCD
¢Bl=1LN3LNOD
Sl # SS3yaav

€=NOILN10S3Y
8 = 1INNOD
26 = INILNOD

G=NOILNTOS3Y
V8 = LNNOD
¢bl=1IN3ILINOD
Sl # SS3yAav

S=NOILNTOS3H
r8 = INNOD
¢6l= LN3LNOD
Sl 4 SS3ydav

SL # SS3¥dAV]

£=NOILNTOS3Y
8 = LINNOD
¢6 = INILNOD
mrmmmmquD/u

€ =NOILN10S3Y
8 = INNOD
26 = LIN3ILNOD
Sl # SS3YAAv

£ W

AL

LN

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073 PCT/AU2007/001491

13/28

MACHINE
TIME M2
UNITS
MACHINE MACHINE MACHINE

- M1 M3 e Mn
! VAR SR A AR WA 4 L L L L
2 XAZTEL LN L
3 X WAL ALy NTOA
4 / AL
5 77 /}/)\///4//7\&/
6 N10O1A " N101A CN101A
=
8
9
10
1
12

\ \
FIGA3

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073 PCT/AU2007/001491

14/28
TIME
UNITS MAGHINE
MACHINE MACHINE MACHINE
M1 M3 e Mn
1 S
AN
j N b —
5 N1o1aA\‘ ‘N101AMN “N101A ™
6
7 i
8 ' // \
9 Py T~
10 A I~
1 - ’/ N
12 “N102A | “N102A NN102A
Y Y Y
Y
F1G.14

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073

15 /28

PCT/AU2007/001491

TIME MACHINE
UNITS M2
MACHINE MACHINE MACHINE
M1 M3 m——---- Mn

N302A | N302A N302A
(< g/

1 <’ U AR,)
2 d 745222?6%,/”7*347?///,/’//
3 N ></7§><Z L/ pN310A
4 AN S
5 //// Ve P
6 N301A7 | “N301A ‘N301A
=
8
o
10
11
12

FIG.15

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073 PCT/AU2007/001491

16 /28
TIME
UNITS | MA'&:SHNE
MA&%%INE MA&%!NE ______ i MA&F{INE
1 L "7/ S S LS SN
2 <L SN
3 SN 735 S A pNAOA
4 //&%/ ToALT
5 S S S M Vw: P
8 N4O1TA N4O1A N401A
7
8
9
10
11
12
Y Y Y Y
Y
FIG.16

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073 PCT/AU2007/001491

17/28
TIME
UNITS MAGHIINE
c MACHINE
MACHINE MACHINE . - Mn
R
5 —~
4
= K R‘ g)
6 N401A N40O1A N401A
: —— ~
8
o) Py ™~
10 / /\ C\
11 L~ \ \ N4O2A” N
15 N4O2A” | N402A
Y Y Y v
\
FIG1/

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073

PCT/AU2007/001491

18/28

TIME
UNITS Mﬁgma
MACHINE MACHINE MACHINE
M1 M3 e - n
NE602A NBO2A
N ya
1 N~ [A~ N8O2A
2 \}\\2{/\&/\3\
3 A T
4 - s
5 C = S
6 NBOA NS OTA NBOA
E .
8
9
10
11
12
Y | Y Y
Y
FIG18

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073

PCT/AU2007/001491

-

401

N11402

FIG. 23

et |
{
A ! - N701A
B I
M‘l)
FIGI9
N11410/1 N11410/N
/ p ¢ N11410/2 Q /
(‘

REPLICATED REPLICATED REPLICATED
MEMORY MEMORY MEMORY
INSTANCE INSTANCE ~ |====| INSTANCE

1 2 n
S ==
3 HYPERVISOR/OPERATINGSYSTEM n
e T T T T T m e EE s
! HARDWARE }

L_...___._...._.._g__.___ S ——

N11403

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073 PCT/AU2007/001491

20/28
N8102
NSﬂD%) L N8102
] <
<] B 7
B C C A B
CPU
CPU |
<%8KB CPU = \LMn
M1 51 N8103 (
M2 ,‘Vj,\i/,Jv/J N8103
i 53

r===--1

]

L X 1 FIG.20

AllB
A B
C
= C
i
F] 1= f
|
-t 53

F1G.21

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073 PCT/AU2007/001491

21/28
— =
O}
S ™
To) a) Te]
>
mERE
O
vr/\/ o
>
< mllo A
A
gf\) @
L
I
<
m
aN
%‘ @
O
L) m
[1<
>

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073 PCT/AU2007/001491

22 /28

MV Ch KT

Y
1303

FIG.24

I'IVYCHRY 12| VACE R

AN

e
1302

Cm

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073 PCT/AU2007/001491

23/28

Vi Cn

Y
1403

121v2lc2l..... |

FIG.25

viC

|1

R

1402

1401

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073 PCT/AU2007/001491

24 /28

In

~
1503

FIG.26

RIC|T'|V'|I7|V?

