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receiving a bitstream containing a picture from an encoding device, dividing the picture into
coding tree units (CTUs), partitioning one of the CTUs into first sub-blocks using quad-tree
(QT) partitioning, and partitioning the tirst sub-blocks into second sub-blocks using a first type
of partitioning (e.g., BT or TT). Thereafter, partitioning of the second sub-blocks is restricted to
only the first type of partitioning. An image generated using the one of the CTUs as partitioned
is displayed on a display of an electronic device.
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Block Partition Structure in Video Compression

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This patent application claims the benefit of U.S. non-provisional patent application
Serial No. 16/000,620, filed on June 5, 2018, and entitled “Block Partition Structure in Video
Compression,” which in tum claims the benefit of U.S. Provisional Patent Application No.
62/520,414, filed June 15, 2017, by Shan Liu, et al., and titled “Block Partition Structure in Video
Compression,” the teaching and disclosure of which are hereby incorporated in their entirety by

reference thereto.

STATEMENT REGARDING FEDERALLY SPONSORED
RESEARCH OR DEVELOPMENT

[0002] Not applicable.
REFERENCE TO A MICROFICHE APPENDIX
[0003] Not applicable.
BACKGROUND

[0004] The amount of video data needed to depict even a relatively short video can be
substantial, which may result in difficulties when the data is to be streamed or otherwise
communicated across a communications network with limited bandwidth capacity. Thus, video
data is generally compressed before being communicated across modern day telecommunications
networks. The size of a video could also be an issue when the video is stored on a storage device
because memory resources may be limited. Video compression devices often use software and/or
hardware at the source to code the video data prior to transmission or storage, thereby decreasing
the quantity of data needed to represent digital video images. The compressed data is then
received at the destination by a video decompression device that decodes the video data. With
limited network resources and ever increasing demands of higher video quality, improved
compression and decompression techniques that improve compression ratio with little to no

sacrifice in image quality are desirable.
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SUMMARY

[0005] In an embodiment, the disclosure includes a method of coding implemented by a
coding device. The method includes receiving, from an encoding device, a bitstream containing a
picture; dividing the picture into coding tree units (CTUs); partitioning one of the CTUs into first
sub-blocks using quad-tree partitioning; partitioning one of the first sub-blocks into second sub-
blocks using a first type of partitioning; restricting partitioning of the second sub-blocks to the first
type of partitioning after the one of the first sub-blocks has been partitioned using the first type of
partitioning; and displaying, on a display of an electronic device, an image generated using the one
of the CTUs as partitioned.

[0006] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the first type of partitioning is binary-tree (BT) partitioning or triple-tree (TT)
partitioning. Optionally, in any of the preceding aspects, another implementation of the aspect
provides iteratively partitioning one of the second sub-blocks using the first type of partitioning
until a predetermined threshold is reached for a leaf block, wherein the leaf block is used for
prediction without any further partitioning. Optionally, in any of the preceding aspects, another
implementation of the aspect provides that the leaf block is a coding unit (CU) or a coding block
(CB). Optionally, in any of the preceding aspects, another implementation of the aspect provides
that the bitstream contains a flag indicating that further partitioning of the second sub-blocks is
restricted to only binary-tree (BT) partitioning. Optionally, in any of the preceding aspects,
another implementation of the aspect provides that the flag is located in a sequence parameter set
(SPS), a picture parameter set (PPS), or a slice header of the bitstream. Optionally, in any of the
preceding aspects, another implementation of the aspect provides that the bitstream contains a flag
indicating that the first type of partitioning is binary-tree (BT) partitioning or triple-tree (TT)
partitioning,

[0007] In an embodiment, the disclosure includes a method of coding implemented by a
coding device. The method includes receiving, from an encoding device, a bitstream containing a
picture; dividing the picture into coding tree units (CTUs); partitioning one of the CTUs into first
sub-blocks using quad-tree partitioning; iteratively partitioning one of the first sub-blocks using a
first type of partitioning until a predetermined threshold is reached for a leaf block; and displaying,

on a display of an electronic device, an image generated using the one of the CTUs as partitioned.
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[0008] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the first type of partitioning is binary-tree (BT) partitioning or triple-tree (TT)
partitioning. Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the leaf block is used for prediction without any further partitioning. Optionally, in
any of the preceding aspects, another implementation of the aspect provides that the predetermined
threshold 1s a minimum allowed number of pixels. Optionally, in any of the preceding aspects,
another implementation of the aspect provides that the predetermined threshold is a maximum
allowed BT depth. Optionally, in any of the preceding aspects, another implementation of the
aspect provides that the predetermined threshold is a minimum allowed coding unit (CU) area.
Optionally, in any of the preceding aspects, another implementation of the aspect provides that the
predetermined threshold is a minimum allowed number of pixels for a width of the leaf block.
Optionally, in any of the preceding aspects, another implementation of the aspect provides that the
predetermined threshold is a minimum allowed number of pixels for a height of the leaf block.
Optionally, in any of the preceding aspects, another implementation of the aspect provides that the
predetermined threshold is a minimum allowed number of pixels for a width and a height of the
leaf block. Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the predetermined threshold is a minimum allowed ratio between a width and a
height of the leaf block.

[0009] In an embodiment, the disclosure includes a decoding device. The decoding device
includes a receiver configured to receive a bitstream from an encoding device, the bitstream
including a picture; a memory storing instructions; and a processor coupled to the memory, the
processor configured to execute the instructions stored in the memory to cause the processor to:
divide the picture into coding tree units (CTUs); partition one of the CTUs into first sub-blocks
using quad-tree partitioning; partition one of the first sub-blocks into second sub-blocks using a
first type of partitioning; and restrict partitioning of the second sub-blocks to only the first type of
partitioning after the one of the first sub-blocks has been partitioned using the first type of
partitioning; and a display operably coupled to the processor, the display configured to display an
image generated using the one of the CTUs as partitioned.

