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SYSTEM AND METHOD FOR SUPPORTING FAST HYBRID RECONFIGURATION IN A
HIGH PERFORMANCE COMPUTING ENVIRONMENT

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone
of the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but

otherwise reserves all copyright rights whatsoever.

Field of Invention

[0001] The present invention is generally related to computer systems, and is particularly
related to supporting computer system virtualization and live migration using SR-IOV vSwitch

architecture.

Background:
[0002] As larger cloud computing architectures are introduced, the performance and

administrative bottlenecks associated with the traditional network and storage have become a
significant problem. There has been an increased interest in using InfiniBand (IB) technology
as the foundation for a cloud computing fabric. This is the general area that embodiments of

the invention are intended to address.

Summary:
[0003] In accordance with an embodiment, systems and methods can provide for

performance-driven reconfiguration in large-scale lossless networks. A hybrid reconfiguration
scheme can allow for fast partial network reconfiguration with different routing algorithms of
choice in different subparts of the network. Partial reconfigurations can be orders of magnitude
faster than the initial full configuration, thus making it possible to consider performance-driven
reconfigurations in lossless networks. A proposed mechanism takes advantage of the fact that
large HPC systems and clouds are shared by multiple tenants (e.g., different tenants on
different partitions) running isolated tasks. In such scenarios tenant inter-communication is not
allowed, thus the workload deployment and placement scheduler should try to avoid
fragmentation to ensure efficient resource utilization. That is, the majority of the traffic per

tenant can be contained within consolidated subparts of the network, the SM can reconfigure
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certain subparts in order to improve the overall performance. The SM can use the Fat-Tree
topology and the Fat-Tree routing algorithm. Such a hybrid reconfiguration scheme can
successfully reconfigure and improve performance within sub-trees by using a custom Fat-
Tree routing algorithm that uses a provided node ordering to reconfigure the network. When
the SM wants to reconfigure the whole network, the SM can use the default Fat-Tree routing
algorithm, effectively exhibiting the combination of two different routing algorithms for different
use-cases in a single subnet.

[0004] In accordance with an embodiment, an exemplary method for supporting fast hybrid
reconfiguration in a high performance computing environment can provide, at one or more
microprocessors, a first subnet, the first subnet comprising a plurality of switches, the plurality
of switches comprising at least a leaf switch, wherein each of the plurality of switches
comprising a plurality of switch ports, a plurality of host channel adapters, each host channel
adapter comprising at least one host channel adapter port, and a plurality of end nodes,
wherein each of the plurality of end nodes are associated with at least one host channel
adapter of the plurality of host channel adapters. The method can arrange the plurality of
switches of the first subnet in a network architecture having a plurality of levels, each of the
plurality of levels comprising at least one switch of the plurality of switches. The method can
configure the plurality of switches according to a first configuration method, the first
configuration method being associated with a first ordering of the plurality of end nodes. The
method can configure a subset of the plurality of switches as a sub-subnet of the first subnet,
the sub-subnet of the first subnet comprising a number of levels fewer than the plurality of
levels of the first subnet. The method can then reconfigure the sub-subnet of the first subnet

according to a second configuration method.

Brief Description of the Figures:

[0005] Figure 1 shows an illustration of an InfiniBand environment, in accordance with an
embodiment.

[0006] Figure 2 shows an illustration of a tree topology in a network environment, in
accordance with an embodiment.

[0007] Figure 3 shows an exemplary shared port architecture, in accordance with an
embodiment.

[0008] Figure 4 shows an exemplary vSwitch architecture, in accordance with an
embodiment.

[0009] Figure 5 shows an exemplary vSwitch architecture with prepopulated LIDs, in
accordance with an embodiment.

[00010] Figure 6 shows an exemplary vSwitch architecture with dynamic LID assignment,
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in accordance with an embodiment.

[00011] Figure 7 shows an exemplary vSwitch architecture with vSwitch with dynamic LID
assignment and prepopulated LIDs, in accordance with an embodiment.

[00012] Figure 8 illustrates switch tuples, in accordance with an embodiment.

[00013] Figure 9 shows a system for a phase of node routing, in accordance with an
embodiment.

[00014] Figure 10 shows a system for a phase of node routing, in according with an
embodiment.

[00015] Figure 11 shows a system for a phase of node routing, in according with an
embodiment.

[00016] Figure 12 shows a system for a phase of node routing, in according with an
embodiment.

[00017] Figure 13 shows a system comprising a Fat-Tree topology having more than two
levels, in accordance with an embodiment.

[00018] Figure 14 shows a system for fast hybrid reconfiguration, in accordance with an
embodiment.

[00019] Figure 15 shows a system for fast hybrid reconfiguration, in accordance with an
embodiment.

[00020] Figure 16 is a flow chart of an exemplary method for supporting fast hybrid
reconfiguration in a high performance computing environment, in accordance with an

embodiment.

Detailed Description:

[00021] The invention is illustrated, by way of example and not by way of limitation, in the
figures of the accompanying drawings in which like references indicate similar elements. It
should be noted that references to “an” or “one” or “some” embodiment(s) in this disclosure
are not necessarily to the same embodiment, and such references mean at least one. While
specific implementations are discussed, it is understood that the specific implementations are
provided for illustrative purposes only. A person skilled in the relevant art will recognize that
other components and configurations may be used without departing from the scope and spirit
of the invention.

[00022] Common reference numerals can be used to indicate like elements throughout the
drawings and detailed description; therefore, reference numerals used in a figure may or may
not be referenced in the detailed description specific to such figure if the element is described
elsewhere.

[00023] Described herein are systems and methods supporting fast hybrid reconfiguration
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in a high performance computing environment.

[00024] The following description of the invention uses an InfiniBand™ (IB) network as an
example for a high performance network. It will be apparent to those skilled in the art that other
types of high performance networks can be used without limitation. The following description
also uses the fat-tree topology as an example for a fabric topology. It will be apparent to those
skilled in the art that other types of fabric topologies can be used without limitation.

[00025] In accordance with an embodiment of the invention, virtualization can be beneficial
to efficient resource utilization and elastic resource allocation in cloud computing. Live
migration makes it possible to optimize resource usage by moving virtual machines (VMs)
between physical servers in an application transparent manner. Thus, virtualization can enable

consolidation, on-demand provisioning of resources, and elasticity through live migration.

InfiniBand™

[00026] InfiniBand™ (IB) is an open standard lossless network technology developed by
the InfiniBand™ Trade Association. The technology is based on a serial point-to-point full-
duplex interconnect that offers high throughput and low latency communication, geared
particularly towards high-performance computing (HPC) applications and datacenters.
[00027] The InfiniBand™ Architecture (IBA) supports a two-layer topological division. At the
lower layer, IB networks are referred to as subnets, where a subnet can include a set of hosts
interconnected using switches and point-to-point links. At the higher level, an IB fabric
constitutes one or more subnets, which can be interconnected using routers.

[00028] Within a subnet, hosts can be connected using switches and point-to-point links.
Additionally, there can be a master management entity, the subnet manager (SM), which
resides on a designated subnet device in the subnet. The subnet manager is responsible for
configuring, activating and maintaining the IB subnet. Additionally, the subnet manager (SM)
can be responsible for performing routing table calculations in an IB fabric. Here, for example,
the routing of the IB network aims at proper load balancing between all source and destination
pairs in the local subnet.

[00029] Through the subnet management interface, the subnet manager exchanges control
packets, which are referred to as subnet management packets (SMPs), with subnet
management agents (SMAs). The subnet management agents reside on every IB subnet
device. By using SMPs, the subnet manager is able to discover the fabric, configure end nodes
and switches, and receive notifications from SMAs.

[00030] In accordance with an embodiment, inter- and intra-subnet routing in an IB network
can be based on LFTs stored in the switches. The LFTs are calculated by the SM according

to the routing mechanism in use. In a subnet, Host Channel Adapter (HCA) ports on the end
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nodes and switches are addressed using local identifiers (LIDs). Each entry in an LFT consists
of a destination LID (DLID) and an output port. Only one entry per LID in the table is supported.
When a packet arrives at a switch, its output port is determined by looking up the DLID in the
forwarding table of the switch. The routing is deterministic as packets take the same path in
the network between a given source-destination pair (LID pair).

[00031] Generally, all other subnet managers, excepting the master subnet manager, actin
standby mode for fault-tolerance. In a situation where a master subnet manager fails, however,
a new master subnet manager is negotiated by the standby subnet managers. The master
subnet manager also performs periodic sweeps of the subnet to detect any topology changes
and reconfigure the network accordingly.

[00032] Furthermore, hosts and switches within a subnet can be addressed using local
identifiers (LIDs), and a single subnet can be limited to 49151 unicast LIDs. Besides the LIDs,
which are the local addresses that are valid within a subnet, each IB device can have a 64-bit
global unique identifier (GUID). A GUID can be used to form a global identifier (GID), which is
an IB layer three (L3) address.

[00033] The SM can calculate routing tables (i.e., the connections/routes between each pair
of nodes within the subnet) at network initialization time. Furthermore, the routing tables can
be updated whenever the topology changes, in order to ensure connectivity and optimal
performance. During normal operations, the SM can perform periodic light sweeps of the
network to check for topology changes. If a change is discovered during a light sweep or if a
message (trap) signaling a network change is received by the SM, the SM can reconfigure the
network according to the discovered changes.