AN

1502

(jjﬁ1

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

25/28

L2 Ol

£S

1= NOILNTOS3N
02 = INNOD
/ = LNIINOD
S # SS3Y¥aAav

L =NOILMOS3d
Oc = INNOD
/. = IN3INOD
J #F SS3¥AAV

L= NOILNTOS3Y

0c = INNOD

., = IN3LINOD
O # SS3dAAV

=NOILMIOS3NH

00€ = IN3JINOD
d + SS34dAdv

LLl= 1NNOD-

#=NOILMIOS3d
Ll = INNOD
00€ = LN3LNOD
a # SS3dadv

#=NOILNT1OS3Y
LblL = LINNOD
O0E=LN3LNOD
g # SS3d4dayv

2=NOILM1OS3y
L = INNOD
9L = LN3LINOD

V# SS3dAdv

¢=NOILN1OS3y

¢=NOILNT1OS3N

UnN

L = INNOD L = INNOD

QL = IN3LNODY} | ot = LN3LNOD

V # SS3dddv Vv # SS3dA4A4v
cW I N

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

26 / 28

8¢ old

€S

l=NOILNTOS 3
0c = 1INNOD
/ = LN3LNOD
D 3z SS34d4ddAV

y=NOILMOS3N

00€g = IN3INOD
g # SS3ddAdVv

L= 1INNOD-

¢=NOILN1OS3d
L = 1INNOD
Ol = LN3INOD
V# SSJ44Aav

A

~N/ k/l,/

\

Q0L

:U: —\—\N :4«——

AR

d1091

A A ot

: d109l

UN

9

L=NOILMOS3N
02z = LNNOD
/ = INJINOD
D+ SS3NaAaQv

1=NOILNTOS3Y
[0O0L= IN3JINOD
D4 SS3dAAY

7 =NOILNTOS3Y
LLL = INNOD
00€ = INJLNOD
d # SS3dAdV

=NOILNTOS3d
Ll = INNOD
00€=LN3LNOD
g # SS3dddv

¢=NOILNTOS3d

1= NOILNTOS3Y

L = INNOD L= INNOD

9L = IN3LNOD| | Lle=. LNJILNOD

v # SS34ddVv Vi SS3dAaav
¢ L N

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU2007/001491

WO 2008/040073

27/28

6c Old

€S

1 1=NOILNTOS3Y |

lg = 1NNOD
O0l= LN3LINOD
D 3 SS3JAAv

P=NOILMOS3Y

00g = LN3LINOD
a ¥ SS3dAdVv

Lll= 1NNOD-

| L=NOILMOS3d

lé = 1INNOD
Llé= LN3ILINODO

V4= SS34AAv

UN

91091

A

~

Q0L

| LLC |V,

lc |l

J NM\.

AN SOy

d1091L

L= NCILATOS 3
lc = INNOD
OOlL= IN3INOD
O+ SS34Aav

, - zo_S.@%mm

= 1RAOD
ooT INILINOD
D 4 SS3yAAv

7=NOILNTOS3y
Ll = INNOD
00E€ = 1IN3LNOD
d # SS3IAAV

P=NOILNT0S3d
Ll = LINNOD
00E=1LN3INOD
gd # SS3ddayv

L =NOILNTOS3Td
L = 1INNOD
lle = LIN3JLNOD
v # SS3dAadv

L=NOILNT10S3d
LS = 1INNOD
L= LN3LNOD
V# SS33ddv

¢

L N

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 2008/040073

<ifO1D |
| RIC 11 \/1 I2 v2 ceesees [N

28/28

vn

A

1603D

@

<~

PCT/AU2007/001491

FIG.30

International application No.