[0010] Optionally, in any of the preceding aspects, another implementation of the aspect provides
that the first type of partitioning is binary-tree (BT) partitioning or triple-tree (TT) partitioning,

Optionally, in any of the preceding aspects, another implementation of the aspect provides that the



WO 2018/228281 PCT/CN2018/090389

processor is configured to iteratively partition one of the second sub-blocks using the first type of
partitioning until a predetermined threshold is reached for a leaf block, wherein the leaf block 1s
used for prediction without any further partitioning.

[0011] For the purpose of clarity, any one of the foregoing embodiments may be combined
with any one or more of the other foregoing embodiments to create a new embodiment within the
scope of the present disclosure.

[0012] These and other features will be more clearly understood from the following detailed

description taken in conjunction with the accompanying drawings and claims.
BRIEF DESCRIPTION OF THE DRAWINGS

[0013] For a more complete understanding of this disclosure, reference is now made to the
following brief description, taken in connection with the accompanying drawings and detailed
description, wherein like reference numerals represent like parts.

[0014] FIG. 1 1s a block diagram illustrating an example coding system that may utilize bi-
lateral prediction techniques.

[0015] FIG. 2 is a block diagram illustrating an example video encoder that may implement bi-
lateral prediction techniques.

[0016] FIG. 3 1s a block diagram illustrating an example of a video decoder that may
implement bi-lateral prediction techniques.

[0017] FIG. 4 is a coding tree unit (CTU) and a corresponding coding tree.

[0018] FIGS. 5A-C collectively illustrate a block (e.g., a CTU) subjected to one of the various
partitioning types.

[0019] FIG. 6 is a CTU and a corresponding coding tree.

[0020] FIG. 7 is a CTU and a corresponding coding tree.

[0021] FIGS. 8A-E collectively illustrate a block subjected to one of the various partitioning
types.

[0022] FIG. 9 illustrates an example signaling tree for signaling in multi-type-tree.

[0023] FIG. 10 1s a flowchart illustrating an embodiment of a coding method.

[0024] FIG. 11 1s a flowchart illustrating an embodiment of a coding method.

[0025] FIG. 12 1s a schematic diagram of a network device.



WO 2018/228281 PCT/CN2018/090389

DETAILED DESCRIPTION

[0026] It should be understood at the outset that although an illustrative implementation of one
or more embodiments are provided below, the disclosed systems and/or methods may be
implemented using any number of techniques, whether currently known or in existence. The
disclosure should in no way be limited to the illustrative implementations, drawings, and
techniques illustrated below, including the exemplary designs and implementations illustrated and
described herein, but may be modified within the scope of the appended claims along with their
full scope of equivalents.

[0027] FIG. 1 is a block diagram illustrating an example coding system 10 that may utilize
bidirectional prediction techniques. As shown in FIG. 1, the coding system 10 includes a source
device 12 that provides encoded video data to be decoded at a later time by a destination device 14.
In particular, the source device 12 may provide the video data to destination device 14 via a
computer-readable medium 16. Source device 12 and destination device 14 may comprise any of a
wide range of devices, including desktop computers, notebook (e.g., laptop) computers, tablet
computers, set-top boxes, telephone handsets such as so-called “smart” phones, so-called “smart”
pads, televisions, cameras, display devices, digital media players, video gaming consoles, video
streaming device, or the like. In some cases, source device 12 and destination device 14 may be
equipped for wireless communication.

[0028] Destination device 14 may receive the encoded video data to be decoded via computer-
readable medium 16. Computer-readable medium 16 may comprise any type of medium or device
capable of moving the encoded video data from source device 12 to destination device 14. In one
example, computer-readable medium 16 may comprise a communication medium to enable source
device 12 to transmit encoded video data directly to destination device 14 in real-time. The
encoded video data may be modulated according to a communication standard, such as a wireless
communication protocol, and transmitted to destination device 14. The communication medium
may comprise any wireless or wired communication medium, such as a radio frequency (RF)
spectrum or one or more physical transmission lines. The communication medium may form part
of a packet-based network, such as a local area network, a wide-area network, or a global network
such as the Intemet. The communication medium may include routers, switches, base stations, or
any other equipment that may be useful to facilitate communication from source device 12 to

destination device 14.
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[0029] In some examples, encoded data may be output from output interface 22 to a storage
device. Similarly, encoded data may be accessed from the storage device by input interface. The
storage device may include any of a variety of distributed or locally accessed data storage media
such as a hard drive, Blu-ray discs, digital video disks (DVD)s, Compact Disc Read-Only
Memories (CD-ROMs), flash memory, volatile or non-volatile memory, or any other suitable
digital storage media for storing encoded video data. In a further example, the storage device may
correspond to a file server or another intermediate storage device that may store the encoded video
generated by source device 12. Destination device 14 may access stored video data from the
storage device via streaming or download. The file server may be any type of server capable of
storing encoded video data and transmitting that encoded video data to the destination device 14.
Example file servers include a web server (e.g., for a website), a file transfer protocol (FTP) server,
network attached storage (NAS) devices, or a local disk drive. Destination device 14 may access
the encoded video data through any standard data connection, including an Internet connection.
This may include a wireless channel (e.g., a Wi-Fi connection), a wired connection (e.g., digital
subscriber line (DSL), cable modem, etc.), or a combination of both that is suitable for accessing
encoded video data stored on a file server. The transmission of encoded video data from the
storage device may be a streaming transmission, a download transmission, or a combination
thereof.

