发明名称
睡眠质量检测装置及其检测方法

摘要
本发明公开了一种睡眠质量检测装置及其检测方法。所述睡眠质量检测装置包括：检测反馈睡眠质量的脑电波的脑电波检测单元，采集环境状况信息的环境检测单元，分析环境状况信息对脑电波的影响的分析单元。根据本发明，可以准确的检测并分析出影响人体睡眠质量的环境因素，并给使用者提供改善环境条件、提高睡眠质量的建议。
1. 一种睡眠质量检测装置，包括：
 脑电波检测单元，用于检测相反睡眠质量和脑电波；
 环境检测单元，用于采集环境状况信息；
 分析单元，用于分析环境状况信息对脑电波的影响。
2. 根据权利要求 1 所述的睡眠质量检测装置，所述脑电波检测单元包括：
 多个电极，用于检测脑电波信号；
 差分放大器，用于放大所述脑电波信号；
 滤波器，用于对放大后的信号进行滤波处理；
 信号分析器，用于分析并确定脑电波的性质；
 模数转换器，用于将脑电波信号转换为数字信号。
3. 根据权利要求 1 所述的睡眠质量检测装置，所述环境检测单元包括下述传感器中的
 一种或多种：
 温度传感器，用于采集环境温度数据；
 湿度传感器，用于采集环境湿度数据；
 声音传感器，用于采集环境噪音数据；
 光学传感器，用于采集环境光线数据；
 气味传感器，用于采集环境气味数据。
4. 根据权利要求 3 所述的睡眠质量检测装置，所述气味传感器采集下述气体中的一种
 或多种：一氧化碳、二氧化碳、甲醛、硫化氢。
5. 根据权利要求 1 所述的睡眠质量检测装置，当脑电波检测单元检测到脑电波出现异
 常时，所述分析单元分析环境检测单元检测到的环境状况信息是否有异常变化，如果某个
 环境状况信息发生异常变化，则记录该环境状况信息以作为影响睡眠质量的因素。
6. 根据权利要求 5 所述的睡眠质量检测装置，所述脑电波出现异常包括：出现 β 波，
 或者 δ 波出现的时长变短或消失。
7. 根据权利要求 1-6 中任一项所述的睡眠质量检测装置，还包括建议单元，用于根据
 分析单元的分析结果提供改进环境状况的建议。
8. 根据权利要求 7 所述的睡眠质量检测装置，还包括显示单元，用于显示脑电波、环境
 状况信息，分析单元的分析结果和 / 或建议单元的建议。
9. 根据权利要求 7 所述的睡眠质量检测装置，还包括记录单元，用于记录脑电波和环
 境状况信息。
10. 一种便携式电子设备，包括如权利要求 1-9 中任一项所述的睡眠质量检测装置。
11. 根据权利要求 10 所述的便携式电子设备，该便携式电子设备是手机、平板电脑或
 电子闹钟。
12. 一种睡眠质量检测方法，包括：
 步骤 S100，检测睡眠质量的脑电波；
 步骤 S101，采集环境状况信息；
 步骤 S102，分析影响睡眠质量的环境状况信息。
13. 根据权利要求 12 所述的方法，所述环境状况信息包括下述中的一种或多种：温度
 数据、湿度数据、噪音数据、光线强度数据和气味浓度数据。
14. 根据权利要求12所述的方法，所述脑电波出现异常包括：出现β波，或者δ波出现的时长变短或消失。

15. 根据权利要求12所述的方法，所述步骤S102包括步骤S103，判断脑电波是否出现异常。

16. 根据权利要求15所述的方法，当检测到脑电波出现异常时，所述步骤S102进一步包括：
 步骤S201，判断环境状况信息是否出现异常；
 步骤S202，如果一项或多项环境状况信息出现异常，则记录发生异常的环境状况信息。

