(12) 发明专利申请

(10) 申请公布号 CN 103382266 A
(43) 申请公布日 2013.11.06

(21) 申请号 201310276916.5
(22) 申请日 2013.07.02

(71) 申请人 中国林业科学研究院林产化学工业研究所
地址 210042 江苏省南京市玄武区锁金五村 16 号

(72) 发明人 周永红 张立强 张猛 胡丽红 杨晓慧

(74) 专利代理机构 南京经纬专利商标代理有限公司 32200
代理人 唐循文

(51) Int. Cl.
C08K 5/5313 (2006.01)

(54) 发明名称
一种聚氨酯泡沫阻燃剂及其制备方法和应用

(57) 摘要
一种聚氨酯泡沫阻燃剂，由 9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物，苯胺和苯甲醛反应得到，结构式为

![结构式](image)

氢-9-氧杂-10-磷杂菲-10-氧化物-4-[(苯胺)甲基]苯采用 Mannich 反应把苯胺和苯甲醛引入到 9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物 (DOPO) 阻燃剂结构中，降低了阻燃剂的成本，合成的 9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物-4-[(苯胺)甲基]苯用于阻燃型硬质聚氨酯泡沫，具有较高的阻燃性，氧指数可以达到 24 ~ 26%。在建筑、保温及一些特殊的场合具有广泛的应用前景。
1. 一种聚氨酯泡沫阻燃剂，其特征在于由 9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物，苯胺和苯甲醛反应得到，结构式如下：

2. 权利要求 1 所述聚氨酯泡沫阻燃剂的制备方法，其特征在于步骤为：
步骤一：将 80～100 质量份的苯胺、100～110 质量份的苯甲醛混合均匀，在通氮气的环境中加热升温至温度 50～60℃，反应 4～6h，得到 2-[（苯亚胺基甲基）] 苯，用溶剂结晶，所用的溶剂为甲醇或乙醇；
步骤二：将步骤一中得到的中间产物 2-[（苯亚胺基甲基）] 苯 40～60 质量份、60～80 质量份的 DPO、500 质量份的四氢呋喃混合均匀，在通氮气的环境中，在 50～70℃下反应 11～12h，用冷的四氢呋喃清洗得最终产物 9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基] 苯。

3. 权利要求 1 所述聚氨酯泡沫阻燃剂在阻燃型硬质聚氨酯泡沫中的应用，其特征在于：先把苯酚多元醇、9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基] 苯和助剂在搅拌的条件下混合均匀，然后再超声波混合 30min，再与异氰酸酯在搅拌的条件下搅拌 20～30s，发泡时，按 NCO/OH 的摩尔比为 1.2～2.5 的比例配制，转速 2000～3000r/min，倒入模具中，熟化 48h；各原料以质量份计为：苯酚多元醇 100 份；异氰酸酯 130 份；9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基] 苯 2～20 份，助剂为：聚氨酯泡沫稳定剂 1～2 份，胺类催化剂或者胺类催化剂和锡类催化剂的混合物 1～2 份，水 1～2 份，发泡剂 10～30 份。

4. 根据权利要求 3 所述聚氨酯泡沫阻燃剂在阻燃型硬质聚氨酯泡沫中的应用，其特征在于所述胺类催化剂为 N,N-二甲基环己胺、三亚乙基二胺、二甲基苄胺、二乙醇胺、异丙醇胺或季铵盐；

5. 根据权利要求 3 所述聚氨酯泡沫阻燃剂在阻燃型硬质聚氨酯泡沫中的应用，其特征在于所述锡类催化剂为：二月桂酸二正丁基锡。

6. 根据权利要求 3 所述聚氨酯泡沫阻燃剂在阻燃型硬质聚氨酯泡沫中的应用，其特征在于所述聚氨酯泡沫稳定剂为硅型泡沫稳定剂。

7. 根据权利要求 3 所述聚氨酯泡沫阻燃剂在阻燃型硬质聚氨酯泡沫中的应用，其特征在于所述异氰酸酯为甲苯二异氰酸酯、二甲苯二异氰酸酯或多次甲基多苯基多异氰酸酯。

8. 根据权利要求 3 所述聚氨酯泡沫阻燃剂在阻燃型硬质聚氨酯泡沫中的应用，其特征在于所述发泡剂为 HFC-141b、环戊烷、异戊烷、HFC-245fa 或 HFC-365mfc 中的任选一种或多种以任意比例的混合物。
说明书