[00034] For example, the SM can reconfigure the network when the network topology
changes, such as when a link goes down, when a device is added, or when a link is removed.
The reconfiguration steps can include the steps performed during the network initialization.
Furthermore, the reconfigurations can have alocal scope that is limited to the subnets, in which
the network changes occurred. Also, the segmenting of a large fabric with routers may limit the
reconfiguration scope.

[00035] In accordance with an embodiment, IB networks can support partitioning (i.e.,
supporting multiple tenants) as a security mechanism to provide for isolation of logical groups
of systems sharing a network fabric. Each HCA port on a node in the fabric can be a member
of one or more partitions. Partition memberships are managed by a centralized partition
manager, which can be part of the SM. The SM can configure partition membership information
on each port as a table of 16-bit partition keys (P Keys). The SM can also configure switches
and routers with the partition enforcement tables containing P Key information associated with

the LIDs. Additionally, in a general case, partition membership of a switch port can represent
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a union of all membership indirectly associated with LIDs routed via the port in an egress
(towards the link) direction.

[00036] In accordance with an embodiment, for the communication between nodes, Queue
Pairs (QPs) and End-to-End contexts (EECs) can be assigned to a particular partition, except
for the management Queue Pairs (QP0 and QP1). The P Key information can then be added
to every IB transport packet sent. When a packet arrives at an HCA port or a switch, its P Key
value can be validated against a table configured by the SM. If an invalid P Key value is found,
the packet is discarded immediately. In this way, communication is allowed only between ports
sharing a partition.

[00037] An example InfiniBand fabric is shown in Figure 1, which shows an illustration of
an InfiniBand environment 100, in accordance with an embodiment. In the example shown in
Figure 1, nodes A-E, 101-105, use the InfiniBand fabric, 120, to communicate, via the
respective host channel adapters 111-115. In accordance with an embodiment, the various
nodes, e.g., nodes A-E, 101-105, can be represented by various physical devices. In
accordance with an embodiment, the various nodes, e.g., nodes A-E, 101-105, can be

represented by various virtual devices, such as virtual machines.

Virtual Machines in InfiniBand

[00038] During the last decade, the prospect of virtualized High Performance Computing
(HPC) environments has improved considerably as CPU overhead has been practically
removed through hardware virtualization support; memory overhead has been significantly
reduced by virtualizing the Memory Management Unit; storage overhead has been reduced by
the use of fast SAN storages or distributed networked file systems; and network 1/0O overhead
has been reduced by the use of device passthrough techniques like Single Root Input/Output
Virtualization (SR-IOV). It is now possible for clouds to accommodate virtual HPC (vHPC)
clusters using high performance interconnect solutions and deliver the necessary
performance.

[00039] However, when coupled with lossless networks, such as InfiniBand (IB), certain
cloud functionality, such as live migration of virtual machines (VMs), still remains an issue due
to the complicated addressing and routing schemes used in these solutions. IB is an
interconnection network technology offering high bandwidth and low latency, thus, is very well
suited for HPC and other communication intensive workloads.

[00040] The traditional approach for connecting IB devices to VMs is by utilizing SR-IOV
with direct assignment. However, to achieve live migration of VMs assigned with |IB Host
Channel Adapters (HCAs) using SR-IOV has proved to be challenging. Each IB connected

node has three different addresses: LID, GUID, and GID. When a live migration happens, one
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or more of these addresses change. Other nodes communicating with the VM-in-migration can
lose connectivity. When this happens, the lost connection can be attempted to be renewed by
locating the virtual machine’s new address to reconnect to by sending Subnet Administration
(SA) path record queries to the IB Subnet Manager (SM).

[00041] IB uses three different types of addresses. A first type of address is the 16 bits Local
Identifier (LID). At least one unique LID is assigned to each HCA port and each switch by the
SM. The LIDs are used to route traffic within a subnet. Since the LID is 16 bits long, 65536
unique address combinations can be made, of which only 49151 (0x0001-OxBFFF) can be
used as unicast addresses. Consequently, the number of available unicast addresses defines
the maximum size of an IB subnet. A second type of address is the 64 bits Global Unique
Identifier (GUID) assigned by the manufacturer to each device (e.g. HCAs and switches) and
each HCA port. The SM may assign additional subnet unique GUIDs to an HCA port, which is
useful when SR-I0OV is used. A third type of address is the 128 bits Global Identifier (GID). The
GID is a valid IPv6 unicast address, and at least one is assigned to each HCA port. The GID
is formed by combining a globally unique 64 bits prefix assigned by the fabric administrator,
and the GUID address of each HCA port.

Fat-Tree (FTree) Topologies and Routing

[00042] In accordance with an embodiment, some of the IB based HPC systems employ a
fat-tree topology to take advantage of the useful properties fat-trees offer. These properties
include full bisection-bandwidth and inherent fault-tolerance due to the availability of multiple
paths between each source destination pair. The initial idea behind fat-trees was to employ
fatter links between nodes, with more available bandwidth, as the tree moves towards the roots
of the topology. The fatter links can help to avoid congestion in the upper-level switches and
the bisection-bandwidth is maintained.

[00043] Figure 2 shows an illustration of a tree topology in a network environment, in
accordance with an embodiment. As shown in Figure 2, one or more end nodes 201-204 can
be connected in a network fabric 200. The network fabric 200 can be based on a fat-tree
topology, which includes a plurality of leaf switches 211-214, and multiple spine switches or
root switches 231-234. Additionally, the network fabric 200 can include one or more
intermediate switches, such as switches 221-224.

[00044] Also as shown in Figure 2, each of the end nodes 201-204 can be a multi-homed
node, i.e., a single node that is connected to two or more parts of the network fabric 200
through multiple ports. For example, the node 201 can include the ports H1 and H2, the node
202 can include the ports H3 and H4, the node 203 can include the ports H5 and H6, and the
node 204 can include the ports H7 and H8.
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[00045] Additionally, each switch can have multiple switch ports. For example, the root
switch 231 can have the switch ports 1-2, the root switch 232 can have the switch ports 3-4,
the root switch 233 can have the switch ports 5-6, and the root switch 234 can have the switch
ports 7-8.

[00046] In accordance with an embodiment, the fat-tree routing mechanism is one of the
most popular routing algorithm for IB based fat-tree topologies. The fat-tree routing mechanism
is also implemented in the OFED (Open Fabric Enterprise Distribution — a standard software
stack for building and deploying IB based applications) subnet manager, OpenSM.

[00047] The fat-tree routing mechanism aims to generate LFTs that evenly spread shortest-
path routes across the links in the network fabric. The mechanism traverses the fabric in the
indexing order and assigns target LIDs of the end nodes, and thus the corresponding routes,
to each switch port. For the end nodes connected to the same leaf switch, the indexing order
can depend on the switch port to which the end node is connected (i.e., port numbering
sequence). For each port, the mechanism can maintain a port usage counter, and can use this
port usage counter to select a least-used port each time a new route is added.

[00048] In accordance with an embodiment, in a partitioned subnet, nodes that are not
members of a common partition are not allowed to communicate. Practically, this means that
some of the routes assigned by the fat-tree routing algorithm are not used for the user traffic.
The problem arises when the fat tree routing mechanism generates LFTs for those routes the
same way it does for the other functional paths. This behavior can result in degraded balancing
on the links, as nodes are routed in the order of indexing. As routing is done oblivious to the

partitions, fat-tree routed subnets, in general, provide poor isolation among partitions.

Input/Output (I/0O) virtualization

[00049] In accordance with an embodiment, I/O Virtualization (IOV) can provide availability
of I/O by allowing virtual machines (VMs) to access the underlying physical resources. The
combination of storage traffic and inter-server communication impose an increased load that
may overwhelm the I/O resources of a single server, leading to backlogs and idle processors
as they are waiting for data. With the increase in number of I/O requests, IOV can provide
availability; and can improve performance, scalability and flexibility of the (virtualized) 1/0O
resources to match the level of performance seen in modern CPU virtualization.

[00050] In accordance with an embodiment, IOV is desired as it can allow sharing of 1/0O
resources and provide protected access to the resources from the VMs. IOV decouples a
logical device, which is exposed to a VM, from its physical implementation. Currently, there
can be different types of IOV technologies, such as emulation, paravirtualization, direct

assignment (DA), and single root-1/O virtualization (SR-I10V).
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[000561] In accordance with an embodiment, one type of IOV technology is software
emulation. Software emulation can allow for a decoupled front-end/back-end software
architecture. The front-end can be a device driver placed in the VM, communicating with the
back-end implemented by a hypervisor to provide I/O access. The physical device sharing ratio
is high and live migrations of VMs are possible with just a few milliseconds of network
downtime. However, software emulation introduces additional, undesired computational
overhead.

[00052] In accordance with an embodiment, another type of IOV technology is direct device
assignment. Direct device assignment involves a coupling of 1/O devices to VMs, with no
device sharing between VMs. Direct assignment, or device passthrough, provides near to
native performance with minimum overhead. The physical device bypasses the hypervisor and
is directly attached to the VM. However, a downside of such direct device assignment is limited
scalability, as there is no sharing among virtual machines — one physical network card is
coupled with one VM.