17. 根据权利要求15所述的睡眠质量检测方法，当未检测到脑电波出现异常时，所述步骤S102进一步包括：
 步骤S301，记录正常睡眠状态下的环境状况信息。

18. 根据权利要求16所述的方法，在步骤S202之后还包括：
 统计分析步骤S203，对多次记录的非正常睡眠状态下的异常环境状况信息的值进行统计分析，得出影响睡眠质量的一项或多项环境状况信息。

19. 根据权利要求17所述的方法，在步骤S301之后还包括：
 统计分析步骤S302，对多次记录的正常睡眠状态下的环境状况信息进行统计分析，分析出正常或最佳睡眠状态下的环境状况信息的值。

20. 根据权利要求12-19中任一项所述的方法，还包括建议步骤S104，根据步骤S102的分析结果提供改进环境状况的建议。
睡眠质量检测装置及其检测方法

技术领域
[0001] 本发明涉及到睡眠质量的检测装置及其检测方法，特别的，涉及到通过检测环境状况信息对睡眠质量的影响，进而提出改进睡眠质量的建议的装置和方法。

背景技术
[0002] 睡眠质量的好坏对人体健康有着十分重要的影响，失眠容易引起内分泌失调，精神失常，危害身体健康，影响记忆力，导致心情抑郁，甚至影响神经系统而导致心血管疾病的发生。据统计，我国有35％的人群有失眠的现象，17％是处于比较严重的状态。可见，失眠已经成为常见疾病，严重影响了人们的生活和工作。
[0003] 因此，有必要提供一种装置和方法，帮助人们找到失眠的原因，故此，给出合理化的建议改善睡眠状况，给人们提供一个轻松、舒适的休息环境。
[0004] 目前，现有技术中的睡眠检测仪只能简单的告知用户睡眠质量，而没有给出任何原因分析，也没有针对性的给出改善建议，因而远远不能解决上述问题。

发明内容
[0005] 本发明的目的是提供一种睡眠质量检测装置和睡眠质量检测方法，其能够检测反应睡眠质量的脑电波和环境状况信息的各种变化，根据变化情况分析出影响睡眠质量的环境状况信息，进而提供改进睡眠质量的建议。
[0006] 根据本发明的一个方面，提供了一种睡眠质量检测装置，包括：脑电波检测单元，用于检测反应睡眠质量的脑电波；环境检测单元，用于采集环境状况信息；分析单元，用于分析环境状况信息对脑电波的影响。
[0007] 其中，所述脑电波检测单元包括：多个电极，用于检测脑电波信号；差分放大器，用于放大所述脑电波信号；滤波器，用于对放大后的信号进行滤波处理；信号分析器，用于分析并确定脑电波的性质；模数转换器，用于将脑电波信号转换为数字信号。
[0008] 其中，所述环境检测单元包括下述传感器中的一种或多种：温度传感器，用于采集环境温度数据；湿度传感器，用于采集环境湿度数据；声音传感器，用于采集环境噪音数据；光线传感器，用于采集环境光线数据；气味传感器，用于采集环境气味数据。
[0009] 所述气味传感器采集下述气体中的一种或多种：一氧化碳、一氧化氮、甲醛、硫化氢。
[0010] 其中，当脑电波检测单元检测到脑电波出现异常时，所述分析单元分析环境检测单元检测到的环境状况信息是否异常变化，如果某个环境状况信息发生异常变化，则记录该环境状况信息以作为影响睡眠质量的因素。
[0011] 其中，所述脑电波出现异常包括：出现β波，或δ波出现的时长变短或消失。
[0012] 可选的，所述睡眠质量检测装置还包括建议单元，用于根据分析单元的分析结果提供改进环境状况的建议。
[0013] 可选的，所述睡眠质量检测装置还包括显示单元，用于显示脑电波、环境状况信
信息、分析单元的分析结果和/或建议单元的建议。
[0014] 可选的，所述睡眠质量检测装置还包括记录单元，用于记录脑电波和环境状况信息。
[0015] 根据本发明的另一方面，提供了一种便携式电子设备，其包括上述任一项所述的睡眠质量检测装置。
[0016] 其中，该便携式电子设备是手机、平板电脑或电子闹钟。
[0017] 根据本发明的另一方面，提供了一种睡眠质量检测方法，包括：步骤 S100，检测反应睡眠质量的脑电波；步骤 S101，采集环境状况信息；步骤 S102，分析影响睡眠质量的环境状况信息。
[0018] 其中，所述环境状况信息包括下述中的一种或多种：温度数据、湿度数据、噪音数据、光线强度数据和气味浓度数据。
[0019] 其中，所述脑电波出现异常包括：出现 β 波，或者 δ 波出现的时长变短或消失。
[0020] 其中，所述步骤 S102 还包括步骤 S103，判断脑电波是否出现异常。
[0021] 当检测到脑电波出现异常时，所述步骤 S102 进一步包括：步骤 S201，判断环境状况信息是否出现异常；步骤 S202，如果一项或多项环境状况信息出现异常，则记录发生异常的环境状况信息。
[0022] 当未检测到脑电波出现异常时，所述步骤 S102 进一步包括：步骤 S301，记录正常睡眠状态下的环境状况信息。
[0023] 可选的，在步骤 S202 之后还包括：统计分析步骤 S203，对多次记录的非正常睡眠状态下的异常环境状况信息的值进行统计分析，得出影响睡眠质量的一项或多项环境状况信息。
[0024] 可选的，在步骤 S301 之后还包括：统计分析步骤 S302，对多次记录的正常睡眠状态下的环境状况信息进行统计分析，分析出正常或最佳睡眠状态下的环境状况信息的值。
[0025] 可选的，还包括建议步骤 S104，根据步骤 S102 的分析结果提供改进环境状况的建议。
[0026] 根据本发明的技术方案，可以准确的检测并分析出影响人体睡眠质量的环境因素，并给使用者提供改善环境条件，提高睡眠质量的建议。

