
(19) United States
US 20060010422A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0010422 A1
Reddy et al. (43) Pub. Date: Jan. 12, 2006

(54)

(75)

(73)

(21)

(22)

COMMONUSER INTERFACE
DEVELOPMENT TOOLKIT FOR A SYSTEM
ADMINISTRATION PROGRAM

Inventors: Kirthiga Reddy, San Jose, CA (US);
Wesley Scott Smith, Mountain View,
CA (US); John Michael Relph, San
Francisco, CA (US); Rebecca
Underwood, Mountain View, CA (US);
Jenny Leung, Los Altos, CA (US);
James B. Orosz, Mountain View, CA
(US); Roger Chickering, Granite Bay,
CA (US); Christiaan Willem Beekhuis,
San Jose, CA (US); Elizabeth Caroline
Zeller, Sunnyvale, CA (US); Sandeep
Jain, Menlo Park, CA (US); Delle
Maxwell, Portola Valley, CA (US)

Correspondence Address:
SCHWEGMAN, LUNDBERG, WOESSNER &
KLUTH
1600 TCF TOWER
121. SOUTH EIGHT STREET
MINNEAPOLIS, MN 55402 (US)

Assignee: Silicon Graphics, Inc.

Related U.S. Application Data

(63) Continuation of application No. 09/811,345, filed on
Mar. 16, 2001, now Pat. No. 6,971,086.

(60) Provisional application No. 60/189,863, filed on Mar.
16, 2000.

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl. .. 717/109

(57) ABSTRACT

A toolkit for developing user-interfaces for a System admin
istration program. The toolkit has a Server-side application
programming interface (API). The server-side has task
registry files that each describe a task group. The toolkit also
has a client-side API. A developer can customize product

Appl. No.: 11/224,376 Specific properties files for a specific product and write code
that calls the server-side and client-side APIs to create a

Filed: Sep. 12, 2005 graphical user interface for the Specific product.

a.

CLENT 2.
APPLICATION A. 36

TASK MANAGER
3. SA TASKDATA

PRODUCT SPECIFIC SS
RESOURCEFLE PROPERTIES FILE a.

TASK DATA

S2 - SERVICE PROXY UCOMPONENTS lf

RNTE R-88

6.

88

SERVER

ASK REGISTRY S.

RR

SYSTEM ADMINISTRATION

5- - DEVELOPER SUPPLIED PLUGIN DEVELOPER SUPPLIED PLUGIN -8-2

OPERATING SYSTEM RS

Patent Application Publication Jan. 12, 2006 Sheet 1 of 16 US 2006/0010422 A1

e
--
e

k ad - W
V

Patent Application Publication Jan. 12, 2006 Sheet 2 of 16 US 2006/0010422 A1

R

23) SERVER

CENT TCP CONNECTION
PROGRAMS

SERVICE 962 USERNAME/PASSWORD SYSTEM
PROXY NOTIFICATION PACKET ADMINISTRATION

MEMORY COMMAND PACKET

PROCESSOR

DISKETTE SERVICE
DRIVE NETWORK

HARD DISK
DRIVE

TAPE DRIVE tee MEMORY
NETWORK
ADAPTER STORAGE PROCESSOR

Fig.)

Patent Application Publication Jan. 12, 2006 Sheet 3 of 16 US 2006/0010422 A1

A.

APPLICATION 366

TASK MANAGER
A3 TASK DATA

PRODUCT SPECIFIC 365-2
RESOURCE FILE PROPERTIES FILE

TASK DATA

262 SERVICE PROXY U COMPONENTS 36

RUNTIME RRR

SERVER

TASK REGISTRY 36 SYSTEM ADMINISTRATION

SS- DEVELOPER SUPPLIED PLUGIN DEVELOPER SUPPLIED PLUCN 55-2

OPERATING SYSTEM ()

Rig3

Patent Application Publication Jan. 12, 2006 Sheet 4 of 16 US 2006/0010422 A1

A. 366 As

TASK DATA

COMPONENT ATTRIBUTE COMPONENT

COMPONENT ATTRIBUTE COMPONENT

A2) A25

COMPONENT COMPONENT

OKO METHOD PRIN BROKER

(FIG. 11)

RigA

Patent Application Publication Jan. 12, 2006 Sheet 5 of 16 US 2006/0010422 A1

A6

55

FRAME FILE

5.

TABLE OF CONTENTS

525

TITLE

() 53
START UP

LIST OF LINKS

DESCRIPTION OF PAGES

52)

BUTTON BAR

Rig5

Patent Application Publication Jan. 12, 2006 Sheet 6 of 16 US 2006/0010422 A1

6)

6A5 DISPLAY AREA

6A2

6AA
SECTION 1 62)

6A OTASK

OTASK 2

OTASK 5

SECTION 2

W

66 66A

PRODUCT SPECIFIC
BUTTON CLOSE

63

Rig,6

Patent Application Publication Jan. 12, 2006 Sheet 7 of 16 US 2006/0010422 A1

365

TASK DATA

(5

KEY WALUE

Rig,

Patent Application Publication Jan. 12, 2006 Sheet 8 of 16 US 2006/0010422 A1

36)

TASK REGISTRY

TASK CROUP

TASK CROUP 2

Rg8

Patent Application Publication Jan. 12, 2006 Sheet 9 of 16

9W

START

96 9)

CREATE TASK
MANAGER

READ PRODUCT
SPECIFIC

PROPERTIES FILE WINDOW

92) 925

CREATE BUTTON CREATE DISPLAY
BAR FRAME

N 95)
YES

AREA FRAME

936

PAGE CONTAINS SHOW
REFERENCES TO TASK APPROPRIATE

GROUP PAGE

SEND NAME OF
TASK GROUP TO

SERVER

RECEIVE LIST OF
TASKS

Rig.9

US 2006/0010422 A1

95

CREATE TABLE
OF CONTENTS

FRAME

92

CREATE TITLE
FRAME

999

DISPLAY TASK
NAMES ON PACE

Patent Application Publication Jan. 12, 2006 Sheet 10 of 16 US 2006/0010422 A1

START
WQ W

CREATE HOST CONTEXT

W5 (2)

LOAD AND INSTANTATE
THE TASK CLASS

READ PROPERTIES FILE

CREATE TASK CONTEXT
USING TASK DATA

WS)

SET TASK DATA ATTRIBUTES

(25

LOAD PRODUCT ATTRIBUTES

35 WA)

VERIFY PREREQUISITES

WA

CREATE VISIBLE COMPONENTS
OF THE TASK

YS)

PASS OPERANDS TO THE TASK

STOP

Rig\)
() y

W6

DETECT "OK" OPERATION
W

VERIFY USER DATA

INTATE TASK OPERATION

99

Patent Application Publication Jan. 12, 2006 Sheet 11 of 16 US 2006/0010422 A1

TASK FORMNAME
TASK NAME ~26
THIS TASK IS USED TO (INTRODUCTORY TEXTX

25 - LABEL2

2) - LABEL 3

ETC.