[0030] The techniques of this disclosure are not necessarily limited to wireless applications or
settings. The techniques may be applied to video coding in support of any of a variety of
multimedia applications, such as over-the-air television broadcasts, cable television transmissions,
satellite television transmissions, Internet streaming video transmissions, such as dynamic adaptive
streaming over HTTP (DASH), digital video that is encoded onto a data storage medium, decoding
of digital video stored on a data storage medium, or other applications. In some examples, coding
system 10 may be configured to support one-way or two-way video transmission to support
applications such as video streaming, video playback, video broadcasting, and/or video telephony.
[0031] In the example of FIG. 1, source device 12 includes video source 18, video encoder 20,
and output interface 22. Destination device 14 includes input interface 28, video decoder 30, and
display device 32. In accordance with this disclosure, video encoder 20 of the source device 12
and/or the video decoder 30 of the destination device 14 may be configured to apply the techniques

for bidirectional prediction. In other examples, a source device and a destination device may
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include other components or arrangements. For example, source device 12 may receive video data
from an external video source, such as an external camera. Likewise, destination device 14 may
interface with an external display device, rather than including an integrated display device.

[0032] The illustrated coding system 10 of FIG. 1 is merely one example. Techniques for
bidirectional prediction may be performed by any digital video encoding and/or decoding device.
Although the techniques of this disclosure generally are performed by a video coding device, the
techniques may also be performed by a video encoder/decoder, typically referred to as a “CODEC.”
Moreover, the techniques of this disclosure may also be performed by a video preprocessor. The
video encoder and/or the decoder may be a graphics processing unit (GPU) or a similar device.
[0033] Source device 12 and destination device 14 are merely examples of such coding
devices in which source device 12 generates coded video data for transmission to destination
device 14. In some examples, source device 12 and destination device 14 may operate in a
substantially symmetrical manner such that each of the source and destination devices 12, 14
includes video encoding and decoding components. Hence, coding system 10 may support one-
way or two-way video transmission between video devices 12, 14, e.g., for video streaming, video
playback, video broadcasting, or video telephony.

[0034] Video source 18 of source device 12 may include a video capture device, such as a
video camera, a video archive containing previously captured video, and/or a video feed interface
to receive video from a video content provider. As a further alternative, video source 18 may
generate computer graphics-based data as the source video, or a combination of live video,
archived video, and computer-generated video.

[0035] In some cases, when video source 18 i1s a video camera, source device 12 and
destination device 14 may form so-called camera phones or video phones. As mentioned above,
however, the techniques described in this disclosure may be applicable to video coding in general,
and may be applied to wireless and/or wired applications. In each case, the captured, pre-captured,
or computer-generated video may be encoded by video encoder 20. The encoded video
information may then be output by output interface 22 onto a computer-readable medium 16.
[0036] Computer-readable medium 16 may include transient media, such as a wireless
broadcast or wired network transmission, or storage media (that is, non-transitory storage media),
such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray disc, or other computer-

readable media. In some examples, a network server (not shown) may receive encoded video data
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from source device 12 and provide the encoded video data to destination device 14, e.g., via
network transmission. Similarly, a computing device of a medium production facility, such as a
disc stamping facility, may receive encoded video data from source device 12 and produce a disc
containing the encoded video data. Therefore, computer-readable medium 16 may be understood
to include one or more computer-readable media of various forms, in various examples.

[0037] Input interface 28 of destination device 14 receives information from computer-
readable medium 16. The information of computer-readable medium 16 may include syntax
information defined by video encoder 20, which 1s also used by video decoder 30, that includes
syntax elements that describe characteristics and/or processing of blocks and other coded units, e.g.,
group of pictures (GOPs). Display device 32 displays the decoded video data to a user, and may
comprise any of a variety of display devices such as a cathode ray tube (CRT), a liquid crystal
display (LCD), a plasma display, an organic light emitting diode (OLED) display, or another type
of display device.

[0038] Video encoder 20 and video decoder 30 may operate according to a video coding
standard, such as the High Efficiency Video Coding (HEVC) standard presently under
development, and may conform to the HEVC Test Model (HM). Altematively, video encoder 20
and video decoder 30 may operate according to other proprietary or industry standards, such as the
International Telecommunications Union Telecommunication Standardization Sector (ITU-T)
H.264 standard, alternatively referred to as Motion Picture Expert Group (MPEG)-4, Part 10,
Advanced Video Coding (AVC), H265/HEVC, or extensions of such standards. The techniques
of this disclosure, however, are not limited to any particular coding standard. Other examples of
video coding standards include MPEG-2 and ITU-T H.263. Although not shown in FIG. 1, in
some aspects, video encoder 20 and video decoder 30 may each be integrated with an audio
encoder and decoder, and may include appropriate multiplexer-demultiplexer (MUX-DEMUX)
units, or other hardware and software, to handle encoding of both audio and video in a common
data stream or separate data streams. If applicable, MUX-DEMUX units may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the user datagram protocol (UDP).

[0039] Video encoder 20 and video decoder 30 each may be implemented as any of a variety
of suitable encoder circuitry, such as one or more microprocessors, digital signal processors
(DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs),

discrete logic, software, hardware, firmware or any combinations thereof. When the techniques are
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implemented partially in software, a device may store instructions for the software in a suitable,
non-transitory computer-readable medium and execute the instructions in hardware using one or
more processors to perform the techniques of this disclosure. Each of video encoder 20 and video
decoder 30 may be included in one or more encoders or decoders, either of which may be
integrated as part of a combined encoder/decoder (CODEC) in a respective device. A device
including video encoder 20 and/or video decoder 30 may comprise an integrated circuit, a
microprocessor, and/or a wireless communication device, such as a cellular telephone.

