
(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

(71) Applicant: NOVOZYMES A/S [DK/DK]; Krogshoejvej 36, DK-2880 Bagsvaerd (DK).

(72) Inventor(s): FUKUYAMA, Shiro; 5-1-4 Fujisaki, Narashino-shi City, Chiba, 275-0017 (JP)


Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(H))

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
— with sequence listing part of description (Rule 5.2(a))

(54) Title: ALPHA-AMYLASES AND POLYNUCLEOTIDES ENCODING SAME

(57) Abstract: The present disclosure relates to isolated polypeptides having alpha-amylase activity, polynucleotides encoding the polypeptides, nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing the polypeptides, and method of using polypeptides, including in ethanol production processes.
ALPHA-AMYLASES AND POLYNUCLEOTIDES ENCODING SAME

Reference to a Sequence Listing

This application contains a Sequence Listing in computer readable form, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to alpha-amylases, polynucleotides encoding the alpha-amylases, methods of producing the alpha-amylases, and methods of using the alpha-amylases. In embodiments of the present disclosure, raw starch degrading activity is improved.

Description of the Related Art

Enzymatic degradation of starch is part of many industrial processes including brewing, production of glucose or high fructose syrups and production of drinking or fuel ethanol. In its natural state, starch is quite resistant against degradation by many enzymes, and therefore industrial enzymatic degradation of starch is traditionally initiated by a heating step where starch is gelatinized, which renders the starch more sensitive to many enzymes. Some enzymes are able to act on ungelatinized starch, and are commonly referred to as having raw starch degrading activity. The use of these enzymes permits for improved processes, including, for example, reducing the heating step in processing starch.

Alpha-amylases (alpha-1,4-glucan 4 glucanohydrolases, EC. 3.2.1.1) constitute a group of enzymes which catalyze hydrolysis of starch and other linear and branched 1,4 glucosidic oligo and polysaccharides. Alpha-amylase enzymes have been used for a variety of different industrial purposes, including starch liquefaction, ethanol production, textile desizing, textile washing, starch modification in the paper and pulp industry, brewing, and baking.

WO 2010/091221 discloses a polypeptide having alpha-amylase activity from Aspergillus terreus. Database UniProt XP002576027 discloses the nucleic acid sequence from the Q0C881 (Aspergillus terreus) genome for an alpha-amylase.


There remains a need in the art for improved alpha-amylases, including alpha-amylases that have raw starch degrading activity.
Summary of the Invention

The present invention relates to polypeptides having alpha amylase activity selected from the group consisting of:

(a) a polypeptide comprising or consisting of an amino acid sequence of the mature polypeptide of the amino acid sequence of SEQ ID NO: 2, SEQ ID NO:4 or SEQ ID NO:6;

(b) a polypeptide comprising an amino acid sequence having at least 80% sequence identity to the mature polypeptide of the amino acid sequence of SEQ ID NO: 2, SEQ ID NO:4 or SEQ ID NO:6;

(c) a polypeptide encoded by a polynucleotide that hybridizes under medium stringency conditions with the mature polypeptide coding sequence of SEQ ID NO: 1, SEQ ID NO:3 or SEQ ID NO:5. In embodiments, polypeptides of the present disclosure are isolated.

The present invention also relates to polynucleotides encoding the polypeptides of the present invention; nucleic acid constructs; recombinant expression vectors; recombinant host cells comprising the polynucleotides; and methods of producing the polypeptides.

The present invention further relates to a transgenic plant, plant part or plant cell transformed with a polynucleotide encoding a polypeptide of the present invention.

In yet further aspects, the present invention relates to compositions comprising a polypeptide of the present invention, including compositions for producing ethanol.

The present invention also relates to method for the production of ethanol using a polypeptide of the present invention. The present invention also relates to method for the production of ethanol from ungelatinized starch using a polypeptide of the present invention.

Definitions

Alpha-amylase activity: The term "alpha-amylase activity" is defined herein as an activity that catalyzes the endohydrolysis of (1,4)-alpha-D-glucosidic linkages in polysaccharides containing three or more (1,4)-alpha-linked D-glucose units. The term "alpha-amylase activity" corresponds to the enzymes grouped in E.C. 3.2.1.1. For purposes of the present invention, alpha-amylase activity is determined according to the procedure described in the "Example" section.

Allelic variant: The term "allelic variant" means any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within populations. Gene mutations can be silent (no change in the encoded polymorphism) or may encode polypeptides having altered amino acid
sequences. An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.

**cDNA:** The term "cDNA" means a DNA molecule that can be prepared by reverse transcription from a mature, spliced, mRNA molecule obtained from a eukaryotic or prokaryotic cell. cDNA lacks intron sequences that may be present in the corresponding genomic DNA. The initial, primary RNA transcript is a precursor to mRNA that is processed through a series of steps, including splicing, before appearing as mature spliced mRNA.

**Coding sequence:** The term "coding sequence" means a polynucleotide, which directly specifies the amino acid sequence of a polypeptide. The boundaries of the coding sequence are generally determined by an open reading frame, which begins with a start codon such as ATG, GTG, or TTG and ends with a stop codon such as TAA, TAG, or TGA. The coding sequence may be a genomic DNA, cDNA, synthetic DNA, or a combination thereof.

**Control sequences:** The term "control sequences" means nucleic acid sequences necessary for expression of a polynucleotide encoding a mature polypeptide of the present invention. Each control sequence may be native (i.e., from the same gene) or foreign (i.e., from a different gene) to the polynucleotide encoding the polypeptide or native or foreign to each other. Such control sequences include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, promoter, signal peptide sequence, and transcription terminator. At a minimum, the control sequences include a promoter, and transcriptional and translational stop signals. The control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the polynucleotide encoding a polypeptide.

**Expression:** The term "expression" includes any step involved in the production of a polypeptide including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.

**Expression vector:** The term "expression vector" means a linear or circular DNA molecule that comprises a polynucleotide encoding a polypeptide and is operably linked to control sequences that provide for its expression.

**Fragment:** The term "fragment" means a polypeptide of the present invention having one or more (e.g., several) amino acids absent from the amino and/or carboxyl terminus of a mature polypeptide or domain, wherein the fragment has alpha-amylase activity. In one aspect, a fragment contains at least 497 amino acid residues, at least 526 amino acid residues, or at least 555 amino acid residues of SEQ ID NOS: 2 or 6. In another aspect, a fragment contains
at least 528 amino acid residues, at least 559 amino acid residues, or at least 590 amino acid residues of SEQ ID NO:4.

**High stringency conditions:** The term "high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 65°C.

**Host cell:** The term "host cell" means any cell type that is susceptible to transformation, transfection, transduction, or the like with a nucleic acid construct or expression vector comprising a polynucleotide of the present invention. The term "host cell" encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication.

**Isolated:** The term "isolated" means a substance in a form or environment that does not occur in nature. Non-limiting examples of isolated substances include (1) any non-naturally occurring substance, (2) any substance including, but not limited to, any enzyme, variant, nucleic acid, protein, peptide or cofactor, that is at least partially removed from one or more or all of the naturally occurring constituents with which it is associated in nature; (3) any substance modified by the hand of man relative to that substance found in nature; or (4) any substance modified by increasing the amount of the substance relative to other components with which it is naturally associated (e.g., multiple copies of a gene encoding the substance; use of a stronger promoter than the promoter naturally associated with the gene encoding the substance). An isolated substance may be present in a fermentation broth sample. For example, the polypeptide of the present invention may be used in industrial applications in the form of a fermentation broth product, that is, the polypeptide of the present invention is a component of a fermentation broth used as a product in industrial applications (e.g., ethanol production). The fermentation broth product will in addition to the polypeptide of the present invention comprise additional ingredients used in the fermentation process, such as, for example, cells (including, the host cells containing the gene encoding the polypeptide of the present invention which are used to produce the polypeptide of interest), cell debris, biomass, fermentation media and/or fermentation products. The fermentation broth may optionally be subject to one or more purification (including filtration) steps to remove or reduce one more components of a fermentation process. Accordingly, an "isolated" polypeptide of the present invention may be present in such a fermentation broth product.
**Mature polypeptide:** The term "mature polypeptide" means a polypeptide in its final form following translation and any post-translational modifications, such as N-terminal processing, C-terminal truncation, glycosylation, phosphorylation, etc. It is known in the art that a host cell may produce a mixture of two or more different mature polypeptides (i.e., with a different C-terminal and/or N-terminal amino acid) expressed by the same polynucleotide. It is also known in the art that different host cells process polypeptides differently, and thus, one host cell expressing a polynucleotide may produce a different mature polypeptide (e.g., having a different C-terminal and/or N-terminal amino) as compared to another host cell expressing the same polynucleotide.