23)

Rig\)

Patent Application Publication Jan. 12, 2006 Sheet 12 of 16 US 2006/0010422 A1

TASK FORMNAME (STEP 1 OF 2)

TASK NAME-35
KINTRODUCTORY TEXTX

S)

Rig13

Patent Application Publication Jan. 12, 2006 Sheet 13 of 16 US 2006/0010422 A1

TASK FORMNAME (STEP 2 OF 2)

TASK NAME~\As

\A) - LABEL2 :

A3)

Rig\A

Patent Application Publication Jan. 12, 2006 Sheet 14 of 16 US 2006/0010422 A1

SW

- Define O Resource for cluster Spring (on tourus) o
A resource "130.62. 13.199" of type IP address was successfully defined.

3) You con now use one or more of the tasks shown below to define more
resources, make changes to O resource definition, or add the newly
defined resource to the resource group

52) v ReSource 130.62. 15.199

Define o New Resource

Test Resources
S3) Define a Failover Policy

Redefine O Resource for O Specific Node
Add/Remove Dependencies for O Resource Definition
Modify O Resource Definition

Clear Resource Error Stote

Rig5

Patent Application Publication Jan. 12, 2006 Sheet 15 of 16

A6) v
Resource Dependencies:

65

Type-specific Attributes:

62) Oxffffff OO

Application ToskS:

63

Define a Failover Policy

- Resource 130.62.13.199 (on tourus) O
ReSource Nome:
Resource Type:

Custer:
Defined For:

In Resource Group:
Running On:

Stotus:

Resource Resource Type Defined For

Key IValue
Network MOSk
InterfoCes ecD
BrOOdcost Address 130,62015.255

Define O New Resource

Test Resources

Redefine a Resource for O Specific Node

Sy

1 30.62. 13,199
IP Oddress
Spring
Cluster Spring
ABC
(None)
Unknown

Fig.16

US 2006/0010422 A1

Patent Application Publication Jan. 12, 2006 Sheet 16 of 16 US 2006/0010422 A1

W

- Custer view of foil (on libro) IOI
Options View

Resources in Groups:

VIP address: 130.62. 13.16
V Netscape Web: rho - Web

VIP address: 130.62. 13.160
V Netscape Web. xi-web

Rig\

US 2006/0010422 A1

COMMONUSER INTERFACE DEVELOPMENT
TOOLKIT FOR A SYSTEM ADMINISTRATION

PROGRAM

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. applica
tion Ser. No. 09/811,345, filed Mar. 16, 2001, which is
related to and claims the priority of U.S. Provisional Appli
cation No. 60/189,863, filed Mar. 16, 2000, both of which
are incorporated herein by reference.

FIELD OF THE INVENTION

0002 This invention relates generally to computer sys
tems, and more particularly to development of user inter
faces for a computer System administration program.

COPYRIGHT NOTICE/PERMISSION

0003) A portion of the disclosure of this patent document
contains material that is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclo
Sure as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever. The following notice applies to the Software and
data as described below and in the drawings hereto: Copy
rightC) Silicon Graphics Incorporated, 2000. All Rights
Reserved.

BACKGROUND OF THE INVENTION

0004 Interfaces for various system administration appli
cations can be inconsistent, requiring the user to learn each
one of a variety of different System-administration applica
tions. Typical System administration applications are hard to
use and confusing for the non-technical user. The following
are examples of the problems that users face:
0005 Prerequisites and background knowledge. Users
can get Stuck when they must perform an administration task
and do not know enough about the System to start or to
complete the task. For example, users might want to share a
file on the network, but do not know that in order to share
an individual file, they must share the file's directory.
0006 Information overload. Users can lose patience and
feel overwhelmed when they must perform an administra
tion task and are deluged with information from many
Sources: “Read this first documents packaged in the SyS
tem box, release notes, books, and the Web. Their frustration
is compounded when the information is only partly relevant
or consistent.

0007 Risk of system damage. Users can hesitate before
performing an administration task that they perceive may
damage the computer, whether or not there is real risk. Other
users try ad hoc methods and unknowingly do System
damage when trying to perform an administration task. For
example, a user accustomed to a single-user System like a
Macintosh might always log into the root account; to free up
disk Space, the user might remove large files that could be
important to System operation.

0008 Lack of confidence in result. Users who try to
perform an administration task might not be certain that
what they tried had the intended effect. For example, com

Jan. 12, 2006

mands in prior Systems that are issued at the command line
Sometimes return an invisible return code, and few State in
plain English what has happened and what ramifications to
expect.

0009 Entry points difficult to find. Users and systems
administrators can use different terminology when thinking
about their systems, which makes it difficult for users to find
and use the tools they need.
0010 Error recovery. When something goes wrong, users
can get Stuck and not know how to fix the problem. For
example, a user who unwittingly removeS/Unix might con
tinue to use the System for days or weeks until the System is
rebooted, at which point it can be difficult to track down
what went wrong, why, and how to fix it.
0011 Deciding what to do next. Users might not know
what to do next when they've run an unfamiliar command,
whether the command seemed to have the desired effect or
not. Users can become confused when there is no feedback
informing them how far they've come in an administration
task or what their options are at any given point.
0012. Thus, there is a need for an infrastructure for
building common, consistent, task-based user interfaces to
applications that configure, manage, and monitor hardware
and Software.