[000563] In accordance with an embodiment, Single Root IOV (SR-I0V) can allow a physical
device to appear through hardware virtualization as multiple independent lightweight instances
of the same device. These instances can be assigned to VMs as passthrough devices, and
accessed as Virtual Functions (VFs). The hypervisor accesses the device through a unique
(per device), fully featured Physical Function (PF). SR-IOV eases the scalability issue of pure
direct assignment. However, a problem presented by SR-IOV is that it can impair VM
migration. Among these IOV technologies, SR-IOV can extend the PCI Express (PCle)
specification with the means to allow direct access to a single physical device from multiple
VMs while maintaining near to native performance. Thus, SR-IOV can provide good
performance and scalability.

[00064] SR-IOV allows a PCle device to expose multiple virtual devices that can be shared
between multiple guests by allocating one virtual device to each guest. Each SR-IOV device
has at least one physical function (PF) and one or more associated virtual functions (VF). A
PF is a normal PCle function controlled by the virtual machine monitor (VMM), or hypervisor,
whereas a VF is a light-weight PCle function. Each VF has its own base address (BAR) and is
assigned with a unique requester ID that enables I/O memory management unit IOMMU) to
differentiate between the traffic streams to/from different VFs. The IOMMU also apply memory
and interrupt translations between the PF and the VFs.

[00055] Unfortunately, however, direct device assignment techniques pose a barrier for
cloud providers in situations where transparent live migration of virtual machines is desired for
data center optimization. The essence of live migration is that the memory contents of a VM

are copied to a remote hypervisor. Then the VM is paused at the source hypervisor, and the
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VM’s operation is resumed at the destination. When using software emulation methods, the
network interfaces are virtual so their internal states are stored into the memory and get copied
as well. Thus the downtime could be brought down to a few milliseconds.

[00066] However, migration becomes more difficult when direct device assignment
techniques, such as SR-IOV, are used. In such situations, a complete internal state of the
network interface cannot be copied as it is tied to the hardware. The SR-IOV VFs assigned to
a VM are instead detached, the live migration will run, and a new VF will be attached at the
destination. In the case of InfiniBand and SR-IOV, this process can introduce downtime in the
order of seconds. Moreover, in an SR-IOV shared port model the addresses of the VM will
change after the migration, causing additional overhead in the SM and a negative impact on

the performance of the underlying network fabric.

InfiniBand SR-IOV Architecture — Shared Port
[000567] There can be different types of SR-IOV models, e.g. a shared port model and a

virtual switch model.

[000568] Figure 3 shows an exemplary shared port architecture, in accordance with an
embodiment. As depicted in the figure, a host 300 (e.g., a host channel adapter) can interact
with a hypervisor 310, which can assign the various virtual functions 330, 340, 350, to a number
of virtual machines. As well, the physical function can be handled by the hypervisor 310.
[00059] In accordance with an embodiment, when using a shared port architecture, such
as that depicted in Figure 3, the host, e.g., HCA, appears as a single port in the network with
a single shared LID and shared Queue Pair (QP) space between the physical function 320 and
the virtual functions 330, 350, 350. However, each function (i.e., physical function and virtual
functions) can have their own GID.

[00060] As shown in Figure 3, in accordance with an embodiment, different GIDs can be
assigned to the virtual functions and the physical function, and the special queue pairs, QPO
and QP1 (i.e., special purpose queue pairs that are used for InfiniBand management packets),
are owned by the physical function. These QPs are exposed to the VFs as well, but the VFs
are not allowed to use QPO (all SMPs coming from VFs towards QPO are discarded), and QP1
can act as a proxy of the actual QP1 owned by the PF.

[00061] Inaccordance with an embodiment, the shared port architecture can allow for highly
scalable data centers that are not limited by the number of VMs (which attach to the network
by being assigned to the virtual functions), as the LID space is only consumed by physical
machines and switches in the network.

[00062] However, a shortcoming of the shared port architecture is the inability to provide

transparent live migration, hindering the potential for flexible VM placement. As each LID is
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associated with a specific hypervisor, and shared among all VMs residing on the hypervisor, a
migrating VM (i.e., a virtual machine migrating to a destination hypervisor) has to have its LID
changed to the LID of the destination hypervisor. Furthermore, as a consequence of the

restricted QPO access, a subnet manager cannot run inside a VM.

InfiniBand SR-IOV Architecture Models — Virtual Switch (vSwitch)
[00063] There can be different types of SR-IOV models, e.g. a shared port model and a

virtual switch model.

[00064] Figure 4 shows an exemplary vSwitch architecture, in accordance with an
embodiment. As depicted in the figure, a host 400 (e.g., a host channel adapter) can interact
with a hypervisor 410, which can assign the various virtual functions 430, 440, 450, to a number
of virtual machines. As well, the physical function can be handled by the hypervisor 410. A
virtual switch 415 can also be handled by the hypervisor 401.

[00065] In accordance with an embodiment, in a vSwitch architecture each virtual function
430, 440, 450 is a complete virtual Host Channel Adapter (vHCA), meaning that the VM
assigned to a VF is assigned a complete set of IB addresses (e.g., GID, GUID, LID) and a
dedicated QP space in the hardware. For the rest of the network and the SM, the HCA 400
looks like a switch, via the virtual switch 415, with additional nodes connected to it. The
hypervisor 410 can use the PF 420, and the VMs (attached to the virtual functions) use the
VFs.

[00066] In accordance with an embodiment, a vSwitch architecture provide transparent
virtualization. However, because each virtual function is assigned a unique LID, the number
of available LIDs gets consumed rapidly. As well, with many LID addresses in use (i.e., one
each for each physical function and each virtual function), more communication paths have to
be computed by the SM and more Subnet Management Packets (SMPs) have to be sent to
the switches in order to update their LFTs. For example, the computation of the communication
paths might take several minutes in large networks. Because LID space is limited to 49151
unicast LIDs, and as each VM (via a VF), physical node, and switch occupies one LID each,
the number of physical nodes and switches in the network limits the number of active VMs,

and vice versa.

InfiniBand SR-I0OV Architecture Models — vSwitch with Prepopulated LIDs

[00067] In accordance with an embodiment, the present disclosure provides a system and
method for providing a vSwitch architecture with prepopulated LIDs.
[00068] Figure 5 shows an exemplary vSwitch architecture with prepopulated LIDs, in

accordance with an embodiment. As depicted in the figure, a number of switches 501-504 can
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provide communication within the network switched environment 500 (e.g., an IB subnet)
between members of a fabric, such as an InfiniBand fabric. The fabric can include a number
of hardware devices, such as host channel adapters 510, 520, 530. Each of the host channel
adapters 510, 520, 530, can in turn interact with a hypervisor 511, 521, and 531, respectively.
Each hypervisor can, in turn, in conjunction with the host channel adapter it interacts with,
setup and assign a number of virtual functions 514, 515, 516, 524, 525, 526, 534, 535, 536, to
a number of virtual machines. For example, virtual machine 1 550 can be assigned by the
hypervisor 511 to virtual function 1 514. Hypervisor 511 can additionally assign virtual machine
2 551 to virtual function 2 515, and virtual machine 3 552 to virtual function 3 516. Hypervisor
531 can, in turn, assign virtual machine 4 553 to virtual function 1 534. The hypervisors can
access the host channel adapters through a fully featured physical function 513, 523, 533, on
each of host channel adapters.

[00069] In accordance with an embodiment, each of the switches 501-504 can comprise a
number of ports (not shown), which are used in setting a linear forwarding table in order to
direct traffic within the network switched environment 500.

[00070] In accordance with an embodiment, the virtual switches 512, 522, and 532, can be
handled by their respective hypervisors 511, 521, 531. In such a vSwitch architecture each
virtual function is a complete virtual Host Channel Adapter (vHCA), meaning that the VM
assigned to a VF is assigned a complete set of IB addresses (e.g., GID, GUID, LID) and a
dedicated QP space in the hardware. For the rest of the network and the SM (not shown), the
HCAs 510, 520, and 530 look like a switch, via the virtual switches, with additional nodes
connected to them.

[00071] In accordance with an embodiment, the present disclosure provides a system and
method for providing a vSwitch architecture with prepopulated LIDs. Referring to Figure 5, the
LIDs are prepopulated to the various physical functions 513, 523, 533, as well as the virtual
functions 514-516, 524-526, 534-536 (even those virtual functions not currently associated
with an active virtual machine). For example, physical function 513 is prepopulated with LID
1, while virtual function 1 534 is prepopulated with LID 10. The LIDs are prepopulated in an
SR-10V vSwitch-enabled subnet when the network is booted. Even when not all of the VFs are
occupied by VMs in the network, the populated VFs are assigned with a LID as shown in Figure
5.

