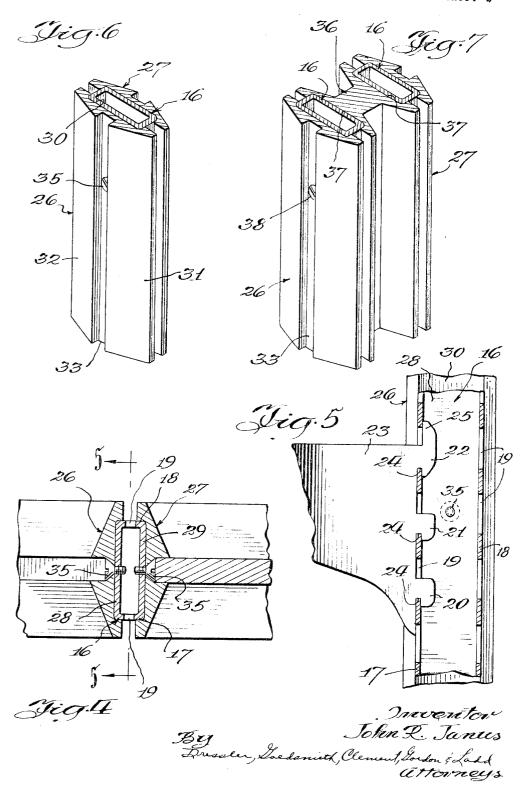

PILASTER

Filed Jan. 20, 1964


2 Sheets-Sheet 1

PILASTER

Filed Jan. 20, 1964

2 Sheets-Sheet 2

1

3,269,077 PÍLASTER

John R. Janus, Barrington, Ill., assignor to Garcy Corporation, a corporation of Illinois Filed Jan. 20, 1964, Ser. No. 338,675 4 Claims. (Cl. 52—730)

This invention refers to a pilaster construction, and is particularly concerned with a pilaster for supporting brackets and also for supporting the vertical edges of adjacent panels in a display stand.

In accordance with the present invention the pilaster has an inner core of steel, to provide the strength required for supporting brackets and the loads to which the brackets are subjected, and other parts of decorative material of comparatively light weight, such as, for example, extruded aluminum or suitable plastic material to reduce the weight and to improve the appearance of the finished product.

The preferred construction comprises a double pilaster that provides a double row of slots for supporting one vertical row of brackets closely adjacent the vertical plane of another row of slots without making the structure too heavy for commercial use. The double pilaster can support a bracket for one end of a shelf extending in one direction at one horizontal level, and a second bracket 25 for one end of a shelf extending in the opposite longitudinal direction at the same horizontal level, or at a level spaced a short distance above or below the horizontal level of the first mentioned shelf.

A structure by means of which the above mentioned 30 and other advantages of the invention may be attained will be fully described in the following specification, taken in conjunction with the accompanying drawings showing two preferred embodiments of the invention, in which:

scale, of a display stand embodying the invention;

FIG. 2 is an end elevational view of the display stand with brackets projecting from the pilasters;

FIG. 3 is an enlarged fragmentary cross sectional view, taken along the line 3-3 of FIG. 2;

FIG. 4 is an enlarged cross sectional view, taken generally along the line 4-4 of FIG. 1, but omitting the supporting legs and bracket:

FIG. 5 is a fragmentary vertical sectional view, taken of the bracket secured to the pilaster;

FIG. 6 is a fragmentary detail perspective view of a single pilaster; and

FIG. 7 is a fragmentary detail perspective view of a double pilaster.

Referring to the drawings, a plurality of pilasters 11 extend vertically upwardly from a base member 12 of any suitable construction. The pilasters are shown as having their upper ends tied together by transverse stretchers 13. The stretchers may also be of any suitable 55 construction, and, if desired, may be omitted altogether. As shown in FIG. 3 the upper end of the pilaster is secured to the end of a transverse stretcher by a screw 14 that is threaded into a connecting bar 15 depending from the outer end of the transverse stretcher. The other end 60 of the connecting bar fits within the transverse stretcher, and is welded or brazed to it. The lower end of the pilaster may be secured to the base member in the same

The pilaster 11 comprises an inner core 16 made of steel to provide maximum strength. The core is tubular, and preferably has a rectangular cross section with its narrow ends 17 and 18 parallel to the longitudinal axis of the base member. Each of the ends 17 and 18 is provided 70with a plurality of vertically disposed slots 19 spaced at uniform intervals in vertical alignment. The slots are

adapted to receive ears 20, 21 and 22 projecting from the rear end of a bracket 23, as shown in FIG. 5.