SUMMARY OF THE INVENTION

0013 The present invention provides solutions to the
above-described shortcomings in conventional approaches,
as well as other advantages apparent from the description
and appendices below.
0014. The present invention provides a toolkit for devel
oping user-interfaces for a System administration program.
The toolkit has a Server-Side application-programming inter
face (API). The server-side has task-registry files that each
describe a task group. The toolkit also has a client-side API.
A developer can customize product-specific properties files
for a Specific product and write code that calls the Server
Side and client-side APIs to create a graphical user interface
for the Specific product.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 FIG. 1 depicts a pictorial example of a network of
computer Systems that can be used to implement an embodi
ment of the invention.

0016 FIG. 2 depicts a block diagram of the principal
components of a client and Server attached via a network,
according to an embodiment of the invention.
0017 FIG. 3 depicts a block diagram showing more
detail of the Software architecture of an example client and
Server, according to an embodiment of the invention.
0018 FIG. 4 depicts a block diagram of the relationships
of tasks to task data, according to an embodiment of the
invention.

0019 FIG. 5 depicts a block diagram of a product
Specific properties file, according to an embodiment of the
invention.

0020 FIG. 6 depicts a pictorial representation of an
example user interface, according to an embodiment of the
invention.

US 2006/0010422 A1

0021 FIG. 7 depicts a block diagram of the format of a
task data file, according to an embodiment of the invention.
0022 FIG. 8 depicts a block diagram of the format of a
task registry file, according to an embodiment of the inven
tion.

0023 FIG. 9 depicts a flowchart of the operations of the
client, according to an embodiment of the invention.
0024 FIG. 10 depicts a flowchart of the operations of the
Server after the client has issued a login command, according
to an embodiment of the invention.

0025 FIG. 11 depicts a flowchart of the operations of the
server after the user has selected the “OK” button, according
to an embodiment of the invention.

0.026 FIG. 12 depicts a pictorial representation of an
example user interface for a Form, according to an embodi
ment of the invention.

0.027 FIG. 13 depicts a pictorial representation of an
example user interface for a Guide, according to an embodi
ment of the invention.

0028 FIG. 14 depicts a pictorial representation of
another example user interface for a Guide, according to an
embodiment of the invention.

0029 FIG. 15 depicts a pictorial representation of an
example user interface for a ResultView, according to an
embodiment of the invention.

0030 FIG. 16 depicts a pictorial representation of Item
View window, according to an embodiment of the invention.
0.031 FIG. 17 depicts a pictorial representation of a
TreeView window, according to an embodiment of the
invention.

DETAILED DESCRIPTION OF THE
INVENTION

0032. In the following detailed description of exemplary
embodiments of the invention, reference is made to the
accompanying drawings, which form a part hereof, and in
which are shown by way of illustration Specific exemplary
embodiments in which the invention may be practiced.
These embodiments are described in Sufficient detail to
enable those skilled in the art to practice the invention, and
it is to be understood that other embodiments may be utilized
and that logical, mechanical, electrical and other changes
may be made without departing from the Scope of the
present invention. The following detailed description is,
therefore, not to be taken in a limiting Sense, and the Scope
of the present invention is defined only by the appended
claims.

0.033 FIG. 1 depicts an example of a network of com
puter Systems that can be used to implement an embodiment
of the invention. Client computer system 110 is connected to
remote server computer system 188 via network 160. Com
puter System 110 includes processing unit 112, display
device 114, keyboard 116, pointing device 118. Processing
unit 112 receives input data from input devices Such as
keyboard 116, pointing device 118, and network 160 and
presents output data to a user via display device 114.
Pointing device 118 is used in conjunction with a graphical
user interface (GUI) in which hardware components and

Jan. 12, 2006

Software objects are controlled through the Selection and the
manipulation of associated graphical objects displayed
within display device 114. Although computer system 110 is
illustrated with a mouse for pointing device 118, other
graphical-pointing devices Such as a graphic tablet, joystick,
trackball, or track pad could also be used.
0034) Keyboard 116 is that part of computer system 110
that resembles a typewriter keyboard and that enables a user
to control particular aspects of the computer. Video-display
terminal 114 is the visual output of computer system 110.
0035) To support storage and retrieval of data, processing
unit 112 further includes diskette drive 122, hard-disk drive
123, and tape drive 124, which are interconnected with other
components of processing unit 112. Although diskette drive
122, hard-disk drive 123, and tape drive 124 are shown
incorporated into System unit 112, they could be external to
System unit 112, either connected directly, on a local area
network (LAN), on network 160, or attached to remote
computer system 188.
0036 Computer system 110 can be implemented using
any Suitable computer available from a number of Vendors.
Computer system 110 is thus a configuration that includes all
functional components of a computer and its associated
hardware. In general, a typical computer System includes a
console or processing unit Such a processing unit 112, with
one or more disk drives, a monitor Such as Video display
terminal 114, and a keyboard such as keyboard 116. Remote
computer system 188 can be implemented using any Suitable
computer that contains non-volatile Storage. But, an embodi
ment of the present invention can apply to any hardware
configuration that allows developing a user interface for a
System administration program regardless of whether the
computer System is a complete, multi-user computer appa
ratus, a single-user WorkStation, or a network appliance that
does not have non-volatile Storage of its own.
0037 FIG. 2 depicts a block diagram of the principal
components of processing unit 112 of client 110 and server
188 attached via network 160. Client 110 contains processor
240 connected via bus 255 to memory 230, diskette drive
122, hard-disk drive 123, tape drive 124, and network
adapter 252. Although the various components of FIG.2 are
drawn as Single entities, each may consist of multiple
entities and may exist at multiple levels.
0038 Processor 240 executes instructions and includes
that portion of client 110 that controls the operation of the
entire computer System, including executing the arithmetical
and logical functions contained in a particular computer
program. Although not depicted in FIG. 2, processor 240
typically includes a control unit that organizes data and
program Storage in a computer memory and transferS data
and other information between the various part of the
computer System. Processor 240 accesses data and instruc
tions from and stores data to memory 230.
0039. Any appropriate processor could be utilized for
processor 240. Although client 110 is shown to contain only
a Single processor and a Single System bus, the present
invention applies equally to computer Systems have multiple
processors and to computer System that have multiple buses
that each perform different functions in different ways.
0040 Memory 230 comprises an number of individual,
Volatile-memory modules that Store Segments of operating

US 2006/0010422 A1

System and application Software while power is Supplied to
client 110. The software segments are partitioned into one or
more virtual memory pages that each contain an uniform
number of virtual memory addresses. When the execution of
Software requires more pages of Virtual memory than can be
Stored within memory 230, pages that are not currently
needed are Swapped with the required pages, which are
stored within non-volatile storage devices 122 or 123.
Memory 230 is a type of memory designed such that the
location of data Stored in it is independent of the content.
Also, any location in memory 230 can be accessed directly
without having to Start from the beginning.
0041 Memory 230 contains client programs 260 and
Service proxy 262, which contain instructions capable of
being executed by processor 240. In the alternative, they
could be implemented by control circuitry though the use of
logic gates programmable logic devices, or other hardware
components in lieu of a processor-based System. The opera
tion of client programs 260 and service proxy 262 are
described below with reference to FIG. 3.