附图说明
[0027] 图 1 显示了本发明优选实施例的睡眠质量检测装置的结构示意图；
[0028] 图 2 显示了本发明脑电波检测单元的结构示意图；
[0029] 图 3 显示了本发明环境检测单元的结构示意图；
[0030] 图 4 显示了本发明优选实施例的睡眠质量检测装置的结构示意图；
[0031] 图 5 显示了本发明优选实施例的睡眠质量检测方法的流程图；
[0032] 图 6 显示了本发明优选实施例的睡眠质量检测方法的流程图。

具体实施方式
[0033] 为使本发明的目的、技术方案和优点更加清楚明了，下面结合具体实施方式并参照附图，对本发明进一步详细说明。
[0034] 本发明的主要技术方案是通过检测脑电波检测睡眠质量，通过采集环境状况信息，分析环境状况信息对脑电波的影响，从而明确环境状况信息对睡眠质量的影响。进一步，可以根据分析结果提供改善环境状况的建议，从而有助于改善睡眠质量。

[0035] 脑电波是一些自发的有节律的神经电活动，其频率变动范围在每秒 1 ～ 30 次之间，可划分为四个波段，即 α 波（脑电波频率约为 1 ～ 3Hz）、θ 波（脑电波频率约为 4 ～ 7Hz）、β 波（脑电波频率约为 8 ～ 13Hz）、γ 波（脑电波频率约为 14 ～ 30Hz）。

[0036] 某些情况下，有些学者也认为 δ 波频率小于 4Hz，θ 波频率约为 4 ～ 7Hz，α 波频率约为 8 ～ 12Hz，β 波频率约为 13 ～ 35Hz。此外，还可能存在大于 35Hz 的脑电波，通常命名为 γ 波。长期处于 γ 波状态下的人会有生命危险。

