发明名称：普罗布考单酯在治疗心血管疾病和炎性疾病中的应用

摘要：

本发明涉及抑制 VCAM-1 的组合物及方法，特别是治疗包括动脉粥样硬化的心血管疾病或炎性疾病的相关组合物和方法，包括给药有效量的普罗布考酯。
权利要求书

1. 抑制 VCAM-1 的方法，包括对病人给药有效量的普罗布考单酯或其可药用盐。

2. 权利要求 1 的方法，其中的单酯选自二羧酸及其盐、氨基羧酸及其盐、含酯的羧酸及其盐、氨基酸盐、酰氨基、酰胺基的盐、酯及其盐，其中的酯可以任选被基团取代，这些基团选自：磷酸、磺酸酯、磺酸、磷酸酯、环磷酸酯、多羟基烷基、糖基、C(0)-间隔基-SO₂H，其中间隔基为-(CH₃)ₕ,-(CH₂)ₙ-CO-, -(CH₂)ₙ-N-, -(CH₂)ₙ-O-, -(CH₂)ₙ-S-, -(CH₂O)-, -(OCH₂)-, -(SCH₂)-, -(CH₂S)-, -(芳基)-, -(O-芳基)-, -(烷基)-, -(O-烷基)-；n 为 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 或 10; C(0)-间隔基-SO₂M，其中 M 为用于形成可药用盐的金属，C(0)-间隔基-PO₃H₂，C(0)-间隔基-PO₃O₂H₂，C(0)-间隔基-PO₃O₃H₂，C(0)-间隔基-PO₃O₃HM，C(0)-间隔基-PO₃O₄H，C(0)-间隔基-PO₃M₂，C(0)-间隔基-PO₃O₂HM，PO₃O₃HM，环磷酸酯、多羟基烷基、糖基、C(0)-间隔基-[O(C₁₋₅烷基)]ₙ，其中 n 如上所述，p 为 1, 2 或 3; -[O(C₁₋₅烷基)]ₙ，羧基低级烷基、低级烷基羧酸低级烷基、N,N-二烷基氨基低级烷基、吡啶基低级烷基、吗啉基低级烷基、吗啉基低级烷基、吗啉基低级烷基、吗啉基低级烷基、吗啉基低级烷基、吗啉基低级烷基、吗啉基低级烷基、吗啉基低级烷基、吗啉基低级烷基、吗啉基低级烷基、吗啉基低级烷基、吗啉基低级烷基、吗啉基低级烷基。四唑基低级烷基、四唑基氨基低级烷基或哌嗪基低级烷基。

3. 权利要求 1 的方法，其中的单酯为单琥珀酸酯或其可药用盐。

4. 治疗 VCAM-1 介导的疾病的方法，包括对病人给药有效量的普罗布考单酯或其可药用盐。

5. 权利要求 4 的方法，其中的单酯选自二羧酸及其盐、氨基羧酸及其盐、含酯的羧酸及其盐、氨基酸盐、酰氨基、酰胺基的盐、酯及其盐，其中的酯可以任选被基团取代，这些基团选自：磷酸、磺酸酯、磺酸、磷酸酯、环磷酸酯、多羟基烷基、糖基、C(0)-间隔基-SO₂H，其中间隔基为-(CH₃)ₕ,-(CH₂)ₙ-CO-, -(CH₂)ₙ-N-, -(CH₂)ₙ-O-, -(CH₂)ₙ-S-, -(CH₂O)-, -(OCH₂)-, -(SCH₂)-, -(CH₂S)-, -(芳基)-, -(O-芳基)-, -(烷基)-, -(O-烷基)-；n 为 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 或 10; C(0)-间隔基-SO₂M，其中 M 为用于形成可药用盐的金属，C(0)-间隔基-PO₃H₂，C(0)-间隔基-PO₃O₂H₂，C(0)-间隔基-PO₃O₃H₂，C(0)-间隔基-PO₃O₃HM，C(0)-间隔基-PO₃O₄H，C(0)-间隔基-PO₃O₂HM，PO₃O₃HM，环磷酸酯、多羟基烷基、糖基、C(0)-间隔基-[O(C₁₋₅烷基)]ₙ，其中 n 如上所述，p 为 1, 2 或 3; -[O(C₁₋₅烷基)]ₙ，羧基低级烷基、低级烷基羧酸低级烷基、N,N-二烷基氨基低级烷基、吡啶基低级烷基、吗啉基低级烷基。四唑基低级烷基、四唑基氨基低级烷基或哌嗪基低级烷基。
基-Po₄H₄、C(O)-间隔基-Po₄M₄、SO₃M₄、-Po₃H₂、-Po₃M₂、-Po₃HM、环磷酸
酯、多羟基烷基、糖基、C(O)-间隔基-[O(C₁₋₃烷基)]ₙ，其中n如上
所述，p为1、2或3；-[O(C₁₋₃烷基)]ₙ，羧基低级烷基、低级烷基
羰基低级烷基、N,N-二烷基氨基低级烷基、吡啶基低级烷基、咪唑基
低级烷基、吲哚基低级烷基、吲哚基低级烷基、噻唑基低级烷基、
吡啶基低级烷基、吲哚基低级烷基、N-吡咯基、哌嗪基低级烷基、
N-烷基哌嗪基低级烷基、三唑基低级烷基、四唑基低级烷基、四唑基
氨基低级烷基或噻唑基低级烷基。