In one aspect, the mature polypeptide is amino acids 1 to 585 of SEQ ID NO: 2 based on the SignalP (Nielsen et al., 1997, *Protein Engineering* 10: 1-6) that predicts amino acids -1 to -21 of SEQ ID NO: 2 are a signal peptide.

In another aspect, the mature polypeptide is amino acids 1 to 622 of SEQ ID NO: 4 based on the SignalP (Nielsen et al., 1997, *Protein Engineering* 10: 1-6) that predicts amino acids -1 to -21 of SEQ ID NO: 4 are a signal peptide.

In another aspect, the mature polypeptide is amino acids 1 to 607 of SEQ ID NO: 6 based on the SignalP (Nielsen et al., 1997, *Protein Engineering* 10: 1-6) that predicts amino acids -1 to -21 of SEQ ID NO: 6 are a signal peptide.

**Mature polypeptide coding sequence:** The term "mature polypeptide coding sequence" means a polynucleotide that encodes a mature polypeptide having alpha-amylase activity.

**Medium stringency conditions:** The term "medium stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 55°C.

**Medium-high stringency conditions:** The term "medium-high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and either 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 60°C.

**Nucleic acid construct:** The term "nucleic acid construct" means a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or
is modified to contain segments of nucleic acids in a manner that would not otherwise exist in
nature or which is synthetic, which comprises one or more control sequences.

**Operably linked:** The term "operably linked" means a configuration in which a control
sequence is placed at an appropriate position relative to the coding sequence of a
polynucleotide such that the control sequence directs expression of the coding sequence.

**Sequence identity:** The relatedness between two amino acid sequences or between
two nucleotide sequences is described by the parameter "sequence identity".

For purposes of the present invention, the sequence identity between two amino acid
sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch,
package (EMBOSS: The European Molecular Biology Open Software Suite, Rice *et al.*, 2000,
*Trends Genet.* 16: 276-277), preferably version 5.0.0 or later. The parameters used are gap
open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of
BLOSUM62) substitution matrix. The output of Needle labeled "longest identity" (obtained using
the -nobrief option) is used as the percent identity and is calculated as follows:

\[
\text{(Identical Residues} \times 100)/\text{(Length of Alignment} - \text{Total Number of Gaps in Alignment)}
\]

For purposes of the present invention, the sequence identity between two
deoxyribonucleotide sequences is determined using the Needleman-Wunsch algorithm
(Needleman and Wunsch, 1970, *supra*) as implemented in the Needle program of the EMBOSS
package (EMBOSS: The European Molecular Biology Open Software Suite, Rice *et al.*, 2000,
*supra*), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap
extension penalty of 0.5, and the EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution
matrix. The output of Needle labeled "longest identity" (obtained using the -nobrief option) is
used as the percent identity and is calculated as follows:

\[
\text{(Identical Deoxyribonucleotides} \times 100)/\text{(Length of Alignment} - \text{Total Number of Gaps in Alignment)}
\]

**Subsequence:** The term "subsequence" means a polynucleotide having one or more
(e.g., several) nucleotides absent from the 5' and/or 3' end of a mature polypeptide coding
sequence; wherein the subsequence encodes a fragment having alpha-amylase activity.
**Variant:** The term "variant" means a polypeptide having alpha-amylase activity comprising an alteration, *i.e.*, a substitution, insertion, and/or deletion, at one or more (e.g., several) positions. A substitution means replacement of the amino acid occupying a position with a different amino acid; a deletion means removal of the amino acid occupying a position; and an insertion means adding an amino acid adjacent to and immediately following the amino acid occupying a position.

**Very high stringency conditions:** The term "very high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 70°C.

**Detailed Description of the Invention**

**Polypeptides Having Alpha-Amylase Activity**

In embodiments, the present disclosure relates to new alpha-amylase sequences. The new alpha-amylase sequences include the mature polypeptide of SEQ ID NO: 2, the mature polypeptide of SEQ ID NO:4 and the mature polypeptide of SEQ ID NO:6. A mature polypeptide of SEQ ID NO:2 is also shown as the amino acid sequence of SEQ ID NO: 1 (residues 1-585). A mature polypeptide of SEQ ID NO:4 is also shown as the amino acid sequence of SEQ ID NO: 3 (residues 1-622). A mature polypeptide of SEQ ID NO:6 is shown as the amino acid sequence of SEQ ID NO: 5 (residues 1-607).

In an embodiment, the present invention relates to isolated polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 2 of at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, which have alpha-amylase activity. In one aspect, the polypeptides differ from the mature polypeptide of SEQ ID NO: 2 by no more than 10 amino acids, *e.g.*, 1, 2, 3, 4, 5, 6, 7, 8, or 9 amino acids.

In another aspect, the polypeptide comprises or consists of the mature polypeptide of SEQ ID NO: 2. A polypeptide of the present invention preferably comprises or consists of the amino acid sequence of SEQ ID NO: 2 or an allelic variant thereof; or is a fragment thereof having alpha-amylase activity.

In an embodiment, the present invention relates to isolated polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO:4 of at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at...
least 97%, at least 98%, at least 99%, or 100%, which have alpha-amylase activity. In one aspect, the polypeptides differ from the mature polypeptide of SEQ ID NO:4 by no more than 10 amino acids, e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9 amino acids.

In another aspect, the polypeptide comprises or consists of the mature polypeptide of SEQ ID NO: 4. A polypeptide of the present invention preferably comprises or consists of the amino acid sequence of SEQ ID NO: 4 or an allelic variant thereof; or is a fragment thereof having alpha-amylase activity.

In an embodiment, the present invention relates to isolated polypeptides having a sequence identity to the polypeptide of SEQ ID NO:6 of at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, which have alpha-amylase activity. In one aspect, the polypeptides differ from the mature polypeptide of SEQ ID NO:6 by no more than 10 amino acids, e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9 amino acids.

In another aspect, the polypeptide comprises or consists of the mature polypeptide of SEQ ID NO: 6. A polypeptide of the present invention preferably comprises or consists of the amino acid sequence of SEQ ID NO: 6 or an allelic variant thereof; or is a fragment thereof having alpha-amylase activity.

The present invention relates to an isolated polypeptide having alpha-amylase activity encoded by a polynucleotide that hybridizes medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions with a nucleic acid sequence encoding the mature polypeptide coding sequence of SEQ ID NO: 1, SEQ ID NO:3, or SEQ ID NO:5, or (ii) the full-length complement of the mature polypeptide coding sequence of SEQ ID NO: 1, SEQ ID NO:3, or SEQ ID NO:5.

In another embodiment, the present invention relates to an isolated polypeptide having alpha-amylase activity encoded by a polynucleotide having a sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1, SEQ ID NO:3 or SEQ ID NO:5 of at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.

In another embodiment, the present invention relates to variants of the mature polypeptide of SEQ ID NO: 2, SEQ ID NO:4, or SEQ ID NO:6 comprising a substitution, deletion, and/or insertion at one or more (e.g., several) positions. In an embodiment, the number of amino acid substitutions, deletions and/or insertions introduced into the mature polypeptide is not more than 10, e.g., 1, 2, 3, 4, 5, 6, 7, 8 or 9 amino acids.
The amino acid changes may be of a minor nature, that is conservative amino acid substitutions or insertions that do not significantly affect the folding and/or activity of the protein. Examples of conservative substitutions are within the groups of basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine and asparagine), hydrophobic amino acids (leucine, isoleucine and valine), aromatic amino acids (phenylalanine, tryptophan and tyrosine), and small amino acids (glycine, alanine, serine, threonine and methionine). Amino acid substitutions that do not generally alter specific activity are known in the art and are described, for example, by H. Neurath and R.L. Hill, 1979, *In, The Proteins*, Academic Press, New York. Common substitutions are Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/AIu, Ala/Glu, and Asp/Gly.

Alternatively, the amino acid changes are of such a nature that the physico-chemical properties of the polypeptides are altered. For example, amino acid changes may improve the thermal stability of the polypeptide, alter the substrate specificity, change the pH optimum, and the like.


Mutagenesis/shuffling methods can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides expressed by host cells (Ness *et al*, 1999, *Nature Biotechnology* 17: 893-896). Mutagenized DNA molecules that encode active polypeptides can be recovered from the host cells and rapidly sequenced using standard methods in the art. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide.