一种聚氨酯泡沫阻燃剂及其制备方法和应用

技术领域
[0001] 本发明属于聚氨酯泡沫阻燃剂技术领域，主要涉及9,10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[(苯胺)甲基]苯阻燃剂的合成方法及其在阻燃型硬质聚氨酯泡沫中的应用。

背景技术
[0002] 9,10-二氯-9-氧杂-10-磷杂菲-10-氧化物是一种优良的聚氨酯泡沫阻燃剂，可以应用在聚氨酯泡沫保温材料中，9,10-二氯-9-氧杂-10-磷杂菲-10-氧化物(DOPO)及其衍生物由于分子结构中含有磷环和苯环结构，特别是侧磷基团以环状O=P=O键的方式引入，比一般的、未成环的有机磷酸酯热稳定性和化学稳定性高，阻燃性能更好。DOPO及其衍生物可作为反应型和添加型阻燃剂，合成的阻燃剂无卤、无烟、无毒，不迁移，阻燃性能持久。可用于线性聚酯、聚酰胺、环氧树脂、聚氨酯等多种高分子材料阻燃处理。国外已广泛用于电子设备用塑料、铜衬里压层、电路板等材料的阻燃。

[0003] 聚氨酯泡沫是目前世界上性能最佳的绝缘保温材料，也是很好的隔音材料，在节能环保要求越来越严峻的今天，聚氨酯泡沫作为保温材料被广泛应用在冰箱、屋顶、天花板、墙体、冷库、地板等。但是聚氨酯泡沫的密度比较小，有很多的孔状结构，与非泡沫材料相比更容易燃烧，燃烧时放出大量的热和有毒的烟雾，影响人们的身体健康和生命安全。因此硬质聚氨酯泡沫的耐热性、阻燃性，已成为聚氨酯泡沫材料重要的技术指标。各个国家和地区出台了大量的法规，规定聚氨酯泡沫材料的阻燃性能必须达到一定的标准才能生产，各种法规的出台大大推进了聚氨酯阻燃技术的发展。

[0004] 传统的阻燃剂分为直线型的阻燃剂和杂环类的阻燃剂，直线型的阻燃剂的热稳定性小，含有苯环、杂环等环状结构的阻燃剂的热稳定性好，应用到高分子材料中不仅提高高分子材料的阻燃性能，而且提高高分子材料的热稳定性，因此含有杂环类的阻燃剂具有更加优良的阻燃性能。

[0005] 各个国家的研究者对DOPO进行了大量的研究，但是由于DOPO成本高，限制了DOPO阻燃剂的应用。通过在DOPO上加上苯胺和苯甲基，可以大大减少阻燃剂的合成成本，而且苯环的存在增强了热稳定性和阻燃性，氨基的存在使得9,10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[(苯胺)甲基]苯能与异氰酸酯反应形成共价键，形成反应型阻燃剂，大大提高了阻燃的持久性。

发明内容
[0006] 解决的技术问题：为了提高硬质聚氨酯泡沫的阻燃性，本发明提供了一种聚氨酯泡沫阻燃剂及其制备方法和应用，采用Mannich反应，把苯胺和苯甲基引入到9,10-二氯-9-氧杂-10-磷杂菲-10-氧化物(DOPO)阻燃剂结构中，降低了阻燃剂的成本，并将合成的9,10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[(苯胺)甲基]苯应用到硬质聚氨酯阻燃泡沫中。
[0007] 技术方案：一种聚氨酯泡沫阻燃剂，由 9,10-二氯-9-氧杂-10-磷杂菲-10-氧化物，苯胺和苯甲醛反应得到。结构式如下：

[0008]

[0009] 制备所述的用于阻燃型硬质聚氨酯泡沫的蓖麻油基阻燃多元醇的方法，采用 Mannich 反应，将苯胺和苯甲醛引入到 9,10-二氯-9-氧杂-10-磷杂菲-10-氧化物 (DOPO) 阻燃剂结构中，得到 9,10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯。反应方程式为：

[0010]

[0011] 聚氨酯泡沫阻燃剂的制备方法，步骤为：

[0012] 步骤一：将 80～100 质量份的苯胺，100～110 质量份的苯甲醛混合均匀，在通氮气的环境中加热升温至温度 50～60℃，反应 4～6h，得到 2-[(苯亚胺基甲基)] 苯，用溶剂结晶，所用的溶剂为甲醇或乙醇；