[00072] In accordance with an embodiment, much like physical host channel adapters can
have more than one port (two ports are common for redundancy), virtual HCAs can also be
represented with two ports and be connected via one, two or more virtual switches to the

external 1B subnet.
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[00073] In accordance with an embodiment, in a vSwitch architecture with prepopulated
LIDs, each hypervisor can consume one LID for itself through the PF and one more LID for
each additional VF. The sum of all the VFs available in all hypervisors in an IB subnet, gives
the maximum amount of VMs that are allowed to run in the subnet. For example, in an IB
subnet with 16 virtual functions per hypervisor in the subnet, then each hypervisor consumes
17 LIDs (one LID for each of the 16 virtual functions plus one LID for the physical function) in
the subnet. In such an IB subnet, the theoretical hypervisor limit for a single subnet is ruled by
the number of available unicast LIDs and is: 2891 (49151 available LIDs divided by 17 LIDs
per hypervisor), and the total number of VMs (i.e., the limit) is 46256 (2891 hypervisors times
16 VFs per hypervisor). (In actuality, these numbers are actually smaller since each switch,
router, or dedicated SM node in the IB subnet consumes a LID as well). Note that the vSwitch
does not need to occupy an additional LID as it can share the LID with the PF

[00074] In accordance with an embodiment, in a vSwitch architecture with prepopulated
LIDs, communication paths are computed for all the LIDs once when the network is booted.
When a new VM needs to be started the system does not have to add a new LID in the subnet,
an action that would otherwise cause a complete reconfiguration of the network, including path
recalculation, which is the most time consuming part. Instead, an available port for a VM is
located (i.e., an available virtual function) in one of the hypervisors and the virtual machine is
attached to the available virtual function.

[00075] In accordance with an embodiment, a vSwitch architecture with prepopulated LIDs
also allows for the ability to calculate and use different paths to reach different VMs hosted by
the same hypervisor. Essentially, this allows for such subnets and networks to use a LID-Mask-
Control-like (LMC-like) feature to provide alternative paths towards one physical machine,
without being bound by the limitation of the LMC that requires the LIDs to be sequential. The
freedom to use non-sequential LIDs is particularly useful when a VM needs to be migrated and
carry its associated LID to the destination.

[00076] In accordance with an embodiment, along with the benefits shown above of a
vSwitch architecture with prepopulated LIDs, certain considerations can be taken into account.
For example, because the LIDs are prepopulated in an SR-IOV vSwitch-enabled subnet when
the network is booted, the initial path computation (e.g., on boot-up) can take longer than if the

LIDs were not pre-populated.

InfiniBand SR-IOV Architecture Models — vSwitch with Dynamic LID Assignment

[00077] In accordance with an embodiment, the present disclosure provides a system and

method for providing a vSwitch architecture with dynamic LID assignment.
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[00078] Figure 6 shows an exemplary vSwitch architecture with dynamic LID assignment,
in accordance with an embodiment. As depicted in the figure, a number of switches 501-504
can provide communication within the network switched environment 600 (e.g., an IB subnet)
between members of a fabric, such as an InfiniBand fabric. The fabric can include a number
of hardware devices, such as host channel adapters 510, 520, 530. Each of the host channel
adapters 510, 520, 530, can in turn interact with a hypervisor 511, 521, 531, respectively. Each
hypervisor can, in turn, in conjunction with the host channel adapter it interacts with, setup and
assign a number of virtual functions 514, 515, 516, 524, 525, 526, 534, 535, 536, to a number
of virtual machines. For example, virtual machine 1 550 can be assigned by the hypervisor
511 to virtual function 1 514. Hypervisor 511 can additionally assign virtual machine 2 551 to
virtual function 2 515, and virtual machine 3 552 to virtual function 3 516. Hypervisor 531 can,
in turn, assign virtual machine 4 553 to virtual function 1 534. The hypervisors can access the
host channel adapters through a fully featured physical function 513, 523, 533, on each of host
channel adapters.

[00079] In accordance with an embodiment, each of the switches 501-504 can comprise a
number of ports (not shown), which are used in setting a linear forwarding table in order to
direct traffic within the network switched environment 600.

[00080] In accordance with an embodiment, the virtual switches 512, 522, and 532, can be
handled by their respective hypervisors 511, 521, 531. In such a vSwitch architecture each
virtual function is a complete virtual Host Channel Adapter (vHCA), meaning that the VM
assigned to a VF is assigned a complete set of IB addresses (e.g., GID, GUID, LID) and a
dedicated QP space in the hardware. For the rest of the network and the SM (not shown), the
HCAs 510, 520, and 530 look like a switch, via the virtual switches, with additional nodes
connected to them.

[00081] In accordance with an embodiment, the present disclosure provides a system and
method for providing a vSwitch architecture with dynamic LID assignment. Referring to Figure
6, the LIDs are dynamically assigned to the various physical functions 513, 523, 533, with
physical function 513 receiving LID 1, physical function 523 receiving LID 2, and physical
function 533 receiving LID 3. Those virtual functions that are associated with an active virtual
machine can also receive a dynamically assigned LID. For example, because virtual machine
1 550 is active and associated with virtual function 1 514, virtual function 514 can be assigned
LID 5. Likewise, virtual function 2 515, virtual function 3 516, and virtual function 1 534 are
each associated with an active virtual function. Because of this, these virtual functions are
assigned LIDs, with LID 7 being assigned to virtual function 2 515, LID 11 being assigned to

virtual function 3 516, and virtual function 9 being assigned to virtual function 1 535. Unlike
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vSwitch with prepopulated LIDs, those virtual functions not currently associated with an active
virtual machine do not receive a LID assignment.

[00082] In accordance with an embodiment, with the dynamic LID assignment, the initial
path computation can be substantially reduced. When the network is booting for the first time
and no VMs are present then a relatively small number of LIDs can be used for the initial path
calculation and LFT distribution.

[00083] In accordance with an embodiment, much like physical host channel adapters can
have more than one port (two ports are common for redundancy), virtual HCAs can also be
represented with two ports and be connected via one, two or more virtual switches to the
external IB subnet.

[00084] In accordance with an embodiment, when a new VM is created in a system utilizing
vSwitch with dynamic LID assignment, a free VM slot is found in order to decide on which
hypervisor to boot the newly added VM, and a unique non-used unicast LID is found as well.
However, there are no known paths in the network and the LFTs of the switches for handling
the newly added LID. Computing a new set of paths in order to handle the newly added VM is
not desirable in a dynamic environment where several VMs may be booted every minute. In
large IB subnets, computing a new set of routes can take several minutes, and this procedure
would have to repeat each time a new VM is booted.

[00085] Advantageously, in accordance with an embodiment, because all the VFs in a
hypervisor share the same uplink with the PF, there is no need to compute a new set of routes.
It is only needed to iterate through the LFTs of all the physical switches in the network, copy
the forwarding port from the LID entry that belongs to the PF of the hypervisor —where the VM
is created— to the newly added LID, and send a single SMP to update the corresponding LFT
block of the particular switch. Thus the system and method avoids the need to compute a new
set of routes

[00086] In accordance with an embodiment, the LIDs assigned in the vSwitch with dynamic
LID assignment architecture do not have to be sequential. When comparing the LIDs assigned
on VMs on each hypervisor in vSwitch with prepopulated LIDs versus vSwitch with dynamic
LID assignment, it is notable that the LIDs assigned in the dynamic LID assignment
architecture are non-sequential, while those prepopulated in are sequential in nature. In the
vSwitch dynamic LID assignment architecture, when a new VM is created, the next available
LID is used throughout the lifetime of the VM. Conversely, in a vSwitch with prepopulated LIDs,
each VM inherits the LID that is already assigned to the corresponding VF, and in a network
without live migrations, VMs consecutively attached to a given VF get the same LID.

[00087] In accordance with an embodiment, the vSwitch with dynamic LID assignment

architecture can resolve the drawbacks of the vSwitch with prepopulated LIDs architecture
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model at a cost of some additional network and runtime SM overhead. Each time a VM is
created, the LFTs of the physical switches in the subnet can be updated with the newly added
LID associated with the created VM. One subnet management packet (SMP) per switch is
needed to be sent for this operation. The LMC-like functionality is also not available, because
each VM is using the same path as its host hypervisor. However, there is no limitation on the
total amount of VFs present in all hypervisors, and the number of VFs may exceed that of the
unicast LID limit. Of course, not all of the VFs are allowed to be attached on active VMs
simultaneously if this is the case, but having more spare hypervisors and VFs adds flexibility
for disaster recovery and optimization of fragmented networks when operating close to the

unicast LID limit.

InfiniBand SR-IOV Architecture Models — vSwitch with Dynamic LID Assignment and

Prepopulated LIDs
[00088] Figure 7 shows an exemplary vSwitch architecture with vSwitch with dynamic LID

assignment and prepopulated LIDs, in accordance with an embodiment. As depicted in the
figure, a number of switches 501-504 can provide communication within the network switched
environment 500 (e.g., an IB subnet) between members of a fabric, such as an InfiniBand
fabric. The fabric can include a number of hardware devices, such as host channel adapters
510, 520, 530. Each of the host channel adapters 510, 520, 530, can in turn interact with a
hypervisor 511, 521, and 531, respectively. Each hypervisor can, in turn, in conjunction with
the host channel adapter it interacts with, setup and assign a number of virtual functions 514,
515, 516, 524, 525, 526, 534, 535, 536, to a number of virtual machines. For example, virtual
machine 1 550 can be assigned by the hypervisor 511 to virtual function 1 514. Hypervisor
511 can additionally assign virtual machine 2 551 to virtual function 2 515. Hypervisor 521 can
assign virtual machine 3 552 to virtual function 3 526. Hypervisor 531 can, in turn, assign
virtual machine 4 553 to virtual function 2 535. The hypervisors can access the host channel
adapters through a fully featured physical function 513, 523, 533, on each of host channel
adapters.

[00089] In accordance with an embodiment, each of the switches 501-504 can comprise a
number of ports (not shown), which are used in setting a linear forwarding table in order to
direct traffic within the network switched environment 700.

