(54) Title: VACUUM STORAGE COMPARTMENT CONSTRUCTION IN COOLING APPARATUS

(57) Abstract: Cooling apparatus, for example a refrigerator (10), is provided with an evacuable storage compartment defined by a separately constructed, i.e. self-contained, box unit (16) having at least a top wall (28) formed wholly or partly by a glass panel, a glazed door (23) sealably closing an access opening (22) of the unit, and a plurality of further walls, in particular a back wall (19), two opposite side walls (20) and an apertured front wall (21), formed by an integrally constructed structure (18) supporting the top wall glass panel.
Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published: with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
Description

VACUUM STORAGE COMPARTMENT CONSTRUCTION IN COOLING APPARATUS

[001] The present invention relates to cooling apparatus and has particular reference to vacuum storage compartment construction in cooling apparatus.

[002] It has been proposed to include in cooling apparatus, particularly domestic refrigerators, freezers and refrigerator/freezer combinations, vacuum storage compartments for storage of foodstuffs in a vacuum environment. Such an environment offers the possibility of retarding deterioration of the stored products by, amongst other factors, reducing aerobic bacterial growth and photosynthesis. Compartments of that kind should preferably be evacuated automatically when products are placed in storage and returned to atmospheric pressure to allow removal of products via a closable access opening of the compartment. Accordingly, the compartments should be simple to evacuate and repressurise, capable of withstanding subatmospheric pressure levels in the order of 200 millibars absolute for lengthy periods of time and with repeated cycling, and relatively easy to keep hygienic and to clean. In wider terms, such compartments should be efficient in their utilisation of the internal space of the cooling apparatus so that the storage volume in the adjoining primary storage space at atmospheric pressure is not unduly compromised. Efficiency of space utilisation also applies to the compartment interior, which should not be reduced under the load caused by underpressure, in particular by inward deflection of boundary walls. Structural rigidity of the compartment is thus of substantial importance.

[003] Apart from these general attributes, it would be highly desirable, in view of the normally evacuated state of the compartment and the consequent disruption entailed by accessing the compartment, to provide for external inspection of the contents of the compartment so as to allow monitoring of the state of stored products and a visual check or reminder of the particular products in storage. Such a facility would be particularly desirable in conjunction with a design suitable for universal use in cooling apparatus, specifically a compartment construction usable without modification or significant modification in different apparatus configurations.

[004] The principal object of the present invention is therefore to provide cooling apparatus having a storage compartment which may be capable of universal use and is of robust construction, but permits inspection of stored contents without requiring opening the compartment and consequent disruption of the internal vacuum.

[005] Subsidiary objects of the invention include ease of cleaning and a space-saving construction. Further objects and advantages are evident from the following description.
According to the present invention there is provided cooling apparatus provided with an evacuatable storage compartment defined by a separately constructed box unit having at least one wall formed at least in part by a transparent member, an openable door sealably closing an access opening of the compartment and a plurality of further walls formed by an integrally constructed structure supporting the transparent member.

A storage compartment in the form of a separately constructed box unit represents a self-contained module with a capability of use in different types or variations of cooling apparatus, including refrigerators, freezers and refrigerator/freezer combinations. This is of particular advantage in the case of product ranges containing models which may have different sizes and fits of internal equipment, but the same fundamental features, such as refrigerating, freezing and vacuum storage compartments. The unit may then be able to be used with little or no modification in all products within the range, which represents a significant advantage with respect to manufacturing cost. This advantage is combined with the facility of external inspection of the contents of the compartment via the transparent member, or transparent members if more than one wall is so formed. Inclusion of a transparent member implies a fabricated construction of the unit, which could give rise to the possibility of reduced structural resistance to the internal underpressure of the compartment; this possibility is eliminated by support of the member by the integrally constructed structure, which provides further walls of the compartment and may have, for example, an inherently strong, partly box-shaped form. Thus, the box unit can be made up of just the integral structure, the transparent member and the door. This allows construction of the unit from a minimum of components so as to minimise points of potential vacuum degradation due to leakage. The reduced number of components of the compartment also favours economy of manufacture.