6. 权利要求4的方法，其中的单酯为单琥珀酸酯或其可药用盐。
7. 权利要求4的方法，其中的疾病为心血管疾病。
8. 权利要求7的方法，所述心血管疾病选自动脉粥样硬化、血
管成形术后再狭窄、冠状动脉疾病、心绞痛和小动脉疾病。
9. 权利要求4的方法，所述疾病为炎性疾病。
10. 权利要求9的方法，所述炎性疾病选自类风湿性关节炎、胶
关节炎、哮喘、皮肤炎、多发性硬化和牛皮癣。
11. 权利要求7的方法，该方法还包括：普罗布考单酯与其它治
疗心血管疾病的试剂联合给药，所述的其它治疗心血管疾病的试剂选
自降血脂试剂、血小板聚集抑制剂、抗血栓试剂、钙通道阻断剂、血
管紧张素转化酶(ACE)抑制剂和β-阻断剂。
12. 权利要求9的方法，该方法还包括：普罗布考单酯与其它抗
炎试剂联合给药。
13. 普罗布考单酯在抑制患者VCAM-1中的应用，其中的单酯选
自二羧酸及其盐、氨基羧酸及其盐、含氮的羧酸及其盐、氨基、氨基
基、酰胺基、酰胺基的盐、醛基及其盐，其中的酯可以任选被基团取
代，这些基团选自：磺酸、磷酸酯、磷酸、磷酸酯、环磷酸酯、多羟
基烷基、糖基、C(O)-间隔基-SO₃H，其中间隔基为-(CH₂)ₙ-、
-(CH₂)ₙ-CO-、-(CH₂)n-N-、-(CH₂)n-O-、(CH₂)n-S-、-(CH₂)O-、
-(OCH₂)ₙ-、-(SCH₂)₂-、-(CH₂S)-、-(芳基-O)-、-(O-芳基)-、-(烷基-O)-、-(O-
烷基)-；n为0、1、2、3…9或10；(O)-间隔基
-SO₃M，其中M为用于形成可药用盐的金属，C(O)-间隔基-Po₃H₂，C(O)-
间隔基-PO₃M₂，C(O)-间隔基-Po₃HM、C(O)-间隔基-Po₂H、C(O)-间隔
基-PO₄M₄、SO₃M₄、-PO₃H₂、-PO₃M₂、-PO₃HM、环磷酸酯、多羟基烷基、
糖基、C(O)-间隔基-[O(C1-3烷基)]ₙ，其中n如上所述，p为1、2或3；-[O(C1-3烷基)]ₙ，羧基低级烷基、低级烷基羧基低级烷基、N,N-
二烷基氨基低级烷基、吡啶基低级烷基、唑类基低级烷基、吗啉基低级烷基、吡喃烷基低级烷基、喹啉基低级烷基、吲哚基低级烷基、
吗啉基低级羟烷基、N-吡咯基、唑酮基低级烷基、N-烷基吡啶基低级烷基、三唑基低级烷基、四唑基低级烷基、四唑基氨基低级烷基或唑
唑基低级烷基。

14. 普罗布考单酯在抑制病人VCAM-1中的应用，其中的单酯为
单琥珀酸酯。

15. 普罗布考单酯在治疗由VCAM-1介导的疾病中的应用，其中
的单酯选自二磷酸及其盐、氨基磷酸及其盐、含酶的磷酸及其盐、氨
基、氨基盐、酰胺基、酰胺基的盐、酰基及其盐，其中的酯可以任选
被基团取代，这些基团选自：磷酸、磷酸酯、磷酸、磷酸酯、环磷酸
酯、多羟基烷基、糖基、C(O)-间隔基-SO₃H，其中间隔基为-(CH₂)ₙ、
-(CH₂)ₙ-CO-、-(CH₂)ₙ-N-、-(CH₂)ₙ-O-、-(CH₂)ₙ-S-、-(CH₂)ₙO-、-(OCH₂)ₙ、-(SCH₂)ₙ、-(CH₃-S)ₙ、-(芳基-O)-、-(0-芳基)-、-(烷基
-O)-、-(0-烷基)-；n为0、1、2、3、4、5、6、7、8、9或10；C(O)-
间隔基-SO₃M，其中M为用于形成可药用盐的金属，C(O)-间隔基-
P₀₃H₂，C(O)-间隔基-P₀₃M₂，C(O)-间隔基-P₀₃HM、C(O)-间隔基-P₀₄H、
C(O)-间隔基-P₀₄M、SO₃M、-P₀₃H₂、-P₀₃M₂、-P₀₃HM、环磷酸酯、多羟
基烷基、糖基、C(O)-间隔基-[O(C1-3烷基)]ₙ，其中n如上所述，p为1、2或3；-[O(C1-3烷基)]ₙ，羧基低级烷基、低级烷基羧基低级烷
基、N,N-
二烷基氨基低级烷基、吡啶基低级烷基、唑类基低级烷基、吗啉基低级烷基、吡喃烷基低级烷基、喹啉基低级烷基、吲哚基低级烷
基、吗啉基低级羟烷基、N-吡咯基、唑酮基低级烷基、N-烷基吡
啶基低级烷基、三唑基低级烷基、四唑基低级烷基、四唑基氨基低级
烷基或唑唑基低级烷基。

16. 普罗布考单酯在治疗由VCAM-1介导的疾病中的应用，其中
的单酯为单琥珀酸酯。

17. 如权利要求15或16所述普罗布考单酯的应用，其中所述疾
病为心血管疾病。

18. 权利要求17所述普罗布考单酯的应用，其中所述心血管疾
精选主动脉粥样硬化、血管成形术后再狭窄、冠状动脉疾病、心绞痛和小动脉疾病。

19. 权利要求 15 或 16 所述普罗布考单酯的应用，其中所述疾病为炎性疾病。

20. 权利要求 19 所述普罗布考单酯的应用，其中所述炎性疾病为类风湿性关节炎、骨关节炎、哮喘、皮肤炎、多发性硬化或牛皮癣。
说明

普罗布考单酪在治疗心血管疾病和炎性疾病中的应用

本发明涉及抑制 VCAM-1 的组合物及方法，特别是治疗包括动脉粥样硬化的心血管疾病或炎性疾病的研究物和方法，包括给药有效量的普罗布考酯。

高胆固醇血症和高脂血症

高胆固醇水平与许多疾病有关，包括心肌梗死和脑动脉粥样硬化和黄瘤。因此希望提供一种方法来降低患者血浆胆固醇水平，或者降低发展成与高胆固醇水平有关的心肌梗死、心绞痛、脑动脉粥样硬化、黄瘤以及其它疾病的危险性。

如果已经确定高胆固醇血症是由高含量 LDL (高脂血症) 引起的，则可尝试饮食疗法来降低 LDL 的含量。通常用于降低 LDL 含量的几类药物包括胆汁酸螯合剂、烟酸 (尼克酸) 和 3-羟基-3-甲基戊二酰辅酶 A (HMG CoA) 还原酶抑制剂。普罗布考及贝特类 (fibrate) 衍生物有时用作辅助治疗，通常与其它药物一起联合用药。HMG CoA 还原酶抑制剂被称之为他汀类 (statins) 或他汀类 (vastatins)。他汀类
目前用于治疗高胆固醇血症的最有效的上市药物，其包括普伐他汀 (Pravchol, Bristol Myers Squibb)、阿托伐他汀 (atrovastatin) (Warner Lambert/Pfizer)、辛伐他汀 (Zocor, Merck)、洛伐他汀 (Mevacor, Merck) 和氟伐他汀 (Lescol)。

对于许多患者，注意饮食以及应用一种降血脂试剂就足够了。然而，对于 LDL 胆固醇的起始含量高于 200mg/dl 的患者来说，需要通过治疗将 LDL 含量降低 50% 或更多。虽然应用单一试剂也可能偶尔把 LDL 降低到此程度，但更通常地只降低了 20-30%。因此，对于 LDL 胆固醇含量为 200-400mg/dl 的杂合家族性高胆固醇血症患者，为了达到 LDL 胆固醇含量低于 100mg/ml，需要联合应用两种或有时甚至是三种降血脂药物。胆汁酸螯合剂树脂和烟酸联合应用，可以将 LDL 含量降低 45-55%；胆汁酸螯合剂树脂和他汀联合，可以降低约 50-60%；烟酸和他汀联合，可以降低约 50%；联合应用胆汁酸螯合剂树脂、他汀和烟酸三种药物治疗，可以降低多达 70%。