Variants of the polypeptides may be constructed on the basis of the polynucleotide presented as the mature polypeptide coding sequence, *e.g.*, a subsequence thereof, and/or by introduction of nucleotide substitutions that do not result in a change in the amino acid sequence of the polypeptide, but which correspond to the codon usage of the host organism intended for production of the enzyme, or by introduction of nucleotide substitutions that may
give rise to a different amino acid sequence. For a general description of nucleotide substitution, see, e.g., Ford et al., 1991, *Protein Expression and Purification* 2: 95-107.

Essential amino acids in a polypeptide can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, 1989, *Science* 244: 1081-1085). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for alpha-amylase activity to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., 1996, *J. Biol. Chem.* 271 : 4699-4708. The active site of the enzyme or other biological interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction, or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos et al., 1992, *Science* 255: 306-312; Smith et al., 1992, *J. Mol. Biol.* 224: 899-904; Wlodaver et al., 1992, *FEBS Lett.* 309: 59-64. The identity of essential amino acids can also be inferred from an alignment with a related polypeptide.

**Polynucleotides**

The present invention also relates to isolated polynucleotides encoding a polypeptide of the present invention, as described herein. In one aspect, the present invention relates to polynucleotides that hybridizes under medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5, or (ii) the full-length complement of the mature polypeptide coding sequence of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5.

In another embodiment, the present invention relates to an a polynucleotide having a sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5, of at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%.

**Nucleic Acid Constructs**

The present invention also relates to nucleic acid constructs comprising a polynucleotide of the present invention operably linked to one or more control sequences that direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences.
A polynucleotide may be manipulated in a variety of ways to provide for expression of
the polypeptide. Manipulation of the polynucleotide prior to its insertion into a vector may be
desirable or necessary depending on the expression vector. The techniques for modifying
polynucleotides utilizing recombinant DNA methods are well known in the art.

The control sequence may be a promoter, a polynucleotide that is recognized by a host
cell for expression of a polynucleotide encoding a polypeptide of the present invention. The
promoter contains transcriptional control sequences that mediate the expression of the
polypeptide. The promoter may be any polynucleotide that shows transcriptional activity in the
host cell including mutant, truncated, and hybrid promoters, and may be obtained from genes
encoding extracellular or intracellular polypeptides either homologous or heterologous to the
host cell.

Examples of suitable promoters for directing transcription of the nucleic acid constructs
of the present invention in a bacterial host cell are the promoters obtained from the Bacillus
amylo liquefaciens alpha-amylase gene (amyQ), Bacillus licheniformis alpha-amylase gene
(amyL), Bacillus licheniformis penicillinase gene (penP), Bacillus stearothermophilus maltogenic
amylase gene (amyM), Bacillus subtilis levansucrase gene (sacB), Bacillus subtilis xylA and
xylB genes, Bacillus thuringiensis cryIII A gene (Agaisse and Lereclus, 1994, Molecular
Microbiology 13: 97-107), E. coli lac operon, E. coli trc promoter (Egon et al., 1988, Gene 69:
301-315), Streptomyces coelicolor agarase gene (dagA), and prokaryotic beta-lactamase gene
(Villa-Kamaroff et al., 1978, Proc. Natl. Acad. Sci. USA 75: 3727-3731), as well as the tac
described in "Useful proteins from recombinant bacteria" in Gilbert et al., 1980, Scientific
American 242: 74-94; and in Sambrook et al., 1989, supra. Examples of tandem promoters are
disclosed in WO 99/43835.

Examples of suitable promoters for directing transcription of the nucleic acid constructs
of the present invention in a filamentous fungal host cell are promoters obtained from the genes
for Aspergillus nidulans acetamidase, Aspergillus niger neutral alpha-amylase, Aspergillus niger
acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA),
Aspergillus oryzae TAKA amylase, Aspergillus oryzae alkaline protease, Aspergillus oryzae
triose phosphate isomerase, Fusarium oxysporum trypsin-like protease (WO 96/00787),
Fusarium venenatum amylloglucosidase (WO 00/56900), Fusarium venenatum Daria
(WO 00/56900), Fusarium venenatum Quinn (WO 00/56900), Rhizomucor miehei lipase,
Rhizomucor miehei aspartic proteinase, Trichoderma reesei beta-glucosidase, Trichoderma
reesei cellobiohydrolase I, Trichoderma reesei cellobiohydrolase II, Trichoderma reesei
endoglucanase I, Trichoderma reesei endoglucanase II, Trichoderma reesei endoglucanase III, Trichoderma reesei endoglucanase IV, Trichoderma reesei endoglucanase V, Trichoderma reesei xylanase I, Trichoderma reesei xylanase II, Trichoderma reesei beta-xylosidase, as well as the NA2-tpi promoter (a modified promoter from an Aspergillus neutral alpha-amylase gene in which the untranslated leader has been replaced by an untranslated leader from an Aspergillus triose phosphate isomerase gene; non-limiting examples include modified promoters from an Aspergillus niger neutral alpha-amylase gene in which the untranslated leader has been replaced by an untranslated leader from an Aspergillus nidulans or Aspergillus oryzae triose phosphate isomerase gene); and mutant, truncated, and hybrid promoters thereof.

In a yeast host, useful promoters are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1), Saccharomyces cerevisiae galactokinase (GAL1), Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH1, ADH2/GAP), Saccharomyces cerevisiae triose phosphate isomerase (TPI), Saccharomyces cerevisiae metallothionein (CUP1), and Saccharomyces cerevisiae 3-phosphoglycerate kinase. Other useful promoters for yeast host cells are described by Romanos et al., 1992, Yeast 8: 423-488.

The control sequence may also be a transcription terminator, which is recognized by a host cell to terminate transcription. The terminator is operably linked to the 3'-terminus of the polynucleotide encoding the polypeptide. Any terminator that is functional in the host cell may be used in the present invention.

Preferred terminators for bacterial host cells are obtained from the genes for Bacillus clausii alkaline protease (aprH), Bacillus licheniformis alpha-amylase (amyL), and Escherichia coli ribosomal RNA (rMB).

Preferred terminators for filamentous fungal host cells are obtained from the genes for Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase, Aspergillus oryzae TAKA amylase, and Fusarium oxysporum trypsin-like protease.

Preferred terminators for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase, Saccharomyces cerevisiae cytochrome C (CYC1), and Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase. Other useful terminators for yeast host cells are described by Romanos et al., 1992, supra.

The control sequence may also be an mRNA stabilizer region downstream of a promoter and upstream of the coding sequence of a gene which increases expression of the gene.
Examples of suitable mRNA stabilizer regions are obtained from a *Bacillus thuringiensis cryIIIＡ* gene (WO 94/25612) and a *Bacillus subtilis* SP82 gene (Hue *et al.*, 1995, *Journal of Bacteriology* 177: 3465-3471).

The control sequence may also be a leader, a nontranslated region of an mRNA that is important for translation by the host cell. The leader is operably linked to the 5'-terminus of the polynucleotide encoding the polypeptide. Any leader that is functional in the host cell may be used.

Preferred leaders for filamentous fungal host cells are obtained from the genes for *Aspergillus oryzae* TAKA amylase and *Aspergillus nidulans* triose phosphate isomerase.

Suitable leaders for yeast host cells are obtained from the genes for *Saccharomyces cerevisiae* enolase (ENO-1), *Saccharomyces cerevisiae* 3-phosphoglycerate kinase, *Saccharomyces cerevisiae* alpha-factor, and *Saccharomyces cerevisiae* alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).

The control sequence may also be a polyadenylation sequence, a sequence operably linked to the 3'-terminus of the polynucleotide and, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence that is functional in the host cell may be used.

Preferred polyadenylation sequences for filamentous fungal host cells are obtained from the genes for *Aspergillus nidulans* anthranilate synthase, *Aspergillus niger* glucoamylase, *Aspergillus niger* alpha-glucosidase *Aspergillus oryzae* TAKA amylase, and *Fusarium oxysporum* trypsin-like protease.


The control sequence may also be a signal peptide coding region that encodes a signal peptide linked to the N-terminus of a polypeptide and directs the polypeptide into the cell's secretory pathway. The 5'-end of the coding sequence of the polynucleotide may inherently contain a signal peptide coding sequence naturally linked in translation reading frame with the segment of the coding sequence that encodes the polypeptide. Alternatively, the 5'-end of the coding sequence may contain a signal peptide coding sequence that is foreign to the coding sequence. A foreign signal peptide coding sequence may be required when the coding sequence does not naturally contain a signal peptide coding sequence. Alternatively, a foreign signal peptide coding sequence may simply replace the natural signal peptide coding sequence in order to enhance secretion of the polypeptide. However, any signal peptide coding sequence that directs the expressed polypeptide into the secretory pathway of a host cell may be used.
Effective signal peptide coding sequences for bacterial host cells are the signal peptide coding sequences obtained from the genes for *Bacillus* NCIB 11837 maltogenic amylase, *Bacillus licheniformis* subtilisin, *Bacillus licheniformis* beta-lactamase, *Bacillus stearothermophilus* alpha-amylase, *Bacillus stearothermophilus* neutral proteases (nprT, nprS, nprM), and *Bacillus subtilis* prsA. Further signal peptides are described by Simonen and Palva, 1993, *Microbiological Reviews* 57: 109-137.