INTERNATIONAL SEARCH REPORT

PCT/AU2007/001491
A. CLASSIFICATION OF SUBJECT MATTER
_ Int. Cl. '
GOG6F 9/46 (2006.01) GO6F 9/54 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED.

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
DWPI and Google scholar using IPC and keywords including contention, race, write count, update count and
‘distributed shared memory’

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
A WO 2005/103928 A1 (WARATEK PTY LIMITED) 3 November 2005 - 15and 16

See whole document

A US 6460051 B1 (LARUE et al) 1 October 2002 ' 1to19
See whole document but particularly:
Figure 2
Column 7, lines 47 to 55
Column 15, lines 44 to 55 -
Column 25, lines 30 to 43

Further documents are listed in the continuation of Box C See patent family annex

* Special categories of cited documents: :

"A" document defining the general state of the art which is “T" later-document published after the international filing date or priority date and not in

not considered to be of particular relevance conflict with the application but cited to understand the principle or theory
: underlying the invention

"E" earlier application or patent but published on or after the "X" document of particular relevance; the claimed invention cannot be considered novel

international filing date or cannot be considered to involve an inventive step when the document is taken
: alone

"L" document which may throw doubts on priority claim(s) "Y" document of particular relevance; the claimed invention cannot be considered to
or which is cited to establish the publication date of involve an inventive step when the document is combined with one or more other
another citation or other special reason (as specified) such documents, such combination being obvious to a person skilled in the art

"O" document referring to an oral disclosure, use, exhibition

non .
or other means &" document member of the same patent family

“P* document published prior to the intemnational filing date
but later than the priority date claimed

Date of the actual completion of the international search . Date of mailing of the international search report

15 November 2007 : v ' : ' 27 NOV 2007
Name and mailing address of the ISA/AU Authorized officer

AUSTRALIAN PATENT OFFICE LUKE DAVESON

PO BOX 200, WODEN ACT 2606, AUSTRALIA AUSTRALIAN PATENT OFFICE

E-mgil fiddrcss: pct@ipaustralia.gov.au (1SO 9001 Quality Certified Service)

Facsimile No. (02) 6285 3929 Telephone No : (02) 6283 2773

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT

International application No.

.| PCT/AU2007/001491
C (Continuation). DOCUMENTS CONSIﬁERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
A US 6449734 Bl (SHRIVASTAVA etal) 10 September 2002 1to 19
See whole document but particularly:
Column 5, line 58 to column 6, line 9
Column 7, lines 9 to 17
Column 7, lines 30 to 33
Column 13, line 61 to column 14, line 19
Column 14, line 66 to column 15, line 3
A US 5806075 A (JAIN et al) 8 September 1998 1to 19

See whole document but particularly:
Figures 5B1 and 6
Column 5, lines 11 to 33
Column 5, line 65 to column 6, line 36
Column 12, line 51 to column 13, line 22 .
Column 14, line 65 to column 15, line 9
Column 16, lines 49 to 67 '

Form PCT/ISA/210 (continuation of second sheet) (April 2007) -

INTERNATIONAL SEARCH REPORT International application No.
Information .on patent family members PCT/AU2007/001491

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the
above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars
which are merely given for the purpose of information.

Patent Document Cited in Patent Family Member
Search Report

WO 2005103928 AU 2005236085 AU 2005236086 AU 2005236087
AU 2005236088 AU 2005236089 BR PI0508929
CA 2563900 CN 1965308 - EP 1763771
CEP 1763772 EP . 1763773 EP 1763774
US 2006242464 US 2006253844 US 2006265703
US 2006265704 US 2006265705 WO 2005103924
WO 2005103925 WO 2005103926 WO 2005103927
WO 2006110937 WO 2006110957

US 6460051 . CA 2457110 CN 1547491 EP 1427459
MX PA04001465 US 6275831 US 6295541
US 6401104 ©US 6449622 US 6477545
US 6487560 US 6535892 T US 6652482
US 6810405 ~US 6915312 ©US 7024430
US 2002052575 US 2002116405 US 2002133508
US 2002156798 WO 03015847

US 6449734

US 5806075 AU 76840/94 CA 2172517 GB 2297181
US 5737601 WO 9508809 '

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

END OF ANNEX

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - claims
	Page 101 - claims
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - wo-search-report
	Page 131 - wo-search-report
	Page 132 - wo-search-report