普罗布考在化学上与广泛应用的食品添加剂 2, [3]-叔丁基-4-羟基苯甲酰 (BHA) 和 2, 6-二叔丁基-4-甲基苯酚 (BHT) 有关。其化学全名为 4, 4'- (异亚丙基二硫) 双 (2, 6-二叔丁基苯酚)。

目前，普罗布考主要用于降低高胆固醇血症患者的血清胆固醇含量。普罗布考通常以片剂形式给药，以商标 Lorelco™ 获得。不幸的是，普罗布考几乎不溶于水，因此不能静脉注射。事实上，由于普罗布考与用于细胞培养的缓冲液和基质混溶性差，在体外，细胞很难吸收普罗布考。固体普罗布考很难吸收到血液中，并且以基本上未加改变的形式排泄。并且，对于不同的病人，普罗布考片剂的吸收速率有显著差异，吸收量也不同。在一项研究中 (Heeg 等，单次和多次口服剂量后人血浆中普罗布考的浓度, La Nouvelle Presse Medicale, 9:
2990-2994(1980)), 发现病人与病人之间，普罗布考的血清峰值浓度的差异多达 20 倍。在另一项研究中，Kazuya 等，脂类研究杂志 (J.Lipid.Res) 32; 197-204 (1991) 发现：当内皮细胞用 50μM 普罗布考培养 24 小时后，只有低于约 1μg 普罗布考/10^6 细胞混合。

Parthasarathy 的美国 5,262,439 号专利公开了可溶性普罗布考类似物，其中用酯基替换普罗布考的一个或两个羟基从而赋予该化合物水溶性。在一个实施方案中，该水溶性衍生物自普罗布考的琥珀酸酯、戊二酸酯、己二酸酯、戊二酸酯、癸二酸酯或者顺丁烯二酸酯的单酯或双酯。在另一个实施方案中，普罗布考衍生物为单酯或双酯，其中的酯含有烷基或烯基，这些烷基或烯基含有的官能团选自羧酸基、氨基、氨基盐、酰胺基、酰胺基和酰胺。

一系列法国专利公开了某些普罗布考衍生物是降胆固醇试剂和降血脂试剂：Fr2168137(双 4-羟基苯基硫代烷基酯)；Fr2140771(普罗布考的 1,2,3,4-四氢化萘基苯基烷酸酯)；Fr2140769(普罗布考的苯并呋喃基氧烷酸衍生物)；Fr2134810(双-(3-烷基-5-叔烷基-4-噻唑-5-烷基)苯硫基)烷；Fr 2133024 (双-(4-烷酰氧基苯硫基))烷；和 Fr2130975(双(4-苯氧基烷酰氧基)-苯硫基)烷)。

美国 5,155,250 号专利公开了 2,6-二烷基-4-甲硅烷苯酚是抗动脉粥样硬化试剂。在 1995 年 6 月 15 日公开的 WO95/15760 号 PCT 出版物中公开了同样的化合物作为降血清胆固醇试剂。美国 5,608,905 号专利公开了烷基化的 4-甲硅烷苯基酚可抑制 LDL 的过氧化，降低血浆胆固醇含量和抑制 VCAM-1 的表达，因此用于治疗动脉粥样硬化。

VCAM-1 的表达

对于心血管疾病以及各种炎性疾病包括自身免疫障碍和细菌及病毒感染来说，内皮上附着白细胞是基本的早期事件。当内皮细胞表面的诱导黏附分子受体与免疫细胞表面的反受体相互作用时，内皮上开始募集白细胞。通过选择性表达特异性黏附分子例如血管细胞黏附分子-1 (VCAM-1)、细胞间黏附分子-1 (ICAM-1) 和 E-选择素 (ELAM)，血管内皮细胞可以确定募集哪种类型的白细胞 (单核细胞、淋巴细胞和嗜中性白细胞)。动脉粥样硬化损害的最早期阶段，存在局部的 VCAM-1 的内皮表达以及表达整合素反受体 VLA-4 的单核白细胞的选

经脂多糖 (LPS) 和细胞因子如白介素-1 (IL-1) 和肿瘤坏死因子 (TNF-α) 活化后，VCAM-1 在培养的人血管内皮细胞中表达。这些因子是非选择性地活化细胞粘附分子的表达。
白细胞接着转变成泡沫巨噬细胞 (foamy macrophages)，这导致各种各样的炎症细胞因子、生长因子和化学引诱剂的合成，从而助长了白细胞繁殖和血小板募集、平滑肌细胞增生、内皮细胞活化和成熟的动脉粥样硬化斑块所特有的细胞外基质合成。

控制表达的人 VCAM-1 基因的调节元件的分子分析表明：转录调节因子核因子 -kB (NF-kB) 或 NF-kB 样结合蛋白对于 VCAM-1 基因表达的氧化还原敏感性调节有重要作用。转录因子是蛋白质，这些蛋白质通过与称作“增强子元件”的特异性 DNA 序列结合来活化 (或抑制) 细胞核中的基因表达，其中所述的增强子元件通常在该基因区域附近，称为“启动子”，在此 RNA 的合成开始启动。

已经克隆出 VCAM-1 和 ICAM-1 的启动子并描绘了其特性。例如，这两种启动子均含有多种可与转录因子 NF-kB 结合的 DNA 序列元件。Iademarco, M.F. 等，生化学杂志 (J. Biol. Chem) 267, 16323-16329 (1992)。

核因子 -kB 是一种普遍表达的多亚单位转录因子，其通过一大组不同种类的炎症试剂在若干细胞类型中活化，所述的炎症试剂例如 TNF-α、IL-1B、细菌内毒素和 RNA 病毒。在将炎症或其它应激信号传递到核调节器方面，该因子起关键作用。尽管活化 NF-kB 的精确的生物化学信号是未知的，但该转录因子可能把许多动脉粥样硬化的危险因子和“病原”信号例如高血压症、吸烟、高血压和糖尿病并入通常的分子途径。