[0040] FIG. 2 is a block diagram illustrating an example of video encoder 20 that may
implement bidirectional prediction techniques. Video encoder 20 may perform intra- and inter-
coding of video blocks within video slices. Intra-coding relies on spatial prediction to reduce or
remove spatial redundancy in video within a given video frame or picture. Inter-coding relies on
temporal prediction to reduce or remove temporal redundancy in video within adjacent frames or
pictures of a video sequence. Intra-mode (I mode) may refer to any of several spatial based coding
modes. Inter-modes, such as uni-directional prediction (P mode) or bi-prediction (B mode), may
refer to any of several temporal-based coding modes.

[0041] As shown in FIG. 2, video encoder 20 receives a current video block within a video
frame to be encoded. In the example of FIG. 2, video encoder 20 includes mode select unit 40,
reference frame memory 64, summer 50, transform processing unit 52, quantization unit 54, and
entropy coding unit 56. Mode select unit 40, in turn, includes motion compensation unit 44,
motion estimation unit 42, intra-prediction unit 46, and partition unit 48. For video block
reconstruction, video encoder 20 also includes inverse quantization unit 58, inverse transform unit
60, and summer 62. A deblocking filter (not shown in FIG. 2) may also be included to filter block
boundaries to remove blockiness artifacts from reconstructed video. If desired, the deblocking
filter would typically filter the output of summer 62. Additional filters (in loop or post loop) may
also be used in addition to the deblocking filter. Such filters are not shown for brevity, but if
desired, may filter the output of summer 50 (as an in-loop filter).

[0042] During the encoding process, video encoder 20 receives a video frame or slice to be
coded. The frame or slice may be divided into multiple video blocks. Motion estimation unit 42
and motion compensation unit 44 perform inter-predictive coding of the received video block
relative to one or more blocks in one or more reference frames to provide temporal prediction.

Intra-prediction unit 46 may alternatively perform intra-predictive coding of the received video
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block relative to one or more neighboring blocks in the same frame or slice as the block to be
coded to provide spatial prediction. Video encoder 20 may perform multiple coding passes, e.g., to
select an appropriate coding mode for each block of video data.

[0043] Moreover, partition unit 48 may partition blocks of video data into sub-blocks, based
on evaluation of previous partitioning schemes in previous coding passes. For example, partition
unit 48 may initially partition a frame or slice into largest coding units (LCUs), and partition each
of the LCUs into sub-coding units (sub-CUs) based on rate-distortion analysis (e.g., rate-distortion
optimization). Mode select unit 40 may further produce a quad-tree data structure indicative of
partitioning of a LCU into sub-CUs. Leaf-node CUs of the quad-tree may include one or more
prediction units (PUs) and one or more transform units (TUs).

[0044] The present disclosure uses the term “block™ to refer to any of a CU, PU, or TU, in the
context of HEVC, or similar data structures in the context of other standards (e.g., macroblocks
and sub-blocks thereof in H.264/AVC). A CU includes a coding node, PUs, and TUs associated
with the coding node. A size of the CU corresponds to a size of the coding node and is square in
shape. The size of the CU may range from 8x8 pixels up to the size of the treeblock with a
maximum of 64x64 pixels or greater. Each CU may contain one or more PUs and one or more
TUs. Syntax data associated with a CU may describe, for example, partitioning of the CU into one
or more PUs. Partitioning modes may differ between whether the CU is skip or direct mode
encoded, intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be
partitioned to be non-square in shape. Syntax data associated with a CU may also describe, for
example, partitioning of the CU into one or more TUs according to a quad-tree. A TU can be
square or non-square (e.g., rectangular) in shape.

[0045] Mode select unit 40 may select one of the coding modes, intra or inter, e.g., based on
error results, and provides the resulting intra- or inter-coded block to summer 50 to generate
residual block data and to summer 62 to reconstruct the encoded block for use as a reference frame.
Mode select unit 40 also provides syntax elements, such as motion vectors, intra-mode indicators,
partition information, and other such syntax information, to entropy coding unit 56.

[0046] Motion estimation unit 42 and motion compensation unit 44 may be highly integrated,
but are illustrated separately for conceptual purposes. Motion estimation, performed by motion
estimation unit 42, is the process of generating motion vectors, which estimate motion for video

blocks. A motion vector, for example, may indicate the displacement of a PU of a video block
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within a current video frame or picture relative to a predictive block within a reference frame (or
other coded unit) relative to the current block being coded within the current frame (or other coded
unit). A predictive block is a block that 1s found to closely match the block to be coded, in terms of
pixel difference, which may be determined by sum of absolute difference (SAD), sum of square
difference (SSD), or other difference metrics. In some examples, video encoder 20 may calculate
values for sub-integer pixel positions of reference pictures stored in reference frame memory 64.
For example, video encoder 20 may interpolate values of one-quarter pixel positions, one-eighth
pixel positions, or other fractional pixel positions of the reference picture. Therefore, motion
estimation unit 42 may perform a motion search relative to the full pixel positions and fractional
pixel positions and output a motion vector with fractional pixel precision.

[0047] Motion estimation unit 42 calculates a motion vector for a PU of a video block in an
inter-coded slice by comparing the position of the PU to the position of a predictive block of a
reference picture. The reference picture may be selected from a first reference picture list (List 0)
or a second reference picture list (List 1), each of which identify one or more reference pictures
stored in reference frame memory 64. Motion estimation unit 42 sends the calculated motion
vector to entropy encoding unit 56 and motion compensation unit 44.