The at least one wall formed at least in part by a transparent member is preferably the top wall of the unit. The member can form the entire wall or merely part of the wall, for example a filler element in a frame. The box unit preferably has a second such wall similarly formed at least in part by a transparent member and supported by the structure, this second wall being disposed opposite the first-mentioned wall, thus a bottom wall of the unit. It is desirable for the or each such transparent member to be hermetically sealed to the structure to ensure vacuum tightness of the compartment.

The door can also be formed at least in part by a transparent member, which either represents the entire door or, preferably, a filler element in frame. The or each such transparent member can comprise a glass panel, preferably of toughened glass. Glass panels have a high degree of rigidity and thus readily resist the loads imposed by vacuum. They are also inexpensive to produce, but less easy to integrate into a construction unless, as provided by the present invention, supported by an integral
structure forming a number of further walls of the unit.

[010] For preference, the integral structure forms a back wall and two mutually opposite side walls of the unit, thus is U-shaped. However, the structure can additionally form a front wall with an aperture to define the access opening, whereby the structure in itself essentially consists of a box shape open at one side, such as the top, or at two opposite sides, such as the top and bottom. The integral structure thus provides a strong three-dimensional body to which a transparent member or members forming the top wall or top and bottom walls can be attached and can lend rigidity.

[011] The door is preferably mounted on a movable drawer, which can be slidable on guides formed on the structure, for example runners integrally formed on inner surfaces of mutually opposite side walls of the unit. Either the front wall or the door, or both, can have sealing means for sealing the access opening when the door is closed.

[012] Each wall of the box unit is preferably substantially planar so as to impart to the unit a compact form compatible with the usually confined interior space of cooling apparatus. The overall cuboid shape that results is readily capable of incorporation into housings of different types of cooling apparatus, such housings generally having a cuboid internal and external form.

[013] The integral structure preferably comprises a plastics material moulding, which is compatible with inexpensive mass production and consistent with production techniques in the construction of a cooling apparatus, for example refrigerators. Such a moulding can be double-skinned at least in part and can include internal reinforcing, for example bracing ribs between the skins.

[014] An additional feature of the unit can be connections at a rear side thereof for supply of air to and removal of air from the compartment. The connections can consist of, for example, pipe or hose coupling elements mounted in apertures in a rear wall of the structure or formed as integral parts of that wall.

[015] An embodiment of the present invention will now be more particularly described by way of example with reference to the accompanying drawings, in which:

[016] Fig. 1 is a schematic sectional side view of a refrigerator incorporating a vacuum storage compartment, in an embodiment of the invention; and

[017] Fig. 2 is an exploded schematic perspective view, to enlarged scale, of a box unit defining the storage compartment.

[018] Referring now to the drawings there is shown in Fig. 1, in highly schematic form, a refrigerator 10 comprising a thermally insulating housing 11 enclosing a cooled storage space 12 for storage of items at atmospheric pressure. The space 12 is closed by a door 13. The housing 11 additionally contains a vacuum storage compartment 14, accessible at the housing exterior by way of a door 15. The compartment 14 is defined by a separately constructed, i.e. entirely self-contained, box unit 16 which is described
in more detail further below and which is mounted in the housing, the unit being closed by a respective door. Located below the compartment 14 is a space 17 accommodating conventional components of an evaporating and condensing circuit of the refrigerator as well as a vacuum pump and associated ducts and control elements for the vacuum storage compartment 14.

[019] Fig. 2 shows the box unit 16, which defines the storage compartment 14, separately and to enlarged scale. In addition, the unit is shown in exploded illustration to assist understanding of the unit construction. The basic component of the unit is an integral structure 18 which consists of, for example, an internally reinforced, double-skinned moulded part of plastics material forming a rear wall 19, two mutually opposite side walls 20 and a front wall 21. The structure 18 can thus have a high level of inherent stiffness, yet be light in weight and economic to produce, and can be designed to take into account hygiene, for example by provision of radiussings to eliminate traps for contaminants and food residues.