多种信号对血管内皮细胞中 NF-kB 的活化可以被抗氧化剂特异性地抑制，其中的抗氧化剂例如 N-乙酰基半胱氨酸和吡咯烷二硫氨基甲酸酯。这样得到一个假说即：通过不明朗的氧化还原机理活化 NF-kB，氧自由基起重要作用。由于 NF-kB 样增强子元件也通过氧化还原敏感性方式调节 VCAM-1 启动子的转录，因此该假说认为：动脉粥样硬化损害的氧化应激可能对于通过这种氧化还原敏感性转录调节蛋白来调节 VCAM-1 基因表达起重要作用。美国 5,380,747 号专利 (PCT/US93/10496) 首次公开了通过给药一组二硫氨基甲酸酯 (包括吡咯烷二硫氨基甲酸酯) 可以抑制血管内皮细胞中 VCAM-1 的表达。因此，这些二硫氨基甲酸酯可以用于治疗心血管疾病，并且显示能明显地降低动脉粥样硬化损害在高胆固醇血症兔中的存在。
已经有假说认为：活性氧物质把低密度脂蛋白(LDL)修饰成 LDL氧化修饰物(ox-LDL)，这是启动和传播动脉粥样硬化的中心事件。Steinberg 等，新英格兰医学杂志（N. Engl. J. Med.）1989; 320: 915-924。LDL 氧化物是一种复杂的结构，至少由若干化学上不同的氧化物质组成，单独每一种物质或它们联合可以调节细胞因子活化的粘附分子基因表达。脂肪酸氢过氧化物例如亚油酸氢过氧化物(13-HPODE)通过脂肪氧化酶从游离脂肪酸中产生，其是 LDL 氧化物的一个重要成分。

已经提出：通过细胞脂肪氧化酶系统的作用产生一代氧化脂类，该氧化脂类再接着转变成 LDL。然后通过过渡金属和/或氨硫基化合物的催化，基质中 LDL 发生链增长反应。以前的研究指出：培养的内皮细胞的脂肪酸修饰可改变它们对氧化剂损伤的敏感性。PCT/US95/05880 公开了多不饱和脂肪酸及其氢过氧化物诱导人主动脉内皮细胞中 VCAM-1 的表达，但不诱导 ICAM-1 或 E-选择素的表达，其机理并不是细胞因子或其它非细胞因子信号介导的。这是对于 VCAM-1 介导的免疫反应的重要且以前未知的生物学途径的一个基本发现。PCT/US95/05880 还报道了二硫氨基甲酸酯(包括吡咯烷二硫氨基甲酸酯)能抑制多不饱和脂肪酸及其氢过氧化物对 VCAM-1 的诱导。

由于心血管疾病目前是美国主要的死亡原因，因此需要提供治疗这类疾病的新疗法。一个目标就是提供一种新的试剂，它可以同时治疗高胆固醇血症、高脂血症和抑制血管内皮细胞中 VCAM-1 的表达。

因此，本发明的一个目的是提供一种方法和组合物用于抑制 VCAM-1 的表达，特别是用于治疗心血管疾病的方法。

本发明的另一个目的是提供一种治疗心血管疾病的方法和组合物，它可以同时治疗高胆固醇血症、高脂血症以及抑制血管内皮细胞中 VCAM-1 的表达。

发明概述

据发现：普罗布考的单酯能够有效地同时降低胆固醇，降低 LDL 和抑制 VCAM-1 的表达，因此这些化合物可以用作复合心血管试剂。由于该化合物同时显示三种重要的心血管保护活性，病人可以服用一种药物而不是服用多种药物来达到同样的效果。这可以提高治疗和病
顺应的一致性。

令人惊奇地发现：虽然已知强效的抗氧化剂普罗布考本身并不显著地影响 VCAM-1 的表达，普罗布考的二酯和他汀类也并不显著地影响 VCAM-1 的表达，但是普罗布考单酯抑制 VCAM-1 的表达。

另外还发现：普罗布考的单琥珀酸酯只在较小程度上降低兔的 HDL，但不影响小鼠和猴的 HDL。相反，普罗布考只是在较小程度上降低 LDL，但显著降低 HDL。他汀类降低 LDL，可能影响或不影响 HDL。

另外还发现：普罗布考的单酯，特别是普罗布考的单琥珀酸酯（此后称之为 “MSE”）选择性地抑制主动脉内皮细胞中 TNF 诱导的 VCAM-1 和 MCP-1 的基因表达，但对 ICAM-1 的基因表达没有影响。MSE 不影响 NF-κB 的活化。本文中用 MSE 作为普罗布考单酯的例子。用 MSE 作为例子仅仅是为了讨论方便，其并不能限制本发明的范围。

由于发现普罗布考单酯特别是普罗布考单琥珀酸酯能阻断内皮细胞表面粘附分子 VCAM-1 的诱导表达，因此它们可以用于治疗由 VCAM-1 介导的任何疾病，包括动脉粥样硬化、血管成形术后再狭窄、冠状动脉疾病、心绞痛和其它心血管疾病，以及由 VCAM-1 介导的非心血管炎性疾病。这些化合物还可以用于治疗心脏移植排斥反应。

此处记载的化合物既可用于心血管疾病的主要药物治疗，又可用于辅助药物治疗。这些化合物用于例如冠状疾病包括动脉粥样硬化、血管成形术后再狭窄、冠状动脉疾病和心绞痛的主要治疗。可以给药这些化合物以治疗外科手术或血管成形术治疗的小血管疾病，或者不能选择外科手术治疗的其它血管性疾病。这些化合物还可以在血管再造治疗之前用于稳定病人。

当培养应用时，此处描述的本发明还可能通过形成和引起已有的损害的消退而防止新损害，从而在医学上“治愈”动脉粥样硬化。

在一个供选择的实施方案中，此处公开的化合物可用于治疗 VCAM-1 介导的炎性皮肤疾病，特别是 VCAM-1 介导的人内皮细胞疾病，其包括但不限于：哮喘、牛皮癣、湿疹性皮肤病、卡波济氏肉瘤、多发性硬化以及平滑肌细胞的增生性疾病。

在另一个实施方案中，可选择此处公开的化合物来治疗由单核白细胞介导的抗炎性疾病。

附图的简要描述
图1是普罗红考单琥珀酸酯和普罗红考在浓度为2.5μM、5μM、10μM和100μM时对HAEC细胞中VCAM-1表达的作用进行比较的柱形图。
图2是普罗红考单琥珀酸酯和普罗红考在浓度为2.5μM、5μM、
10μM和100μM时对HAEC细胞中ICAM-1表达的作用进行比较的柱形图。
图3是10μM的普罗红考单琥珀酸酯、50μM的普罗红考和TNF对
人主动脉内皮细胞(HAEC)中MCP-1表达的作用进行比较的柱形图。
图4表示普罗红考单琥珀酸酯(10和25μM)和普罗红考(50μM)对
HAEC中基因表达的作用。
图5是普罗红考单琥珀酸酯和普罗红考对脂类喂食兔血浆中胆
固醇含量的作用的柱形图。
图6是经三星期服药后，兔血浆中普罗红考和普罗红考单琥珀酸
酯浓度进行比较的柱形图。
图7表示在六星期期间，普罗红考单琥珀酸酯对高胆固醇血症兔
模型中总血清胆固醇的作用图。
图8是六星期后普罗红考单琥珀酸酯对脂类喂食兔中总胆固醇
、LDLc、VLDLc、IDLc、HDLc和TG的作用的柱形图。
图9是未处理的脂类喂食兔和用普罗红考单琥珀酸酯处理的脂
类喂食兔中损害覆盖的主动脉表面积百分比图。
图10是普罗红考单琥珀酸酯的血浆含量(微摩尔)作为治疗天数
的函数图。
图11是口服普罗红考单琥珀酸酯的ApoE-KO小鼠和对照组中两
星期后总胆固醇、VLDL、IDL、LDL、HDL和甘油三酯进行对比的柱形
图，单位：mg/ml。
图12是在服用普罗红考单琥珀酸酯期间及服用后高胆固醇血症
猴子LDL血清含量随时间天数的降低图。
图13是高胆固醇血症猴子中普罗红考单琥珀酸酯对血清LDL的
作用的柱形图。
图14表示大鼠口服普罗红考单琥珀酸酯1000mg/kg/d两周后对
总蛋白、钙、磷灰酸酯、葡萄糖、血液尿素氮和胆固醇的影响和对照组
相比较的柱形图(以任意单位)。
图 15 表示大鼠口服普罗布考单烯酸酯 1000mg/kg/d 两星期对
白蛋白、肌酸酐、尿酸和总胆红素的影响和对照组相比较的柱形图（以
任意单位）。