Useful signal peptides for yeast host cells are obtained from the genes for *Saccharomyces cerevisiae* alpha-factor and *Saccharomyces cerevisiae* invertase. Other useful signal peptide coding sequences are described by Romanos *et al.*, 1992, *supra*.

The control sequence may also be a propeptide coding sequence that encodes a propeptide positioned at the N-terminus of a polypeptide. The resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases). A propolypeptide is generally inactive and can be converted to an active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide. The propeptide coding sequence may be obtained from the genes for *Bacillus subtilis* alkaline protease (aprE), *Bacillus subtilis* neutral protease (nprT), *Myceliophthora thermophila* laccase (WO 95/33836), *Rhizomucor miehei* aspartic proteinase, and *Saccharomyces cerevisiae* alpha-factor.

Where both signal peptide and propeptide sequences are present, the propeptide sequence is positioned next to the N-terminus of a polypeptide and the signal peptide sequence is positioned next to the N-terminus of the propeptide sequence.

It may also be desirable to add regulatory sequences that regulate expression of the polypeptide relative to the growth of the host cell. Examples of regulatory systems are those that cause expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Regulatory systems in prokaryotic systems include the *lac*, *tac*, and *trp* operator systems. In yeast, the ADH2 system or GAL1 system may be used. In filamentous fungi, the *Aspergillus niger* glucoamylase promoter, *Aspergillus oryzae* TAKA alpha-amylase promoter, and *Aspergillus oryzae* glucoamylase promoter may be used. Other examples of regulatory sequences are those that allow for gene
amplification. In eukaryotic systems, these regulatory sequences include the dihydrofolate reductase gene that is amplified in the presence of methotrexate, and the metallothionein genes that are amplified with heavy metals. In these cases, the polynucleotide encoding the polypeptide would be operably linked with the regulatory sequence.

Expression Vectors

The present invention also relates to recombinant expression vectors comprising a polynucleotide of the present invention, a promoter, and transcriptional and translational stop signals. The various nucleotide and control sequences may be joined together to produce a recombinant expression vector that may include one or more convenient restriction sites to allow for insertion or substitution of the polynucleotide encoding the polypeptide at such sites. Alternatively, the polynucleotide may be expressed by inserting the polynucleotide or a nucleic acid construct comprising the polynucleotide into an appropriate vector for expression. In creating the expression vector, the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.

The recombinant expression vector may be any vector (e.g., a plasmid or virus) that can be conveniently subjected to recombinant DNA procedures and can bring about expression of the polynucleotide. The choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced. The vector may be a linear or closed circular plasmid.

The vector may be an autonomously replicating vector, i.e., a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Alternatively, the vector may be one that, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Furthermore, a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host cell, or a transposon, may be used.

The vector preferably contains one or more selectable markers that permit easy selection of transformed, transfected, transduced, or the like cells. A selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.

Selectable markers for use in a filamentous fungal host cell include, but are not limited to, *amdS* (acetamidase), *argB* (ornithine carbamoyltransferase), *bar* (phosphinothricin...
acetyltransferase), hph (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5'-phosphate decarboxylase), sC (sulfate adenyltransferase), and trpC (anthranilate synthase), as well as equivalents thereof. Preferred for use in an Aspergillus cell are Aspergillus nidulans or Aspergillus oryzae amdS and pyrG genes and a Streptomyces hygroscopicus bar gene.

The vector preferably contains an element(s) that permits integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.

For integration into the host cell genome, the vector may rely on the polynucleotide's sequence encoding the polypeptide or any other element of the vector for integration into the genome by homologous or non-homologous recombination. Alternatively, the vector may contain additional polynucleotides for directing integration by homologous recombination into the genome of the host cell at a precise location(s) in the chromosome(s). To increase the likelihood of integration at a precise location, the integrational elements should contain a sufficient number of nucleic acids, such as 100 to 10,000 base pairs, 400 to 10,000 base pairs, and 800 to 10,000 base pairs, which have a high degree of sequence identity to the corresponding target sequence to enhance the probability of homologous recombination. The integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding polynucleotides. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination.

For autonomous replication, the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question. The origin of replication may be any plasmid replicator mediating autonomous replication that functions in a cell. The term "origin of replication" or "plasmid replicator" means a polynucleotide that enables a plasmid or vector to replicate in vivo.

Examples of origins of replication useful in a filamentous fungal cell are AMA1 and ANSI (Gems et al., 1991, Gene 98: 61-67; Cullen et al., 1987, Nucleic Acids Res. 15: 9163-9175; WO 00/24883). Isolation of the AMA1 gene and construction of plasmids or vectors comprising the gene can be accomplished according to the methods disclosed in WO 00/24883.

Examples of origins of replication for use in a yeast host cell are the 2 micron origin of replication, ARS1, ARS4, the combination of ARS1 and CEN3, and the combination of ARS4 and CEN6.
More than one copy of a polynucleotide of the present invention may be inserted into a host cell to increase production of a polypeptide. An increase in the copy number of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the polynucleotide where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the polynucleotide, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.

The procedures used to ligate the elements described above to construct the recombinant expression vectors of the present invention are well known to one skilled in the art (see, e.g., Sambrook et al., 1989, supra).

Host Cells

The present invention also relates to recombinant host cells, comprising a polynucleotide of the present invention operably linked to one or more control sequences that direct the production of a polypeptide of the present invention. A construct or vector comprising a polynucleotide is introduced into a host cell so that the construct or vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier. The host cell may be any cell useful in the recombinant production of a polypeptide of the present invention, e.g., a prokaryote (bacterial cell) or a eukaryote (such as a mammalian, insect, plant, or fungal cell).

In a preferred aspect, the host cell is a fungal cell. "Fungi" as used herein includes the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota as well as the Oomycota and all mitosporic fungi (as defined by Hawksworth et al., In, Ainsworth and Bisby's Dictionary of The Fungi, 8th edition, 1995, CAB International, University Press, Cambridge, UK).

The fungal host cell may be a yeast cell. "Yeast" as used herein includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast belonging to the Fungi Imperfecti (Blastomycetes). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in Biology and Activities of Yeast (Skinner, Passmore, and Davenport, editors, Soc. App. Bacteriol. Symposium Series No. 9, 1980).

The yeast host cell may be a Candida, Hansenula, Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces, or Yarrowia cell, such as a Kluyveromyces lactis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus,
Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis, Saccharomyces oviformis, or Yarrowia lipolytica cell.

The fungal host cell may be a filamentous fungal cell. "Filamentous fungi" include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al., 1995, supra). The filamentous fungi are generally characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, mannan, and other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic. In contrast, vegetative growth by yeasts such as Saccharomyces cerevisiae is by budding of a unicellular thallus and carbon catabolism may be fermentative.

The filamentous fungal host cell may be an Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysosporium, Coprinus, Coriolus, Cryptococcus, Filibasidium, Fusarium, Humicola, Magnaporthe, Mucor, Myceliophthora, Neocallichromatex, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, or Trichoderma cell.

For example, the filamentous fungal host cell may be an Aspergillus awamori, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis caregiae, Ceriporiopsis villosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Chrysosporium inops, Chrysosporium keratinophilum, Chrysosporium lucknowense, Chrysosporium mordarium, Chrysosporium pannicol, Chrysosporium queenslandicum, Chrysosporium tropicum, Chrysosporium zonatum, Coprinus cinereus, Coriolus hirsutus, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Penicillium purpurogenum, Phanerochaete chrysosporium, Phlebia radiata, Pleurotus eryngii, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, or Trichoderma viride cell.

Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known per se. Suitable procedures for transformation of Aspergillus and Trichoderma host cells are described

Methods of Production

The present invention also relates to methods of producing a polypeptide of the present invention, comprising: a) cultivating a host cell comprising the polynucleotide encoding the polypeptide of the present invention operably linked to one or more control sequences that direct the production of the polypeptide under conditions conducive for production of the polypeptide; and (b) recovering the polypeptide.