[0048] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by motion
estimation unit 42. Again, motion estimation unit 42 and motion compensation unit 44 may be
functionally integrated, in some examples. Upon receiving the motion vector for the PU of the
current video block, motion compensation unit 44 may locate the predictive block to which the
motion vector points in one of the reference picture lists. Summer 50 forms a residual video block
by subtracting pixel values of the predictive block from the pixel values of the current video block
being coded, forming pixel difference values, as discussed below. In general, motion estimation
unit 42 performs motion estimation relative to luma components, and motion compensation unit 44
uses motion vectors calculated based on the luma components for both chroma components and
luma components. Mode select unit 40 may also generate syntax elements associated with the
video blocks and the video slice for use by video decoder 30 in decoding the video blocks of the
video slice.

[0049] Intra-prediction unit 46 may intra-predict a current block, as an alternative to the inter-

prediction performed by motion estimation unit 42 and motion compensation unit 44, as described
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above. In particular, intra-prediction unit 46 may determine an intra-prediction mode to use to
encode a current block. In some examples, intra-prediction unit 46 may encode a current block
using various intra-prediction modes, e.g., during separate encoding passes, and intra-prediction
unit 46 (or mode select unit 40, in some examples) may select an appropriate intra-prediction mode
to use from the tested modes.

[0050] For example, intra-prediction unit 46 may calculate rate-distortion values using a rate-
distortion analysis for the various tested intra-prediction modes, and select the intra-prediction
mode having the best rate-distortion characteristics among the tested modes. Rate-distortion
analysis generally determines an amount of distortion (or error) between an encoded block and an
original, unencoded block that was encoded to produce the encoded block, as well as a bitrate (that
1s, a number of bits) used to produce the encoded block. Intra-prediction unit 46 may calculate
ratios from the distortions and rates for the various encoded blocks to determine which intra-
prediction mode exhibits the best rate-distortion value for the block.

[0051] In addition, intra-prediction unit 46 may be configured to code depth blocks of a depth
map using a depth modeling mode (DMM). Mode select unit 40 may determine whether an
available DMM mode produces better coding results than an intra-prediction mode and the other
DMM modes, e.g., using rate-distortion optimization (RDO). Data for a texture image
corresponding to a depth map may be stored in reference frame memory 64. Motion estimation
unit 42 and motion compensation unit 44 may also be configured to inter-predict depth blocks of a
depth map.

[0052] After selecting an intra-prediction mode for a block (e.g., a conventional intra-
prediction mode or one of the DMM modes), intra-prediction unit 46 may provide information
indicative of the selected intra-prediction mode for the block to entropy coding unit 56. Entropy
coding unit 56 may encode the information indicating the selected intra-prediction mode. Video
encoder 20 may include in the transmitted bitstream configuration data, which may include a
plurality of intra-prediction mode index tables and a plurality of modified intra-prediction mode
index tables (also referred to as codeword mapping tables), definitions of encoding contexts for
various blocks, and indications of a most probable intra-prediction mode, an intra-prediction mode

index table, and a modified intra-prediction mode index table to use for each of the contexts.

12



WO 2018/228281 PCT/CN2018/090389

[0053] Video encoder 20 forms a residual video block by subtracting the prediction data from
mode select unit 40 from the original video block being coded. Summer 50 represents the
component or components that perform this subtraction operation.

[0054] Transform processing unit 52 applies a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform, to the residual block, producing a video block
comprising residual transform coefficient values. Transform processing unit 52 may perform other
transforms which are conceptually similar to DCT. Wavelet transforms, integer transforms, sub-
band transforms or other types of transforms could also be used.

[0055] Transform processing unit 52 applies the transform to the residual block, producing a
block of residual transform coefficients. The transform may convert the residual information from
a pixel value domain to a transform domain, such as a frequency domain. Transform processing
unit 52 may send the resulting transform coefficients to quantization unit 54. Quantization unit 54
quantizes the transform coefficients to further reduce bit rate. The quantization process may
reduce the bit depth associated with some or all of the coefficients. The degree of quantization
may be modified by adjusting a quantization parameter. In some examples, quantization unit 54
may then perform a scan of the matrix including the quantized transform coefficients. Alteratively,
entropy encoding unit 56 may perform the scan.

[0056] Following quantization, entropy coding unit 56 entropy codes the quantized transform
coefficients. For example, entropy coding unit 56 may perform context adaptive variable length
coding (CAVLC), context adaptive binary arithmetic coding (CABAC), syntax-based context-
adaptive binary arithmetic coding (SBAC), probability interval partitioning entropy (PIPE) coding
or another entropy coding technique. In the case of context-based entropy coding, context may be
based on neighboring blocks. Following the entropy coding by entropy coding unit 56, the
encoded bitstream may be transmitted to another device (e.g., video decoder 30) or archived for
later transmission or retrieval.

[0057] Inverse quantization unit 58 and inverse transform unit 60 apply inverse quantization
and inverse transformation, respectively, to reconstruct the residual block in the pixel domain, e.g.,
for later use as a reference block. Motion compensation unit 44 may calculate a reference block by
adding the residual block to a predictive block of one of the frames of reference frame memory 64.
Motion compensation unit 44 may also apply one or more interpolation filters to the reconstructed

residual block to calculate sub-integer pixel values for use in motion estimation. Summer 62 adds
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the reconstructed residual block to the motion compensated prediction block produced by motion
compensation unit 44 to produce a reconstructed video block for storage in reference frame
memory 64. The reconstructed video block may be used by motion estimation unit 42 and motion
compensation unit 44 as a reference block to inter-code a block in a subsequent video frame.