发明详述

I. 定义

此处所述的术语“普罗布考单烯酸酯”包括(i)美国 5,262,439 号专
利记载的任何一种普罗布考单烯酸酯，例如，羧酸酯和二羧酸酯及其盐;
(ii) 比普罗布考具有更高水溶性且能降低血浆胆固醇、降低 LDL
以及抑制 VCAM-1 表达的任意一种普罗布考单烯酸酯，此处将详细描述。

在一个实施方案中，普罗布考单烯酸酯包括普罗布考的二羧酸酯，包括但
不限于琥珀酸、戊二酸、己二酸、辛二酸、癸二酸和顺丁烯
二酸的酯类。在另一个实施方案中，酯基包括能使该化合物比普罗布
考水溶性增加的官能团，包括但不限于饱和及不饱和二羧酸及其盐、
氨基羧酸及其盐、含醚的羧酸及其盐、氨基、氨基盐、酰胺基、醛基
及其盐。还有一个实施方案中，酯基具有的官能团选自磷酸、磷酸酯、
磷酸、磷酸酯、环磷酸酯、双羟基烷基、糖基、C(O)-间隔基-SO₃H，
其中间隔基为-(CH₂)ₙ-、-(CH₂)ₙ-CO-、-(CH₂)ₙ-N-、-(CH₂)ₙ-O-、
(CH₂)ₙ-S-、-(CH₂O)-、-(OCH₂)-、-(SCH₂)-、-(CH₂S)-、-(芳基-O-)-、
-(O-芳基)-、-(烷基-O)-、-(0-烷基)-；n 为 0、1、2、3、4、5、
6、7、8、9 或 10；C(O)-间隔基-SO₃M，其中 M 为金属，用于形成可
药用盐，例如钠或钾，C(O)-间隔基-PO₃H₂，C(O)-间隔基 PO₃M₂，C(O)-
间隔基-PO₃HM，C(O)-间隔基-PO₃H，C(O)-间隔基-PO₃M，C(O)-间隔基-
PO₃M₂，-PO₃HM，环磷酸酯、双羟基烷基、糖基、C(O)-间隔基-
[0(C₃₋₅烷基)ₚ]ₙ，其中 n 定义如上，p 为 1、2 或 3，-[0(C₃₋₅烷基)ₚ]ₙ。

酰基低级烷基、低级烷基亚基低级烷基、N，N-二烷基氨基低级烷基、
吡咯烷低级烷基、咪唑基低级烷基、吗啉基低级烷基、吡咯烷低级
烷基、噻唑烷低级烷基、哌啶基低级烷基、吗啉基低级烷基、N-
吡咯烷、哌嗪基低级烷基、N-烷基哌嗪基低级烷基、四唑低级烷基、
四唑基低级烷基、四唑基氨基低级烷基或噻唑基低级烷基。

术语“可药用衍生物”指活性化合物的衍生物，其给药至受药者
后能够直接或间接提供母体化合物或者它本身显示活性。

术语“生理学上可裂解的离去基团”指在体内能够从所连分子裂
解的基因，包括但不限于有机或无机阴离子、可药用阳离子、酰基（包括但不限于烷基C(O))，包括乙酰基、丙酰基和丁酰基)、烷基、磷酸酯、硫酸酯和磷酸酯。

应该选择具有适当亲脂性的普罗布考单酯以定位于作用部位用于治疗动脉粥样硬化和其它心血管及炎性疾病。该化合物不应该局限于低代谢的区域例如脂肪沉积区域。在治疗心血管疾病一个优选的实施方案中，充血性心力衰竭或肾机能不全不应该显著影响该化合物的药代动力学。

可以通过任何合适方式给药该活性化合物或这些化合物的混合物，这些给药方式包括但不限于全身给药包括口服或静脉给药，或者局部给药包括透皮给药。通常的剂量范围为0.1-500mg/kg体重，给药方案从每两天一次至数次给药时间从只给予一次到2-6个月内每日两次。

在心血管治疗中，还可以应用灌注联合导管沿着或代替冠状动脉或其他动脉成形术直接将这些化合物给药至血管壁。作为一个实例，2-5mL含有约1-500mM该化合物或化合物混合物的可药用溶液在1-5个大气压下给药。此后，在接下来的六个月期间，在心狭窄的最大危险期间，活性化合物通过其它合适途径和给药方案给药。

用活性化合物进行相对短期治疗在不能用血管成形术或外科手术治疗的冠状动脉疾病损害中用于引起受损血管“皱缩”。短期治疗的非限制性实施例为2-6个月，剂量范围是0.5-500mg/kg体重(如果给药间隔时间为每两天一次至每天三次)。

可以应用长期治疗以防止高危病人中晚期损害的发展。长期治疗可以延续数年，剂量范围是0.5-500mg/kg体重，给药间隔为每两天一次至每天三次。

活性化合物还可以刚好在冠状动脉成形术之前和成形术之后立即给药，用于减少或消除那些导致临床上显著再狭窄的异常增生及炎症反应。

活性化合物可以与其它用于治疗心血管疾病的药物联合给药，联合的药物包括血小板聚集抑制剂例如阿斯匹林，抗血栓剂例如华法林苄丙酮香豆素钠，钙通道拮抗剂例如维拉帕米、地尔硫卓和硝苯地平；血管紧张素转化酶(ACE)抑制剂例如卡托普利和恩那普利，和β-
阻断剂例如普奈洛尔、特布洛尔（terbutalol）和拉贝洛尔。本发明的化合物还可以与非甾体抗炎药联合用药例如布洛芬、吲哚美辛、非诺洛芬、甲酚那酸、氯芬那酸、舒林酸。本发明化合物还可以与皮质类固醇联合给药。