[0037] δ 波频率为每秒 1-3 次，当人在婴儿期或智力发育不成熟，成年人在极度疲劳和昏睡状态下，可出现这种波段。

[0038] θ 波频率为每秒 4-7 次，成年人在志愿受到挫折和抑郁时以及精神病患者这种波极为显著。但是，该波段为少年（10-17 岁）脑电波中的主要成分。θ 波主要反映人的主观精神状态。

[0039] α 波频率为每秒 8-13 次，平均数为 10 次左右，它是正常人脑电波的基本节律，如果没有外加的刺激，其频率是相当恒定的。人在清醒、安静并闭眼时该节律最为明显，睁开眼睛或接受其它刺激时，α 波即刻消失。

[0040] β 波频率为每秒 14-30 次，当精神紧张和情绪激动或亢奋时出现此波，当人从睡眠中惊醒时，原来的慢波节律立即被该节律所替代。

[0041] 录入后正常的睡眠通常称为慢波睡眠（slow wave sleep），又称非快速眼动睡眠（nonrapid eyemovement, NREM sleep）。慢波睡眠的主要特征是出现大量 δ 波，根据 δ 波占整个脑电波成分的比例，慢波睡眠可以分为第一、二、三、四个睡眠阶段。本发明中，如果出现 δ 波，就认定为进入正常睡眠状态。当人从正常睡眠中惊醒时，脑电波通常呈现出 β 波。因此，如果在正常睡眠状态下出现 β 波，就认定为因为环境因素发生突然惊醒。

[0042] 本发明的技术方案主要考虑环境因素对睡眠质量的影响，不考虑人的身体、情绪等主观因素对睡眠质量的影响。因此，本发明的装置主要根据 δ 波和 β 波出现的时长和次数来评价睡眠质量。例如，δ 波的时长越长，表明正常睡眠时间越长，睡眠质量越高。β 波出现次数越多，表明睡眠被打断的次数越多，睡眠质量越差。

[0043] 图 1 显示了本发明优选实施例的睡眠质量检测装置的结构示意图。

[0044] 图 1 中，睡眠质量检测装置包括脑电波检测单元 1、环境检测单元 2 和分析单元 3。

[0045] 图 2 显示了本发明脑电波检测单元的结构示意图。

[0046] 脑电波检测单元 1 用于检测反应睡眠质量的脑电波。如图 2 所示，脑电波检测单元 1 包括多个电极 11、差分放大器 12、滤波器 13、信号分析器 14、模数转换器 15（AD 转换器）。电极 11 用于检测脑电波信号，即感应微弱的生物电流（mv 毫伏级别）。目前，只需要在人脑前额佩戴 2-3 个电极就可以进行检测。差分放大器 12 进行信号放大，滤波器 13 对信号进行滤波处理，信号分析器 14 对不同波段的脑电波进行分析检测，以确定脑电波的性质（δ 波、θ 波、α 波、β 波），模数转换器 15 将脑电波信号转换为数字信号。在优选实施例中，还可以通过显示单元实现实时显示脑电波。

[0047] 图 3 显示了本发明环境检测单元的结构示意图。
环境检测单元2用于采集环境状况信息。如图3所示，环境检测单元2可以包括下述传感器中的一种或多种：温度传感器21，湿度传感器22，声音传感器23，光线传感器24，气味传感器25等。其中，温度传感器21用于采集环境温度数据，湿度传感器22用于采集环境湿度数据，声音传感器23用于采集环境噪音数据，如噪音音量大小，光线传感器24用于采集环境光线数据，如光线强度，气味传感器25用于采集环境气味数据，如气味浓度。另外，本实施例中的气味传感器可以采集下述气体中的一种或多种：一氧化碳，一氧化氮，甲醛，硫化氢（腐臭味）等。在优选实施例中，还可以通过显示单元实时显示上述环境状况信息，例如以波形图的形式显示。