[0058] FIG. 3 is a block diagram illustrating an example of video decoder 30 that may
implement bidirectional prediction techniques. In the example of FIG. 3, video decoder 30
includes an entropy decoding unit 70, motion compensation unit 72, intra-prediction unit 74,
inverse quantization unit 76, inverse transformation unit 78, reference frame memory 82, and
summer 80. Video decoder 30 may, in some examples, perform a decoding pass generally
reciprocal to the encoding pass described with respect to video encoder 20 (FIG. 2). Motion
compensation unit 72 may generate prediction data based on motion vectors received from entropy
decoding unit 70, while intra-prediction unit 74 may generate prediction data based on intra-
prediction mode indicators received from entropy decoding unit 70.

[0059] During the decoding process, video decoder 30 receives an encoded video bitstream
that represents video blocks of an encoded video slice and associated syntax elements from video
encoder 20. Entropy decoding unit 70 of the video decoder 30 entropy decodes the bitstream to
generate quantized coefficients, motion vectors or intra-prediction mode indicators, and other
syntax elements. Entropy decoding unit 70 forwards the motion vectors and other syntax elements
to motion compensation unit 72. Video decoder 30 may receive the syntax elements at the video
slice level and/or the video block level.

[0060] When the video slice is coded as an intra-coded (I) slice, intra-prediction unit 74 may
generate prediction data for a video block of the current video slice based on a signaled intra
prediction mode and data from previously decoded blocks of the current frame or picture. When
the video frame is coded as an inter-coded (e.g., B, P, or GPB) slice, motion compensation unit 72
produces predictive blocks for a video block of the current video slice based on the motion vectors
and other syntax elements received from entropy decoding unit 70. The predictive blocks may be
produced from one of the reference pictures within one of the reference picture lists. Video
decoder 30 may construct the reference frame lists, List O and List 1, using default construction
techniques based on reference pictures stored in reference frame memory 82.

[0061] Motion compensation unit 72 determines prediction information for a video block of

the current video slice by parsing the motion vectors and other syntax elements, and uses the
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prediction information to produce the predictive blocks for the current video block being decoded.
For example, motion compensation unit 72 uses some of the received syntax elements to determine
a prediction mode (e.g., intra- or inter-prediction) used to code the video blocks of the video slice,
an inter-prediction slice type (e.g., B slice, P slice, or GPB slice), construction information for one
or more of the reference picture lists for the slice, motion vectors for each inter-encoded video
block of the slice, inter-prediction status for each inter-coded video block of the slice, and other
information to decode the video blocks in the current video slice.

[0062] Motion compensation unit 72 may also perform interpolation based on interpolation
filters. Motion compensation unit 72 may use interpolation filters as used by video encoder 20
during encoding of the video blocks to calculate interpolated values for sub-integer pixels of
reference blocks. In this case, motion compensation unit 72 may determine the interpolation filters
used by video encoder 20 from the received syntax elements and use the interpolation filters to
produce predictive blocks.

[0063] Data for a texture image corresponding to a depth map may be stored in reference
frame memory 82. Motion compensation unit 72 may also be configured to inter-predict depth
blocks of a depth map.

[0064] As will be appreciated by those in the art, the coding system 10 of FIG. 1 is suitable for
implementing block partition structure techniques.

[0065] In HEVC, a coding tree unit (CTU) consists of a luma coding tree block (CTB) and the
corresponding chroma CTBs and syntax elements. These concepts are further defined in G. J.
Sullivan, J.-R. Ohm, W .-J. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding
(HEVC) Standard”, IEEE Trans. Circuits and Systems for Video Technology, Vol. 22, No. 12, pp.
1649-1668, Dec. 2012, which is incorpated herein by reference. The size L x L of a luma CTB
can be chosen where L = 16, 32, or 64 samples.

[0066] FIG. 4 illustrates a CTU 400 and a corresponding coding tree 402. As shown by both
the CTU 400 and the coding tree 402, the CTU 400 has been split into various sub-blocks 404. In
the embodiment of FIG. 4, the CTU 400 has been split using a quad-tree technique. However, in
practical applications and as will be more fully explained below, other methods of splitting may be
used. Also, despite the particular configuration of FIG. 4, it should be recognized that in some

cases the CTU 400 can be a single coding unit (CU). In such cases, the CTU 400 has not been split.
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[0067] The root of the quad-tree 1s associated with the CTU 400. As shown, the CTU 400 has
been split into four smaller sub-blocks 404 (e.g., sub-units) of equal sizes of L/2XL/2, where L
represents a length of the CTU 400. The sub-blocks 404 with the size of L/2 are represented on the
coding tree 402 by nodes 406. The terms block and node represent a smaller unit or portion of the
CTU and may be used interchangeably herein. The quad-tree splitting process is iterated until the
size of a sub-block 404 reaches a minimum allowed coding unit (CU) size specified in the
Sequence Parameter Set (SPS). When one of the sub-blocks 404 is not further split that sub-block
may be referred to as a CU or one of the leaf nodes 408 (or leaf blocks) of the coding tree 402. In
the coding tree 402 of FIG. 4, the solid lines indicate quad-tree splitting and the dotted lines
indicate binary-tree splitting.

[0068] The decision whether to code a picture area using inter-picture (temporal) or intra-
picture (spatial) prediction is made at the level of the CU. For each CU, there is an associated
partitioning into prediction units (PUs) and a tree of transform units (TUs).

[0069] At the CTU 400 level, a flag (e.g., split_cu flag) is used to indicate whether the
complete CTU 400 represents a CU (e.g., the CTU has not been split) or whether the CTU 400 has
been split into four equally-sized sub-blocks 404. If the CTU 400 has been split into sub-blocks
404, another split cu flag is transmitted to specify whether one or more of the sub-blocks 404
represent a CU or whether the sub-blocks 404 have been further split into four smaller equally-
sized blocks.

[0070] In some cases, a quad-tree plus binary-tree (QTBT) block partitioning structure is used.
Further details of the QTBT structure are found in the document “Block partitioning structure for
next generation video coding,” J. An, et al., ITU-T SG16 Doc. COM16—C966, Sep. 2015, which is
incorporated herein by reference.