在小鼠模型中，经皮下植入丸剂给药的 MSE (150mg/kg/天释放丸剂) 阻断肺 LPS-诱导的 VCAM-1 和 MCP-1 的基因表达。

在新西兰白兔模型中，口服 MSE (150mg/kg/天) 6 星期可降低总血浆、含 Apo-B 的和 HDL 胆固醇含量，对血浆胆固醇的影响还伴随明显抑制动脉粥样硬化损害形成、巨噬细胞聚集以及 VCAM-1 的表达。

在胆固醇喂食 C57 黑色和 apoE-剔除的小鼠模型中，口服 MSE 两星期可选择性降低含 apoB 的脂蛋白，但对 HDL 没有影响。在高胆固醇血症猕猴模型中，口服 MSE 两星期可降低总血浆和 LDL 胆固醇，而不影响 HDL。

在细菌埃姆斯试验中，MSE 不是诱变剂。大鼠以 1000mg/kg/天的剂量口服 MSE 两星期后并不导致死亡，对血清电解质和血细胞比容值也没有影响。可以观测到血清 LDH、碱性磷酸酶、SGOT 和 SGPT 有升高，但与未处理组没有统计学差异，也不伴随肝形态学或组织学变化。

如果是局部用药用于治疗皮肤炎症疾病，所选择的化合物应该制成皮肤能吸收的形式，从而有足够的量在病变部位提供治疗作用。普罗布考单酯必须是生理学上可接受的。通常来说，治疗指数至少为 2 优选至少 5 或 10 的化合物是可以接受的。治疗指数定义为 EC_{50}/IC_{50}，其中 EC_{50} 是抑制 VCAM-1 表达 50% 时的化合物浓度，IC_{50} 为对靶细胞 50% 毒性时的化合物浓度。可以通过直接细胞计数、锥虫蓝排斥或各种代谢活性研究如加入 3H-胸苷来测定细胞毒性，这些是本领域技术人员已知的技术。

下面通过实施例进一步阐明本发明，这些实施例用 MSE 作为模型化合物。这仅仅是用于举例说明，并不能限制本发明的范围。通过与此基本上相似的方式，此处定义的任何其它普罗布考单酯均可用来治疗心血管疾病和炎症疾病。

实施例 1 人主动脉内皮细胞中 VCAM-1 的表达

图 1 是普罗布考单琥珀酸酯和普罗布考在浓度为 2.5μM、5μM、
10μM和100μM时在体外对人主动脉内皮细胞中VCAM-1表达的作用的比较，以单独TNF诱导的VCAM-1表达百分比形式表示。组织培养孵育箱中，这些细胞在37℃下在细胞培养基中培养16小时。培养16小时后，洗涤细胞，用VCAM-1的抗体孵育。应用VCAM-1抗体的辣根过氧化物酶偶联抗体进行比色ELISA分析来确定结合到细胞的抗体量。结果显示，在这些条件下，MSE抑制VCAM-1的表达，而没有观测到普罗布考对VCAM有作用。

实施例2人主动脉内皮细胞中ICAM-1的表达

图2是普罗布考单琥珀酸酯和普罗布考在浓度为2.5μM、5μM、10μM和100μM时在体外对人主动脉内皮细胞中ICAM-1表达的作用的比较，以单独TNF诱导的ICAM-1表达的百分比形式表示。组织培养孵育箱中，这些细胞在37℃下在细胞培养基中培养16小时。培养16小时后，洗涤细胞，用ICAM-1的抗体孵育。应用ICAM-1抗体的辣根过氧化物酶偶联抗体进行比色ELISA分析来确定结合到细胞的抗体量。结果显示，在这些条件下，MSE只对ICAM表达有微弱作用，且该作用的浓度依赖性不强；而普罗布考对ICAM表达没有作用。

实施例3人主动脉内皮细胞中MCP-1的表达

图3是10μM的普罗布考单琥珀酸酯、50μM的普罗布考和TNF对人主动脉内皮细胞(HAEC)中MCP-1表达的作用进行比较的柱形图。这些细胞单独用TNF或者用TNF和10微摩尔普罗布考单琥珀酸酯联合处理四小时。收集细胞培养基，应用基于颜色的ELISA分析来定量MCP-1的含量。结果显示：普罗布考单酯比普罗布考本身在更大程度上抑制MCP-1的表达。MCP-1是一种化学引诱蛋白，能在动脉粥样硬化损害部位募集单核细胞。

实施例4体外人主动脉内皮细胞中普罗布考单琥珀酸酯对基因表达的影响

图4表示VCAM-1和MCP-1基因表达的RNA印迹分析，其中的RNA是从LPS-攻击的ApoE剔除小鼠肺中分离得到。小鼠皮下给药MSE、普罗布考和安慰剂400mg，为90天释放丸剂。1星期后，这些动物腹膜内注射1mg/kgLPS。两小时后处死这些动物，冷冻肺用于RNA分离。通过变性1.0%琼脂糖胶电泳对该RNA按照大小进行分级分离，将其转移到尼龙膜，用小鼠JE-特异性32P标记的cDNA探针进行杂
交，然后脱膜，先用小鼠 VCAM-1 特异性 cDNA 再用鸡β-肌动蛋白特异性 cDNA 探针进行杂交。

实施例 5 脂类喂食兔中普罗布考单琥珀酰酸酯对血浆胆固醇的影响

图 5 是普罗布考单琥珀酰酸酯和普罗布考对脂类喂食兔中血浆总胆固醇和脂蛋白胆固醇含量的作用的柱形图。用含有 0.5%重量比的 MSE 或普罗布考的高脂食物 (0.5%胆固醇和 3%椰子油) 喂食兔三星期。对照组用不含药物的同样食物喂食。用快速液相色谱从总血浆中分离脂蛋白部分，并分析胆固醇含量。MSE 导致所有类型脂蛋白有统计学上明显的降低，而普罗布考只导致 HDL 胆固醇的降低 (p<0.05)。

实施例 6 免喂食高胆固醇食物 3 星期后，MSE 和普罗布考血药浓度的比较

在高脂类食物 (0.5%胆固醇和 3%椰子油) 中，MSE 或普罗布考以 0.5%重量比浓度对兔给药 3 星期。用乙醚从血浆中提取出药物，用高压液相色谱进行分析。结果显示：MSE 和普罗布考的血浆含量类似，尽管如上表实施例所示，这些化合物对血浆胆固醇和脂蛋白含量的作用有显著性差异。

实施例 7 MSE 对 NF-κB 活化的影响

单独用 TNF 或者用 TNF 组合 25 微摩尔 MSE 或 PDTC 处理人主动脉内皮细胞 1 小时、2 小时或 4 小时。洗涤细胞，制备细胞核提取物，通过 VCAM-1 启动子探针进行凝胶移位分析。结果证明：MSE 不影响 NF-κB 的活化，而 PDTC 抑制 NF-κB 的活化。