0042 Diskette drive 122 and hard disk drive 123 are
electro-mechanical devices that read from and write to
magnetic disks, although any non-volatile Storage devices
could be used such as CD-ROM drives. Tape drive 124 is an
electro-mechanical device that reads from and writes to tape
media.

0.043 Finally, client 110 includes network adapter 252,
which facilitates communication between client 110 and
network 160, which might be a local area network (LAN),
an intranet, or the Internet. Network 160 provides a user of
client 110 with a means of electronically communicating
information, including Software, with a remote computer or
a network logical-storage device. In addition, network 160
Supports distributed processing, which enables client 110 to
share a task with other computer Systems linked to the
network.

0044) Network adapter 252 could also be a modem,
which supports communication between client 110 and
another computer System over a Standard telephone line.
Furthermore, through a modem, client 110 can access other
Sources Such as Server, an electronic bulletin board, and the
Internet or World Wide Web.

0.045 Network 160 may include a plurality of networks,
each of which could include a plurality of individual com
puters. Network 160 and server 188 could be located a great
geographic distance from client 110, or they could be in the
same room or even on the same desktop. Client 110 could be
connected to network 160 via a Standard telephone line, a
dedicated cable, or a wireleSS communications link.

0046) Server 188 contains memory 270, processor 275,
and storage 278, which are all connected via system bus 279.
Memory 270 can be any type of computer memory, analo
gous to those described for memory 230. Memory 270
contains System administration program 280, port handler
282, and service 284. Port handler 282 handles communi
cation over network 160 to client 110 via a TCP (Transmis
Sion Control Protocol) connection, although any Suitable
communications protocol could be used.
0047 System administration program 280 handles
receiving packets from and passing packets to Service 284.
Packets are the basic unit of communication between client

Jan. 12, 2006

110 and server 188. A packet, which contains a type that
identifies which service 284 it is associated with and a
Selector that indicates which command or notification is
being Sent. Also, each packet contains key/value pairs of
information that specify any additional information needed
to convey the command or notification. Examples of packets
are username/password packets, notification packets, and
command packets. The username/password packet authen
ticates client 110 to the server 188. After authentication,
communication between client 110 and server 188 takes the
form of commands from client 110 to server 188 and
notifications from server 188 to client 110.

0048. In one embodiment, service 284 provides four
Services that client 110 can use to access server 188:
category Service, association Service, task registry Service,
and privilege broker Service, but any number and type of
services could be provided. Client 110 uses the category
Service to retrieve information about server 188. The cat
egory Service monitors an aspect of the System and main
tains an Item for each entity. A Category represents a
collection of monitored Item(s) of a specific type. For
example, the collection of user account Item(s) can be
represented by a Category instance.
0049. An Item includes a list of key value pairs and
represents. Some System entity to be administered, e.g., a
cluster, a Volume, or a file System. The client is notified when
Items are added, changed, or removed. The association
Service maintains a State representing relationships between
Items on the System. The Task registry Services fetches lists
of Tasks from the server based on criteria. The privilege
broker service enables client 110 to run privileged com
mands on Server 188. A privileged command is a command
that is executed on server 188 with more privileges and
permissions than the typical user. The functions of System
administration program 280 and service 284 are further
described below with reference to FIG. 4.

0050 Processor 275 can be any type of computer pro
ceSSor, analogous to those described for processor 240.
Storage 278 can be any type of non-volatile Storage, analo
gous to those described for diskette drive 122, hard disk
drive 123, and tape drive 124.
0051) The configuration depicted in FIG. 1 is but one
possible implementation of the components depicted in
FIG. 2. Portable computers, Laptop computers, and network
computers or Internet appliances are other possible configu
rations. The hardware depicted in FIG. 2 may vary for
Specific applications. For example, other peripheral devices
Such as optical-disk media, audio adapters, or chip program
ming devices, such as PAL or EPROM programming
devices may be used in addition to or in place of the
hardware already depicted. Thus, an embodiment of the
invention can apply to any hardware configuration that
allows developing user interfaces, regardless of whether the
hardware configuration is a complicated, multi-user com
puting apparatus, a single-user WorkStation, or a network
appliance that does not have non-volatile Storage of its own.
0052 AS will be described in detail below, aspects of an
embodiment pertain to Specific method steps implementable
on computers. In another embodiment, the invention can be
implemented as a computer program product for use with a
computer System. The programs defining the functions of the
embodiment can be delivered to a computer via a variety of

US 2006/0010422 A1

Signal-bearing media, which include, but are not limited to
(a) information permanently stored on non-writeable storage
media (e.g., read only memory devices within a computer
such as CD-ROM disks) readable by an unillustrated CD
ROM drive; (b) alterable information stored on writeable
Storage media (e.g., floppy disks within diskette drive 122,
tape drive 124, or hard-disk drive 123); or (c) information
conveyed to a computer by a communications media, Such
as through a computer or telephone network including
wireleSS communications. Such signal-bearing media, when
carrying computer-readable instructions that direct the func
tions of the present invention, represent embodiments of the
present invention.