In a preferred aspect, the cell is an Aspergillus cell, such as, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Aspergillus terreus.

The present invention also relates to methods of producing a polypeptide of the present invention, comprising (a) cultivating a recombinant host cell of the present invention under conditions conducive for production of the polypeptide; and (b) recovering the polypeptide.

The host cells are cultivated in a nutrient medium suitable for production of the polypeptide using methods known in the art. For example, the cell may be cultivated by shake flask cultivation, or small-scale or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermentors in a suitable medium and under conditions allowing the polypeptide to be expressed and/or isolated. The cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions (e.g., in catalogues of the American Type Culture Collection). If the polypeptide is secreted into the nutrient medium, the polypeptide can be recovered directly from the medium. If the polypeptide is not secreted, it can be recovered from cell lysates.

The polypeptide may be detected using methods known in the art that are specific for the polypeptides. These detection methods include, but are not limited to, use of specific
antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. For example, an enzyme assay may be used to determine the activity of the polypeptide.

The polypeptide may be recovered using methods known in the art. For example, the polypeptide may be recovered from the nutrient medium by conventional procedures including, but not limited to, collection, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation.

The polypeptide may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing), differential solubility (e.g., ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., Protein Purification, Janson and Ryden, editors, VCH Publishers, New York, 1989) to obtain substantially pure polypeptides.

In an alternative aspect, the polypeptide is not recovered, but rather a host cell of the present invention expressing the polypeptide is used as a source of the polypeptide.

Plants

The present invention also relates to isolated plants, e.g., a transgenic plant, plant part, or plant cell, comprising a polynucleotide of the present invention so as to express and produce a polypeptide or domain in recoverable quantities. The polypeptide or domain may be recovered from the plant or plant part. Alternatively, the plant or plant part containing the polypeptide or domain may be used as such for improving the quality of a food or feed, e.g., improving nutritional value, palatability, and rheological properties, or to destroy an antinutritive factor.

The transgenic plant can be dicotyledonous (a dicot) or monocotyledonous (a monocot). Examples of monocot plants are grasses, such as meadow grass (blue grass, Poa), forage grass such as Festuca, Lolium, temperate grass, such as Agrostis, and cereals, e.g., wheat, oats, rye, barley, rice, sorghum, and maize (corn).

Examples of dicot plants are tobacco, legumes, such as lupins, potato, sugar beet, pea, bean and soybean, and cruciferous plants (family Brassicaceae), such as cauliflower, rape seed, and the closely related model organism Arabidopsis thaliana.

Examples of plant parts are stem, callus, leaves, root, fruits, seeds, and tubers as well as the individual tissues comprising these parts, e.g., epidermis, mesophyll, parenchyma, vascular tissues, meristems. Specific plant cell compartments, such as chloroplasts, apoplasts, mitochondria, vacuoles, peroxisomes and cytoplasm are also considered to be a plant part. Furthermore, any plant cell, whatever the tissue origin, is considered to be a plant part.
Likewise, plant parts such as specific tissues and cells isolated to facilitate the utilization of the invention are also considered plant parts, e.g., embryos, endosperms, aleurone and seed coats.

Also included within the scope of the present invention are the progeny of such plants, plant parts, and plant cells.

The transgenic plant or plant cell expressing the polypeptide or domain may be constructed in accordance with methods known in the art. In short, the plant or plant cell is constructed by incorporating one or more expression constructs encoding the polypeptide or domain into the plant host genome or chloroplast genome and propagating the resulting modified plant or plant cell into a transgenic plant or plant cell.

The expression construct is conveniently a nucleic acid construct that comprises a polynucleotide encoding a polypeptide or domain operably linked with appropriate regulatory sequences required for expression of the polynucleotide in the plant or plant part of choice. Furthermore, the expression construct may comprise a selectable marker useful for identifying plant cells into which the expression construct has been integrated and DNA sequences necessary for introduction of the construct into the plant in question (the latter depends on the DNA introduction method to be used).

The choice of regulatory sequences, such as promoter and terminator sequences and optionally signal or transit sequences, is determined, for example, on the basis of when, where, and how the polypeptide or domain is desired to be expressed. For instance, the expression of the gene encoding a polypeptide or domain may be constitutive or inducible, or may be developmental, stage or tissue specific, and the gene product may be targeted to a specific tissue or plant part such as seeds or leaves. Regulatory sequences are, for example, described by Tague et al., 1988, Plant Physiology 86: 506.

For constitutive expression, the 35S-CaMV, the maize ubiquitin 1, or the rice actin 1 promoter may be used (Franck et al., 1980, Cell 21: 285-294; Christensen et al., 1992, Plant Mol. Biol. 18: 675-689; Zhang et al., 1991, Plant Cell 3: 1155-1165). Organ-specific promoters may be, for example, a promoter from storage sink tissues such as seeds, potato tubers, and fruits (Edwards and Coruzzi, 1990, Ann. Rev. Genet. 24: 275-303), or from metabolic sink tissues such as meristems (Ito et al., 1994, Plant Mol. Biol. 24: 863-878), a seed specific promoter such as the glutelin, prolamin, globulin, or albumin promoter from rice (Wu et al., 1998, Plant Cell Physiol. 39: 885-889), a Vicia faba promoter from the legumin B4 and the unknown seed protein gene from Vicia faba (Conrad et al., 1998, J. Plant Physiol. 152: 708-711), a promoter from a seed oil body protein (Chen et al., 1998, Plant Cell Physiol. 39: 935-941), the storage protein napA promoter from Brassica napus, or any other seed specific promoter known
in the art, e.g., as described in WO 91/14772. Furthermore, the promoter may be a leaf specific promoter such as the rbcs promoter from rice or tomato (Kyozuka et al., 1993, Plant Physiol. 102: 991-1000), the chlorella virus adenine methyltransferase gene promoter (Mitra and Higgins, 1994, Plant Mol. Biol. 26: 85-93), the aldP gene promoter from rice (Kagaya et al., 1995, Mol. Gen. Genet. 248: 668-674), or a wound inducible promoter such as the potato pin2 promoter (Xu et al., 1993, Plant Mol. Biol. 22: 573-588). Likewise, the promoter may be induced by abiotic treatments such as temperature, drought, or alterations in salinity or induced by exogenously applied substances that activate the promoter, e.g., ethanol, oestrogens, plant hormones such as ethylene, abscisic acid, and gibberelic acid, and heavy metals.

A promoter enhancer element may also be used to achieve higher expression of a polypeptide or domain in the plant. For instance, the promoter enhancer element may be an intron that is placed between the promoter and the polynucleotide encoding a polypeptide or domain. For instance, Xu et al., 1993, supra, disclose the use of the first intron of the rice actin 1 gene to enhance expression.

The selectable marker gene and any other parts of the expression construct may be chosen from those available in the art.

The nucleic acid construct is incorporated into the plant genome according to conventional techniques known in the art, including Agrobacterium tumefaciens-mediated transformation, virus-mediated transformation, microinjection, particle bombardment, biolistic transformation, and electroporation (Gasser et al., 1990, Science 244: 1293; Potrykus, 1990, Bio/Technology 8: 535; Shimamoto et al., 1989, Nature 338: 274).

Agrobacterium tumefaciens-mediated gene transfer is a method for generating transgenic dicots (for a review, see Hooykas and Schilperoort, 1992, Plant Mol. Biol. 19: 15-38) and for transforming monocots, although other transformation methods may be used for these plants. A method for generating transgenic monocots is particle bombardment (microscopic gold or tungsten particles coated with the transforming DNA) of embryonic calli or developing embryos (Christou, 1992, Plant J. 2: 275-281; Shimamoto, 1994, Curr. Opin. Biotechnol. 5: 158-162; Vasil et al., 1992, Bio/Technology 10: 667-674). An alternative method for transformation of monocots is based on protoplast transformation as described by Omirulleh et al., 1993, Plant Mol. Biol. 21: 415-428. Additional transformation methods include those described in U.S. Patent Nos. 6,395,966 and 7,151,204 (both of which are herein incorporated by reference in their entirety).

Following transformation, the transformants having incorporated the expression construct are selected and regenerated into whole plants according to methods well known in
the art. Often the transformation procedure is designed for the selective elimination of selection genes either during regeneration or in the following generations by using, for example, co-transformation with two separate T-DNA constructs or site specific excision of the selection gene by a specific recombinase.