[00090] In accordance with an embodiment, the virtual switches 512, 522, and 532, can be
handled by their respective hypervisors 511, 521, 531. In such a vSwitch architecture each
virtual function is a complete virtual Host Channel Adapter (vHCA), meaning that the VM
assigned to a VF is assigned a complete set of IB addresses (e.g., GID, GUID, LID) and a

dedicated QP space in the hardware. For the rest of the network and the SM (not shown), the
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HCAs 510, 520, and 530 look like a switch, via the virtual switches, with additional nodes
connected to them.

[00091] In accordance with an embodiment, the present disclosure provides a system and
method for providing a hybrid vSwitch architecture with dynamic LID assignment and
prepopulated LIDs. Referring to Figure 7, hypervisor 511 can be arranged with vSwitch with
prepopulated LIDs architecture, while hypervisor 521 can be arranged with vSwitch with
prepopulated LIDs and dynamic LID assignment. Hypervisor 531 can be arranged with
vSwitch with dynamic LID assignment. Thus, the physical function 513 and virtual functions
514-516 have their LIDs prepopulated (i.e., even those virtual functions not attached to an
active virtual machine are assigned a LID). Physical function 523 and virtual function 1 524
can have their LIDs prepopulated, while virtual function 2 and 3, 525 and 526, have their LIDs
dynamically assigned (i.e., virtual function 2 525 is available for dynamic LID assignment, and
virtual function 3 526 has a LID of 11 dynamically assigned as virtual machine 3 552 is
attached). Finally, the functions (physical function and virtual functions) associated with
hypervisor 3 531 can have their LIDs dynamically assigned. This results in virtual functions 1
and 3, 534 and 536, are available for dynamic LID assignment, while virtual function 2 535 has
LID of 9 dynamically assigned as virtual machine 4 553 is attached there.

[00092] In accordance with an embodiment, such as that depicted in Figure 7, where both
vSwitch with prepopulated LIDs and vSwitch with dynamic LID assignment are utilized
(independently or in combination within any given hypervisor), the number of prepopulated
LIDs per host channel adapter can be defined by a fabric administrator and can be in the range
of 0 <= prepopulated VFs <= Total VFs (per host channel adapter) , and the VFs available for
dynamic LID assignment can be found by subtracting the number of prepopulated VFs from
the total number of VFs (per host channel adapter).

[00093] In accordance with an embodiment, much like physical host channel adapters can
have more than one port (two ports are common for redundancy), virtual HCAs can also be
represented with two ports and be connected via one, two or more virtual switches to the

external 1B subnet.

Fast Hybrid Reconfiguration

[00094] In accordance with an embodiment, High Performance Computing (HPC) clusters
are massively parallel systems that consist of thousands of nodes and millions of cores.
Traditionally, such systems are associated with the scientific community and can be used to
run complex and high granularity computations. However, with the emergence of the cloud
computing paradigm and Big-Data analytics, the computer science society tends to agree that

there will be a convergence of HPC and Big-Data, with the Cloud being the vehicle for
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delivering the associated services to a broader audience. Large conventional HPC clusters are
environments usually shared between users that run diversified, but predictable workloads.
When exposed to the cloud and the more dynamic pay-as-you-go model however, the
workload and utilization of the system can become unpredictable, leading to the need for
performance optimizations during runtime.

[00095] In accordance with an embodiment, one of the components that can be tuned and
reconfigured in order to improve performance is the underlying interconnection network. The
interconnection network is a critical part in massively parallel architectures due to the intensive
communication between nodes. As such, high performance network technologies that typically
employ lossless layer-two flow control are used, as these technologies provide significantly
better performance. Nevertheless, the performance comes at a cost of added complexity and
management cost, and reconfiguring the network can be challenging. Since packets are not
getting dropped in lossless networks, deadlocks may occur if loops are allowed to form by the
routing function. A Subnet Manager (SM) software is committed to administer the network.
Among other tasks, this SM is responsible to compute deadlock-free communication paths
between nodes in the network, and distribute the corresponding Linear Forwarding Tables
(LFTs) to the switches. When a reconfiguration is needed, the SM recalculates a new set of
deadlock-free routes. During the transition phase, however, when distributing the new LFTs, a
new routing function Rnew coexists with the old routing function Req. Although Reiq and Ryew are
both deadlock-free, the combination of both might be not. Moreover, the path computation is
the costlier phase of a reconfiguration and can take up to several minutes, depending on the
topology and the chosen routing function, introducing an obstacle that renders the
reconfiguration to an extravagant operation that is avoided unless severe faults occur. In the
case of faults, the reconfiguration is kept minimal in order to reestablish deadlock-free
connectivity quickly, at the cost of degrading the performance.

[00096] In accordance with an embodiment, systems and methods can provide for
performance-driven reconfiguration in large-scale lossless networks. A hybrid reconfiguration
scheme can allow for fast partial network reconfiguration with different routing algorithms of
choice in different subparts of the network. Partial reconfigurations can be orders of magnitude
faster than the initial full configuration, thus making it possible to consider performance-driven
reconfigurations in lossless networks. A proposed mechanism takes advantage of the fact that
large HPC systems and clouds are shared by multiple tenants (e.g., different tenants on
different partitions) running isolated tasks. In such scenarios tenant inter-communication is not
allowed, thus the workload deployment and placement scheduler should try to avoid
fragmentation to ensure efficient resource utilization. That is, the majority of the traffic per

tenant can be contained within consolidated subparts of the network, the SM can reconfigure
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certain subparts in order to improve the overall performance. The SM can use the Fat-Tree
topology and the Fat-Tree routing algorithm. Such a hybrid reconfiguration scheme can
successfully reconfigure and improve performance within sub-trees by using a custom Fat-
Tree routing algorithm that uses a provided node ordering to reconfigure the network. When
the SM wants to reconfigure the whole network, the SM can use the default Fat-Tree routing
algorithm, effectively exhibiting the combination of two different routing algorithms for different
use-cases in a single subnet.

[00097] In accordance with an embodiment, the Fat-Tree routing algorithm (FTree) is a
topology-aware routing algorithm for Fat-Tree topologies. FTree first discovers the network
topology and each switch is marked with a tuple that identifies its location in the topology. Each
tuple is a vector of values in the form of (/, as, ..., a1), where [ represents the level where the
switch is located. The an represents the switch index within the top-most sub-tree, and
recursively the digits an-1 until a; represent the index of the sub-tree within that first sub-tree
and so on. For a Fat-Tree with n levels, the root-level (topmost or core) switches are located
in level / = 0, whereas the leaf switches (where nodes are connected to), are located in level /
= n - 1. The tuple assignment for an example 2-ary-4-tree is shown in Figure 8.

[00098] Figure 8 illustrates switch tuples, in accordance with an embodiment. More
specifically, the figure illustrates switch tuples as allocated by the OpenSM’s Fat-Tree routing
algorithm implemented for an example Fat-Tree, XGFT(4; 2, 2, 2, 2; 2, 2, 2, 1). The Fat-Tree
800 can comprise switches 801-808, 811-818, 921-1428, and 831-838. As the Fat-Tree has n
= 4 switch levels (marked as row 0 at the root level, until row 3 at the leaf level), the Fat-Tree
is composed of m; = 2 first-level sub-trees with n’= n - 7 = 3 switch levels each. This is shown
in the figure by two boxes defined by a dashed line that enclose the switches from levels 1 to
3, each first-level sub-tree receiving an identifier of 0 or 1. Each of those first-level sub-trees
is composed of mz = 2 second-level sub-trees with n” = n’ - 7 = 2 switch levels each above
the leaf switches. This is shown in the figure by four boxes defined by a dotted line that enclose
the switches from levels 2 to 3, each second-level sub-tree receiving an identifier of O or 1.
Similarly, each of the leaf switches can also be considered as a sub-tree, shown in the figure
by eight boxes defined by a dash-dot line, and each of these sub trees receiving an identifier
of O or 1.

[00099] In accordance with an embodiment, and as exemplified in the figure, tuples, such
as four-number tuples, can be assigned to the various switches, each number of the tuple
indicating a specific sub-tree correspondence for the position of each value in the tuple. For
example, switch 814 (which can be referred to as Switch 1_3) can be assigned with tuple
1.0.1.1, representing its location at level 1 and Oth first-level sub-tree.

[000100] In accordance with an embodiment, once the tuples have been assigned, FTree
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iterates through each leaf-switch in an ascending tuple order, and for each downward switch
port where nodes are connected in an ascending port-order the algorithm routes the selected
nodes based on their LID. Figures 9-13 illustrate different phases of how a node is routed, in
accordance with an embodiment.

[000101] Figure 9 shows a system for a phase of node routing, in accordance with an
embodiment. Switches 901-912 in the figure are marked with numbers from 1-12. Each
switch can comprise a plurality of ports (not shown). For example, each switch can comprise
32 ports — 16 down and 16 up. Each of switches 1, 2, 3, 4, can also be linked to two or more
nodes, such as nodes A and B 920 and 921 linked to switch 1, nodes C and D 922 and 923
linked to switch 2, node E and F 924 and 925 linked to switch 3, and nodes G and H 926 and
927 linked to switch 4. FTree keeps port-usage counters for balancing the routes and starts by
traversing the fabric upwards from the least loaded port while choosing the routes downwards.
As shown in the figure, in the first iteration all port counters are zero, so the first available
upward port is chosen. For each level up, the newly reached switch, in this case, switch 5 905,
is selected as the switch to route all the traffic downwards towards the routed node (Node A
920) from the incoming port which through the switch was reached. The dashed lines in the
figure represent routes that have been assigned to node A.