0.053 FIG. 3 depicts a block diagram showing more
detail of the Software architecture of client 110 and server
188, which are again connected via network 160. Client 110
contains application 230, Service proxy 262, user interface
components 336, and runtime 338. Application 230 contains
Task manager 341. Task manager 341 contains resource file
343 and product-specific properties file 346. Although only
one resource file 343 is shown, in another embodiment there
are multiple resource files. Application 230 also contains
Task data 365-1 and Task data 365-2. Although two task data
files are shown, other embodiments any number can be
present. Task data is further described below with reference
to FIG. 4. The format of the properties file is further
described below with reference to FIG. 7. Product-specific
properties file 346 specifies which product’s Task data must
be loaded before the Task will run. Task manager 341 reads
product-specific properties file 346 and creates Task-man
ager window 600, as further described below with reference
to FIG. 6. Task manager 341 uses the functions of UI
components 336 and runtime 338, which make up the
client-side API (Application Program Interface).
0054) The developer writes code (e.g., Java code) and
customizes resource file 343 to create, for example, Item
View, CategoryView, TreeView, Task, and ResultView,
which are all items that create a common user-interface. A
developer writes code on server 188, such as developer
supplied plugins 355-1 and 355-2, to create Items and
Categories. In one embodiment, there are separate resource
files for each of these items. A Category View is a window
displaying relevant information about a Category. A Result
View is further described below with reference to FIG. 15.
An ItemView is further described below with reference to
FIG. 16. A TreeView is further described below with
reference to FIG. 17.

0.055 Server 188 contains system administration pro
gram 280, developer-supplied plug-ins 355-1 and 355-2, and
operating system 370. System administration program 360
contains Task registry 360, which is further described below
with reference to FIG. 8. System administration program
360 provides server-side API functions.
0056 FIG. 4 depicts the relationship of Tasks running on
client 110 to Task data 365. A Task provides one or more
user interfaces that prompt the user for parameters for
making a change to the System, and OK method 420, which
is called after the user has entered Form or Guide data, as
further described below with reference to FIGS. 12, 13, and
14. In one embodiment, OK method 420 is an object
oriented method, which can be used to acceSS or operate on
encapsulated data within an object. OK method 420 is

Jan. 12, 2006

further described below with reference to FIG. 11. Referring
again to FIG. 4, Since a Task can have more than one user
interface, e.g. Form 410 and Guide 415, and since the user
can Switch back and forth between user interfaces, the Task
data mechanism is provided So that data is not lost when the
user Switches between interfaces. An example user interface
associated with Form 410 is further described below with
reference to FIG. 12. An example user interface associated
with Guide 415 is further described below with reference to
FIGS. 13 and 14. The Tasks internal representation of what
the user has entered is stored as attributes in Task data 365,
So that when the component changes, Task data 365 changes,
and when Task data 365 changes, the component is changed.
Thus, all input is preserved when the user Switches back and
forth between Form 410 and Guide 415, and OK method 420
can obtain the parameters to pass to privilege broker Service
425 from the common Task data rather than querying the
user interface components.
0057 FIG. 5 depicts a block diagram of product specific
properties file 346, which Task manager 341 uses to create
the Task manager user interface, as further described below
in the description for FIG. 6. Referring again to FIG. 5,
product specific properties file 346 contains title data 505,
table of contents data 510, start up data 515, and button bar
data 520. Title data 505 contains the title that the developer
would like to see on the user interface. Table of contents data
510 contains title data 525, list of links data 530, and
description of pages 540. Title data 525 contains the title that
Task manager 341 will display in the table of contents
Section of the user interface. List of links data 530 contains
the links that Task manager 341 displays in the table of
contents Section of the user interface. Description of pages
540 contains a list of the Tasks that Task manager 341
invokes when the user Selects the associated link and may
contain references to task groups.
0058 Startup 515 contains pointers or other references to
initialization code that runs when Task manager 341 Starts
up. For example, a product might want to Set up default
values for Task data 365 that will be used by product
Specific TaskS.

0059) Button bar data 520 contains button data that Task
manager 341 uses to create buttons in the button bar Section
of the user interface, as further described in FIG. 6.
0060 FIG. 6 depicts a pictorial representation of an
example Task manager user interface. User interface 600 is
shown. Task manager 341 builds user interface 600 using
product specific properties file 346.

0061 User interface 600 contains title area 610, table of
contents area 615, display area 620, and button area 630. In
one embodiment, an area is a frame or window that appears
Separately on display device 114.

0062 Table of contents area 615 contains link1642,
link2644, and linkin 648. When the user selects one of the
links in table of contents area 615, for example link 642,
client 110 consults description of pages 540. If description
of pages 540 indicates that the page should show a task
group, then client 110 sends a packet to server 188 indicating
that a task group has been requested. In response, Server 188
consults the corresponding task-registry file 360 and returns
a list of tasks in the task group to client 110 for display in
display area 620. An example of the displayed page is shown

US 2006/0010422 A1

with Tasks 680-1, 680-2, and 680-3. When the user selects
one of these Tasks, a Form or Guide window is displayed,
as further described below with reference to FIGS. 12, 13,
and 14.

0.063 Referring again to FIG. 6, button area 630 contains
product specific button 660 and close button 664. When the
user Selects product specific button 660, actions Specific to
the product are performed. When the user selects close
button 664, user interface 600 is closed.
0.064 FIG. 7 depicts a block diagram of the Task data
structure. Task data 365 contains a set of key/value pairs 705
representing the information entered by the user as well as
other Task States. These key/value pairs are associated with
a particular login Session. Task data 365 can be used to share
information among different input components within a
Task, as well as among different Tasks in a Session.
0065 FIG. 8 depicts a block diagram of the Task-registry
data Structure 360, which maps task groups to TaskS. Task
registry data Structure includes tables of task groups and task
names 810-1 and 810-2. Although two tables are shown, in
other embodiments, any number can be present.
0.066 FIG. 9 depicts a flowchart of functions performed
by client 110 in response to the user Starting Task manager
341. At block 900, control begins. Control then 5 continues
to block 905 where Task manager 341 reads the data in
product-specific properties file 346. Control then continues
to block 910 where Task manager 341 creates Task manager
window 600. Control the continues to block 915 where Task
manager 341 creates table of contents area 645 using table
of contents data 510. Control then continues to block 920
where Task manager 341 creates button bar area 630 using
button bar data 520. Control then continues to block 925
where Task manager 341 creates display area 620. Control
then continues to block 927 where Task manager 341 creates
title area 610 using title data 505. Control then continues to
block 930 where Task manager 341 determines whether the
user has selected one of the links 642, 644, or 648 in table
of contents 645.