In addition to direct transformation of a particular plant genotype with a construct of the present invention, transgenic plants may be made by crossing a plant having the construct to a second plant lacking the construct. For example, a construct encoding a polypeptide or domain can be introduced into a particular plant variety by crossing, without the need for ever directly transforming a plant of that given variety. Therefore, the present invention encompasses not only a plant directly regenerated from cells which have been transformed in accordance with the present invention, but also the progeny of such plants. As used herein, progeny may refer to the offspring of any generation of a parent plant prepared in accordance with the present invention. Such progeny may include a DNA construct prepared in accordance with the present invention. Crossing results in the introduction of a transgene into a plant line by cross pollinating a starting line with a donor plant line. Non-limiting examples of such steps are described in U.S. Patent No. 7,151,204.

Plants may be generated through a process of backcross conversion. For example, plants include plants referred to as a backcross converted genotype, line, inbred, or hybrid.

Genetic markers may be used to assist in the introgression of one or more transgenes of the invention from one genetic background into another. Marker assisted selection offers advantages relative to conventional breeding in that it can be used to avoid errors caused by phenotypic variations. Further, genetic markers may provide data regarding the relative degree of elite germplasm in the individual progeny of a particular cross. For example, when a plant with a desired trait which otherwise has a non-agronomically desirable genetic background is crossed to an elite parent, genetic markers may be used to select progeny which not only possess the trait of interest, but also have a relatively large proportion of the desired germplasm. In this way, the number of generations required to introgress one or more traits into a particular genetic background is minimized.

The present invention also relates to methods of producing a polypeptide or domain of the present invention comprising (a) cultivating a transgenic plant or a plant cell comprising a polynucleotide encoding the polypeptide or domain under conditions conducive for production of the polypeptide or domain; and (b) recovering the polypeptide or domain.
Compositions

The present invention also relates to compositions comprising a polypeptide of the present invention. Such polypeptide compositions may be prepared in accordance with methods known in the art and may be in the form of a liquid or a dry composition. The polypeptide to be included in the composition may be stabilized in accordance with methods known in the art.

The polypeptide composition may be in the form of granulate, a micro granulate or a powder. Methods of preparing such compositions are well known in the art.

The polypeptide composition may be in the form of a fermentation broth product. The fermentation broth product will in addition to the polypeptide of the present invention comprise additional ingredients used in the fermentation process, such as, for example, cells (including, the host cells containing the gene encoding the polypeptide of the present invention which are used to produce the polypeptide of interest), cell debris, biomass, fermentation media and/or fermentation products. The fermentation broth may optionally be subject to one or more purification (including filtration) steps to remove or reduce one more components of a fermentation process.

The polypeptide composition may further comprise an enzyme selected from the group comprising of another alpha-amylase (EC 3.2.1.1), a beta-amylase (E.C. 3.2.1.2), a glucoamylase (E.C.3.2.1.3), a pullulanases (E.C. 3.2.1.41), a phytase (E.C.3.1.2.28) and a protease (E.C. 3.4.), and combinations thereof (e.g., the polypeptide of the present invention and a glucoamylase. or the polypeptide of the present invention and a glucoamylase and a protease).

In a particular aspect, the polypeptide composition further comprises a glucoamylase. The polypeptide may be combined with commercial glucoamylase, such as, the glucoamylase preparation supplied by Novozymes A/S as SPIRIZYME FUEL. The glucoamylase may also be derived from a strain of Aspergillus sp., such as Aspergillus niger, or from a strain of Talaromyces sp. and in particular derived from Talaromyces leycettanus such as the glucoamylase disclosed in U.S. patent no. Re. 32,153, Talaromyces duponti and/or Talaromyces thermopiles such as the glucoamylases disclosed in U.S. Patent No. 4,587,215 and more preferably derived from Talaromyces emersonii. In one aspect, the glucoamylase is derived from Talaromyces emersonii strain CBS 793.97 and/or having the sequence disclosed as SEQ ID NO: 7 in WO 99/28448. In another aspect, the glucoamylase activity is derived from a strain of the genus Trametes, preferably Trametes cingulata. Further glucoamylases include the glucoamylase having the amino acid sequence of the mature polypeptide of SEQ ID NO: 2 in WO 2006/069289. Glucoamylase may also include glucoamylases from the genus
**Pachykytospora**, preferably *Pachykytospora papyracea* or the *E. coli* strain deposited at DSMZ and given the no. DSM 17105, and including the glucoamylase having the amino acid sequence of the mature polypeptide of mature polypeptide of SEQ ID NO: 5 in WO 2006/069289. Further glucoamylases include those which have an amino acid sequence having at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or even at least 99% homology to the aforementioned amino acid sequence.

The dosage of the polypeptide composition of the invention and other conditions under which the composition is used may be determined on the basis of methods known in the art.

**Uses**

The present invention is also directed to methods for using the polypeptides having alpha-amylase activity, or compositions thereof.

The polypeptide or the composition of the present invention may be used in starch conversion, starch to sugar conversion and ethanol production etc, e.g., in liquefying and/or saccharifying a gelatinized starch, a granular starch, or a partly gelatinized starch. A partly gelatinized starch is a starch which to some extent is gelatinized, *i.e.*, wherein part of the starch has irreversibly swelled and gelatinized and part of the starch is still present in a granular state.

The polypeptide or the composition of the present invention may be used in a process for liquefying a gelatinized starch, a granular starch, or a partly gelatinized starch substrate in aqueous medium with the polypeptide of the present invention.

A preferred use of a polypeptide of the present invention is in a fermentation process to produce glucose and/or maltose suitable for conversion into a fermentation product by a fermenting organism, preferably a yeast. Such fermentation processes include a process for producing ethanol for fuel or drinking ethanol (portable alcohol), a process for producing a beverage, a process for producing desired organic compounds, such as citric acid, itaconic acid, lactic acid, gluconic acid, sodium gluconate, calcium gluconate, potassium gluconate, glucono delta lactone, or sodium erythorbate; ketones; amino acids, such as glutamic acid (sodium monoglutamate), but also more complex compounds such as antibiotics, such as penicillin, tetracyclin; enzymes; vitamins, such as riboflavin, B12, beta-carotene; hormones, which are difficult to produce synthetically.

In a preferred embodiment, the polypeptide of the present invention is used in a process comprising fermentation to produce a fermentation product (e.g., ethanol), from a gelatinized starch. Such a process for producing ethanol from gelatinized starch by fermentation comprises: (i) liquefying the gelatinized starch with a polypeptide with alpha-amylase activity of
the present invention; (ii) saccharifying the liquefied mash obtained; (iii) fermenting the material obtained in step (ii) in the presence of a fermenting organism. Optionally the process further comprises recovery of the ethanol. The saccharification and fermentation may be carried out as a simultaneous saccharification and fermentation process (SSF process).

In another preferred embodiment, the polypeptide of the present invention is used in a process comprising fermentation to produce a fermentation product, e.g., ethanol, from an ungelatinized ("raw") starch. Such a process for producing ethanol from ungelatinized starch-containing material by fermentation comprises: (i) contacting the ungelatinized starch with a polypeptide with alpha-amylase activity of the present invention to degrade the ungelatinized starch; (ii) saccharifying the mash obtained; (iii) fermenting the material obtained in step (ii) in the presence of a fermenting organism. Optionally the process further comprises recovery of the ethanol. The saccharification and fermentation may be carried out as a simultaneous saccharification and fermentation process (SSF process).

The starch-containing material used in the methods of the present invention may be any starch-containing plant material. Preferred starch-containing materials are selected from the group consisting of: tubers, roots and whole grains; and any combinations thereof. In an embodiment, the starch-containing material is obtained from cereals. The starch-containing material may, e.g., be selected from the groups consisting of corn (maize), cob, wheat, barley, cassava, sorghum, rye, milo and potato; or any combination thereof. When the fermentation product is ethanol the starch-containing material is preferably whole grains or at least mainly whole grains. The raw material may also consist of or comprise a side-stream from starch processing.

In further embodiments, the polypeptide of the present invention may also be useful in textile, fabric or garment desizing by treating a textile fabric or garment with a polypeptide of the present invention, in producing a baked good or dough, by treating a dough with a polypeptide of the present invention, and optionally baking, as an ingredient in a detergent and pulp and paper production process by treating a paper making pulp with a polypeptide of the present invention.

The present invention is further described by the following examples that should not be construed as limiting the scope of the invention.

Examples

Assays for Alpha-Amylase Activity
1. Phadebas assay

Alpha-amylase activity is determined by a method employing Phadebas® tablets as substrate. Phadebas tablets (Phadebas® Amylase Test, supplied by Pharmacia Diagnostic) contain a cross-linked insoluble blue-colored starch polymer, which has been mixed with bovine serum albumin and a buffer substance and tableted.