实施例 8 用胆固醇喂食兔 6 星期后，MSE 对胆固醇含量的影响

用高脂肪高胆固醇 (0.5%) 食物或者用该食物结合 0.5 重量/重量 (约 150mg/kg/天) 的 AGE-3 或普罗布考喂食新西兰白兔 6 星期。图 8 是六星期后普罗布考单琥珀酸酯对脂类喂食兔的总胆固醇、LDLc、VLDLc、IDLc 和甘油三酯 (TG) 的作用柱形图。6 星期后，用快速液相色谱从总血浆中分离出脂蛋白，分析胆固醇和甘油三酯的含量。如实施例 8 所示，与用普罗布考处理时相比，用 AGE-3 处理时总胆固醇以及 VLDL 和 IDL 中的胆固醇降低得更多。

实施例 9 高胆固醇血症中 AGE-3 对动脉粥样硬化进程的影响

处死如实施例 8 中描述的兔，获得主动脉。主动脉用苏丹 IV 着
色，分析着色的程度。图9是未处理的脂类喂食兔和用MSE处理的脂类喂食兔的损害覆盖的主动脉表面积百分比图。接受AGE-3的兔的主动脉染色较轻，这表明用普罗布考单琥珀酸酯处理的兔中主动脉粥样硬化降低。

用抗VCAM-1或Ram-11抗原的抗体对这些主动脉切片进行免疫染色分析VCAM-1表达或巨噬细胞聚集。用AGE-3处理明显降低VCAM-1的表达和巨噬细胞聚集（即约大于75%）。在类似的实验中，对于降低VCAM-1的表达和巨噬细胞的聚集方面，同样剂量普罗布考的效果差得多（小于25%）。

实施例10 高胆固醇血症猴中AGE-3可逆地降低LDL

通过喂食高脂类胆固醇食物使猕猴患有高胆固醇血症，然后再给药AGE-3。然后用AGE-3对猴口服给药2星期（100mg/kg/天）。在此期间，猴血清LDL胆固醇降低的百分比范围为4-60%。然后终止给药，在第29天时检查血清胆固醇含量，胆固醇含量恢复到处理前的水平，并维持在该水平。

实施例10

图10是普罗布考单琥珀酸酯（微摩尔）的血浆含量作为治疗天数的函数图。如图所示，MSE的血浆含量基本上维持恒定。

实施例11

图11是口服普罗布考单琥珀酸酯（150mg/kg/天）两星期后的ApoE-KO小鼠和对照组中总胆固醇、VLDL、IDL、LDL、HDL和甘油三酯（单位：mg/ml）进行对比的柱形图。

实施例12

图12是在服用普罗布考单琥珀酸酯期间及服用该药物后高胆固醇血症猴子LDL随时间天数的可逆性降低图。

实施例13

图13是高胆固醇血症猴中普罗布考单琥珀酸酯对血清LDL的作用的柱形图。

实施例14

图14表示大鼠口服普罗布考单琥珀酸酯1000mg/kg/d两星期对总蛋白、钙、磷酸酯、葡萄糖、血液尿素氮和胆固醇的影响和对照组相比较的柱形图（以任意单位）。

14
实施例15
图15表示大鼠口服普罗布考单琥珀酸酯1000mg/kg/d两星期对白蛋白、肌酸酶、尿酸和总胆固醇的影响和对照组相比较的柱形图（以任意单位）。

应该注意：关于对总胆固醇和LDL的影响，小鼠和免以及猴相比，MSE和普罗布考的作用是有区别的。MSE降低胆固醇和LDL的作用，在免和猴中比在小鼠中的效果明显强得多。在小鼠中，MSE与普罗布考具有相同的效果，即如果对这两个因素有作用的话也只有很小的作用。然而，在所有测试的动物种类中，MSE可以抑制VCAM-1的表达。

III. 药物组合物

人、马、犬、牛和其他动物尤其是哺乳动物，只要有其患或此处所述的任意一种疾病包括VCAM-1介导的心血管疾病和炎症疾病，即可通过对患者的给药在可药用载体或稀释剂中有效量的一种或多种上表确定的化合物或者其可药用衍生物或盐来进行治疗。这些活性物质可以通过任何合适的途径给药，例如口服、非肠道给药、静脉给药、真皮内给药、皮下或局部给药。

此处所述的术语可药用盐或化合物是指能保持所需生物学活性的上述已确定化合物的盐或配合物，它们显示最小量的不需要的毒理学效应。这些盐的非限制性实施例为(a)无机酸（例如盐酸、氢溴酸、硫酸、磷酸和硝酸等）的酸加成盐，与有机酸（例如乙酸、草酸、酒石酸、琥珀酸、苹果酸、抗坏血酸、苯甲酸、鞣酸、双羟基酸、海藻酸、聚谷氨酸、聚磷酸、聚二磷酸、聚半乳糖醛酸）形成的盐；(b)与多种金属阳离子（例如锌离子、钙离子、铋离子、钡离子、镁离子、铝离子、铜离子、钴离子、镍离子、镉离子、钠离子和钾离子等）形成的碱加成盐；或者与有机阳离子形成的碱加成盐，其中的有机阳离子为N，N-二甲基乙二胺、D-氨基酸葡萄糖、胺、四乙基铵或乙二胺；或(c)(a)和(b)的组合物；例如鞣酸锌盐等。

活性化合物包含在可药用载体或稀释剂中，其量足以对患者给药治疗上的有效量而不引起治疗病人严重的毒性效应。对于所有上面提出的疾病，优选的活性化合物剂量范围约0.1-500mg/kg，优选1-100mg/kg/天。根据母体化合物的给药剂量，可以计算出可药用衍生
物的有效剂量范围。如果衍生物本身显示活性，可以应用衍生物的重量按照上面方法计算出有效剂量，或者通过本领域熟练技术人员已知的其它方式估算出有效量。

对于全身给药，该化合物可以以任意适合的单位剂型方便地给药，包括但不限于含 1-3000mg、优选 5-500mg 活性成分/单位剂型。通常 25-250mg 的口服剂量是适宜的。给药活性成分应该使活性化合物的峰值血浆浓度达到约 0.1-100mM，优选约 1-10mM。这是可以达到的，例如通过静脉注射任选地在生理盐水中或水介质中的活性成分溶剂或制剂，或者以活性成分的大丸剂给药。

药物组合物中活性化合物的浓度将根据药物的吸收、分布、失活和排泄速率以及本领域熟练技术人员已知的其它因素而定。应该注意：根据所需减轻疾病的严重性不同，剂量值也可以发生变化。还应该理解：对于任何具体的对象，根据个体需要和给药人员或监督给药人员的职业判断，应该随时调整具体的剂量范围，此处指出的浓度范围仅仅是举例性的，并不能限制本要求保护组合物的范围或实践。活性成分可以一次性给药，也可以分成若干小剂量在不同时隔间隔给药。