Each of the ears 20, 21 and 22 is provided on its lower edge with a recess 24 having a width approximately equal to the thickness of the end of the inner core to provide a snug engagement of the edge portion of the end wall of the core defining the lower edge of each slot 19 with the recess 24. The ears 20 and 21 are identical, but the ear 22 has a projection 25 on its upper edge extending upwardly far enough to engage the inner surface of the end wall of core 16 adjacent the upper end of slot 19 when the recesses 24 are engaged with portions of the same wall adjacent the lower end of each slot, as shown in FIG. 5.

The projection 25 prevents disengagement of the bracket 23 from the pilaster by a straight vertical movement of the bracket to disengage the recesses 24 from the edge of end wall 17 or 18 defining the lower edge of slot 19, and then a forward movement of the bracket. The bracket is inserted into engagement with the pilaster by holding 20 it upwardly at an angle to the pilaster and inserting the projection 25 into any slot 19 except either of the two lowermost slots. The bracket is then moved pivotally downwardly while its upper edge adjacent the projection 25 is held against the upper edge of the slot through which the projection 25 has been inserted. In this position the lower edges of ears 20, 21 and 22 are high enough to clear the lower ends of the slots and the ears 20 and 21 enter the slots immediately below the slot into which the ear 22 has been inserted. The bracket 23 is then moved downwardly to engage each recess 24 with the portions of end wall 17 or 18 defining the lower ends of the slots 19. The bracket can be removed from the pilaster only by reversing the above steps. It will be understood that the dimensions and arrangement of slots 19 may be changed FIGURE 1 is a front elevational view, on a reduced 35 to accommodate brackets having different rear end construction.

In the single pilaster structure, shown in FIG. 6, decorative strips 26 and 27 are juxtaposed against the sides 28 and 29 of the core 16. The strips 26 and 27 are duplicates, and therefore only one will be described. One side of the strip 26 is flat except for a centrally disposed longitudinal recess 30 having a width corresponding to the distance between the outer surfaces of end walls 17 and 18. The side 28 of the core and portions of each along the line 5-5 of FIG. 4 and showing the rear end 45 end 17 and 18 contiguous to the side 28 fit into the recess 30. The depth of the recess 30 is no greater than the distance from the outer surface of side 28 to the adjacent longitudinal edge of slot 19, so that no portion of the strip 26 will overlap any portion of the slots 19. Since 50 the strip 27 is a duplicate of strip 26, the adjacent faces of the longitudinal edge portions of the strips 26 and 27 will be spaced a distance at least equal to the width of the slots 19 to permit the entrance of the ears 20, 21 and 22 into slots 19.

The opposite side of strip 26 is approximately triangular in cross section, having inclined surfaces 31 and 32 separated by a longitudinally extending channel 33. The channel 33 has a width sufficient to receive one edge of a panel 34 adapted to be inserted between one side of a pilaster 11 and the opposite side of the adjacent pilaster on the display stand. Each channel 33 has a sufficient depth so that a panel held between two adjacent pilasters cannot be displaced therefrom by force exerted against either face of the panel.

The decorative strips 26 and 27 are secured to opposite sides of the core 16 by a plurality of screws 35 that are threaded through registering apertures in the channel 33 and the adjacent side of core 16. The apertures in the channel 33 preferably are countersunk at their outer ends, so that the heads of the screws 35 are flush with the bottom of the channel 33 and cannot interfere with proper positioning of the panels 34.

3

The strips 26 and 27 may be of plastic or any other suitable material, but preferably are of extruded aluminum because of its light weight and attractive appearance. The aluminum is preferably anodized in any desired color and provides a permanent beauty that will 5 enhance the appearance of the display stand or other fixtures in which the pilasters are used.