For every single measurement one tablet is suspended in a tube containing 5 ml 50 mM Britton-Robinson buffer (50 mM acetic acid, 50 mM phosphoric acid, 50 mM boric acid, 0.1 mM CaCl₂, pH adjusted to the value of interest with NaOH). The test is performed in a water bath at the temperature of interest. The alpha-amylase to be tested is diluted in x ml of 50 mM Britton-Robinson buffer. 1 ml of this alpha-amylase solution is added to the 5 ml 50 mM Britton-Robinson buffer. The starch is hydrolyzed by the alpha-amylase giving soluble blue fragments. The absorbance of the resulting blue solution, measured spectrophotometrically at 620 nm, is a function of the alpha-amylase activity.

It is important that the measured 620 nm absorbance after 10 or 15 minutes of incubation (testing time) is in the range of 0.2 to 2.0 absorbance units at 620 nm. In this absorbance range there is linearity between activity and absorbance (Lambert-Beer law). The dilution of the enzyme must therefore be adjusted to fit this criterion. Under a specified set of conditions (temp., pH, reaction time, buffer conditions) 1 mg of a given alpha-amylase will hydrolyze a certain amount of substrate and a blue color will be produced. The color intensity is measured at 620 nm. The measured absorbance is directly proportional to the specific activity (activity/mg of pure alpha-amylase protein) of the alpha-amylase in question under the given set of conditions.

2. Alternative method

Alpha-amylase activity is determined by a method employing the PNP-G₇ substrate. PNP-G₇, which is an abbreviation for p-nitrophenyl-alpha-D-maltoheptaoside, is a blocked oligosaccharide which can be cleaved by an endo-amylase. Following the cleavage, the alpha-Glucosidase included in a commercially available kit digests the substrate to liberate a free PNP molecule which has a yellow color and thus can be measured by visible spectrophotometry at λ=405nm (400-420 nm). Kits containing PNP-G₇ substrate and alpha-Glucosidase are commercially available from Roche and others.

To prepare the reagent solution 10 ml of substrate/buffer solution is added to 50 ml enzyme/buffer solution as recommended by the manufacturer. The assay is performed by transferring 20 micro l sample to a 96 well microtitre plate and incubating at 25°C. 200 micro l reagent solution pre-equilibrated to 25°C is added. The solution is mixed and pre-incubated 1
minute and absorption is measured every 30 sec. over 4 minutes at OD 405 nm in an ELISA reader.

The slope of the time dependent absorption-curve is directly proportional to the activity of the alpha-amylase in question under the given set of conditions.

Example 1

An alpha-amylase of the present invention (SEQ ID NO:2) was evaluated in a raw starch fermentation assay and compared to both a hybrid alpha-amylase (described in WO 2006/069290 as having the Rhizomucor pusillus catalytic domain (SEQ ID NO:20), the Aspergillus niger linker (SEQ ID NO: 72) and the Aspergillus niger carbohydrate binding domain (SEQ ID NO:96)) and to the Aspergillus terreus alpha-amylase (shown as SEQ ID NO:2 in WO 2010/091221).

Materials and Methods

Approximately 405 g yellow dent corn (obtained from Hawkeye Renewables of Shell Rock, Iowa; ground in-house) was added to 595 g tap water and the dry solids (DS) level was determined to be 34.42% DS. This mixture was supplemented with 3 ppm penicillin and 1000 ppm urea. The slurry was adjusted to pH 4.5 with 40% H₂SO₄. Approximately 5 g of this slurry was added to 15 mL tubes. Each tube was dosed with purified DK193 AMG (Trametes cingulata AMG disclosed in WO 2006/069289 as SEQ ID NO: 2) at 0.0801 mg EP/g DS and the alpha-amylases were dosed at 0.0225 mg EP/g DS. Actual enzyme dosages were based on the exact weight of corn slurry in each tube according to the following formula:

\[
\text{Enz. dose (µL) = } \frac{\text{Final enz. dose (mg/g DS) x Mash weight (g) x Dry solid content (%DS)}}{\text{Stock enzyme cone. (mg/mL) x 1000}}
\]

Water was added to each tube to bring the total added volume (enzyme + water) to 2% of the initial weight of the mash. This volume correction brings all tubes in the experiment to the same total percent solids, making ethanol concentrations directly comparable between treatments. After enzyme and water addition, 200 µL of yeast propagate (0.024 g Fermentis Ethanol Red yeast, incubated overnight at 32 °C in 50 mL filtered liquefied corn mash and 5.1 µL Spirizyme Plus AMG) was added to each tube.
Tubes were incubated in a temperature controlled room at 32°C and six replicate fermentations of each treatment were run. All tubes were vortexed at 24 and 48 hours. One sample was sacrificed for HPLC analysis at 24 hours, two at 48 hours, and three at 70 hours. The HPLC preparation consisted of stopping the reaction by addition of 50 µL of 40% H₂SO₄, centrifuging for 10 min at 1462xg, and filtering through a 0.45 µm filter. Samples were stored at 4°C. An Agilent™ 1100 HPLC system coupled with RI detector was used to determine ethanol and oligosaccharides concentrations. The separation column was a BioRad™ Aminex HPX-87H ion exclusion column (300mm x 7.8mm).

Data were analyzed in JMP (SAS, Cary, NC). Outliers were removed based on F-test (p<0.05). Treatments were compared to control with the Tukey-Kramer HSD test (p<0.05).

Results and Discussion

As shown in Table 1, under these experimental conditions, an alpha-amylase of the present invention (SEQ ID NO: 2) performed better than the hybrid alpha-amylase (WO 2006/069290) showing a 2.2% improvement at the 70 hr time point as compared to the hybrid alpha-amylase (WO 2006/069290) and also better than the Aspergillus terreus alpha-amylase.

Table 1.

<table>
<thead>
<tr>
<th>Treatment (70hr)</th>
<th>Ethanol yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invention (SEQ ID NO:2)</td>
<td>102.21%</td>
</tr>
<tr>
<td>Hybrid alpha-amylase of WO 2006/069290</td>
<td>100.00%</td>
</tr>
<tr>
<td>A. terreus</td>
<td>96.68%</td>
</tr>
</tbody>
</table>

Example 2

Materials and Methods

Approximately 405 g yellow dent corn (obtained from Hawkeye Renewables of Shell Rock, Iowa; ground in-house) was added to 595 g tap water and the dry solids (DS) level was determined to be 34.42% DS. This mixture was supplemented with 3 ppm penicillin and 1000 ppm urea. The slurry was adjusted to pH 4.5 with 40% H₂SO₄. Approximately 5 g of this slurry was added to 15 mL tubes. Each tube was dosed with purified DK193 AMG at 0.0623 mg EP/g DS and the alpha-amylases were dosed at 0.0175 mg EP/g DS. Actual enzyme dosages were based on the exact weight of corn slurry in each tube according to the following formula:
Water was added to each tube to bring the total added volume (enzyme + water) to 2% of the initial weight of the mash. This volume correction brings all tubes in the experiment to the same total percent solids, making ethanol concentrations directly comparable between treatments. After enzyme and water addition, 200 µL of yeast propagate (0.024 g Fermentis Ethanol Red yeast, incubated overnight at 32 °C in 50 mL filtered liquefied corn mash and 5.1 µL Spirizyme Plus AMG) was added to each tube.

Tubes were incubated in a temperature controlled room at 32°C and six replicate fermentations of each treatment were run. All tubes were vortexed at 24 and 48 hours. One sample was sacrificed for HPLC analysis at 24 hours, two at 48 hours, and three at 70 hours. The HPLC preparation consisted of stopping the reaction by addition of 50 µL of 40% H2SO4, centrifuging for 10 min at 1462xg, and filtering through a 0.45 µm filter. Samples were stored at 4°C. An Agilent™ 1100 HPLC system coupled with RI detector was used to determine ethanol and oligosaccharides concentrations. The separation column was a BioRad™ Aminex HPX-87H ion exclusion column (300mm x 7.8mm).

Data were analyzed in JMP (SAS, Cary, NC). Outliers were removed based on F-test (p<0.05). Treatments were compared to control with the Tukey-Kramer HSD test (p<0.05).

Results and Discussion

As shown in Table 2, under these experimental conditions, an alpha-amylase of the present invention (SEQ ID NO: 2) performed better than the *Aspergillus terreus* alpha-amylase showing a 1.5% improvement at the 70 hr time point. The other alpha-amylases (SEQ ID NO:4 and SEQ ID NO:6) also performed better the *Aspergillus terreus* alpha-amylase.