0067. If the determination at block 930 is true, the control
continues to block 935 where Task manager 341 displays the
appropriate page for the link Selected. Control then contin
ues to block 940 where Task manager 341 determines
whether the page contains references to a task group. If the
determination at block 940 is false, then control returns to
block 930, as previously described above. If the determina
tion at block 940 is true, then control continues to block 945
where client 110 sends the name of the task group to server
188. Control then continues to block 947 where client 110
receives a list of tasks associated with the task group from
server 188. Control then continues to block 948 where task
manager 341 displays the task names on the page. Control
then returns to block 930, as previously described above.
0068). If the determination at block 930 is false, the
control continues to block 950 where Task manager 341
determines whether the user has selected close button 664.
If the determination is false, then control returns to block
930, as previously described above. If the determination at
block 950 is true, then control continues to block 999 where
Task manager 341 closes user interface window 600.
0069 FIG. 10 depicts a flowchart of the operations of
system administration program 280 in server 188 in

Jan. 12, 2006

response to a user at client 110 initiating a login command.
At block 1000, control begins. Control then continues to
block 1005 where system administration program 280 cre
ates a host context. A host context is needed in order to
acceSS System administration Services and shared data. The
host context is created by the login proceSS and typically
persists until the last area (in one embodiment a frame) of
the Session has been closed. For example, when the user
launches Task manager 341, the user will only have to log
in once; any Subsequent Task created will share the host
context created at login time.
0070 Control then continues to block 1010 where system
administration program 280 reads Task data 365, which
contains Static information about the Task. Tasks are loaded
in a two-step process to allow the Task to be queried for
Static information Such as its user-readable name, icon
image, and privileges needed to instantiate the Task. This is
especially useful for Task clients that display information
about a large number of Tasks, Such as Task manager 341,
but which don’t want the overhead of loading any Task class
into memory until it is launched.

0071 Control then continues to block 1015 where system
administration program 280 creates the Task context using
Task data 365. The Task context is used by Task subclasses
and their components to share data and State information
during the life of the Task. An example of data would be
information entered by the user, while State could include
information about the Server connection.

0072 Control then continues to block 1020 where system
administration program 280 loads the Task class into
memory and instantiates the Task class.
0073 Control then continues to block 1025 where system
administration program 280 loads Task data 365 with prod
uct attributes 705. Product attributes 705 are stored in the
host context, So that they can be shared by all components
in a given Session. When the product attributes are loaded for
the first time, product-specific plugin 355 sets the attributes.
Plugin 355 brings up a area that requests information from
the user. Plugin 355 then copies the information to Task data
365. Subsequent requests to load product attributes 705 will
not bring up a area, but will simply copy the attribute values
cached in the host context into Task data 365 of the
requestor's Task.

0074 Control then continues to block 1030 where system
administration program 280 overrides product attributes 705
if the client desires. Some Task clients may wish to override
product attributes 705 or share Task data attributes among
the TaskS. For example, a metaTask may wish to pass a Task
data attribute from one Task to the next, So that the user
doesn’t have to enter the data twice. If Task data attributes
are passed to the Task loader, it will attempt to copy those
Task data attributes to the Task being loaded. Not all Task
data attributes may be set by Task clients. Unless a Task has
declared an attribute key public in its properties file, an
attempt to retrieve attributes will cause the Task to exit with
an assertion failure. This mechanism is in place to hide
implementation details from Task clients.

0075 Control then continues to block 1035 where system
administration program 280 passes operands to the Task.
Some Tasks may need an operand or operands on which to
perform their operation. An operand is typically an Item

US 2006/0010422 A1

Selector, which is a String that uniquely identifies an admin
istered object on the Server. For example, the modify user
account Task would take a single user account as an operand,
while the delete user account Task might take on or more
user accounts as operands, and the define user account Task
would not take any operands. Operands are passed after
product attributes are loaded and after Task data attributes
are set to allow product attributes and Task data attributes to
be overridden if desired. Because operands may be passed to
Tasks by a class with no specific knowledge about the Task,
no ordering of operands is required by the Task.
0076 Control then continues to block 1040 where system
administration program 280 verifies that all the prerequisites
are in place to run the Task. This includes checking the Task
data attributes, operands, privileges, and State of the System
being administrated. The principle behind Verifying prereq
uisites is to detect error conditions as early as possible. For
example, a Task that requires Special System Software to be
installed should check the system for that software at this
Stage of Task loading. It is annoying for users to enter data
and then discover that the System is not in a State to perform
the Task. The Task loader calls three different verification
methods. This three-stage proceSS is aimed at providing
error feedback to the user as early as possible.
0.077 (1) The first stage is where most verification
occurs. Only checks that require privileges, Such as acceSS
ing read-protected files, are deferred to the third Stage.
0078 (2) The second stage checks the privileges that are
defined in the properties file of the Task. If the user does not
have the required privileges, the user is asked to enter the
root password to continue.
0079 (3) The final verification stage is provided for those
rare Tasks that need privileges to fully verify that the Task
is ready to run. For example, Tasks that require access to
read-protected files will need to have privileges before being
able to Verify that the Task prerequisites are met.
0080 Control then continues to block 1045 where system
administration program 280 creates the visible components
of the Task. The visible components of a Task are created
after the Task has been added to a visible area (a frame in one
embodiment) or its frame parent becomes visible for the first
time. Then, Visible components are created on a just-in-time
basis. Tasks are displayed within an existing area. Control
then continues to block 1099 where the process stops.
0081 FIG. 11 depicts a flowchart of the server perform
ing OK method 420. Control begins at block 1100. Control
then continues to block 1105 where the Task determines that
OK button 1230 or 1430 has been selected. Control then
continues to block 1110 where the Task checks attributes 705
in Task data 365 to determine that they are valid and
consistent. Control then continues to block 1115 where the
Task operation is initiated. Control then continues to block
1199 where the function returns.