[000102] Figure 10 shows a system for a phase of node routing, in according with an
embodiment. Switches 901-912 in the figure are marked with numbers from 1-12. Each switch
can comprise a plurality of ports (not shown). For example, each switch can comprise 32 ports
— 16 down and 16 up. Each of switches 1, 2, 3, 4, can also be linked to two or more nodes,
such as nodes A and B 920 and 921 linked to switch 1, nodes C and D 922 and 923 linked to
switch 2, node E and F 924 and 925 linked to switch 3, and nodes G and H 926 and 927 linked
to switch 4. FTree can, after the routing step shown in Figure 9, traverse the fabric downwards
and assign routes upwards towards the switch in a similar manner. This is shown in the figure
as the long arrow going from switch 5 to switch 2 representing the routing algorithm. Then,
the route assignment proceeds in an upward manner, going from switch 2 to switch 5. The
dashed lines in the figure represent routes that have been assigned to node A.

[000103] Figure 11 shows a system for a phase of node routing, in according with an
embodiment. Switches 901-912 in the figure are marked with numbers from 1-12. Each switch
can comprise a plurality of ports (not shown). For example, each switch can comprise 32 ports
— 16 down and 16 up. Each of switches 1, 2, 3, 4, can also be linked to two or more nodes,
such as nodes A and B 920 and 921 linked to switch 1, nodes C and D 922 and 923 linked to
switch 2, node E and F 924 and 925 linked to switch 3, and nodes G and H 926 and 927 linked
to switch 4. A same or similar recursive operation as described in Figures 9 and 10 continues

until route entries for the selected node have been added to all of the necessary switches in

-20-



10

15

20

25

30

35

WO 2018/039061 PCT/US2017/047552

the fabric. As shown in Figure 11, a route down by going up operation is as depicted. As the
FTree mechanism traverses up the tree (from switch 5 to switch 9), a route is assigned to Node
A between switch 9 and switch 5 (route down).

[000104] Figure 12 shows a system for a phase of node routing, in according with an
embodiment. Switches 901-912 in the figure are marked with numbers from 1-12. Each switch
can comprise a plurality of ports (not shown). For example, each switch can comprise 32 ports
— 16 down and 16 up. Each of switches 1, 2, 3, 4, can also be linked to two or more nodes,
such as nodes A and B 920 and 921 linked to switch 1, nodes C and D 922 and 923 linked to
switch 2, node E and F 924 and 925 linked to switch 3, and nodes G and H 926 and 927 linked
to switch 4. A same or similar recursive operation as described in Figures 9, 10 and 11,
continues until route entries for the selected node have been added to all of the necessary
switches in the fabric. As shown in Figure 12, a route up by going down operation exists
between switch 9 and switch 7, and two route up by going down operations are performed,
one between switch 7 and switch 3, and one between switch 7 and switch 4. The dashed lines
in the figure represent routes that have been assigned to node A. At this point, routes from all
nodes to node A have been defined in the system. Such operations can be repeated for each
node in the system, maintaining port counters, until all nodes have all routes calculated.
[000105] Note that the routing towards node A has been completed, but there are some blank
switches without routes towards node A; the switches 6, 8, 10, 11, 12. In reality, FTree can add
routes in these blank switches as well. If a packet towards node A arrives for example in switch
12, this switch knows that it has to forward the received packet down towards switch 6, while
switch 6 knows that the received packet from 12 has to be forwarded to switch 1 to reach its
destination A. However, the switches in the lower levels will never forward traffic towards node
A to switch 12 because the routes upward will always push the packets towards switch 9. Note
that the use of a single root switch per destination node counters the growth of wide congestion
trees.

[000106] In accordance with an embodiment, a fast hybrid reconfiguration method can be
based on the notion that HPC systems and cloud environments are shared by multiple tenants
that run isolated tasks, i.e., tenant inter-communication is not allowed. To achieve better
resource utilization, the workload deployment or virtual machine placement scheduler tries to
avoid resource fragmentation to the extent possible. Consequently, per-tenant workloads are
mapped onto physical machines that are close-by with regards to physical network
connectivity, in order to avoid unnecessary network traffic and cross-tenant network
interference. For Fat-Tree topologies with more than two levels, this means that the per-tenant
traffic can be contained within a sub-tree of the multi-level Fat-Tree.

[000107] Figure 13 shows a system comprising a Fat-Tree topology having more than two
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levels, in accordance with an embodiment. Within a Fat-Tree topology subnet 1300 having a
number of switch levels (3 switch levels in the depicted embodiment), a sub-tree 1310 (also
referred to herein as a sub-subnet) can be defined wherein traffic within the sub-tree 1310 is
wholly contained. That s, traffic within the sub-tree 1310 (that is, between the end nodes 1320,
which span from end node A to end node P) is not flowing to or from the remainder of the
topology. As an example, the end nodes 1320 can all belong to a same partition (e.g., all
nodes in 1320 share a common partition key (P_Key)). It should be noted, that while not
shown, each of end nodes can be connected to the switched network via a host channel
adapter (HCA).

[000108] In accordance with an embodiment, a fast hybrid reconfiguration method can apply
a partial reconfiguration and optimize locally within the sub-subnet based on the internal traffic
pattern only. By applying such a partial reconfiguration, the method can effectively treat the
reconfiguration as a Fat-Tree with less levels, and as which can reduce the cost of path-
computation and overall reconfiguration. In effect, performance-driven reconfiguration
becomes attractive even in shared and highly dynamic environments. Moreover, when
applying partial reconfiguration, the method only needs to alter the forwarding entries of the
nodes within the sub-subnet 1310. Given that the initial routing algorithm used to route the
fabric was FTree or similar, that guarantees deadlock freedom by applying a variant of up/down
routing without using Virtual Lanes, the method can use any best-fit routing algorithm to reroute
the given sub-tree as isolated (Hybrid Reconfiguration).

[000109] In accordance with an embodiment, once a sub-tree of a Fat-Tree is reconfigured,
the connectivity between all end nodes, even those outside of the reconfigured sub-subnet, is
still maintained. Because the switches have LFTs that dictate where to forward traffic towards
any destination. That is, every switch S has a valid forwarding entry in the LFT for every
destination x, even if other nodes will never actually forward packets destined for x through S.
For example, after an initial routing selected where within a sub-tree a switch at a level one
higher than a leaf switch, which will be called switch 5, was chosen to route traffic downwards
towards node A and switch 6, on the same level as switch 5, was chosen to route traffic towards
node B. After the reconfiguration of the sub-tree, switch 5 is now used to route traffic towards
node B and switch 6 towards node A. In this case, if nodes E and F, located inside the sub-
tree, send traffic towards nodes A or B, the newly calculated paths will be used, and traffic will
remain entirely within the sub-tree. However, if nodes located outside of the sub-tree (not
shown), send traffic to nodes A and B, the old paths (i.e., not part of the reconfiguration as
those paths are outside the sub-tree) will be used; the traffic towards A and B will enter the
sub-tree at the switches designated by the original routing of the entire subnet. Such behavior

external to the sub-tree could potentially disturb the purpose of the sub-tree reconfiguration,
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e.g., by interfering with any sub-tree internal load balancing. However, when a sub-tree is
configured such that little to no traffic crosses the sub-tree boundary (e.g., when a sub-tree
comprises an entire partition), such interference is of minor concern.

[000110] In accordance with an embodiment, in order to apply a partial reconfiguration, the
method can first choose all the nodes and switches in a sub-tree that have to be reconfigured.
The method can use the switch-tuples to choose which sub-tree to reconfigure. For a partial
reconfiguration, the method can select all nodes and switches in the sub-tree that need to be
reconfigured. The selection and consideration of all nodes in the sub-tree is necessary. The
selection process of all entities in a sub-tree can go through the following steps:

1) An administrator (or an automated solution that monitors the fabric utilization)
provides a list of nodes that are to participate in the reconfiguration.

2) The tuples of the leaf switches of the nodes from step 1 are compared and the
common ancestor sub-tree selected.

3) All the switches that belong to the sub-tree that was selected in step 2 will be
marked for reconfiguration.

4) From the list of switches in step 3, the leaf switches will be picked and all of the
nodes connected to the picked leaf switches will participate in the
reconfiguration process.

5) Last, a routing algorithm has to calculate a new set of routes only for the nodes
selected in step 4, and distribute the LFTs only to the switches selected in step
3.

[000111] In accordance with an embodiment, in multistage switch topologies like Fat-Trees,
the effective bisection bandwidth is usually less than the theoretical bisection bandwidth for
different traffic patterns. The reason is that depending on which node pairs have been selected
for communication, there might be links that are shared in the upward direction. An example is
illustrated in Figure 14.

[000112] Figure 14 shows a system for fast hybrid reconfiguration, in accordance with an
embodiment. Within a Fat-Tree topology subnet 1400 having a number of switch levels (3
switch levels in the depicted embodiment), a sub-tree 1410 can be defined wherein traffic
within the sub-subnet 1410 is wholly contained. That is, traffic within the sub-subnet 1410 (that
is, between the end nodes 1420, which span from end node A to end node P) is not flowing to
or from the remainder of the topology. As an example, the end nodes 1420 can all belong to
a same partition.