分析单元3用于分析环境状况信息对脑电波的影响。

本发明中，脑电波检测单元与环境检测单元同步实时运行，将所采集的数据发送给分析单元3。当脑电波出现异常情况的时段，分析单元3分析环境检测单元提供的数据波形是否在该时间段有异常变化，如果某个数据波形有异常变化（例如噪音音量突然增大），则表明该数据波形对应的环境状况信息是干扰睡眠的因素，分析单元记录该环境状况信息，以便对用户进行提醒，使用户排除这些因素，提高睡眠质量。在优选实施例中，可以通过显示装置显示脑电波出现异常情况时段的脑电波和环境状况信息。

另外，如果环境检测单元没有检测到任何环境状况信息发生异常，则表明是因为人的主观因素导致的脑电波异常，例如生病，精神压力，做梦等，分析单元不再考虑环境状况对睡眠的影响。

如上所述，本发明中主要根据δ波和β波出现的时长和次数来评价睡眠质量。因此，本实施例中所述脑电波出现异常情况的时段优选的检测β波出现的次数，或δ波出现的时长突然变短或消失。

在优选实施例中，分析单元记录β波出现的次数，该次数越多，表明睡眠被打断的次数越多，睡眠质量越差。

在另一优选实施例中，分析单元记录δ波出现的时间长度，如果该时间越长，表明正常睡眠时间越长，睡眠质量越高；反之，如果该时间越短，例如少于预定阈值，则表明正常睡眠时间较短，睡眠质量较低。这该预定阈值表示达到正常睡眠标准的δ波出现的时间长度，可以根据使用者的年龄，生活习惯，个人喜好进行设定。

这样，在睡眠过程中，当出现影响睡眠质量的环境因素变化时，如噪音音量突然增大，或温度降低，或光线突然增强等等，处于正常睡眠状态中的人会被惊醒，脑电波中的δ波比例会突然降低甚至消失，β波比例会突然增多。脑电波检测单元会检测出脑电波的上述变化，环境检测单元检测出上述一种或多种环境状况信息的变化，分析单元可以据此分析出环境状况信息对脑电波以及睡眠质量的影响。