[020] The front wall 21 has an aperture 22 which serves as an access opening to the interior of the unit 16. The access opening is closed by a door 23 which incorporates a glass pane 24 approximately coincident in its perimeter with the boundary of the aperture 22. The door 23 is carried by a drawer 25 guided on runners 26 integrally formed at the inner surfaces of the two opposite side walls 20 of the unit 16. On opening of door 23, for example by means of a handgrip (not shown), the drawer 25 slides out to provide easy access to products stored in the compartment. Sealing of the door 23 relative to the front wall 21 of the unit 16 and thus hermetic separation of the evacuated environment of the vacuum storage compartment 12 from the atmospheric pressure which otherwise prevails within the refrigerator housing 11 is provided by a resilient seal 27 encircling the aperture 22 in the front wall 21. The seal can also be mounted on the door.

[021] The box unit 16 is completed by a top wall 28 and bottom wall 29, each of which consists of a panel of toughened glass hermetically sealed to the structure 18. The two glass panels, which are intrinsically very rigid and thus highly resistant to flexure when loaded by vacuum, impart additional stiffness to the unit. The panels can be secured by any appropriate means, including adhesive and/or a mechanical fastening system. Inspection of items stored in the compartment 12 is readily possible via at least the top panel, as well as by way of the glass pane 24 in the door 23. The top panel can, in addition, be used as a bottom shelf of the atmospheric pressure storage space 12.

[022] The rear wall 19 of the integral structure 18 includes two connections 30 for vacuum pipes, hoses or other conduits for extraction of air from the compartment in an evacuation phase as well as maintenance of an evacuated state in a storage phase, and feed of air to the compartment to restore atmospheric pressure so that the door can be
opened for removal and insertion of items.

Use of the vacuum storage compartment 14 in operation of the refrigerator 10 is self-evident from the foregoing description. Access to the compartment is gained by opening the external door 15 after which, and following pressurisation of the compartment, the internal door 23 can be opened. After closure of the door 23 the compartment can be evacuated again. Pressurisation and evacuation can be carried out automatically by detectors responsive to operation of the door 23 and/or door 15 and to the pressure level. The detectors can be, for example, mechanical switches and pressure switches. Manually actuated switches can also be provided for control exclusively by a user and/or for overriding automatic operation.

The refrigerator of the embodiment hereinbefore described incorporates a vacuum storage compartment of a construction that readily withstands the level of underpressure encountered in use and allows inspection of stored contents via glazing which does not compromise compartment strength. The compartment constitutes a self-contained module of a kind potentially capable of universal use for different models of refrigerator without modification, universality being promoted by the flat-sided construction of the box unit. The compartment is, in addition, a relatively low-cost item suitable for both medium-scale and mass production.
Claims

[001] Cooling apparatus provided with an evacuatble storage compartment defined by a separately constructed box unit having at least one wall formed at least in part by a transparent member, an openable door sealably closing an access opening of the compartment and a plurality of further walls formed by an integrally constructed structure supporting the transparent member.

[002] Apparatus as claimed in claim 1 or claim 2, wherein the at least one wall is a top wall of the unit.

[003] Apparatus as claimed in claim 1 or claim 2, wherein the unit has a second wall formed at least in part by a transparent member also supported by the structure, the second wall being disposed opposite the first-mentioned wall so formed.

[004] Apparatus as claimed in any one of the preceding claims, wherein the or each transparent member is hermetically sealed to the structure.

[005] Apparatus as claimed in any one of the preceding claims, wherein the door is formed at least in part by a transparent member.

[006] Apparatus as claimed in any one of the preceding claims, wherein the or each transparent member comprises a glass panel.