[0013] 步骤二：将步骤一中得到的中间产物 2-[(苯亚胺基甲基)] 苯 40～60 质量份，60～80 质量份的 DOPO,500 质量份的四氢呋喃混合均匀，在通氮气的环境中，在 50～70℃下反应 11～12h，用冷的四氢呋喃清洗三次得最终产物 9,10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基] 苯。

[0014] 聚氨酯泡沫阻燃剂在阻燃型硬质聚氨酯泡沫中的应用，先把苯胺醇 9,10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基] 苯和助剂在搅拌的条件下混合均匀，然后再超声波混合 30min，再与异氰酸酯在搅拌的条件下搅拌 20～30s，发泡时，按 NCO/OH 的摩尔比为 1.2～2.5 的比例配制，转速 2000～3000r/min，倒入模具中，固化 48h；各原料以质量份计为：苯胺醇 100 份；异氰酸酯 130 份；9,10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基] 苯 20 份；助剂为聚氨酯泡沫稳定剂 1～2 份，胺类催化剂或者是胺类催化剂和醚类催化剂的混合物 1～2 份，水 1～2 份，发泡剂 10～30
所述胺类催化剂为N，N-二甲基环己胺、三亚乙基二胺、二甲基苄胺、三乙醇胺、异丙醇胺或季铵盐；

所述锡类催化剂为二月桂酸二正丁基锡。

所述聚氨酯泡沫稳定剂为硅型泡沫稳定剂。

所述异氰酸酯为甲苯二异氰酸酯、二甲苯二异氰酸酯或多次甲基多苯基多异氰酸酯。

所述发泡剂为HCFC-141b、环戊烷、异戊烷、HFC-245fa或HFC-365mfc中的任选一种或多种以任意比例的混合物。

有益效果：


2，合成的9，10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯应用于阻燃型聚氨酯泡沫中，提高了泡沫的压缩性能。

3，把苯胺和苯甲醚合成到DOP阻燃剂中，大大降低了阻燃剂的成本，而且氨基的存在使得9，10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯成为一种反应型阻燃剂，提高了阻燃的持久性。

附图说明

图1为9，10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯的红外光谱。

由图19，10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯的红外光谱可知：315cm⁻¹处为-NH的振动吸收峰；1593cm⁻¹，1475cm⁻¹处为P-Ph的振动吸收峰；1195cm⁻¹，1229cm⁻¹处为P=O的吸收峰；1042cm⁻¹处为9，10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯中P-O-C的特征吸收峰，912cm⁻¹为P-O-Ph的振动吸收峰。

具体实施方式

下面以具体实施例作进一步说明：本发明中所有原料皆为市售，以下实施例中若无特别指明，皆为质量份。


一、制备所述9，10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]
苯的方法

采用结构改性的方法，制备所述的用于阻燃型硬质聚氨脂泡沫的胺基油基阻燃多元醇的方法，采用 Mannich 反应，把苯胺和苯甲醛引入到 9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物（DOPO）阻燃剂结构中，得到 9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物-4-（苯胺）甲基苯，反应方程式为：

![反应方程式](image)

【0031】具体的制法为，以质量份计：

【0032】步骤一：将 80～100 质量份的苯胺、100～110 质量份的苯甲醛混合均匀，在通氮气的环境中加热升温至温度 50～60℃，反应 4～6h，得到 2-[(苯亚胺基甲基)]苯，用溶剂结晶，所得的溶剂为甲醇、乙醇等；

【0033】步骤二：将步骤一中得到的中间产物 2-[(苯亚胺基甲基)]苯 40～60 质量份、60～80 质量份的 DOPO,500 质量份的四氢呋喃混合均匀，在通氮气的环境中，在 50～70℃下反应 11～12h,，用冷的四氢呋喃清洗三次；

【0034】实施例中：

【0035】甲苯或乙醇的温度范围 ≤0℃。

【0036】冷的四氢呋喃的温度范围 ≤0℃。

【0037】二,9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物-4-（苯胺）甲基苯阻燃型硬质聚氨脂泡沫的组成与制备：