[0071] In the QTBT block partitioning structure, the root node of the quad-tree, which is a
CTU or CTB, s first partitioned using quad-tree (e.g., first tree) partitioning to generate quad-tree
leaf nodes. Each quad-tree leaf node can be iteratively split until the minimum allowed quad-tree
leaf node size (MinQTSize) is reached. If the quad-tree leaf node size is not larger than the
maximum allowed binary-tree root node size (MaxBTSize), each quad-tree leaf node can be
further partitioned using a binary-tree (e.g., second tree) partitioning. The binary-tree splitting of a
node can be iterated until the node reaches the minimum allowed binary-tree leaf node size

(MinBTSize) or the maximum allowed binary-tree depth (MaxBTDepth). The binary-tree leaf
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node, which may be referred to as a CU (or coding block (CB)), will be used for prediction (e.g.,
intra-picture or inter-picture prediction) and transform without any further partitioning.

[0072] FIGS. 5A-C collectively illustrate a block 500 (e.g., a CTU) subjected to one of the
various partitioning types discussed above. The block 500 in FIG. 5SA has been quad-tree
partitioned. As such, the block 500 has been split into four equally-sized sub-blocks 502. The
blocks 500 in FIGS. 5B-C have been binary-tree partitioned. As such, the blocks have been split
into two equally sized sub-blocks 502. For binary-tree splitting, there are two splitting types.
FIG. 5B illustrates vertical binary-tree partitioning and FIG. 5C illustrates horizontal binary-tree
partitioning. The various sub-blocks 502 may be further partitioned until the partitioning process
is terminated.

[0073] Some blocks (e.g., the CTU of FIG. 4) are partitioned using various combinations of
quad-tree and binary-tree partitioning, which is referred to as QTBT partitioning. In one example
of the QTBT partitioning structure, the CTU size is set as 128x128 (representing luma samples and
two corresponding 64x64 chroma samples), the MinQTSize is set as 16x16, the MaxBTSize is set
as 64x64, the MinBTSize (for both width and height) is set as 4, and the MaxBTDepth is set as 4.
The quad-tree partitioning is applied to the CTU first to generate quad-tree leaf nodes. The quad-
tree leaf nodes may have a size from 16x16 (e.g., the MinQTSize) to 128x128 (e.g., the CTU size).
If the quad-tree leaf node 1s 128x128, it will not be further split by the binary-tree since the size
exceeds the MaxBTSize (e.g., 64x64). Otherwise, the quad-tree leaf node will be further
partitioned by the binary-tree. Therefore, the quad-tree leaf node is also the root node for the
binary-tree and has the binary-tree depth as 0. When the binary-tree depth reaches MaxBTDepth
(e.g., 4), it implies that no further splitting takes place. When the binary-tree node has a width
equal to MinBTSize (e.g., 4), it implies no further horizontal splitting. Similarly, when the binary-
tree node has height equal to MinBTSize, it implies no further vertical splitting. The binary-tree
leaf nodes are namely CUs further processed by prediction and transform without any further
partitioning,

[0074] FIG. 6 illustrates a CTU 600 and a corresponding coding tree 602. As shown, the CTU
600 has been partitioned into various sub-blocks 604 using QTBT partitioning. In the coding tree
602, the solid lines indicate quad-tree splitting and the dotted lines indicate binary-tree splitting. In
each splitting node of the binary-tree (e.g., non-leaf), a flag is signaled to indicate which splitting

type (e.g., horizontal or vertical) is used. By way of example, the number “0” as shown in the
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coding tree 602 indicates a horizontal splitting and the number “1” indicates a vertical splitting.
For the quad-tree splitting, there is no need to indicate the splitting type since the block is always
split horizontally and vertically into four sub-blocks with an equal size.

[0075] FIG. 7 illustrates a CTU 700 and a corresponding coding tree 702. As shown, the CTU
700 has been partitioned using QTBT partitioning. The CTU 700 of FIG. 7 has been split into
thirteen CUs 704, which are labeled from “a” to “m” within the CTU 700. Each CU 704 has both
a quad-tree depth (QTDepth) and a binary-tree depth (BTDepth) to indicate the type and number of
splits. The QTDepth indicates the quad-tree depth of the quad-tree leaf block for the CU 704. The
BTDepth indicates the binary-tree depth of the binary-leaf block for the CU 704. The quad-tree
and binary-tree depths for the various CUs 704 in the CTU 700 are indicated below:

CU a, b: QTDepth is 1, BTDepth is 2;

CU c,d,e: QTDepth is 1, BTDepth is 1;
CU fk,I: QTDepth is 2, BTDepth is 1;
CU 1,j: QTDepth 1s 2, BTDepth is O;
CU g,h: QTDepth is 2, BTDepth is 2;
CUm: QTDepth 1s 1, BTDepth is O.

[0076] If a CTU such as CTU 700 was a single CU, its QTDepth and BTDepth are both 0.
[0077] In light of the above, it should be appreciated that the block partitioning structure (e.g.,
QTBT) denoted as the coding tree is used to partition the CTU into multiple CUs. For the I slice, a
luma-chroma-separated block partitioning structure is used. The luma component of one CTU
(e.g., the luma CTB) is partitioned by a QTBT blocking partitioning structure into luma CBs, and
the two chroma components of that CTU (e.g., the two chroma CTBs) are partitioned by another
QTBT blocking partitioning structure into chroma CBs. For the P and B slices, the block
partitioning structure for luma and chroma is shared. That 1s, one CTU (including both luma and
chroma) is partitioned by one QTBT block partitioning structure into CUs.