[007] Apparatus as claimed in claim 6, wherein the panel is of toughened glass.

[008] Apparatus as claimed in any one of the preceding claims, wherein the structure forms a back wall and two mutually opposite side walls of the unit.

[009] Apparatus as claimed in any one of the preceding claims, wherein the structure forms a front wall with an aperture defining the access opening.

[010] Apparatus as claimed in claim 8, wherein the door is mounted on a movable drawer.

[011] Apparatus as claimed in claim 10, wherein the drawer is slidable on guides formed on inner surfaces of walls of the structure.

[012] Apparatus as claimed in any one of claims 9 to 11, wherein at least one of the front wall and the door has sealing means for sealing the access opening when the door is closed.

[013] Apparatus as claimed in any one of the preceding claims, wherein each wall of the unit is substantially planar.

[014] Apparatus as claimed in any one of the preceding claims, wherein the structure comprises a plastics material moulding.

[015] Apparatus as claimed in claim 14, wherein the moulding at least in part is double-skinned with internal reinforcing.

[016] Apparatus as claimed in any one of the preceding claims, wherein the unit is provided at a rear side thereof with connections for supply of air to and removal
of air from the compartment.

[017] Apparatus as claimed in any one of the preceding claims, wherein the apparatus is a refrigerator, a freezer or a refrigerator/freezer.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC 7 | F250.17/04 |

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

| Classification system followed by classification symbols |
| IPC 7 | F25D |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and where practical, search terms used)

- EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2 116 813 A (WEISSER CHARLES O’N ET AL) 10 May 1938 (1938-05-10) column 2, line 6 - line 11; figures 1-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-10,12, 13,16,17</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DE 199 31 920 A1 (SCHEIDTER, ALOIS) 18 January 2001 (2001-01-18) column 3, line 4 - line 21; figure 1 claim 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4,6,8, 9,13,16, 17</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DE 36 18 802 A1 (GOLF GMBH & CO KG) 10 December 1987 (1987-12-10) the whole document</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-9, 13,17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4,5, 8-10,13, 14,16,17</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

X Special categories of cited documents:

- **X** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or in which the publication date of another citation or other special reason (as specified) is derived from
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

X Patent family members are listed in annex.

X Further documents are listed in the continuation of box C.

P later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search

- 2 August 2005

Date of mailing of the international search report

- 10/08/2005

Name and mailing address of the ISA

- European Patent Office, P.B. 5618 Patentlaan 2 NL - 2280 Hl Rijswijk Tel: (+31-70) 340-3040, Tx: 31 651 epcnl, Fax: (+31-70) 340-3016

Authorized officer

- De Graaf, J.D.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 90/13779 A (BAVIELLO, CARMINE) 15 November 1990 (1990-11-15) column 5, line 6 - line 12; figures 1-5 column 5, line 20 - line 21</td>
<td>1, 5, 8, 10, 11, 16, 17</td>
</tr>
<tr>
<td>A</td>
<td>NL 1 018 805 C2 (ANTON JAN VAN DEN BELT) 25 February 2003 (2003-02-25) the whole document</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US 2 894 845 A (STODDARD EDGAR S) 14 July 1959 (1959-07-14)</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2116813 A</td>
<td>10-05-1938</td>
<td>NONE</td>
</tr>
<tr>
<td>DE 19931920 A1</td>
<td>18-01-2001</td>
<td>NONE</td>
</tr>
<tr>
<td>DE 3618802 A1</td>
<td>10-12-1987</td>
<td>NONE</td>
</tr>
<tr>
<td>US 6148875 A</td>
<td>21-11-2000</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9013779 A1</td>
</tr>
<tr>
<td>NL 1018805 C2</td>
<td>25-02-2003</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2894845 A</td>
<td>14-07-1959</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0110250 A1</td>
</tr>
<tr>
<td>US 2003151339 A1</td>
<td>14-08-2003</td>
<td>NONE</td>
</tr>
</tbody>
</table>