[000113] As shown in the figure, the end nodes 1420 (end nodes A through P) can
communicate within a two-level sub-tree (indicated as 1410) of a three-level Fat-Tree globally

routed with the FTree routing algorithm. In the depicted embodiment, the routing method,
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FTree, has selected: switch 5 to route downwards to nodes A, E, |, and M; switch 6 to route
downwards to nodes B, F, J, and N; switch 7 to route downwards to nodes C, G, K, and O; and
switch 8 to route downwards to nodes D, H, L, and P. Although this sub-tree has a full
theoretical bisection bandwidth, the effective bisection bandwidth in the illustrated
communication pattern where nodes B, C and D send traffic to nodes E, | and M, respectively,
is 1/3 of the full bandwidth. This is because all the destination nodes are routed through the
same switch in the second level, switch 5, and the thick dashed link connecting switch 1 and
switch 5 is shared by all three flows and becomes a bottleneck for traffic. However, there are
enough empty links to avoid link sharing and provide full bandwidth. To allow for flexible
reconfigurations that are not always bound to the same routing order that is based in the port
order, a fast hybrid reconfiguration scheme can use a Fat-Tree routing mechanism, which can
be referred to as NoF Tree, that uses a user-defined Node ordering to route a Fat-Tree network.
This can provide enhancements. A simple way to determine the receiving traffic per node is to
read the IB port counters. In such a way, an administrator doesn’t have to know details about
the jobs executed by tenants.

[000114] In accordance with an embodiment, NoF Tree can be used in the context of a Fast
Hybrid Reconfiguration Scheme, and routes a sub-tree after the switches and nodes have
been selected as described above. The scheme can follow these steps:

1) An ordered list of nodes to be routed is provided by the user or by a monitoring
solution.

2) NoFTree re-orders the nodes per leaf-switch. Then each ordered node is placed
in the n % max nodes per leaf sw + 1 slot to be routed in the given leaf-switch,
where n is the global position of the node in the re-ordered list of nodes.

3) Remaining nodes that are connected to each leaf-switch, but not present in the
provided node ordering list are filling the remaining leaf-switch routing slots
based on the port order that nodes are connected to. If no port ordering is
provided by the user, NoFTree can work exactly as the FTree routing algorithm.

4) NoFTree iterates through each leaf-switch again and routes each node based
on the node order that has been constructed throughout the previous steps.

[000115] Figure 15 shows a system for fast hybrid reconfiguration, in accordance with an
embodiment. Within a Fat-Tree topology subnet 1500 having a number of switch levels (3
switch levels in the depicted embodiment), a sub-tree 1510 can be defined wherein traffic
within the sub-subnet 1510 is wholly contained. That is, traffic within the sub-subnet 1510 (that
is, between the end nodes 1520, which span from end node A to end node P) is not flowing to
or from the remainder of the topology. As an example, the end nodes 1520 can all belong to

a same partition.
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[000116] As shown in the figure, the end nodes 1520 (end nodes A through P) can
communicate within a two-level sub-tree (indicated as 1510) of a three-level Fat-Tree globally
routed with the FTree routing algorithm. In the depicted embodiment, the routing method,
NoFTree has reconfigured the sub-tree of Figure 15 using a supplied/received node order E,
I, M, and has selected: switch 5 to route downwards to nodes A, E, J, and N; switch 6 to route
downwards to nodes B, F, |, and O; switch 7 to route downwards to nodes C, G, K, and M; and
switch 8 to route downwards to nodes D, H, L, and P.

[000117] In this case the supplied/received node order that NoFTree uses for the
reconfiguration is E, |, M. Since no node from leaf-switch 1 has been provided in the node
ordering, nodes connected to switch 1 are routed based on the port order. Node E is the first
node in the global node ordering and the first node to be ordered in leaf switch 2, so node E
becomes the first node to be routed in switch 2 (routed downwards from switch 5). The rest of
the nodes on leaf switch 2, nodes F, G, H, are routed following the port order. Then the
mechanism moves to the 3rd leaf switch, switch 3, where node | from the provided/received
node ordering is connected. Node | is the second node in the provided/received node ordering
and the first node to be ordered in switch 3, so node | becomes the second node to be routed
in switch 3, routed downwards from switch 6. The nodes connected to switch 4 are routed in
the same fashion. The remaining routing occurs as indicated above and in the figure. In this
scenario, a performance gain of 300% can be achieved since there is no upward link sharing
anymore with traffic flowing to nodes E, |, and M from nodes B, C, and D.

[000118] Figure 16 is a flow chart of an exemplary method for supporting fast hybrid
reconfiguration in a high performance computing environment, in accordance with an
embodiment.

[000119] At step 1610, the method can provide, at one or more microprocessors, a first
subnet, the first subnet comprising a plurality of switches, the plurality of switches comprising
at least a leaf switch, wherein each of the plurality of switches comprising a plurality of switch
ports, a plurality of host channel adapters, each host channel adapter comprising at least one
host channel adapter port, and a plurality of end nodes, wherein each of the plurality of end
nodes are associated with at least one host channel adapter of the plurality of host channel
adapters.

[000120] At step 1620, the method can arrange the plurality of switches of the first subnet in
a network architecture having a plurality of levels, each of the plurality of levels comprising at
least one switch of the plurality of switches.

[000121] At step 1630, the method can configure the plurality of switches according to a first
configuration method, the first configuration method being associated with a first ordering of

the plurality of end nodes.
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[000122] At step 1640, the method can configure a subset of the plurality of switches as a
sub-subnet of the first subnet, the sub-subnet of the first subnet comprising a number of levels
fewer than the plurality of levels of the first subnet.

[000123] At step 1650, the method can reconfigure the sub-subnet of the first subnet
according to a second configuration method.

[000124] While various embodiments of the present invention have been described above,
it should be understood that they have been presented by way of example, and not limitation.
The embodiments were chosen and described in order to explain the principles of the invention
and its practical application. The embodiments illustrate systems and methods in which the
present invention is utilized to improve the performance of the systems and methods by
providing new and/or improved features and/or providing benefits such as reduced resource
utilization, increased capacity, improved efficiency, and reduced latency.

[000125] Insome embodiments, features of the present invention are implemented, in whole
or in part, in a computer including a processor, a storage medium such as a memory and a
network card for communicating with other computers. In some embodiments, features of the
invention are implemented in a distributed computing environment in which one or more
clusters of computers is connected by a network such as a Local Area Network (LAN), switch
fabric network (e.g. InfiniBand), or Wide Area Network (WAN). The distributed computing
environment can have all computers at a single location or have clusters of computers at
different remote geographic locations connected by a WAN.

[000126] Insome embodiments, features of the present invention are implemented, in whole
orin part, in the cloud as part of, or as a service of, a cloud computing system based on shared,
elastic resources delivered to users in a self-service, metered manner using Web technologies.
There are five characteristics of the cloud (as defined by the National Institute of Standards
and Technology: on-demand self-service; broad network access; resource pooling; rapid
elasticity; and measured service. See, e.g. “The NIST Definition of Cloud Computing”, Special
Publication 800-145 (2011) which is incorporated herein by reference. Cloud deployment
models include: Public, Private, and Hybrid. Cloud service models include Software as a
Service (SaaS), Platform as a Service (PaaS), Database as a Service (DBaaS), and
Infrastructure as a Service (laaS). As used herein, the cloud is the combination of hardware,
software, network, and web technologies which delivers shared elastic resources to users in a
self-service, metered manner. Unless otherwise specified the cloud, as used herein,
encompasses public cloud, private cloud, and hybrid cloud embodiments, and all cloud
deployment models including, but not limited to, cloud SaaS, cloud DBaa$S, cloud PaaS, and
cloud laaS.

[000127] In some embodiments, features of the present invention are implemented using,
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or with the assistance of hardware, software, firmware, or combinations thereof. In some
embodiments, features of the present invention are implemented using a processor configured
or programmed to execute one or more functions of the present invention. The processor is in
some embodiments a single or multi-chip processor, a digital signal processor (DSP), a system
on a chip (SOC), an application specific integrated circuit (ASIC), a field programmable gate
array (FPGA) or other programmable logic device, state machine, discrete gate or transistor
logic, discrete hardware components, or any combination thereof designed to perform the
functions described herein. In some implementations, features of the present invention may
be implemented by circuitry that is specific to a given function. In other implementations, the
features may implemented in a processor configured to perform particular functions using
instructions stored e.g. on a computer readable storage media.

[000128] |In some embodiments, features of the present invention are incorporated in
software and/or firmware for controlling the hardware of a processing and/or networking
system, and for enabling a processor and/or network to interact with other systems utilizing the
features of the present invention. Such software or firmware may include, but is not limited to,
application code, device drivers, operating systems, virtual machines, hypervisors, application
programming interfaces, programming languages, and execution environments/containers.
Appropriate software coding can readily be prepared by skilled programmers based on the
teachings of the present disclosure, as will be apparent to those skilled in the software art.
[000129] Insome embodiments, the presentinvention includes a computer program product
which is a storage medium or computer-readable medium (media) having instructions stored
thereon/in, which instructions can be used to program or otherwise configure a system such
as a computer to perform any of the processes or functions of the present invention. The
storage medium or computer readable medium can include, but is not limited to, any type of
disk including floppy disks, optical discs, DVD, CD-ROMs, microdrive, and magneto-optical
disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMS, flash memory devices, magnetic
or optical cards, nanosystems (including molecular memory ICs), or any type of media or
device suitable for storing instructions and/or data. In particular embodiments, the storage
medium or computer readable medium is a non-transitory storage medium or non-transitory
computer readable medium.