【0038】1. 聚氨酯多元醇的组成，按质量份计：

【0039】（1）聚氨酯多元醇 (浙江华峰新材料股份有限公司) 100 份

【0040】（2）催化剂 1～2 份，一般为复合催化剂，可以是胺类催化剂或者是胺类催化剂和锡类催化剂的混合物。其中，胺类催化剂可以选 :N, N-二甲基环己胺、三亚乙基二胺、二甲基苄胺、三乙醇胺、异丙醇胺、季铵盐或类似的催化剂。锡类催化剂选自 : 二月桂酸二正丁基锡及类似的催化剂。

【0041】（3）聚氨酯泡沫稳定剂 1～2 份，主要是硅型泡沫稳定剂，德美世创公司生产的泡沫稳定剂 AK8805, AK8815, AK8812, AK8809 等 ; 德国萨公司 : B8464, B8481, B8474, B8471, B8481 等。泡沫稳定剂可以是上述之一，也可是两种或两种以上的任意复配。

【0042】（4）发泡剂 10～30 份 : HFC-141b, HFC-245fa, HFC-365mfc 等任选一种或多种以任意比例的混合物。
说明书

（5）水 1～2 份

2, 9, 10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[(苯胺)甲基]苯阻燃型硬质聚氨酯泡沫的配方与制备

9, 10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[(苯胺)甲基]苯阻燃型硬质聚氨酯泡沫的制备配方，性能测试结果见附表1，附表2。以苯酚多元醇和异氰酸酯为主要原料，发泡时，按NCO/OH的摩尔比为1.2～2.5的比例配制得到。具体操作如下：先把苯酚多元醇，9, 10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[(苯胺)甲基]苯和助剂在高速搅拌的条件下混合均匀，然后再超声波搅拌30min，再与异氰酸酯在高速搅拌的条件下搅拌20～30s，转速2000～3000r/min，倒入模具中，熟化48h。

异氰酸酯的选择：甲苯二异氰酸酯、二甲苯二异氰酸酯、多次甲基多苯基多异氰酸酯(PAPI)，优先PAPI。商品牌号为：Bayer公司的DesmodurN, 44V20L等；烟台万华聚氨酯股份有限公司的PM2010等。

实施例1

步骤一：将80～100质量份的苯胺，100～110质量份的苯甲酸混合均匀，在通氨气的环境中加热升温至温度50～60℃，反应4～6h。苯胺的质量可以选择80 份，84 份，88 份，92 份，96 份，100 份，苯甲酸的质量可以选100 份，102 份，104 份，106 份，108 份，110 份，温度可以选50℃，52℃，54℃，56℃，58℃，60℃，反应时间可以选择4h，4.5h，5h，5.5h，6h。

步骤二：将步骤一中得到的原料2-[(苯亚胺基甲基)]苯40～60质量份，60～80质量份的DOP0，450～500质量份的四氢呋喃混合均匀，在通氨气的环境中，在50～70℃下反应11～12h。步骤一得到的2-[(苯亚胺基甲基)]苯质量份可以选择40 份，44 份，48 份，52 份，56 份，60 份，DOP0 可以选择60 份，64 份，68 份，72 份，76 份，80 份，反应温度可以选择50℃，54℃，58℃，62℃，66℃，70℃，反应时间可以选择11h，11.2h，11.4h，11.6h，11.8h，12h。

实施例2

称取80质量份的苯胺，100质量份的苯甲酸混合均匀，在通氨气的环境中加热升温至温度50℃，反应4h，得到2-[(苯亚胺基甲基)]苯，用冷甲醇结晶。称取中间产物2-[(苯亚胺基甲基)]苯40质量份，60质量份的DOP0，500质量份的四氢呋喃混合均匀，在通氨气的环境中，在50℃下反应11h，用冷的四氢呋喃清洗三次得阻燃剂9，10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[(苯胺)甲基]苯。然后按照表一配方，先把苯酚多元醇和助剂在高速搅拌的条件下混合均匀，然后再超声波混合30min，再与异氰酸酯在高速搅拌的条件下搅拌20～30s，转速2000～3000r/min，倒入模具中，熟化48h。