The advantages of aluminum or plastic material are even more pronounced in the structure of the double pilaster shown in FIG. 7. In this embodiment, two steel cores 16 are spaced laterally by an intermediate H-shaped member 36 of extruded aluminum or plastic material having each outer side provided with a longitudinal recess 37 of the same size as recess 30. Each core has one side wall positioned in a recess 37 and its opposite side 15 wall positioned in the recess 30 of a strip 26 or 27. Each core is secured in place by a plurality of screws 38 that extend through the bottom wall of channel 33, both side walls of the core 16, and into the intermediate H-shaped member 36. This embodiment is preferred because one 20 core can support a bracket for one end of a shelf at one level, and the adjacent core can support a bracket for the end of a different shelf at a slightly different level.

If the pilaster is required to support any structure projecting through the channel 33 or through either surface 25 31 or 32, and the core 16 is not considered to provide sufficient supporting strength, the aluminum or plastic strip may be provided with a cut-out in the area through which the structure is to project, and an insert of steel may be secured in said cut-out area to provide extra 30 strength for said structure. In such structures the outer surface of the steel insert can be colored to match the color of the aluminum or plastic strip.

Although I have described two preferred embodiments of the invention in considerable detail, it will be understood that the description thereof is intended to be illustrative, rather than restrictive, as many details of construction may be modified or changed without departing from the spirit or scope of the invention. Accordingly, I do not desire to be restricted to the exact structure disclosed.

I claim:

1. A pilaster for supporting one edge of a panel and a bracket extending at right angles to said panel, said pilaster comprising a tubular core having a pair of end 45 walls and a pair of side walls, one of said end walls being apertured to receive projections extending from one end of said bracket, a pair of outer strips of material of lighter weight than the material of said core, the inner surface of each of said outer strips having a recess adapted 50 to receive one side wall and contiguous portions of both end walls of said core, means for detachably securing one of said outer strips to each side wall of said core to conceal both side walls of said core and portions of both end walls of said core on opposite sides of said apertured por- 55 tion, each of said outer strips having an outer surface provided with a longitudinal channel of a width approximately equal to the thickness of said panel, whereby one edge of said panel may be fitted into said longitudinal channel to be supported in upright position.

2. A pilaster comprising a tubular core of comparatively heavy material having one end wall apertured to

4

receive projecting portions of a member to be supported by said pilaster, and a pair of outer decorative covering members of comparatively light weight material secured to opposite sides of said core, each of said outer covering members concealing one side of said core and extending around one longitudinal edge of said end wall, said covering members each terminating short of said apertured portion of the end wall to provide an attractive appearance for said pilaster while leaving the apertured portion of said end wall unobstructed, each of said outer covering members having a longitudinal channel of a width approximately equal to the thickness of a panel mounted between adjacent pilasters, each of said channels being adapted to engage opposite surfaces of one edge portion of a panel positioned adjacent said pilaster to provide lateral support for said one edge of said panel.

3. A pilaster for supporting one edge of a panel and a bracket extending at right angles to said panel, said pilaster comprising a tubular core of material having sufficient strength to support a bracket and loads normally imposed on said bracket, said core having an end wall apertured to receive projections extending from one end of said bracket and side walls provided with vertically spaced apertures, a pair of outer strips of material of less strength than the material of said core, each of said outer strips having a longitudinal channel in its outer surface and apertures in each channel spaced vertically to conform to the vertical spacing of the apertures in the side walls of said core, and fastening members projecting through said vertically spaced apertures in said core and said outer strips to detachably secure each of said outer strips to said core, each of said longitudinal channels having a width approximately equal to the thickness of a panel mounted between adjacent pilasters, each of said channels being adapted to engage opposite surfaces of one edge portion of a panel positioned with one edge adjacent said pilaster, to provide lateral support for said one edge of said panel.

4. A pilaster comprising two upright tubular cores of comparatively heavy material spaced apart by an intermediate member of comparatively light weight material, an outer covering member of comparatively light weight material juxtaposed against the outer side of each of said cores, and means securing each of said outer covering members and the adjacent core to said intermediate member, each of said cores having an end wall exposed between said intermediate member and one of said outer covering members, said end walls being apertured to receive projecting portions of brackets to be supported by said pilaster, each of said outer covering members having a longitudinal channel in its outer side to receive one edge of a panel and provide lateral support therefor.

References Cited by the Examiner

FOREIGN PATENTS

214,913 5/1958 Australia. 1,259,491 3/1961 France.

HARRISON R. MOSELEY, Primary Examiner.

RICHARD W. COOKE, Jr., Examiner.

L. R. RADANOVIC, J. K. BELL, Assistant Examiners.