0082 FIG. 12 depicts a pictorial representation of an
example user interface for a Form. Task Form window 1200
is shown displayed on display device 114. Task Form
window 1200 contains Task name 1205 and label fields
1210, 1215, and 1220. After the user has entered the
appropriate data and selects OK button 1230, the operations
previously described above with reference to FIG. 11 are
performed. The purpose of the Form interface is to make the

Jan. 12, 2006

entry of Task parameters Simple and fast. In one embodi
ment, it is Suitable for Tasks of low complexity and a Small
number of parameters. Forms are the preferred interface
when the typical users are knowledgeable and comfortable
with the System being administered.
0083 FIG. 13 depicts a pictorial representation of an
example user interface for a Guide. Task Guide window
1300 is shown displayed on display device 114. Task Guide
window 1300 contains Task name 1305 and label field 1310.
After the developer has entered the appropriate data and
Selects next button 1330, the user interface as described
below with reference to FIG. 14 is displayed. A Guide is a
multi-page GUI containing explanatory text with a Small Set
of labeled input components on each page. The purpose of
the Guide interface is to provide Step-by-step guidance on
completing a complex task or tasks with a large number of
parameters. In one embodiment, Guides are the preferred
interface when the typical users are novices or not comfort
able with the System being administered.
0084 FIG. 14 depicts a pictorial representation of
another example user interface for a Guide. Task Form
window 1400 is shown displayed on display device 114.
Task Form window 1400 contains Task name 1405 and label
field 1410. After the developer has entered the appropriate
data and selects OK button 1430, the operations previously
described above with reference to FIG. 11 are performed.
0085 FIG. 15 depicts a pictorial representation of
ResultView window 1500, which displays the results of a
Task that has been successfully completed. (If the Task could
not be performed, the user is given an error message
describing the problem, and the Form or Guide remains open
until the Task is Successfully completed or explicitly can
celed.) ResultView window 1500 contains descriptive mes
sage 1510, icon 1520 representing the Item that was oper
ated on (if applicable) and TaskShelf 1530 showing the
related Tasks that the user may want to launch next. The user
can launch the Tasks identified in TaskShelf 1530 by click
ing on the task name or icon. In one embodiment TaskShelf
1530 is dynamic, meaning it will update the list of Tasks
based on the State of the System.
0086 FIG. 16 depicts a pictorial representation of Item
View window 1600, which displays relevant information
regarding an Item. ItemView window 1600 displays the
Item's icon 1610 with the icon color indicating the Item's
state in one embodiment. ItemView window 1600 also
displays application-specific contents in ItemTables 1615
and TaskShelf 1630. ItemTables 1615 shows information
about all Items in a Category. ItemView window 1600 also
displays Key-value pairs 1620.
0087 FIG. 17 depicts a pictorial representation of Tree
View window 1700, according to an embodiment of the
invention. TreeView window 1700 displays Items that have
a hierarchical relationship. In example window 1700, three
different kinds of Items are shown: the cluster “fall 1710
contains tow resource groups rho 1720 and Xi 1730, which
each contain two resources.

0088 ADDITIONAL FEATURES
0089) 1. Hand Cursor Appearing in Tables
0090 RichTextComponents in ItemTables can contain
glossary links and task launchers, which look like web linkS.

US 2006/0010422 A1

For the component to look just like a web link, the hand
cursor appears and indicates to the user that a link is
available and clickable. Other components in Component
Tables may be modified to have different cursors.
0.091 2. Blocking Dialogs and Blocking Windows
0092. The UIContext class allows correct blocking
behavior and busy cursors over blocked windows, modal
dialogs blocking a window or the whole application, and
busy dialogs over a window or the whole application.
0093. 3. Many objects are cached, including Category
Items, ReSources in ResourceStacks, Fonts, Colors, and
Other Commonly Used Items.
0094. 4. Combination of Sysadm GUI Features.
0.095 Prerequisites are explicitly and complete. Unnec
essary details are hidden by default. The truth is told about
system status whenever possible. The user is told what will
happen before and after a task. Problems are identified as
Soon as possible. DeveloperS can write code to easily launch
ItemViews, via the runItem View method of ItemView.
0096) 5. ItemView Launch From ResultView
0097. An ItemView can be easily launched from a Result
View, which appears when a Task completes. The Result
View displays the affected Item's name and icon, either of
which can be clicked on to launch an ItemView. This icon
and the name of the Item are updated if the Item changes and
are always exactly the same as would be seen in the Item
View. If the Task has created an Item, but the Item is not yet
in the Category when the Result View appears, the Result
View will print a message indicating that the Item is pend
ing, and when the Item appears in the Category, the name
and Icon will appear.
0.098 6. ItemTable, Also Called Category View.
0099. A component is provided that displays all of the
Items in a Category in table form, called an Item Table. The
columns of the table are Attributes, and there is one Item per
row. The first column of the table usually contains a small
icon for the Item. The user can choose the column to sort by
clicking on the column headers. Typically, there is not room
in the table to display all of the Attributes on the Item,
clicking on the name of the Item or Icon will launch an
ItemView showing all the Attributes. The developer can
choose which Attributes to display, the order in which they
will be displayed, the width of the columns, the method of
converting the Attribute to a String, and the height of the
Table in the properties files. To allow for further customi
Zation, developerS are allowed to write Java classes for each
of the columns of the Table, and in that manner, any
component can be displayed.

01.00 7. ItemFinder
0101 Frequently, of the inputs to a Task is the name of an
existing Item in a particular Category. For this type of input,
an ItemFinder is Supplied, which looks to the user like a
JComboBox. The developer attaches the Item Finder to a
Category or ASSociation, and the ItemFinder code takes care
of populating itself with the names of the Items. The
developer can also pass an ItemTester Object, which can be
used to filter the Items based on the contents of their
Attributes. The ItemFinder will automatically keep itself
up-to-date with the contents of the Category.

Jan. 12, 2006

0102 8. TaskData binder classes enable the developer to
bind the state of the ItemFinder to the Task's TaskData.
TaskData Binders connect the TaskData to the selected
Items user-visible name or the Item's sector. The developer
can also programmatically read and change the Selected
Item, either by the user-visible name of the Item or by the
Item's selector.

0103) 9. Icons
0104 All of the icons displayed are rendered dynamically
from vector-based icon description. This allows the devel
oper to only create an icon once, but it can be displayed at
any desired size. Once the icon description has been created,
icons can be referenced by name in properties files So that
developerS can change any of the icons.