图4显示了本发明一优选实施例的睡眠质量检测装置的结构示意图。图4所示，本实施例的睡眠质量检测装置包括图1所示实施例的脑电波检测单元1，环境检测单元2和分析单元3，其用于根据分析单元3的分析结果提供改进环境状况的建议。例如，如果卧室有一扇窗户无法关闭紧密，晚上吹风，窗户煽动产生噪音，同时降低室内温度，人的正常睡眠被打断。脑电波检测单元检测到δ波比例减少，β波频繁出现，环境检测单元采集到的噪音数据和温度数据发生突变，分析单元据此分析出是噪音和温度
因素导致脑电波突变，建议单元 4 则据此建议，提醒用户改善噪音、温度因素。
[0059] 在另一可选实施例中，睡眠质量检测装置还包括显示单元 5，用于在用户需要时显示脑电波、环境状况信息、分析单元的分析结果和 / 或建议单元的建议等信息，以方便用户使用。另外，可以根据用户预先设定的时间定时显示上述信息，以提示用户改善睡眠环境。
[0060] 以上实施例中，睡眠质量检测装置主要检测某一晚上睡眠质量，并针对当晚的情况分析原因，提供建议。在另一可选实施例中，睡眠质量检测装置还包括记录单元 6，用于记录多次睡眠的数据（包括脑电波和环境状况信息），通过长期的数据收集和记录，便于分析单元对用户睡眠质量进行综合评价。例如，睡眠质量检测装置的记录单元 6 记录每天晚上脑电波和各项环境状况信息，分析单元 3 根据长期收集的环境状况信息进行分析，得出用户在什么样的环境状况下有最佳的睡眠质量，从而便于建议单元 4 给用户提供应该怎样改变睡眠环境的建议，提高睡眠质量。
[0061] 图 5 显示了本发明优选实施例的睡眠质量检测方法的流程图。
[0062] 本实施例所述的睡眠质量检测方法用于在上述睡眠质量检测装置中实施，该方法包括下述步骤：
[0063] 步骤 S100，检测反应睡眠质量的脑电波。
[0064] 通过脑电波检测单元检测使用者的脑电波频率，确定出脑电波的性质，即属于 δ 波、θ 波、α 波、β 波中的某一种。
[0065] 步骤 S101，采集环境状况信息。
[0066] 通过环境检测单元采集环境状况信息，例如采集下述环境状况信息中的一种或多种 ; 温度数据、湿度数据、噪音数据，光线强度数据，气味浓度数据等。
[0067] 步骤 S102，分析影响睡眠质量的环境状况信息。
[0068] 当脑电波发生异常时，分析单元记录该时段也发生异常情况的环境状况信息，由此分析出影响睡眠质量的一项或多项环境状况信息，以便对用户进行提醒，使用户排除这些因素，提高睡眠质量。
[0069] 图 6 显示了本发明可选实施例的睡眠质量检测方法的流程图。
[0070] 本实施例所述的睡眠质量检测方法也适用于在上述睡眠质量检测装置中实施。通过持续记录多次睡眠的情况，进行长期的数据收集，并针对用户睡眠质量进行评价和提供建议。
[0071] 如图 6 所示，本实施例的睡眠质量检测方法包含了图 5 所示实施例的各个步骤，其中图 5 中的步骤 S102 还包括下述步骤：
[0072] 步骤 S103，判断脑电波是否出现异常。
[0073] 分析单元判断脑电波是否出现异常情况，例如，是否出现 β 波，或者 δ 波出现时间变短或消失，如果出现这些脑电波异常情况，则表明正常睡眠被打断，睡眠质量变差。
[0074] 当检测到脑电波出现异常时，步骤 S102 还包括下述步骤：
[0075] 步骤 S201，判断环境状况信息是否出现异常。
[0076] 如果在步骤 S103 判断脑电波出现异常，则分析单元判断环境检测单元提供的数据波形是否在该时间段有异常变化，如果某个数据波形有异常变化（例如噪音音量突然增大），则表明该数据波形对应的环境状况信息是干扰睡眠的因素。
[0077] 另外，如果没有检测到任何环境状况信息发生异常，则表明是因为人的主观因素
导致的脑电波异常，例如生、精神压力、做梦等，从而不再考虑环境状况对睡眠的影响。

[0078] 步骤 S202，记录发生异常的环境状况信息。

[0079] 当脑电波出现异常时，如果判断出一项或多项环境状况信息出现异常，则表明对应的环境状况异常影响了睡眠质量，导致脑电波出现异常。此时，记录单元记录下异常的环境状况信息，例如温度、噪音和/或光线强度的异常变化等。

[0080] 可选的，还包括统计分析步骤 S203，对多次记录的非正常睡眠状态下的异常环境状况信息的值进行统计分析，得出影响睡眠质量的一项或多项环境状况信息。

[0081] 当未检测到脑电波异常时，所述步骤 S102 包括下述步骤：

[0082] 步骤 S301，记录正常睡眠状态下的环境状况信息。

[0083] 如果检测到脑电波没有出现上述异常情况，则分析单元判断出脑电波正常，使用者处于正常睡眠状态，此时记录单元记录正常睡眠状态下的环境状况信息，用于提供给使用者参考，使他知道自己在什么样的环境下具有最佳的睡眠质量。

[0084] 可选的，还包括统计分析步骤 S302，用于对多次记录的正常睡眠状态下的环境状况信息进行统计分析，分析出正常或最佳睡眠状态下的环境状况信息的值。

[0085] 上述方法中的记录步骤可以按照预先设定的次数多次反复执行。例如，用户可以预先设定连续记录 7 天，15 天或 30 天的睡眠情况，每天记录一次，达到预定的次数后再执行后面的分析步骤和建议步骤。另外，也可以设置开关，使得用户可以随时启动分析和建议步骤，对至今为止记录的多次睡眠情况进行统计分析和建议。