口服组合物通常含有惰性稀释剂或可食用载体。它可以装入明胶胶囊中或压成片剂。为了口服治疗给药的目的，活性化合物可以与辅料混合，用作片剂、锭剂或胶囊。还可以含有药学上相容的粘合剂和/或辅药作为组合物的一部分。

片剂、丸剂、胶囊和锭剂等可以含有任意的下列成分或与之类似的化合物：粘合剂如微晶纤维素、黄蓍胶或明胶；辅料例如淀粉或乳糖；崩解剂例如海藻酸、初生凝胶（Primogel）或玉米淀粉；润滑剂例如硬脂酸镁或氢化植物油；助流剂例如硅藻二氧化硅；甜味剂例如蔗糖或糖精；或者矫味剂例如薄荷油、水杨酸甲酯或橙味调味剂（orange flavoring）。当剂量单位形式为胶囊时，除了含有上述所述物质外，它还可以含有液体载体例如脂肪油。另外，剂量单位形式可以含有其它各种能改变剂量单位物理形式的物质例如糖、虫蚀或其它肠溶试剂的包衣。

活性化合物或其可药用盐或衍生物可以作为酏剂、混悬剂、糖浆剂、糯米纸囊剂或口香糖剂等形式给药。除含有活性成分外，糖浆剂
还可以含有作为甜味剂的蔗糖以及某些防腐剂、染料、着色剂和调味剂。

该活性化合物或其可药用衍生生物或其盐还可以与不能削弱其所需作用的其它活性成分联合给药，或者与增强其所需作用的物质联合给药，例如抗生素、抗真菌剂、抗炎药或抗病毒化合物。活性化合物还可以联合的试剂有：降血酯试剂例如普罗布考和烟酸；血小板聚集抑制剂如阿斯匹林；抗血栓试剂例如华法林；丙酮香豆素钠；钙通道阻断剂例如维拉帕米、地尔硫卓和硝苯地平；血管紧张素转化酶(ACE)抑制剂例如卡托普利和依那普利，和β-阻断剂例如普萘洛尔、特布他林（terbutaline）和拉贝洛尔。这些化合物还可以与非甾体抗炎药联合给药例如布洛芬、吲哚美辛、阿斯匹林、非诺洛芬、甲灭酸、氯灭酸、舒林酸。该化合物还可以与皮质类固醇联合给药。

肠道给药：真皮内给药、皮下或局部给药用的溶液或混悬液可以包括下列成分：无菌的稀释剂例如注射用水、生理盐水溶液、不挥发油、聚乙二醇、甘油、丙二醇或其它合成溶剂；抗菌剂例如苯甲醇或对羟基苯甲酸甲酯；抗氧化剂例如抗坏血酸或亚硫酸氢钠；螯合剂例如乙二胺四乙酸；缓冲剂例如乙酸盐、磷酸钠或磷酸盐；还有用来调整紧张性试剂例如氯化钠或葡萄糖。非肠道给药制剂可以装入安瓶，一次性注射器或者由玻璃或塑料制成的多剂量小瓶中。

局部用药的合适赋形剂或载体是已知的，包括洗剂、混悬剂、软膏、骨霜、凝胶、酊剂、喷雾剂、粉剂、糊剂、缓释透皮片、用于哮喘的气雾剂和用于直肠、阴道、鼻或口腔粘膜的栓剂。

可以应用增稠剂、软化剂和稳定剂来制备局部用药组合物。增稠剂的例子包括凡士林、蜂蜡、黄原胶或聚乙二醇，湿润剂例如山梨醇；软化剂例如矿物油、羊毛脂及其衍生物或角鲨烯。许多溶液剂和软膏剂可以从市场上购到。

可加入天然或人工矫味剂或甜味剂以增强对粘膜表面产生局部作用的局部用药制剂的气味。可以加入惰性填料或颜料，特别是设计用药于口腔粘膜表面的制剂时可以这样做。

活性化合物可与载体一起制备，所述载体可以保护化合物不致于快速释放，例如控释制剂，包括植入剂和微胶囊给药系统。可以应用生物降解性、生物相容性聚合物例如乙烯乙酸乙烯酯、聚酯、聚乙醇
酸、胶原、聚氨基酸酯和聚乳酸。这些制剂的许多制备方法已被专利公开或者是本领域熟练技术人员所熟知的。

如果静脉给药，优选的载体是生理盐水或磷酸盐缓冲盐水（PBS）。

该活性化合物还可以通过透皮片给药。制备透皮片的方法对本领域熟练技术人员是已知的。例如参见 Brown, L., 和 Langer, R., 药物的透皮释放，医学年评（Transdermal Delivery of Drugs，Annual Review of Medicine）39: 221-229(1988)，在此引用作为参考。

在另一个实施方案中，活性化合物与载体一起制备，所述载体可以保护化合物不致于在体内快速消除，例如控释制剂，包括植入剂和微囊给药系统。还可应用生物降解性、生物相容性聚合物例如乙烯乙酸乙烯酯、聚酯、聚乙醇酸、胶原、聚碳酸酯和聚乳酸。这些制剂的制备方法对本领域技术人员来说是显而易见的。这些物质还可以购自Alza公司和Nova Pharmaceuticals Inc. 脂质体混悬剂也可以作为可药用载体。这些可以通过本领域熟练技术人员已知的方法制备，例如按照美国4,522,811号专利记载的方法（该专利全文在此引用作为参考）。例如脂质体制剂可以这样制备：把合适的脂类（例如硬脂酰磷脂酰基乙醇胺、硬脂酰磷脂酰基胆碱、二十烷酰基磷脂酰基胆碱和胆固醇）溶于无机溶剂中，然后蒸发掉溶剂，在容器表面留下一层干燥的脂类薄膜。然后把活性化合物或其单磷酸酯、双磷酸酯和/或三磷酸酯衍生物的水溶液加入到该容器中。用手旋转容器使脂类物质脱离容器壁以及分散脂类聚合体，这样形成脂质体悬浮液。

本领域熟练技术人员根据前述的内容可以很明显地对本发明作出修饰和改变。所有这些修饰和改变的方案均落入本发明的范围之内。
图 3

降低百分数:

- **MSE**
 - **T chol**: 71%
 - **LDLc**: 60%
 - **VLDLc**: 82%
 - **IDLc**: 83%
 - **HDLc**: 20%

- **普罗布考**
 - **T chol**: 12%
 - **LDLc**: 6.2%
 - **IDLc**: 56%
 - **HDLc**: 52%

在 t-0 时的基线含量校准值

* *p < 0.05*
用含MSE或普罗布考的高胆固醇食物饲养兔3周达到平均的血浆浓度

图6

* p<0.05

图7
图8

图9

p=0.0015

94% 抑制
图 10

图 11

* $p < 0.05$
图 12

图 13

Serum LDL (mg/dl)

-4% -20% -23% -60% +34% -5%

J07395 J07396 J07397 J07398 J07544 J07545

0天 8天 15天