### Table 2.

<table>
<thead>
<tr>
<th>Treatment (70hr)</th>
<th>Ethanol yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invention (SEQ ID NO:2)</td>
<td>101.5%</td>
</tr>
<tr>
<td>Invention (SEQ ID NO:4)</td>
<td>101.1%</td>
</tr>
<tr>
<td>Invention (SEQ ID NO:6)</td>
<td>100.3%</td>
</tr>
<tr>
<td><em>A. terreus</em></td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Claims

1. An isolated polypeptide having alpha-amylase activity, selected from the group consisting of:
   5   (a) a polypeptide comprising an amino acid sequence of the mature polypeptide of
   10  the amino acid sequence of SEQ ID NO: 2, SEQ ID NO:4, or SEQ ID NO:6;
   (b) a polypeptide comprising an amino acid sequence having at least at least 80%,
15  sequence identity to the mature polypeptide of the amino acid sequence of SEQ ID NO: 2, SEQ
   ID NO:4, or SEQ ID NO:6;
   (c) a polypeptide encoded by a polynucleotide having at least 80%, sequence
20  identity to the mature polypeptide coding sequence of SEQ ID NO: 1, SEQ ID NO:3, or SEQ ID
   NO:5; and
   (d) a polypeptide encoded by a polynucleotide that hybridizes under medium
25  stringency conditions with the mature polypeptide coding sequence of SEQ ID NO: 1, SEQ ID
   NO:3, or SEQ ID NO:5; and
   (e) a fragment of the polypeptide of (a), (b) or (c) that has alpha-amylase activity.

2. The polypeptide of claim 1, which is a polypeptide comprising an amino acid sequence
30  having at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at
   least 95%, at least 96%, at least 97%, at least 98%, at least 99% sequence identity to the
   mature polypeptide of the amino acid sequence of SEQ ID NO: 2, SEQ ID NO:4, or SEQ ID
   NO:6.

3. The polypeptide of claim 1, which is a polypeptide encoded by a polynucleotide having
35  at least 90%, at least 95%, or at least 99% sequence identity to the mature polypeptide coding
   sequence of SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:5.

4. The polypeptide of claim 1, a polypeptide encoded by a polynucleotide that hybridizes
40  under medium stringency conditions with the mature polypeptide coding sequence of SEQ ID
   NO: 1 or SEQ ID NO:3 or SEQ ID NO: 5.

5. The polypeptide of claim 1 comprising or consisting of residues 1-585 of SEQ ID NO: 2
45  or the mature polypeptide encoded by SEQ ID NO: 1.
6. The polypeptide of claim 1 comprising or consisting of residues 1-622 of SEQ ID NO: 4 or the mature polypeptide encoded by SEQ ID NO: 3.

7. The polypeptide of claim 1 comprising or consisting of residues 1-607 of SEQ ID NO: 6 or the mature polypeptide encoded by SEQ ID NO: 5.

8. An isolated polynucleotide encoding the polypeptide of any of claims 1-7.

9. A nucleic acid construct or expression vector comprising the polynucleotide of claim 8 operably linked to one or more control sequences that direct the production of the polypeptide in an expression host.

10. A recombinant host cell comprising the polynucleotide of claim 8 operably linked to one or more control sequences that direct the production of the polypeptide.

11. A method of producing a polypeptide having alpha-amylase activity, comprising:
   (a) cultivating the host cell of claim 10 under conditions conducive for production of the polypeptide; and
   (b) recovering the polypeptide.

12. A transgenic plant, plant part or plant cell transformed with a polynucleotide encoding the polypeptide of any of claims 1-7.

13. A method of producing a polypeptide having alpha-amylase activity, comprising:
   (a) cultivating the transgenic plant or plant cell of claim 12 under conditions conducive for production of the polypeptide; and
   (b) recovering the polypeptide.

14. A process for producing a fermentation product, comprising:
   (a) treating a starch-containing material with the polypeptide of any of claims 1-7;
   (b) fermenting the material of (a) using a fermenting organism to produce a fermentation product.

15. The process of claim 14, wherein (a) comprises (i) liquefying the gelatinized starch with a polypeptide of any of claims 1-7 and (ii) saccharifying the liquefied mash obtained using a glucoamylase.
16. The process of claim 14, wherein the fermentation product is selected from the group consisting of fuel ethanol, portable alcohol, a beverage, or organic compounds.

17. The process of claim 14, comprising recovering the fermentation product.

18. A process for producing a fermentation product comprising:
   (a) treating a starch-containing material with an alpha-amylase of any of claims 1-7 at a temperature below the initial gelatinization temperature of said starch-containing material; and
   (b) fermenting the treated starch material using a fermenting organism to produce a fermentation product.

19. The process of claim 18, wherein steps (a) and (b) are carried out sequentially or simultaneously.

20. The process of claim 18, wherein the fermentation product is fuel ethanol.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C12N 9/26(2006.01)i, C12N 15/82(2006.01)i, C12P 7/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N 9/26; COP 19/04; C07K 14/385; C10L 1/00; C12N 9/30; C12N 9/34; C12P 7/06; C12N 9/24; C12N 15/82; C12P 7/16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & Keywords: alpha-amylases, polynucleotide, transgenic plant, fermentation product

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2011-0039308 A1 (SLUPSKA, MALGORZATA et al.) 17 February 2011</td>
<td>1-2,8-10,12</td>
</tr>
<tr>
<td></td>
<td>See abstract; paragraphs [0038] and [1055]; claims 1, 34, 52, 56, 103, 129,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>221, 225, 228 and 230; SEQ ID Nos. 51-52.</td>
<td></td>
</tr>
<tr>
<td>Ø</td>
<td>NCBI, GenBank accession no. Xp_001209405.1 (31 March 2008)</td>
<td>1-2,8-10,12</td>
</tr>
<tr>
<td></td>
<td>See the whole document.</td>
<td></td>
</tr>
<tr>
<td>Ø</td>
<td>US 2011-0097779 A1 (SOONG, CHEE-LEONG et al.) 28 April 2011</td>
<td>14,16-20</td>
</tr>
<tr>
<td></td>
<td>See abstract; claims 51 and 65-69.</td>
<td></td>
</tr>
<tr>
<td>Ø</td>
<td>US 2010-091221 A1 (NOVOZYMES A/S et al.) 12 August 2010</td>
<td>1-14,16-20</td>
</tr>
<tr>
<td></td>
<td>See abstract; claims 1-11.</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search

21 April 2014 (21.04.2014)

Date of mailing of the international search report

21 April 2014 (21.04.2014)

Name and mailing address of the ISA/KR

International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer

HEO, Joo Hyung
Telephone No. +82-42-481-8150

Form PCT/ISA/210 (second sheet) (July 2009)
**INTERNATIONAL SEARCH REPORT**

International application No.  
PCT/US2013/074957

<table>
<thead>
<tr>
<th>Box No. II</th>
<th>Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:</td>
<td></td>
</tr>
<tr>
<td>1. ☐ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:</td>
<td></td>
</tr>
<tr>
<td>2. ☐ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:</td>
<td></td>
</tr>
<tr>
<td>3. ☑ Claims Nos.: 15 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box No. III</th>
<th>Observations where unity of invention is lacking (Continuation of item 3 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This International Searching Authority found multiple inventions in this international application, as follows:</td>
<td></td>
</tr>
<tr>
<td>1. ☑ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.</td>
<td></td>
</tr>
<tr>
<td>2. ☑ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fees.</td>
<td></td>
</tr>
<tr>
<td>3. ☑ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:</td>
<td></td>
</tr>
<tr>
<td>4. ☑ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:</td>
<td></td>
</tr>
</tbody>
</table>

**Remark on Protest**  
☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.  
☒ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.  
☒ No protest accompanied the payment of additional search fees.
### DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 7883883 B2 (UDAGAIA, HIROAKI et al.) 8 February 2011 See abstract; claims 1 and 6.</td>
<td>1-14, 16-20</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2673525 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101646767 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2069490 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2069490 A4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2479266 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2479267 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2009006782 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8343747 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008-080093 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008-080093 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102083991 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2364363 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010-008841 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010-008841 A3</td>
</tr>
<tr>
<td>WO 2010-091221 A1</td>
<td>12/08/2010</td>
<td>None</td>
</tr>
<tr>
<td>US 7883883 B2</td>
<td>08/02/2011</td>
<td>AT 510925 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 549403 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1648996 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1641932 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1641932 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2336308 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2383506 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005-0048611 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005-0054071 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008-0199918 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008-0213862 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010-0323061 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012-0094333 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7833771 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8105801 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8263381 B2</td>
</tr>
</tbody>
</table>