[0086] 这样，如果达到预计的记录次数，或者用户启动的情况下，分析单元根据当前的多次记录结果分析影响睡眠质量的环境状况信息。具体来说，分析单元对多次记录的正常睡眠状态下的环境状况信息进行统计分析，例如执行加权平均计算，分析出正常或最佳睡眠状态下的环境状况信息的值，以提供给用户作为参考，以便用户保持良好的环境状况信息，维持良好的睡眠状态。

[0087] 另外，分析单元还对多次记录的非正常睡眠状态下的异常环境状况信息的值进行统计分析，得出影响睡眠质量的一项或多项的环境状况信息，提供给用户参考，以便用户及时排除这些不良的环境状况信息，改善睡眠质量。

[0088] 可选的，还包括建议步骤 S104，用于提供改进环境状况的建议。

[0089] 建议单元根据分析单元分析得出的结果，对用户提供改进环境状况的建议。例如，可以提供正常或最佳睡眠状态下的环境状况信息的理想值以提供给用户作为参考，以便用户保持良好的环境状况信息，维持良好的睡眠状态。或者，可以指示出哪些环境状况信息影响了睡眠质量，并建议用户排除这些不良的环境状况信息，改善睡眠质量。

[0090] 例如，如果卧室内放置有变质的饭菜，在晚上发出腐臭味，人的正常睡眠被打断，脑电波检测单元检测到 δ 波比例减少，β 波频繁出现，环境检测单元采集到煤气气味浓度增大，分析单元分析出是气味因素导致脑电波突变，则建议用户找到气味来源，消除气味因素。

[0091] 该步骤是仅仅是优选执行的，不表示本实施例的方法必须执行。

[0092] 如上所述，根据本实施例的睡眠质量检测方法，可以持续记录多次睡眠的情况，通过长期的数据收集，针对用户睡眠质量进行评价。例如，睡眠质量检测装置记录每天晚上的脑电波和各项环境状况信息，根据长期收集的环境状况进行分析，得出用户在什么样的环
境状况下有最佳的睡眠质量，从而给用户提供应该怎样改变睡眠环境的建议，提高睡眠质量。

[0093] 以上介绍了本发明的睡眠质量检测装置及其检测方法。应注意的是，这种睡眠质量检测装置可以实施为独立的装置，也可以作为一个附件安装在现有的电子设备上，例如闹钟、手机、平板电脑等便携式电子设备。这样，可以利用这些设备上已有的各种传感器，例如光线传感器、声音传感器（麦克风）、温度传感器、湿度传感器等。另外，这些电子设备本身配置的中央处理单元可以提供强大的计算分析能力，存储单元可以存储检测到的脑电波信号和环境状况信息。检测脑电波的电极可以采用有线或无线的方式与电子设备连接，提供人的睡眠信息。因此，本发明的睡眠质量检测装置具有广泛的应用范围。

[0094] 应当理解的是，本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理，而不构成对本发明的限制。因此，在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。此外，本发明所附权利要求旨在涵盖落入所附权利要求范围和边界，或者这种范围和边界的等同形式内的全部变化和修改例。
图 1

脑电波检测单元 1 → 环境检测单元 2 → 分析单元 3

图 2

1. 电极 11 → 差分放大器 12 → 滤波器 13
 ↓
2. 模数转换器 15 ← 信号分析器 14

图 3

1. 温度传感器 21
2. 湿度传感器 22
3. 声音传感器 23
4. 光线传感器 24
5. 气味传感器 25
图 4

图 5
S100 检测脑电波
S101 采集环境状况信息
S102

S103 脑电波出现异常？
否
是
S201 环境状况信息出现异常？
否
是
S202

S301 记录正常睡眠状态下的环境状况信息
S302 统计分析
S203 记录发生异常的环境状况信息
S203 统计分析
S104 提供改进环境状况的建议

图 6