0105 The icons for Items have some special properties.
The icon's appearance can change based on the State of the
Attributes of the Item. The color of the icon can change, an
overlay can appear on top of the icon, the icon can be make
to blink, or an entirely different icon can be used, all based
on the Item's State, and all controlled by a simple properties
file.

0106 10. The developer can pre-generate source files that
compile and run, displaying a basic GUI. This is a quick way
for developer to get Started. The Source files are useful
skeletons that the developer can examine as example code,
as well as flesh out with their actual application function
ality.

0107 11. Different Connection Methods of Security.
0108. The server daemon, sysadmid, can specify the
authentication Scheme to be used. Available Schemes are
Unix authentication and null. The default Scheme is Unix,
which requires a valid login/password pair before Sysadmd
will respond to further requests. The null authentication
Scheme does not require authentication of any kind and can
be used when sysadmd is started from rshd. Since rshd
implements its own authentication Scheme, no further
authentication is required on the part of Sysadmd.

0109) 12. TreeView.
0110. The TreeView component displays a hierarchical
View of Items in cascading Categories. Its is possible to
provide a custom Sort method to control the ordering of the
display of the Items in any given category. Normally, Items
in any given Category are Sorted alphabetically by the
Selectors of those Items.

0111) 13. LogViewer.

0112 The LogViewer component displays the contents of
the ?var/Sysadm/Salog file, but filters out, on the Server for
efficiency, leSS important messages.

0113. 14. Log File for all Application Changes.

0114 All applications automatically write their log mes
Sages to the ?var/Sysadm/Salog file. End users can easily cut
and paste form/to this log to record actions that they've
taken in a GUI and that they want to be able to repeat as a
Script. DeveloperS can watch this log while developing their
application, to observe and correct their application's GUI
behavior.

US 2006/0010422 A1

0115 15. Consistent Help.
0116. The online end-user is provided help for all tasks
that a user can accomplish using the GUI, and other related
information. This help mechanism uses a platform-indepen
dent extensible help System that enables developerS to
incorporate online help in applications and applets. By
clicking the Help button in a Task GUI, the user is able to
view the detailed description of the task that the system is
running. The help indeX window also allows a user to Select
a particular topic directly from the list. This feature is useful
for new users or users who are not familiar with certain
Tasks. The help system explains what the Tasks do.
0117) 16. Blinking Icons
0118. An object or Item can be represented by an icon
that is displayed as part the GUI. This icon can be pro
grammed to Start or Stop blinking to reflect the State of the
object. This is an effective way to get the users attention
when immediate action is required for Some situations.
0119) 17. Server-Side Product Attributes.
0120 Server-side product attributes are supported, so that
the Server can tell the client Specific information about the
product. This allows the client to detect differences in server
Software configurations, and thus the client can take Special
action if necessitated by the Server configuration.
0121 18. Splash Screen.
0.122 The Splash screen is an image that is displayed
immediately after an application is executed and then is
replaced by the application window once it is ready. This
feature enables the developer to use an attractive image to
give the user feedback that the GUI is starting up and to State
the product’s brand identity. An in-progreSS Statement or any
one-line informational text can be displayed at the bottom of
the Screen.

0123. It is to be understood that the above description is
intended to be illustrative, and not restrictive. Although
numerous characteristics and advantages of various embodi
ments of the present invention have been set forth in the
foregoing description, together with details of the Structure
and function of various embodiments, many other embodi
ments and changes to details will be apparent to those of
skill in the art upon reviewing the above description. The
scope of the invention should, therefore, be determined with
reference to the appended claims, along with the full Scope
of equivalents to which Such claims are entitled.

1. A method of generating a System administration user
interface, the method comprising:

accessing a Task-registry including one or more Task
groups,

accessing a product specific properties file; and

generating a user interface as a function of the accessed
Task registry and the product specific properties file.

2. The method of claim 1, wherein the Task-registry is
accessible on a Server.

3. The method of claim 1, wherein the product specific
properties file is accessible on a client.

Jan. 12, 2006

4. The method of claim 1, wherein the product specific
properties file Specifies Task data to be loaded in a System
performing at least a portion of the method before a Task is
executed.

5. The method of claim 1, further comprising:
accessing a resource file that includes computer-execut

able instructions to generate a cross-platform common
user interface.

6. The method of claim 5, wherein the computer-execut
able instructions of the resource file includes instructions to
generate an ItemView, Category View, TreeView, Task, and
ResultView.

7. The method of claim 1, wherein a generated user
interface prompts a user for parameters to make System
changes.

8. A method comprising:
generating a cross-platform, common user interface,

wherein the user interface for individual platforms is
generated as a function of components, wherein the
components include a resource file, a product specific
properties file, and a task registry.

9. The method of claim 8, wherein the components further
include one or more plugins, user interface components, and
task data.

10. The method of claim 8, wherein one or more of the
components are Stored on a Server and are accessible by one
or more clients.

11. The method of claim 10, wherein the one or more
components Stored on the Server are platform independent
components.

12. The method of claim 10, wherein the one or more
components Stored on the Server provide the Server Service
capabilities to communicate with one or more clients, the
Services including a category Service, an association Service,
a task registry Service, and a privilege broker Service.

13. The method of claim 8, wherein the resource file can
be customized.

14. A System administration program comprising:

a Server-Side application-programming interface compris
ing a Task-registry including one or more task groups,
wherein the Server-side application-programming inter
face, when executed on a Suitably configured System, is
accessible over a network as a component in providing
a common, platform independent System administra
tion user interface.

15. The System administration program of claim 14,
further comprising:

two or more task registries, wherein each task registry
includes one or more task groups.

16. The System administration program of claim 14,
wherein the System administration program includes a privi
lege broker Service, wherein the privilege broker Service
enables privileged commands, received over the network, to
be executed.

17. A System administration program comprising:
a Task manager that includes a product-specific properties

file, wherein the product specific properties file is
customizable and the client-side application program
ming interface is callable to create a graphical user
interface or a specific product.

US 2006/0010422 A1 Jan. 12, 2006
9

18. The system administration program of claim 17, configured System, calls routines of a Server-side application
wherein the graphical user interface of the System adminis- programming interface.
tration program is common acroSS products. 20. The system administration program of claim 17,

19. The system administration program of claim 17 wherein the Task-manager further includes a resource file.
wherein the Task manager, when executing on a Suitably k