[000130] The foregoing description is not intended to be exhaustive or to limit the invention
to the precise forms disclosed. Additionally, where embodiments of the present invention have
been described using a particular series of transactions and steps, it should be apparent to
those skilled in the art that the scope of the present invention is not limited to the described
series of transactions and steps. Further, where embodiments of the present invention have

been described using a particular combination of hardware and software, it should be
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recognized that other combinations of hardware and software are also within the scope of the
present invention. Further, while the various embodiments describe particular combinations of
features of the invention it should be understood that different combinations of the features will
be apparent to persons skilled in the relevant art as within the scope of the invention such that
features of one embodiment may incorporated into another embodiment. Moreover, it will be
apparent to persons skilled in the relevant art that various additions, subtractions, deletions,
variations, and other modifications and changes in form, detail, implementation and application
can be made therein without departing from the spirit and scope of the invention. It is intended
that the broader spirit and scope of the invention be defined by the following claims and their

equivalents.
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Claims:

What is claimed is:

1. A system for supporting fast hybrid reconfiguration in a high performance computing
environment, comprising:

one or more Microprocessors;

a first subnet, the first subnet comprising

a plurality of switches, the plurality of switches comprising at least a leaf switch, wherein
each of the plurality of switches comprising a plurality of switch ports,

a plurality of host channel adapters, each host channel adapter comprising at least one
host channel adapter port,

a plurality of end nodes, wherein each of the plurality of end nodes is associated with
at least one host channel adapter of the plurality of host channel adapters;

wherein the plurality of switches of the first subnet are arranged in a network
architecture having a plurality of levels, each of the plurality of levels comprising at least one
switch of the plurality of switches;

wherein the plurality of switches is initially configured according to a first configuration
method, the first configuration method being associated with a first ordering of the plurality of
end nodes;

wherein a subset of the plurality of switches is configured as a sub-subnet of the first
subnet, the sub-subnet of the first subnet comprising a number of levels fewer than the plurality
of levels of the first subnet;

wherein the sub-subnet of the first subnet is reconfigured according to a second

configuration method.

2. The system of Claim 1,
wherein the plurality of end nodes of the first subnet are interconnected via the plurality

of switches.

3. The system of Claim 2,

wherein a subset of the plurality of end nodes are associated with the sub-subnet of
the first subnet; and

wherein the sub-subnet of the first subnet is configured such that traffic between the
subset of the plurality of end nodes is confined to the subset of the plurality of switches

configured as the sub-subnet of the first subnet.
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4. The system of Claim 3,
wherein the second reconfiguration method is associated with a second ordering of at
least two of the subset of the plurality of end nodes associated with the sub-subnet of the first

subnet.

5. The system of Claim 4,
wherein the second ordering of the at least two end nodes of the subset of the plurality
of end nodes associated with the sub-subnet of the first subnet is received from a system

administrator.

6. The system of Claim 4,
wherein the second ordering of the second ordering at least two of the subset of the
plurality of end nodes associated with the sub-subnet of the first subnet is received from a

management entity.

7. The system of Claim 6,

wherein the first subnet comprises an InfiniBand subnet; and

wherein the management entity is a management entity selected from the group
consisting of:

a subnet manager;

a fabric manager; and

a global fabric manager.

8. A method for supporting fast hybrid reconfiguration in a high performance computing
environment, comprising:

providing, at one or more microprocessors,

a first subnet, the first subnet comprising

a plurality of switches, the plurality of switches comprising at least a leaf switch, wherein
each of the plurality of switches comprising a plurality of switch ports,

a plurality of host channel adapters, each host channel adapter comprising at least one
host channel adapter port,

a plurality of end nodes, wherein each of the plurality of end nodes are associated with
at least one host channel adapter of the plurality of host channel adapters;

arranging the plurality of switches of the first subnet in a network architecture having a

plurality of levels, each of the plurality of levels comprising at least one switch of the plurality
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of switches;

configuring the plurality of switches according to a first configuration method, the first
configuration method being associated with a first ordering of the plurality of end nodes;

configuring a subset of the plurality of switches as a sub-subnet of the first subnet, the
sub-subnet of the first subnet comprising a number of levels fewer than the plurality of levels
of the first subnet;

reconfiguring the sub-subnet of the first subnet according to a second configuration

method.

9. The method of Claim 8,
wherein the plurality of end nodes of the first subnet are interconnected via the plurality

of switches.

10. The method of Claim 9,

wherein a subset of the plurality of end nodes are associated with the sub-subnet of
the first subnet; and

wherein the sub-subnet of the first subnet is configured such that traffic between the
subset of the plurality of end nodes is confined to the subset of the plurality of switches

configured as the sub-subnet of the first subnet.

1. The method of Claim 10,
wherein the second reconfiguration method is associated with a second ordering of at
least two end nodes of the subset of the plurality of end nodes associated with the sub-subnet

of the first subnet.

12. The method of Claim 11,
wherein the second ordering of the at least two end nodes of the subset of the plurality
of end nodes associated with the sub-subnet of the first subnet is received from a system

administrator.

13. The method of Claim 11,
wherein the second ordering of the at least two end nodes of the subset of the plurality
of end nodes associated with the sub-subnet of the first subnet is received from a management

entity.

14. The method of Claim 13,
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wherein the first subnet comprises an InfiniBand subnet; and

wherein the management entity is a management entity selected from the group
consisting of:

a subnet manager;

a fabric manager; and

a global fabric manager.

15. A non-transitory computer readable storage medium, including instructions stored
thereon for supporting fast hybrid reconfiguration in a high performance computing
environment, which when read and executed by one or more computers cause the one or more
computers to perform steps comprising:

providing, at one or more microprocessors,

a first subnet, the first subnet comprising

a plurality of switches, the plurality of switches comprising at least a leaf switch, wherein
each of the plurality of switches comprising a plurality of switch ports,

a plurality of host channel adapters, each host channel adapter comprising at least one
host channel adapter port,

a plurality of end nodes, wherein each of the plurality of end nodes are associated with
at least one host channel adapter of the plurality of host channel adapters;

arranging the plurality of switches of the first subnet in a network architecture having a
plurality of levels, each of the plurality of levels comprising at least one switch of the plurality
of switches;

configuring the plurality of switches according to a first configuration method, the first
configuration method being associated with a first ordering of the plurality of end nodes;

configuring a subset of the plurality of switches as a sub-subnet of the first subnet, the
sub-subnet of the first subnet comprising a number of levels fewer than the plurality of levels
of the first subnet;

reconfiguring the sub-subnet of the first subnet according to a second configuration

method.

16. The non-transitory computer readable storage medium of Claim 15,
wherein the plurality of end nodes of the first subnet are interconnected via the plurality

of switches.

17. The non-transitory computer readable storage medium of Claim 16,

wherein a subset of the plurality of end nodes are associated with the sub-subnet of
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the first subnet; and
wherein the sub-subnet of the first subnet is configured such that traffic between the
subset of the plurality of end nodes is confined to the subset of the plurality of switches

configured as the sub-subnet of the first subnet.

18. The non-transitory computer readable storage medium of Claim 17,
wherein the second reconfiguration method is associated with a second ordering of at
least two end nodes of the subset of the plurality of end nodes associated with the sub-subnet

of the first subnet.

19. The non-transitory computer readable storage medium of Claim 18,
wherein the second ordering of the at least two end nodes of the subset of the plurality
of end nodes associated with the sub-subnet of the first subnet is received from a system

administrator.

20. The non-transitory computer readable storage medium of Claim 18,

wherein the second ordering of the at least two end nodes of the subset of the plurality
of end nodes associated with the sub-subnet of the first subnet is received from a management
entity;

wherein the first subnet comprises an InfiniBand subnet; and

wherein the management entity is a management entity selected from the group
consisting of:

a subnet manager;

a fabric manager; and

a global fabric manager.
21. A computer program comprising program instructions in machine-readable format that
when executed by a computer system cause the computer system to perform the method of

any of Claims 8 to 13.

22. A computer program product comprising the computer program of Claim 21 stored in a

non-transitory machine readable data storage medium.

23. An apparatus comprising means for performing the method of any of Claims 8 to 13.
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Providing, at one or more microprocessors, a first subnet, the first subnet comprising a
plurality of switches, the plurality of switches comprising at least a leaf switch, wherein
each of the plurality of switches comprising a plurality of switch ports, a plurality of host
channel adapters, each host channel adapter comprising at least one host channel
adapter port, and a plurality of end nodes, wherein each of the plurality of end nodes
are associated with at least one host channel adapter of the plurality of host channel

adapters.

Arranging the plurality of switches of the first subnet in a network architecture having a
plurality of levels, each of the plurality of levels comprising at least one switch of the
plurality of switches.

Configuring the plurality of switches according to a first configuration method, the first
configuration method being associated with a first ordering of the plurality of end nodes.

!

Configuring a subset of the plurality of switches as a sub subnet of the first subnet, the
sub-subnet of the first subnet comprising a number of levels fewer than the plurality of
levels of the first subnet.

Reconfiguring the sub subnet of the first subnet according to a second configuration
method.
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