实施例3

称取80质量份的苯胺，102质量份的苯甲酸混合均匀，在通氨气的环境中加热升温至温度50℃，反应4.5h，得到2-[(苯亚胺基甲基)]苯，用冷甲醇结晶。称取中间产物2-[(苯亚胺基甲基)]苯40质量份，64质量份的DOP0，500质量份的四氢呋喃混合均匀，在通氨气的环境中，在54℃下反应11.2h，用冷的四氢呋喃清洗三次得阻燃剂9，10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[(苯胺)甲基]苯。然后按照表一9，10-二氯-9-氧杂-10-磷杂菲-10-氧化物-4-[(苯胺)甲基]苯阻燃型硬质聚氨酯泡沫的配方
先把苯酚多元醇，9,10-二氧-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基] 苯和助剂在高速搅拌的条件下混合均匀，然后再超声波混合30min，再与异氰酸酯在高速搅拌的条件下搅拌20～30s，转速2000～3000r/min，倒入模具中，熟化48h。

实施例4

称取84质量份的苯胺，100质量份的苯甲醛混合均匀，在通氮气的环境中加热升温至温度52℃，反应4h，得到2-[（苯亚胺基甲基）]苯，用冷甲醇结晶。称取中间产物2-[（苯亚胺基甲基）]苯44质量份，60质量份的DOP0.500质量份的四氢呋喃混合均匀，通氮气的环境中，在50℃下反应11h，用冷的四氢呋喃清洗三次得阻燃剂9,10-二氨-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯。然后按照表-9,10-二氨-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯阻燃型硬质聚氨酯泡沫的配方先把苯酚多元醇，9,10-二氧化-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯和助剂在高速搅拌的条件下混合均匀，然后再超声波混合30min，再与异氰酸酯在高速搅拌的条件下搅拌20～30s，转速2000～3000r/min，倒入模具中，熟化48h。

实施例5

称取84质量份的苯胺，104质量份的苯甲醛混合均匀，在通氮气的环境中加热升温至温度54℃，反应5h，得到2-[（苯亚胺基甲基）]苯，用冷甲醇结晶。称取中间产物2-[（苯亚胺基甲基）]苯44质量份，68质量份的DOP0.500质量份的四氢呋喃混合均匀，在通氮气的环境中，在58℃下反应11.4h，用冷的四氢呋喃清洗三次得阻燃剂9,10-二氨-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯。然后按照表-9,10-二氨-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯阻燃型硬质聚氨酯泡沫的配方先把苯酚多元醇，9,10-二氨-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯和助剂在高速搅拌的条件下混合均匀，然后再超声波混合30min，再与异氰酸酯在高速搅拌的条件下搅拌20～30s，转速2000～3000r/min，倒入模具中，熟化48h。

实施例6

称取88质量份的苯胺，102质量份的苯甲醛混合均匀，在通氮气的环境中加热升温至温度53℃，反应4.5h，得到2-[（苯亚胺基甲基）]苯，用冷甲醇结晶。称取中间产物2-[（苯亚胺基甲基）]苯48质量份，64质量份的DOP0.500质量份的四氢呋喃混合均匀，在通氮气的环境中，在54℃下反应11.2h，用冷的四氢呋喃清洗三次得阻燃剂9,10-二氨-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯。然后按照表-9,10-二氨-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯阻燃型硬质聚氨酯泡沫的配方先把苯酚多元醇，9,10-二氨-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯和助剂在高速搅拌的条件下混合均匀，然后再超声波混合30min，再与异氰酸酯在高速搅拌的条件下搅拌20～30s，转速2000～3000r/min，倒入模具中，熟化48h。

实施例7

称取88质量份的苯胺，106质量份的苯甲醛混合均匀，在通氮气的环境中加热升温至温度56℃，反应5h，得到2-[（苯亚胺基甲基）]苯，用冷甲醇结晶。称取中间产物2-[（苯亚胺基甲基）]苯48质量份，68质量份的DOP0.500质量份的四氢呋喃混合均匀，在通氮气的环境中，在58℃下反应11.4h，用冷的四氢呋喃清洗三次得阻燃剂9,10-二氨-9-氧杂-10-磷杂菲-10-氧化物-4-[（苯胺）甲基]苯。然后按照表-9,10-二


【0069】称取 96 质量份的苯胺, 110 质量份的苯甲醛混合均匀, 在通氮气的环境中加热升温至温度 60°C, 反应 6h, 得到 2-[[苯亚胺基甲基]苯, 用冷甲醇结晶。称取中间产物 2-[[苯亚胺基甲基]苯 56 质量份, 76 质量份的 DOP, 500 质量份的四氢呋喃混合均匀, 在通氮气的环境中, 在 66°C 下反应 11.8h, 用冷的四氢呋喃清洗三次得阻燃剂 9,10-二