[0078] An example of the signaling that may be used for the partitioning described above is
discussed further below.

[0079] For QTBT partitioning, a total of three bins are used for signaling. For a QT leaf, a first

bin is signaled to indicate whether there 1s a QT split. If there is not, a second bin is signaled to
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indicate whether there is a BT split. If there is a BT split, a third bin is sent to indicate whether the
split is a horizontal or vertical split.

[0080] FIGS. 8A-C collectively illustrate a block 800 (e.g., CTUs) subjected to one of the
various partitioning types. The block 800 in FIG. 8A has been quad-tree partitioned. As such, the
block 800 has been split into four sub-blocks 802. The blocks 800 in FIGS. 8B-C have been
binary-tree partitioned. As such, the blocks have been split into two sub-blocks 802. For binary-
tree splitting, there are two splitting types. FIG. 8B illustrates vertical binary-tree partitioning and
FIG. 8C illustrates horizontal binary-tree partitioning. Tree types other than quad-tree and binary-
tree are supported. For example, vertical center-side triple-tree (TT) partitioning is shown in FIG.
8D, and horizontal center-side TT partitioning is shown in FIG. 8E.

[0081] Another type of partitioning is known as multi-type-tree (MTT). MTT is described in
the document “Multi-Type-Tree,” by X. L1, et al., JIVET-D0117, Oct. 2016, which is incorporated
herein by reference. In MTT, there are two levels of trees, region tree or first tree (e.g., quad-tree)
and prediction tree or second tree (e.g., binary-tree or triple-tree). A CTU is first partitioned by
region tree (RT). An RT leaf may be further split with prediction tree (PT). A PT leaf may also be
further split with PT until the max PT depth is reached. A PT leaf is the basic coding unit. It is
still called CU for convenience. A CU cannot be further split. Prediction and transform are both
applied on CU.

[0082] FIG. 9 illustrates an example signaling tree 900 for signaling in MTT. The signaling
tree 900 includes, for example, RT and PT. RT signaling is similar to QT signaling. However, for
PT signaling one additional bin is signaled to indicate whether the split is a binary-tree split or a
triple-tree split. For an RT leaf, a first bin 1s signaled to indicate whether there is an RT split. If
there is not an RT split, a second bin is signaled to indicate whether there is a PT split. If there is a
PT split, a third bin is sent to indicate a horizontal or a vertical split. Then, a fourth bin is sent to
distinguish between BT or TT partitioning. As shown in the signaling tree 900 of FIG. 9, a binary
number (e.g., a 0 or a 1) may be used for the various signaling.

[0083] In existing methods, a CTU can be partitioned by using quad-tree, triple-tree, and
binary-tree as described above. Disclosed herein are new coding tree designs for partitioning an
image data. The coding tree designs provide numerous benefits including, for example, being able

to signal the partitioning information using one less bin relative to conventional signaling
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techniques. Because fewer bins are used in the signaling process, the overall coding process is
more efficient. In addition, fewer resources (e.g., bandwidth) are needed.

[0084] In a first method, a CTU (e.g., the CTU 700) is first partitioned by using quad-tree
partitioning. In doing so, four sub-blocks (e.g., the CU 704 labeled “m” in FIG. 7) are formed.
These sub-blocks, which may be referred to as quad-tree leaf nodes, are further partitioned using
either triple-tree or binary-tree partitioning. When one of the sub-blocks is split using binary-tree
partitioning, then each subsequent split for that sub-block is restricted to binary-tree partitioning.
Likewise, when one of the sub-blocks is split using triple-tree partitioning, then each subsequent
split for that sub-block is restricted to triple-tree partitioning. Thus, once one of the sub-blocks 1s
split using one type of partitioning (e.g., either BT or TT), then further partitioning is restricted to
that same type of partitioning. Partitioning in this manner is maintained or enforced until a sub-
block generated by the partitioning meets a condition that qualifies that sub-block to be a binary-
tree leaf node. A binary-tree leaf node is, for example, a CU (or CB) that will be used for
prediction (e.g., intra-picture or inter-picture prediction) and transform without any further
partitioning,

[0085] By using the above partitioning technique, the signaling of the partitioning is improved.
Indeed, the signaling for conventional partitioning uses a four (4) bin method. A first bin is
signaled to indicate whether there is a quad-tree split. If not, a second bin is signaled to indicate
whether there is a triple or binary-tree split. If yes, a third bin is sent to indicate horizontal or
vertical split. Then, a fourth bin is sent to distinguish between BT and TT partitioning.

[0086] In contrast, the signaling for the partitioning technique described is simplified. In an
embodiment, a four (4) bin partitioning technique is used for non-binary-tree splitting, and a three
(3) bin partitioning technique is used for binary-tree splitting. A first bin is signaled to indicate
whether there is a quad-tree split. If not, a second bin is signaled to indicate whether there is a
triple or binary-tree split. If yes, a third bin is sent to indicate either a horizontal or a vertical split.
Then, a fourth bin is sent to distinguish between BT and TT partitioning. If the splitting of one
node is using binary-tree, then the fourth bin does not need to be sent any longer because only
binary-tree partitioning can be used for further partitioning.

[0087] In an embodiment, a five (5) bin partitioning technique is used. A first bin is signaled
to indicate whether there is a quad-tree split. A second bin is signaled to indicate whether there is a

triple-tree split. A third bin is sent to indicate either a horizontal or a vertical split. A fourth bin is
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signaled to indicate whether there i1s a binary-tree split. A fifth bin is sent to indicate either a
horizontal or a vertical split.
[0088] Existing solutions first use quad-tree (e.g., first tree) followed by triple-tree or binary-
tree (e.g., second tree) for block partitioning. In the second tr