[0070] 实施例12
[0071] 称取100质量份的苯胺,108质量份的苯甲醇混合均匀,在通氮气的环境中加热升温至温度60℃,反应5h,得到2-[[苯亚胺基甲基]苯,用冷甲醇结晶。称取中间产物2-[[苯亚胺基甲基]苯60质量份,80质量份的D0PO,500质量份的四氢呋喃混合均匀,在通氮气的环境中,在70℃下反应12h,用冷的四氢呋喃清洗三次得阻燃剂9,10-二氧-9-氧杂-10-磷杂菲-10-氧化物-4-[[苯胺）甲基]苯。然后按照表一9,10-二氧-9-氧杂-10-磷杂菲-10-氧化物-4-[[苯胺）甲基]苯阻燃型聚氨酯泡沫的配方先把苯酚多元醇,9,10-二氧-9-氧杂-10-磷杂菲-10-氧化物-4-[[苯胺）甲基]苯和助剂在高速搅拌的条件下混合均匀,然后再超声波混合30min,再与异氰酸酯在高速搅拌的条件下搅拌20～30s,转速2000～3000r/min,倒入模具中,熟化48h。

[0072] 表1 9,10-二氧-9-氧杂-10-磷杂菲-10-氧化物-4-[[苯胺）甲基]苯阻燃型聚氨酯泡沫的配方(质量份)

<table>
<thead>
<tr>
<th>实施例</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>苯酚多元醇</td>
<td>100</td>
</tr>
<tr>
<td>合成为的阻燃剂</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>AK8805</td>
<td>2.0</td>
</tr>
<tr>
<td>N,N-二甲基甲酰胺</td>
<td>2.0</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>1.5</td>
<td>1.8</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>水</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
<td>1.1</td>
<td>1.5</td>
<td>1.8</td>
<td>1.6</td>
<td>1.4</td>
<td>1.0</td>
<td>1.7</td>
</tr>
<tr>
<td>NCO/OH（MDI）</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>1.8</td>
<td>1.7</td>
</tr>
</tbody>
</table>

[0074] 表2 聚氨酯泡沫的产品性能（测试方法参照国家标准）

[0075]
<table>
<thead>
<tr>
<th>实施例</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>泡沫密度</td>
<td>43.1</td>
<td>43.3</td>
<td>44.4</td>
<td>44.5</td>
<td>45.3</td>
<td>45.8</td>
<td>46.2</td>
<td>47.8</td>
<td>48.7</td>
<td>49.2</td>
<td>50.1</td>
</tr>
<tr>
<td>尺寸稳定性（-30℃，24h）</td>
<td>0.15</td>
<td>0.17</td>
<td>0.16</td>
<td>0.18</td>
<td>0.15</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td>0.17</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>压缩强度 MPa</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>1.5</td>
<td>1.8</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>拉伸强度 MPa</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
<td>1.1</td>
<td>1.5</td>
<td>1.8</td>
<td>1.6</td>
<td>1.4</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>热分解温度℃</td>
<td>250</td>
<td>248</td>
<td>247</td>
<td>253</td>
<td>254</td>
<td>254</td>
<td>255</td>
<td>254</td>
<td>255</td>
<td>254</td>
<td>253</td>
</tr>
<tr>
<td>热释放速率峰值，KW/m²</td>
<td>251</td>
<td>255</td>
<td>249</td>
<td>249</td>
<td>250</td>
<td>252</td>
<td>252</td>
<td>251</td>
<td>253</td>
<td>252</td>
<td>253</td>
</tr>
<tr>
<td>氧指数%</td>
<td>20.1</td>
<td>20.5</td>
<td>21.1</td>
<td>22.3</td>
<td>23.0</td>
<td>23.5</td>
<td>24.2</td>
<td>24.8</td>
<td>25.3</td>
<td>25.7</td>
<td>26.2</td>
</tr>
</tbody>
</table>

【0076】测定表明：用本发明制备得到的9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物-4-［（苯胺）甲基］苯阻燃剂制备的阻燃型聚氨酯泡沫，具有很好的力学性能、热稳定性和阻燃性，合成的9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物-4-［（苯胺）甲基］苯用于阻燃型硬质聚氨酯泡沫，具有较高的阻燃性，氧指数可以达到24～26%。能在较高的温度环境中使用，保温效果得到了提高，节约了能源。
图 1